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Abstract

In this thesis, we investigate how the combination of quantum physics and information

theory could deliver solutions at the forefront of information security, and, in particular,

we consider two focus applications: randomness extraction as applied to quantum ran-

dom number generators and classical processing algorithms for quantum key distribution

(QKD).

We concentrate on practical applications for such tools. We detail the implementation

of a randomness extractor for a commercial quantum random number generator, and we

evaluate its performance based on information theory. Then, we focus on QKD as applied

to a specific experimental scenario, that is, the one of free-space quantum links. Commer-

cial solutions with quantum links operating over optical fibers, in fact, already exist, but

suffer from severe infrastructure complexity and cost overheads. Free-space QKD allows

for a higher flexibility, for both terrestrial and satellite links, whilst experiencing higher

attenuation and noise at the receiver. In this work, its feasibility is investigated and proven

in multiple experiments over links of different length, and in various channel conditions.

In particular, after a thorough analysis of information reconciliation protocols, we consider

finite-key effects as applied to key distillation, and we propose a novel adaptive real-time

selection algorithm which, by leveraging the turbulence of the channel as a resource, ex-

tends the feasibility of QKD to new noise thresholds. By using a full-fledged software for

classical processing tailored for the considered application scenario, the obtained results

are analyzed and validated, showing that quantum information security can be ensured in

realistic conditions with free-space quantum links.
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Sommario

In questa tesi si mostra come la combinazione tra la fisica quantistica e la teoria dell’infor-

mazione permetta di realizzare protocolli all’avanguardia per la sicurezza dell’informazio-

ne. Si considerano in particolare due specifiche applicazioni: la randomness extraction per

generatori quantistici di numeri casuali e gli algoritmi di processing classici nel contesto

della crittografia quantistica.

Focalizzando lo studio sugli sviluppi pratici delle menzionate applicazioni, si descrive

anzitutto in dettaglio l’implementazione di un randomness extractor per un generatore

quantistico di numeri casuali ad uso commerciale, e si valutano le sue prestazioni sulla

base della teoria dell’informazione.

Quindi, ci si concentra sulla crittografia quantistica nello specifico scenario sperimen-

tale dei canali quantistici in spazio libero. Ad oggi, infatti, sono disponibili soluzioni

commerciali con canali quantistici in fibra ottica, che sono però condizionate da un’alta

complessitá infrastrutturale e da un elevato costo economico. La crittografia quantistica

in spazio libero, al contrario, permette una maggior flessibilitá, sia per link terrestri che

per link satellitari, nonostante essa soffra di perdite e rumore più elevati al ricevitore.

Attraverso la realizzazione di vari esperimenti su link di diversa lunghezza e con diverse

condizioni di canale, se ne dimostra la fattibilitá. In particolare, dopo un’accurata analisi

dei protocolli di correzione d’errore, si considerano gli effetti della lunghezza finita delle

chiavi sul processo di distillazione. Inoltre, si propone un algoritmo innovativo di selezione

adattiva ed in tempo reale dei dati che, sfruttando la turbolenza del canale come risorsa,

permette di estendere l’applicabilitá della crittografia quantistica a nuovi livelli di rumore.

Utilizzando un software per il processing classico ottimizzato per lo scenario considerato,

i risultati ottenuti sono quindi analizzati e validati, dimostrando che la sicurezza quanti-

stica dell’informazione può essere garantita in condizioni realistiche con link quantistici in

spazio libero.
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Capitolo 1

Introduction

Pervasive digital communication and its sensitive applications have made information se-

curity mechanisms a fundamental component of most communication networks, spanning

from national security infrastructures to on-line shops, from social networks to banking

platforms. Depending on the application, different security services may be required, such

as confidentiality, integrity and authenticity of the exchanged data. Cryptographic me-

chanisms which provide these services base their security on a secret bit sequence, shared

with legitimate communication parties but, in an ideal setting, completely unknown to po-

tential adversaries. In order to establish the secrecy of this sequence, referred to as secret

key, we have to make sure that an attacker cannot guess it with a probability higher than

that of a uniformly random guess on the key space. This means that, on one hand, the

secret key itself should be uniformly distributed on the key space, and that, on the other

hand, eventual side information available to the eavesdropper should not provide her with

a guessing advantage. These requirements establish the need for two main tools: a gene-

rator which produces uniformly random sequences and a way to estimate and compensate

for the information leaked to the eavesdropper in the key generation process.

In this thesis, we investigate how the combination of quantum physics and information

theory could deliver solutions at the forefront of information security, by considering two

focus applications: randomness extraction as applied to quantum random number gene-

rators and classical processing algorithms for quantum key distribution (QKD). Whereas

the first provides a provably secure way for producing uniformly random sequences, the

second allow to establish an unconditionally secure key agreement scheme.

We concentrate on practical applications of such tools and, as for QKD, on a specific

experimental scenario, that is, the one of free-space quantum links. Up to date, in fact,

commercial solutions with quantum links operating over optical fibers already exist, but

suffer from severe infrastructure complexity and cost overheads. On the other hand, free-

space QKD would allow for higher flexibility, for both terrestrial and satellite links, whilst

experiencing higher attenuation and noise at the receiver. In this work, its feasibility

is investigated and proven in multiple experiments over links of different length and in

different channel conditions. In particular, experimental values for the secret key rate

are reported, depending on the channel losses, on the noise at the receiver and according

to different security definitions. By using a full-fledged software for classical processing
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CAPITOLO 1. INTRODUCTION

tailored for this application scenario, the obtained results are analyzed and validated,

showing that quantum information security can be ensured in realistic conditions with

free-space quantum links.

Contributions

This thesis is mostly focused on practical applications of classical processing algorithms for

quantum information security. In the following, we briefly describe its main contributions,

in the order of presentation in the manuscript.

First, we implemented the randomness extractor proposed in [1] for a commercial quan-

tum random number generator, the QuantisTM, by ID Quantique. A critical discussion

on its parameters and on the effects of some non-idealities is provided, together with a

description of its software implementation and with the experimental evaluation of the

obtained results.

Second, we provide a classification of information reconciliation protocols and a de-

tailed analysis and performance comparison of some available solutions. The considered

protocols are optimized for minimizing the error correction information leakage while still

ensuring a target output bit error rate. Results of this analysis are used in [J1,C2,C3].

Third, privacy amplification against selective individual attacks is investigated. A tight

bound on the information leakage is given while using multiplication by random matrices

as universal hashing function [C1]. Also, the security proof with finite-key analysis of a

possibly aborting protocol is provided, as an extension of the results published in [J1].

Last, the above contributions were jointly exploited in free-space quantum key distri-

bution experiments under realistic conditions of noise and losses. A full-fledged software

for experimental quantum key distribution has been implemented, including an FPGA

software interface, classical processing algorithms and a network module for key distilla-

tion by communication over a classical channel. Either real-time or off-line key distillation

has been performed, so that the feasibility of free-space quantum key distribution is proven

in different scenarios. In particular, in [C3] we describe the results obtained with an expe-

riment over a 50 meters free-space, indoor link, where keys were distilled in real time. In

[J1], we provide the experimental results obtained via finite-key analysis for different noise

levels and according to two distinct security definitions. Finally, in [P1] (to be submitted),

we propose a new technique for enabling key distillation in free-space channels with harsh

channel conditions by using the turbulence of the channel as a resource. The proposed

technique is validated by the experimental data obtained over the 143 km free-space link

between the Isles of Santa Cruz de la Palma and Tenerife.

Outline

In chapter 2, we present a family of mathematical tools, known as randomness extractors,

which turn out to be of fundamental importance both for producing provably uniformly

random numbers and for allowing the distillation of an unconditionally secure key in a

secret key agreement scheme and, in particular, in quantum key distribution protocols. We

recall a possible classification for such extractors and we concentrate on the most versatile

10



CAPITOLO 1. INTRODUCTION

class, i.e., the family of seeded randomness extractors. By using a short uniformly random

sequence, in fact, seeded extractors allow to extract a uniformly random sequence out of

a weakly uniform randomness source, at the price of a compression which depends on the

required uniformity level. We then consider a possible application scenario for randomness

extractors, and we describe the design, the implementation and the experimental results

obtained by applying such tools to a commercial quantum random number generator, the

QuantisTM, by ID Quantique.

In chapter 3, we delve into the topic of quantum key distribution. We start by gi-

ving the general system model for information-theoretic secret key agreement proposed by

Maurer. Then, we classify QKD protocols according to two core components: the key di-

stribution technique and the information coding scheme. Subsequently, two fundamental

physical principles for quantum security are recalled, that is, an information-disturbance

lemma and the quantum no-cloning theorem. After an overview of possible attack models,

security notions covering different adversarial scenarios, spanning from purely classical to

general quantum attacks, are provided. We then describe some quantum key distribution

protocols, mainly BB84 and B92, and jointly introduce some practical attack strategies,

such as intercept-and-resend and unambiguous state discrimination. We conclude this

section by briefly reviewing photon number splitting attacks and the principles of decoy

state protocols. A taxonomy of information reconciliation protocols is then proposed, and

two possible practical constructions (namely, the Winnow protocol and a scheme based

on LDPC codes) are detailed. Information reconciliation is, in fact, a crucial phase in the

process of distilling a secret key and its application in the context of QKD undergoes diffe-

rent constraints with the respect to ordinary error correction protocols, as the redundancy

bits are directly leaked to a potential adversary and should therefore be minimized. As a

conclusion to this section, error verification is briefly described. A further application to

randomness extractors is then introduced, i.e., privacy amplification in a quantum adver-

sarial scenario. In particular, the impact of finite-key effects on the extractable secure key

length is considered, as an extension to recent literature results.

In chapter 4, we describe the free-space QKD experiments that have been carried out as

a consistent part of this work. We start by giving a description of the software implemented

for performing the experiments. Three experiments are then detailed, covering different

scenarios. We start from describing an experiment which was conducted in Palazzo della

Ragione (Padova, Italy), where the B92 protocol was implemented on the top of a 50

meters, indoor, free-space quantum link. We then describe the results obtained with a

free-space implementation of the efficient BB84 protocol, where finite-key analysis was

used for deriving the secret key rate under different noise conditions. We conclude by

detailing the results obtained by a further experiment, held between Santa Cruz de La

Palma and Tenerife (Canary islands), which showed that daylight, free-space QKD is

feasible even with a 143 Km free-space link, by using the turbulence of the channel as a

resource.

In chapter 5, we finally draw the conclusions.

Let us conclude by remarking that, throughout this manuscript, we are going to recall

11



CAPITOLO 1. INTRODUCTION

some fundamental notions of information theory and quantum mechanics, but, in general,

we assume that the reader is familiar with them. We hence refer the reader to [2] and [3]

for an accurate dissertation on these topics.

12



Capitolo 2

Randomness extraction

Random numbers are of crucial importance to several applications, spanning from cryp-

tography to numerical simulations. Different sources may be used in order to produce

random bit sequences. Nowadays, pseudo-random number generators (PseudoRNGs) are

probably the most widespread technique used for accomplishing this task. Nevertheless,

they are nothing but deterministic algorithms, which, based on an input random seed, pro-

duce bit sequences that appear to be random, but are in fact predictable. In fact, given

the knowledge of this seed, the whole sequence is perfectly and easily reproducible: this

may even be an advantage in some scenarios, such as numerical simulations, but, on the

other hand, is not acceptable for cryptographic applications. Also, PseudoRNGs exhibit a

periodicity, and the period is dependent on the size of the seed. Physical random number

generators (PhyRNGs) overcome these limitations by exploiting the intrinsic randomness

of a physical process in order to produce random bit sequences. For instance, a remarkable

tool for physical random number generation is provided by quantum optics and, in particu-

lar, by the fact that a photon impinging onto an ideal semi-transparent mirror is reflected

or transmitted with equal probability [4]. This phenomenon underlies, for example, the

design of the Quantis device, a PhyRNG based on the laws of quantum mechanics, and

henceforth referred to as a Quantum Random Number Generator (QRNG); a description

of the Quantis setup can be found in §2.4.1.

Unfortunately, despite the postulated randomness of the underlying physical process

and the soundness of its practical implementation, non-idealities of the hardware may

translate into slight deviations from uniformity in the sequence which is output from a

PhyRNG. These deviations are typically measured in terms of bias and correlations. A

powerful tool to cope with these issues are the so-called randomness extractors, which,

by leveraging information-theoretic proofs, allow one to distill from the raw PhyRNG

output sequence a shorter random string with better statistical properties. In particular,

the mathematical framework of randomness extraction allows for a direct, analytic proof,

unlike traditional empirical assessments of randomness, that are based on the assumption

that if a given sequence passes a series of statistical tests, then it is likely that the sequence

itself is random (see, for instance, [5]).

While in this chapter we focus on randomness extractors for processing the output

of a PhyRNG, their use can be extended to a quantum adversarial scenario, as for the

13



CAPITOLO 2. RANDOMNESS EXTRACTION

privacy amplification phase in a quantum key distribution scheme. In the following, we

therefore mention quantum-resilient extractors (i.e., randomness extractors in the presence

of quantum side information), but, for their application, we refer the reader to chapter 3.

In section 2.2 we provide a general classification of randomness extractors. Then, in

section 2.3 we briefly describe and compare a few possible practical constructions. Finally,

in section 2.4 we detail the practical implementation of an efficient randomness extractor

as applied to a specific QRNG, i.e., the QuantisTM.

2.1 Preliminary definitions and problem statement

While considering the process of generating randomness, as a first step we need the defi-

nition of what a source of random values is. In this work we refer to binary sources, and

we hence give the following definition.

Definition 1. (Binary source). A n-binary source X̄ on {0, 1}n is a discrete random

variable taking values in {0, 1}n according to the probability mass distribution pX̄ .

Please note that a n-binary source can be seen as a collection of n random variables

{Xi}, i = 1, . . . , n, each one taking values in the binary alphabet {0, 1}, and whose joint

probability distribution is denoted by pX̄ = pX1X2...Xn .

Now, since we are interested in evaluating how much “random” a source is, we need to

define our target, i.e., a perfectly random n-binary source, and measure the distance of the

actual source from this ideal, theoretical model. We say that a n-binary source X̄ is perfec-

tly random if it is made of a set of i.i.d. (independent and identically distributed) uniform

random variables X1, . . . , Xn. More formally, we say that a source X̄ = [X1, . . . , Xn] is

perfectly random if it is uniform on {0, 1}n, that is

pX̄(x̄) = 2−n, ∀ x̄ ∈ {0, 1}n. (2.1)

In particular, we denote the uniform probability mass distribution over {0, 1}n by Un. It

should be noted that condition (2.1) implies that the single random variables {Xi}i∈[1,n]

are uniform and jointly independent.

Now, we need a tool for evaluating the deviation of a given probability distribution

with respect to the ideal uniform and independent one. An adequate measure of the

deviation between two probability distributions is provided by the following function.

Definition 2. (Statistical distance). The statistical distance between two probability

distributions pX̄ and pX̄′ over the same alphabet X is defined as

δ(pX̄ , pX̄′) ,
1

2

∑
x̄∈X
|pX̄(x̄)− pX̄′(x̄)| .

We say that two distributions pX̄ and pX̄′ over the same domain are ε-close if δ(pX̄ , pX̄′) ≤
ε. In particular, we say that the n-binary source X̄ is ε-uniform if it is ε-close to Un. The

statistical distance also has an operational interpretation, that is, it can be seen as the

14



CAPITOLO 2. RANDOMNESS EXTRACTION

maximum probability by which two probability distributions can be distinguished, as

formalized in the following lemma.

Lemma 1. [6, Proposition 2.1.1] Let pX̄ and pX̄′ be two probability distributions on the

same alphabet X = {a1, . . . , aN} such that their statistical distance is ε = δ(pX̄ , pX̄′).

Then there exists a joint distribution pX̄X̄′, with marginal distributions pX̄ and pX̄′, such

that the following inequality holds:

P [X̄ 6= X̄ ′] ≤ ε, (2.2)

where

P [X̄ 6= X̄ ′] =
∑

(x̄,x̄′)∈X×X

p ¯XX′(x̄, x̄
′)χ(x̄, x̄′), (2.3)

and χ(x̄, x̄′) =

1, if x̄ 6= x̄′,

0, if x̄ = x̄′.

Dimostrazione. Let pi = pX̄(ai) and qi = pX̄′(ai) for every i ∈ [1, N ]. Then, we can design

a joint distribution such7 that

pX̄X̄′(ai, aj) =

min(pi, qi), if i = j

pij , otherwise
(2.4)

with pij chosen such that
∑N

i=1 pij = qj and
∑N

j=1 pij = pi. The existence of such {pij} is

ensured by the balance condition
∑N

i=1 pi =
∑N

i=1 qi, as explained in [7]. Then

P [X̄ 6= X̄ ′] = 1−
N∑
i=1

pX̄X̄′(ai, ai) (2.5)

= 1−
N∑
i=1

min(pi, qi) (2.6)

=
1

2

(
N∑
i=1

[qi −min(pi, qi)] +
N∑
i=1

[pi −min(pi, qi)]

)
(2.7)

=
1

2

 ∑
i:qi>pi

|qi − pi|+
∑
i:pi>qi

|qi − pi|

 (2.8)

≤ 1

2

N∑
i=1

|qi − pi| (2.9)

= δ(pX̄ , pX̄′) ≤ ε (2.10)

The result of the previous lemma can be extended so that for any random variable X̄

distributed according to pX̄ it is possible to define a random variable X̄ ′ on the same pro-

bability space and distributed with pX̄′ such that (2.2) holds. This requires the additional

15



CAPITOLO 2. RANDOMNESS EXTRACTION

hypothesis that the probability space underlying the joint distribution of X̄ and X̄ ′ has a

fine enough resolution.1

Lemma 2. Let pX̄ and pX̄′ be two probability distributions on the same alphabet X =

{a1, . . . , aN} such that their statistical distance is ε = δ(pX̄ , pX̄′). Then, for every X̄

defined on a sufficiently resolved probability space and distributed according to pX̄ , there

exists some X̄ ′ distributed according to pX̄′ such that

P [X̄ 6= X̄ ′] ≤ ε, (2.11)

where P [X̄ 6= X̄ ′] is defined as in (2.3).

Dimostrazione. As a first step, given pi = pX̄(ai) and qi = pX̄′(ai) for every i ∈ [1, N ],

design the joint probability distribution pX̄X̄′(ai, aj) as in (2.4). Then, given the random

variable X̄, defined on the probability space2 (Ω,F , P ), let Ai = X̄−1(ai) ∈ F , for each

i ∈ [1, N ], that is, Ai is the event corresponding to the outcome ai. We say that the

probability space is sufficiently resolved if, for every i, there exist A′i1, . . . , A
′
iN ⊆ Ai, with

A′ij ∩ A′jk = ∅ for j 6= k, such that P [A′ij ] = pij . Under this hypothesis, we can define a

random variable X̄ ′ : Ω→ X , with

X̄ ′(ω) =

aj , ω ∈
⋃N
i=1A

′
ij

arbitrary, ω ∈ Ω/
⋃N
i=1A

′
ij .

(2.12)

It is then easy to see that the joint probability distribution of X̄ and X̄ ′ is pX̄X̄′ , which,

in the proof of lemma 1, was shown to imply condition (2.11).

These lemmas have a relevant practical consequence, in that, if an application is proved

to work well with random sequences produced by X̄, then it is supposed to work well also

with X̄ ′, given that ε = δ(pX̄ , pX̄′) is sufficiently small.

Lemma 3. [1] Let Π be a stochastic process that takes as input a random value X̄ and

may fail with probability pfail(Π(X̄)). If the input X̄ is replaced by X̄ ′, then the failure

probability can increase by at most ε = δ(pX̄ , pX̄′), i.e.,

pfail(Π(X̄ ′)) ≤ pfail(Π(X̄)) + ε .

At this point, we have the definition of random source, the one of a perfectly random

source and a mathematical metric, the statistical distance, to measure the deviation of a

given source from the ideal and uniform one. We are then ready to formally define the

operational problem of randomness extraction.

Definition 3. (Extraction problem). Let X̄ be a n-binary, γ-uniform source. A random-

ness extractor Ext, which takes as input a single realization of X̄ and possibly further

inputs produced by a source Z̄ is a function such that its `-bit output Ȳ = Ext(X̄, Z̄) is

ε-uniform, with ` < n, ε < γ and ε� 1 as small as required by further applications.

1the notion of fine enough resolution is provided in the proof of the lemma.
2we recall that Ω is the sample space, F the σ-algebra of events and P the probability measure.
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The nature of the Z̄ will be clarified in the following section; in particular, it could

consist of some additional, external randomness (seeded extractor) or of multiple, inde-

pendent randomness sources (multiple, independent sources extractor). Intuitively, given

a weak randomness source X̄, for each n-bit sample we want to produce an `-bit output

such that the distribution of the output is ε-uniform. With a different perspective, ac-

cording to this definition the extractor output is such that a potential adversary using an

optimal strategy3 cannot guess it with an advantage greater than ε as compared with a

uniformly random guess, that is, pguess ≤ 2−` + ε.4

With this problem in mind, it is of crucial interest to evaluate the number ` of bits

that can be extracted from a source so that the extractor output is ε-uniform. Intuitively,

this quantity depends on the nature of the extractor and on the statistical description of

the source. In particular, if the input source produces i.i.d. samples, as a consequence of

the asymptotic equipartition property it can be proven (see e.g., [8]) that the amount of

extractable randomness is asymptotically equal to the Shannon entropy, which is defined

as follows:

Definition 4. (Shannon Entropy) Let X̄ be a source with probability mass distribution

pX̄ . The Shannon entropy of X̄ is defined as

H(X̄) ,
∑

x̄∈{0,1}n
−pX̄(x̄) log2(pX̄(x̄)). (2.13)

Unfortunately, this entropy measure is not sensitive enough to deviations from unifor-

mity. Let us consider the following clarifying example.

Example 1. Consider the following class of distributions on X = {0, 1}n:

P =

{
p : X → R+ such that ∃ a ∈ X : p(a) =

1

2
∧ p(a′) =

1

2n
,∀a′ 6= a

}
, (2.14)

that is, all p ∈ P take some value a with probability 1
2 and any other value a′ 6= a with

probability 1
2n . It is easy to see that, for every X̄ distributed according to p,

H(X̄) = −1

2
log2

(
1

2

)
− 2n−1

{
1

2n
log2

(
1

2n

)}
=

1

2
+
n

2
. (2.15)

In the above example, for a random choice of p ∈ P, H(X̄) linearly increases with n and

can get arbitrarily high, but, in fact, an adversary can always guess X̄ with a probability

at least 1/2. Hence, given that {Xi}i∈[1,n] are not i.i.d., H(X̄) does not properly take into

account the worst case, but rather considers the average behavior. On the contrary, this

is exactly the rationale behind the definition of min-entropy of a source, which in fact

captures the maximum guessing probability for an adversary, which is actually what we

are interested in for the case of randomness extraction. Let us now give a formal definition.

3the optimal strategy consists in guessing the most probable event.
4please note that this bound may be loose, as the statistical distance takes into account all the deviations

from uniformity, whereas the guessing probability (assuming the optimal attacker’s strategy) considers just
the one of the most probable element, if any.
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Definition 5. (Min-entropy). Let X̄ be a source with probability mass distribution pX̄ .

The min-entropy of X̄ is defined as

Hmin(X̄) , − log2 max
x̄∈{0,1}n

{pX̄(x̄)}. (2.16)

This definition implies that if X̄ is a binary source, then Hmin(X̄) is equal to the maximum

k such that for every x̄ ∈ X̄, pX̄(x̄) ≤ 2−k, that is, “it is directly related to the probability

of correctly guessing the value of X̄ using an optimal strategy” [9]. In particular, in the

following sections we report some results on how the min-entropy provides a bound on the

amount of random bits that can be extracted out of a randomness source.

If we go back to example 1, we get Hmin(X̄) = 1, which is exactly the maximum

amount of randomness we can deterministically extract from X̄ by just knowing that

its distribution lies in P. In fact, for this particular case, the attacker has no guessing

advantage only when trying to guess one of the two events {a′ = a} and {a′ 6= a}, which

both have probability 1
2 and can therefore be represented by just one bit of information.

Finally, we introduce the notion of collision entropy which provides a tighter bound

on the amount of extractable randomness for some specific extractors.

Definition 6. (Collision entropy) Let X̄ be a source with probability mass distribution

pX̄ . The collision entropy of X̄ is defined as

H2(X̄) , − log2

∑
x̄∈{0,1}n

{pX̄(x̄)}2. (2.17)

It should be noted that all the entropy measures introduced above can be seen as

particular cases of a more general one, that is, the Rényi entropy of order α, which is

defined in the following.

Definition 7. (Rényi entropy of order α) For α > 0, α 6= 1, the Rényi entropy of order

α of a n-binary source X̄ is defined as

Hα(X̄) =
1

1− α
log2

∑
x̄∈{0,1}n

[pX̄(x̄)]α. (2.18)

In particular, as it can be proven (see, e.g., [10]), the Shannon entropy can be seen as the

limit for α → 1 of Hα and the min-entropy as the limit for α → ∞ of Hα, whereas the

collision entropy is the Rényi entropy of order 2.

The following proposition provides a comparison between the proposed entropy defi-

nitions, based on the fact that Hα(X̄) ≥ Hβ(X̄) for 0 ≤ α ≤ β (a proof can be found in

[10, Proposition 2.4]).

Proposition 1. For every source X̄, the following inequalities holds

Hmin(X̄) ≤ H2(X̄) ≤ H(X̄), (2.19)

and the equality holds if and only if X̄ is uniform or almost surely constant.
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Let us conclude by noting that in order to compute Hmin(X̄) and H2(X̄), the probabi-

lity distribution PX̄ of the source X̄ has to be known a priori. Unfortunately, in practical

applications such probability distribution is not available, but it should be estimated rely-

ing on finite bit sequences. Hence, the reliability of such an estimate should be taken into

account and, given an error probability µ of the estimate, we now define two quantities,

called smooth entropies, which embed this statistical error in their definition.

Definition 8. [1] For any µ ≥ 0, the smooth min-entropy Hµ
min and the smooth collision

entropy Hµ
2 of a random variable X are defined by

Hµ
min(X̄) = max

PX̄′∈Bµ(PX̄)
Hmin(X̄ ′) (2.20)

Hµ
2 (X̄) = max

PX̄′∈Bµ(PX̄)
H2(X̄ ′) . (2.21)

where Bµ(PX̄) is the set of all distributions PX̄′ which have at most distance µ from PX̄ .

It should be noted that these two entropy measures are essentially equivalent. This is

stated more formally in the following lemma.

Lemma 4. [1] For any µ ≥ 0 and µ′ > 0,

Hµ
min(X) ≤ Hµ

2 (X) ≤ Hµ+µ′

min (X) + log2

1

µ′
.

In the remainder of this chapter, in order to simplify the analysis and the notation, we

are not explicitly considering entropy smoothing, though most cited results immediately

generalize to smooth entropies. In §2.4.3, however, the impact of the entropy estimation

error on the performance of the Quantis extractor is evaluated and, hence, the smooth

collision entropy is considered.

2.2 Types of extractors

Randomness extractors can be distinguished in three main categories, depending on their

structure: deterministic extractors, seeded extractors and extractors from multiple inde-

pendent sources. In the following sections, we describe these categories while presenting

some known results from the literature. In particular, we refer the reader to [11, 12].

2.2.1 Deterministic extractors

Deterministic extractors represent the simplest family of randomness extractors. In fact,

they just process the weakly-random input sequence, without needing any additional input.

Let us start from giving a definition of these mathematical tools.

Definition 9. (Deterministic extractor) Let n, ` ∈ N be such that ` ≤ n and let ε ≥ 0 be a

parameter. Let Ext : {0, 1}n → {0, 1}` be a function and X̄ be a source over {0, 1}n. Then

Ext is an ε-extractor for X̄ if the distribution of Ext(X̄) is ε-close to U`. Furthermore,

given a class C of sources over {0, 1}n, Ext is an ε-extractor for C if the distribution of

19



CAPITOLO 2. RANDOMNESS EXTRACTION

Ext(X̄) is ε-close to U` for every X̄ ∈ C.

Ext(·)X̄ Ext(X̄)n `

Figura 2.1: Block diagram for a deterministic extractor.

It can be proven that deterministic extractors are able to produce uniform randomness

when the class C of possible sources has a specific structure. As an example, deterministic

extractors exist for the following classes of sources:

1. Von Neumann sources

These sources consist of a sequence of independent but uniformly biased boolean

random variables X1, X2, . . . , Xn ∈ {0, 1}, that is:

(a) (Identical bias, p ∈]0, 1[)

pXi(1) = p, ∀i ∈ [1, n]

(b) (Independence)

pX1X2...Xn(x1, . . . , xn) =

n∏
i=1

pXi(xi)

Please note that the well-known Von-Neumann algorithm, which divides the input

string in pairs and maps the pair 01 to 0 and the pair 10 to 1, while discarding the

pairs 00 and 11, is an example of deterministic extractor.

2. Independent-bit sources

These sources are an extension of the previous ones. In particular, we now let

different sources to have different biases. More specifically:

(a) (Non-uniform bias, pi ∈]0, 1[)

pXi(1) = pi, ∀i ∈ [1, n]

(b) (Independence)

pX1X2...Xn(x1, . . . , xn) =

n∏
i=1

pXi(xi)

It can be shown that when we take a parity of p bits from such an independent-bit

source, the result approaches an unbiased coin flip exponentially fast in p. This

means that we can design an extractor which asymptotically extracts a uniformly

random sequence out of a weakly random one, but this comes at the price of a rate

reduction of a factor p.
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Nevertheless, as soon as we drop the independence assumption, deterministic extractors

are no longer able to efficiently produce perfectly random sequences. For instance, the

authors of [13] have shown that deterministic extractors do not exist for the following class

of sources, that are considered as a generalization of Von Neumann sources, and are often

referred to as Santha-Vazirani sources:

Definition 10. (Unpredictable-bit sources, UPBn,δ). Given n ∈ N and δ > 0, a UPBn,δ

source is a collection of binary sources {Xi} such that

∀ i, x1, . . . , xn ∈ {0, 1}, δ > 0 :

δ ≤ P [Xi = 1|X1 = x1, . . . , Xi−1 = xi−1] ≤ 1− δ

More specifically, the non existence of deterministic extractors for this kind of sources

is stated in the following proposition.

Proposition 2. [14] For every n ∈ N, δ > 0, and a fixed extraction function Ext :

{0, 1}n → {0, 1} there exists a UPBn,δ source X̄ such that either P [Ext(X̄) = 1] ≤ δ or

P [Ext(X̄) = 1] ≥ 1− δ. Hence, there is no ε-extractor for the class UPBn,δ.

The above example shows that “there are families of sources that are very structured

and still do not allow deterministic extraction” [12]. Hence the need for non-deterministic

extractors, that will be described in the following sections.

As a conclusion to this section, and for the sake of completeness, we list a few more ge-

neral families of sources which are considered in the literature on deterministic extraction,

as reported in [12].

• Affine sources are distributions that are uniform over some affine subspace of Fnq
(space composed by vectors of n elements in the finite field Fq); the min-entropy of

these sources coincides with the dimension of this subspace.

• Feasibly generated sources - family of sources that are specified by placing limitations

on the process that generates the source (e.g., generated by a finite Markov chain).

• Feasibly recognizable sources - family of sources that are uniform over sets of the

form {x̄ : f(x̄) = v̄} for a fixed v̄ and with f belonging to some specified class ([15]).

2.2.2 Seeded extractors

As was shown in the previous section, deterministic extraction is not suitable for all types

of sources. We will now consider a much more general class of sources, which rely on a

single constraint on the min-entropy. We will refer to this kind of sources as k-sources.

Definition 11. (k-source). A random variable X̄ is a k-source if Hmin(X̄) ≥ k, i.e., if

pX̄(x̄) ≤ 2−k for any x̄ ∈ {0, 1}n.
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Examples of k-sources

• oblivious bit-fixing sources - k random independent uniform bits, n− k fixed bits (in

an arbitrary order).

• adaptive bit-fixing sources - k random independent uniform bits, n − k bits that

depend arbitrarily on the first k bits.

• UPBn,δ (see §2.2.1) - k-sources with k = log(1/(1− δ)n) = Θ(δn)

• flat k-sources - sources with uniform distribution on a set S ⊂ {0, 1}n, with |S| = 2k

(generalization of adaptive bit-fixing sources).

Given this definition, we are now ready to define a seeded randomness extractor.

Definition 12. (Seeded extractor) A function Ext : {0, 1}n×{0, 1}d → {0, 1}` is a (k, ε)-

extractor if for every k-source X̄, the distribution of Ext(X̄, S̄) is ε-close to uniform, where

S̄ ∼ Ud and is independent of X̄. In particular, we say that Ext is a (k, ε)-strong extractor

if Ext′(x̄, s̄) = (Ext(x̄, s̄), s̄) is a (k, ε)-extractor.

S̄

Ext(·, ·)X̄ Ext(X̄, S̄)n

d

`

Figura 2.2: Block diagram for a seeded extractor.

It is of course interesting to evaluate what are the optimal parameters for this kind of

extractors. The following theorem states a result in this sense.

Theorem 1. [16] For every n ∈ N, k ∈ [0, n] and ε > 0, there exist (k, ε)-extractors with:

• seed length d = log(n− k) + 2 log(1/ε) +O(1)

• output length ` = k + d− 2 log(1/ε)−O(1)

It is then natural to define the amount of randomness that a seeded extractor is able

to produce given a k-source and a uniformly random seed, or, equivalently, how much

randomness is lost in the extraction process; this gap is captured by the so-called entropy

loss.

Definition 13. (Entropy Loss). The entropy loss of a seeded randomness extractor Ext :

{0, 1}n × {0, 1}d → {0, 1}` is intuitively defined as ∆ := k + d− ` > 0.
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From the previous theorem, it follows that there exist extractors such that ∆ = 2 log(1/ε)+

O(1), but it should be noted that we cannot exclude the existence of better extractors with

smaller ∆. Trivially, the lower is the entropy loss, the higher is the extraction efficiency.

It should be noted that theorem 1 establishes an asymptotic lower bound on the minimum

seed length and an asymptotic upper bound on the maximum output length, but does not

provide a constructive method for designing an optimal extractor. Some close-to-optimal

constructions are introduced in section 2.3.

On the nature of side information.

Up to this point, we have required that given a k-source and a uniformly random seed,

the distribution of the output of a (k, ε)-extractor, Ext(X̄, Ud), is ε-close to uniform, that

is

Hmin(X̄) ≥ k ⇒ Ext(X̄, Ud)
ε∼ U`. (2.22)

For some applications, however, it is necessary to take into account also the side

information, that is the information about the input which is accessible to a potential

adversary. In particular, side information should be considered when using randomness

extractors in the context of privacy amplification (as for Quantum Key Distribution, see

chapter 3) or simply when applying two extractors in succession to the same input X̄ (see

§2.4.3 for a discussion on the impact of block-wise extraction). In this setting, criterion

(2.22) should be rewritten as

Hmin(X̄|E) ≥ k ⇒ Ext(X̄, Ud)
ε∼ U` conditioned on E. (2.23)

As stated in [9], “the relationship between criterion (2.22) and criterion (2.23) depends

on the physical nature of the side information E, i.e., whether E is represented by the

state of a classical or a quantum system”. In fact, in the case of purely classical side

information, the two criteria are almost equivalent up to some small factor [17], while

in the quantum case, criterion (2.23) is strictly stronger than (2.22), and extractors that

fulfill (2.22) do not necessarily verify (2.23) (a counterexample can be found in [18]). This

has the fundamental implication that, in the presence of a quantum adversary, which has

access to some side quantum information, the adoption of criterion (2.23) is mandatory in

order to ensure secure randomness extraction. In particular, an extractor fulfilling criterion

(2.23) (with E being a quantum state), is referred to as a quantum-resilient extractor.

For defining this type of extractor, we first have to define the min-entropy of a classical

random variable conditioned on the quantum side information available to the adversary.

Definition 14. [19] Let ρX̄E be a cq-state, that is, a bipartite density operator describing

the joint state of the classical value X̄ and of the quantum system E:

ρX̄E =
∑

x̄∈{0,1}n
p ¯̄X(x̄)|x̄〉〈x̄| ⊗ ρE|X̄=x̄. (2.24)
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The min-entropy of X̄ conditioned on E (evaluated for ρ = ρX̄E) is defined as

Hmin(X̄|E)ρ = − log2 pguess(X̄|E) (2.25)

where pguess(X̄|E) is the average probability of guessing the value of X̄ correctly using an

optimal strategy with access to E.

We are now ready to define a quantum-resilient extractor:

Definition 15. [19] A seeded randomness extractor, Ext(X̄, S̄), is a (k, ε)-strong quantum

resilient extractor if for all cq-states ρX̄E with Hmin(X̄|E)ρ ≥ k we have

ES̄ [‖ρExt(X̄,S̄)E − ωX̄ ⊗ ρE‖1] ≤ ε (2.26)

where ωX̄ is the state corresponding to a uniformly distributed X̄ and ES̄ [·] denotes the

expectation value over a uniform choice of the seed S̄.

In this thesis, we will consider a specific instance of randomness extraction in a quan-

tum adversarial scenario, namely, the privacy amplification phase of a quantum key distri-

bution protocol. For further details, we therefore refer to §3.6 and, for a practical solution,

to §4.2 and §4.3. In the remainder of this chapter, however, we restrict the analysis to the

classical case, as we are concentrating on how to improve the quality of randomness of the

classical output of a QRNG to which the adversary has no physical access.

2.2.3 Extractors from multiple independent sources

A further generalization of seeded extractors is the one of extractors from multiple inde-

pendent sources. Here the idea is to replace the requirement that the seed is uniformly

distributed by the weaker requirement that it has a sufficiently large min-entropy. This

requirement could be achieved, for instance, in the case of two independent sources, one

of which is regarded as a weakly random seed for the randomness extractor which receives

as input a sequence originated by the other one. The extension to t independent sources

is then straightforward.

Definition 16. (Extractors for independent sources). A function Ext : ({0, 1}n)t →
{0, 1}m is a (k, ε)-t-source extractor if for every t independent random sources X̄1, . . . , X̄t

such that, ∀ i = [1, . . . , t], Hmin(X̄i) ≥ k, the distribution of Ext(X̄1, . . . , X̄t) is ε-close to

U`.

We stress that, as said in [12], extractors from multiple independent sources could

be seen as particular cases of deterministic extractors as well, as they do not require

external randomness, but just weakly random sources. We will not delve deeper into the

description of this kind of extractors, but we just recall the current state-of-the-art5 for

2-source extractors in terms of min-entropy threshold (i.e., the minimum min-entropy that

each source should have); the result is due to Bourgain [20] and fixes this threshold at

k = (1/2− α)n for some small constant α.

5to the best of the author’s knowledge.
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Ext(·, . . . , ·)...

X̄1

X̄t

Ext(X̄1, . . . , X̄t)

n

n

`

Figura 2.3: Block diagram for extractors from multiple independent sources.

Finally, let us recall the following result, which shows that a very simple extractor

from multiple independent sources, that is, the extractor which outputs the XOR of all

the input bits, reduces the distance from uniform of the input exponentially in the number

of sources. In particular, this result will be used in §2.4.4 as applied to the generation of

the seed for the QuantisTM extractor.

Proposition 3. [1, Lemma 4] Let X1, . . . Xt be t bits produced by t independent random

sources such that, for some ξ > 0 and for all i ∈ [1, t],

δ(Xi, U1) ≤ ξ.

Then the bit W =
∑

iXi mod 2 satisfies

δ(W,U1) ≤ 1

2
(2ξ)t .

Dimostrazione. A simple calculation shows that, for two independent bits X1 and X2 with

ξi = δ(Xi, U1), and with W = X1 +X2 mod 2,

δ(W,U1) = 2ξ1ξ2 .

The claim then follows by recursive application of this rule.

2.3 Practical constructions for seeded extractors

As mentioned in section 2.2, seeded extractors are the most versatile category of random-

ness extractors, since they can efficiently cope with both bias and correlation in the input

sequence. In this section we therefore overview some fundamental results and practical

constructions of such functions.

Given an n-bit input x̄ produced by a source X̄ and Ext(·, s̄) being the extraction

function chosen uniformly at random from a class of possible functions according to an

input seed s̄ generated by a source S̄ with distribution PS̄ , we write the input-output

relation of the seeded extractor as
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ȳ = Ext(x̄, s̄). (2.27)

Assuming that the source X̄ has min-entropy per bit Hb
min(X̄) and given that the `-bit

output ȳ is distributed according to PȲ , we point out three desirable requirements:

1. minimization of the distance from uniform of the output : we want δ
(
PȲ S̄ , U` × PS̄

)
to be arbitrarily low;

2. maximization of the extraction efficiency : ηext = `/n should be as close as possible

to Hb
min(X̄);

3. high computational efficiency : the computational overhead due to the randomness

extraction should be acceptable;

It is reasonably understood that, for a fixed n, the first two objectives are conflicting: the

lower the required distance from uniform, the lower the corresponding extraction efficiency;

this trade-off is shown in figure 2.4 for universal2 hash functions (see §2.3.1).

In this section we introduce some available constructions for seeded randomness extrac-

tion, and, in particular, we focus on two significant schemes: almost 2-universal hashing

and Trevisan’s extractor. In order to provide an overview of possible solutions, we also

report two tables: the first, taken from [19], provides some references for different ran-

domness extraction schemes, either with classical or with quantum resiliency; the second

one, taken from a presentation of Thomas Vidick (QCrypt20116), schematically shows the

length of the seed and the length of the corresponding output for the some randomness

extractors with quantum resiliency (please note that these results extend smooth entropies

as well).

Resiliency
classical quantum

2-universal hashing [21, 22] [23, 24]
Almost 2-universal hashing [25] [26]

δ-biased masking [27] [28]
Trevisan’s extractor [29] [9, 30, 31]
Sample-then-extract [32] [33]

Tabella 2.1: Practical randomness extractors: classical and quantum resiliency.

2.3.1 (Almost) 2-Universal hash functions

The notion of universal2 hash function7 was first introduced by Carter and Wegman in

their seminal work [34], dating back to 1979. Since then, universal hash functions have

found many applications (e.g., in databases, in message authentication schemes, etc.) and,

in particular, they are extensively used in the privacy amplification phase of a secret key

agreement protocol (see, e.g., [35, 21]).

6available at http://www.qcrypt2011.ethz.ch/programme/slides/vidick.ppsx
7for conciseness we drop the prefix 2- from now on.
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Construction d ` Ref.

2-Universal hashing n Hmin(X̄|E) [23]
Almost 2-Universal hashing ` Hmin(X̄|E) [26]

δ-biased masking n Hmin(X̄|E) [28]
1-bit extractors log(n) 1 [17]

Trevisan’s extractor log3(n) Hmin(X̄|E) [9, 30, 31]

Tabella 2.2: Quantum-resilient randomness extractors: seed and output length given an
n-bit input.
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Figura 2.4: Admissible regions for the distance from uniform of the output to an extractor
based on 2-universal hash functions, given the upper-bound provided by the leftover ha-
shing lemma (Lemma 5, see §2.3.1); the regions are plotted as a function of the extractor
efficiency ηext, for different values of the input block size n and given Hb

min(X̄) = 0.95.

Intuitively, a class H of hash functions from X to Y is universal if no pair of distinct

inputs is mapped to the same element by more than 1/|Y|-th of the functions. This

constraint can be relaxed, by requiring, for instance, that no more than a fraction ∆ of

the functions maps distinct inputs into the same output; in that case we say that H is a

∆-almost universal class of hash functions.

Definition 17. [34]: Let H be a class of hash functions from X to Y. We say that H is

∆-universal if

∀ x, x′ ∈ X , x 6= x′, |{h ∈ H : h(x) = h(x′)}| ≤ ∆|H|.

In particular, we say that a class H of functions from X to Y is perfectly universal,

that is, such that ∆ = 1/|Y|, if no pair of distinct inputs is mapped to the same element

by more that 1/|Y|-th of the functions. Let us consider some examples.

Example 2. All the linear functions from {0, 1}n to {0, 1}` form a universal hash class

[34], H3. These functions can be described by n × ` matrices over GF(2), i.e., by n`
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bits, and are particularly interesting due to their simple and convenient implementation

(traditional tools for efficient matrix multiplication can be exploited straightforwardly).

Example 3. The class of Toeplitz matrices in {0, 1}n×` is universal [36]. This class turns

out to be particularly convenient, both for the compactness of its description (only `+n−1

bits are needed to represent each matrix) and for the efficiency of matrix multiplication

algorithms that the Toeplitz structure allows [37].

Example 4. The last example of universal class of hash functions, H4, is the one proposed

in [34] and revisited in [21]. Let a be an element of GF(2n) and also interpret x as an

element of GF(2n). Then, let us consider the function from {0, 1}n to {0, 1}` assigning to

an argument x the first ` bits of the element ax ∈ GF(2n). It can be proven that H4, for

a ∈ GF(2n), is universal for 1 ≤ ` ≤ n.

We now briefly report some fundamental results recalled or proven in [24] and in [26].

In particular, we recall the classical version of the Leftover hashing lemma, which is the

fundamental result that states why universal hash functions can be used for randomness

extraction.

Lemma 5. (Leftover hashing lemma)[26]. Given a n-binary source X̄, by averaging over

the choice of a function f from a class of universal hash functions H, the distribution

of the `-bit output Ext(x̄, f) = f(x̄)8 is at most εext-far from uniform conditioned on E,

where

εext =
1

2
2
√
`−H2(X̄|E). (2.28)

As stated in [26], this “immediately implies that for a fixed joint distribution of X̄ and

E, there is a fixed function f that extracts almost uniform randomness. In fact, for any

εext > 0, there exists a function f which produces

` =

⌊
H2(X̄|E)− 2 log

(
1

εext

)
+ 2

⌋
(2.29)

bits that are εext-close to a bit string which is both uniform and independent of E”.

Similar results can be proven in the case of ∆-almost universal hash functions, that is,

the distance from uniform is bounded by

εext =
1

2

√
(2`∆− 1) + 2`−H2(X̄|E), (2.30)

and Eq.(2.28) can be obtained with ∆ = 2−`. It should be stressed that the relaxation

given by setting ∆ > 2−` allows for a smaller family of universal hash functions H, that

is, less bits are required for specifying a function f ∈ H (and the random bits that specify

a randomly chosen function f are in fact the seed of the extractor).

From a practical point of view, a widely used family of universal hash functions is the

one of random matrices. In particular, as mentioned in example 2, the class of Toeplitz

matrices takes advantage on one hand of a compact representation and on the other hand

8Ext(x̄, f) represents the extractor which corresponds to the random choice of the function f ∈ H; the
seed S̄ would in fact be the random bit string which uniquely determines f .
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of an efficient software and hardware implementation, based on the Fast Fourier Tran-

sform (FFT). A solution based on universal hash functions and tailored for randomness

extraction is the one proposed in [38].

2.3.2 Trevisan’s extractor

In this section we introduce the notion of Trevisan’s extractor. Rather than giving a

complete overview, however, we simply sketch the intuition behind this extractor and

state some fundamental results. As shown in table 2.2, in fact, Trevisan’s extractors allow

for the shortest seed length as compared with other solutions (such as universal hashing),

and still they output all the extractable randomness of the source; in this sense they are the

optimal solution for seeded randomness extraction. For the specific applications we here

consider (post-processing of QRNG output and privacy amplification), however, universal

hash functions turn out to be a more suitable choice, since they provide both a reasonable

seed length and a simple, efficient implementation (for more details, see §2.4).

The main idea behind Trevisan’s extractor is that of applying ` times a 1-bit extractor

to a string of n bits in order to finally get an `-bit string as output. Obviously, a naive

application of this paradigm [17], which uses a fresh t-bit seed for each of the ` extractions,

would require d = ` · t uniformly random bits to be used as seed, and this is of course

not practical. Hence, given an overall seed of d < ` · t bits, Trevisan’s idea is to define

minimally overlapping sets D1, . . . , D` ⊂ {1, . . . , d}, corresponding to the indexes of the

overall seed to be picked up for each of the ` single seeds, so that d is poly-logarithmic in

the input length; in particular he resorts to the definition of design introduced by Nisan

and Widgerson [39]. This idea can in fact be improved by relaxing some requirements on

the definition of these designs (which are nothing but a partitioning of the set {1, . . . , d}
which allows overlappings); the following is the relaxation proposed by Raz, Reingold and

Vadhan [40]:

Definition 18. (Weak design). Given r ≥ 1 and t ∈ N, the sets D1, . . . , D` ⊂ {1, . . . , d}
are said to form a weak (t, r)-design if

1. ∀i, |Di| = t

2. ∀i,
∑i−1

j=1 2|Dj∩Di| ≤ r(`− 1).

where the parameter r should be chosen so that r ≈ Hmin(X̄|E)/`; in particular, “1/r

is essentially the fraction of source min-entropy that is extracted, so ideally r should be

as close to 1 as possible” [40]. Furthermore, the authors of [40] prove that by using a

weak design a shorter seed can be used in order to extract the same fraction of the source

min-entropy, and propose a constructive probabilistic method, based on the method of

conditional expectations.

Let us now give a formal definition Trevisan’s extractor.

Definition 19. (Trevisan’s extractor) For a 1-bit extractor C : {0, 1}n×{0, 1}t → {0, 1},
which uses a (not necessarily uniform) seed of length t and for a weak (t, r)-design
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C(·, ·)S̄D1 S̄D2
C(·, ·) . . . S̄D` C(·, ·)

X̄

C(X̄, S̄D1) C(X̄, S̄D2) C(X̄, S̄D`)

ExtC(X̄, S̄)

Figura 2.5: Block diagram for a Trevisan’s extractor.

D1, . . . , D` ⊂ {1, . . . , d}, we define the `-bit extractor ExtC : {0, 1}n × {0, 1}d → {0, 1}`

as

ExtC(x̄, s̄) := C(x̄, s̄D1) . . . C(x̄, s̄D`)

being s̄Di the subset of the overall seed s̄ corresponding to the indexes specified by Di.

Given this construction and that C is a strong extractor itself, the authors of [9]

prove that ExtC is a randomness extractor resilient to quantum side information9 both

for perfectly uniform seeds and for weakly random seeds (as in the case of extractors from

multiple independent sources).

Theorem 2. [9, Theorem 4.6] (Uniformly random seed) Let C : {0, 1}n×{0, 1}t → {0, 1}
be a (k, ε)-strong extractor with uniform seed and D1, . . . , D` ∈ {1, . . . , d} a weak (t, r)-

design. Then ExtC : {0, 1}n×{0, 1}d → {0, 1}` is a quantum-proof (k′, ε′)-strong extractor,

with k′ = k + r`+ log(1/ε) and ε′ = 3`
√
ε.

Theorem 3. [9, Theorem 4.7] (Weakly random seed) Let C : {0, 1}n×{0, 1}t → {0, 1} be a

(k, ε)-strong extractor with an s-bit seed - i.e., the seed needs at least s bits of min-entropy

- and D1, . . . , D` ∈ {1, . . . , d} a weak (t, r)-design. Then ExtC : {0, 1}n×{0, 1}d → {0, 1}`

is a quantum-proof (k′′, ε′′)-strong extractor, with k′′ = k + r` + log(1/ε) and ε′′ = 6`
√
ε,

for any seed with min-entropy d− (t− s− log(1/3
√
ε)).

As we have seen, a fundamental ingredient for a Trevisan’s extractors is the underlying

one-bit extractor. In order to identify a possible solution for choosing one-bit extractors,

let us first give the following definition.

Definition 20. (List-decodable code [30]). A code C : {0, 1}n → {0, 1}n̄ is said to be

an (ε, L)-list-decodable code if every Hamming ball of relative radius 1/2 − ε in {0, 1}n̄

contains at most L codewords.

As the authors of [30] state, both Trevisan [29] and Raz et al. [40] implicitly prove the

following result.

9it should be noted that, being classical resiliency a sub-case of quantum resiliency, a quantum-resilient
extractor is also a classical-resilient extractor.
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Proposition 4. If C : {0, 1}n → {0, 1}n̄ is an (ε, L)-list-decodable code, then

Ext : {0, 1}n × {1, . . . , n̄} → {0, 1}

such that Ext(x̄, s̄) = C(x̄)s̄, is a (log(L) + log(1/2ε), 2ε)-strong extractor.

To conclude, let us introduce the following simple one-bit extractor:

Definition 21. Given an input X̄ ∈ {0, 1}n and a seed S̄ ∈ {0, 1}k·log(n), S̄ = (i1, . . . , ik),

Extk(X̄, S̄) = Xi1 ⊕ . . .⊕Xik

is a one-bit extractor.

More specifically, the following theorem can be proven.

Theorem 4. [9] Extk is a (k, 3
√
ε)-strong extractor for any k > H

(
1
k ln

(
2
ε

))
n+O

(
ln
(

1
ε

))
.

While thinking of a randomness extractor, one could distinguish different goals, na-

mely: maximize the output length `, minimize the seed length d, optimize computational

efficiency. A trade-off between these three targets should necessarily be found, as the

optimal solutions for these problems are not likely to coincide. In the case of Trevisan’s

extractors, their achievement can be pursued by exploiting the two degrees of freedom

that its construction provides, that is the choice of the weak design and the choice of the

one-bit extractor. We refer to [30] for the description of some possible constructions, na-

mely: near optimal entropy loss extractor, extractor with seed of logarithmic size, locally

computable extractor, extractor with weakly random seed. Also, details on a practical

implementation of Trevisan’s extractor can be found in [41].

2.4 Design and implementation of a randomness extractor

for the Quantis device

In this section, we describe a case study for the application of randomness extractors

to real physical random number generators. In particular, we describe the randomness

extractor tailored for the ID Quantique Quantis QRNG proposed in [1], which, more in

general, applies to any randomness source which suffers from both bias and correlation

in the generated bit sequence. In this scenario, seeded extractors turn out to be the

best choice, as they can cope with such kind of sources by providing good extraction and

computational efficiency.10 Among this category of extractors, a solution which fulfils all

the requirements described at the beginning of section 2.3, and the additional one of a

low-complexity implementation11 is a particular class of universal2 hash functions, that

is, the multiplication by a binary random matrix. In that scenario, we can use Lemma

10deterministic extractors would not efficiently remove correlations, whereas multiple independent source
extractors would require additional randomness sources which would increase the system complexity and
cost.

11in the perspective hardware implementation of the extractor, a simple architecture which can be easily
deployed in electronics is preferred.
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Photon source

Beam Splitter

Detector "0"

Detector "1"

Electronics

Software

Figura 2.6: Hardware setup of the Quantis device.

5 in order to bound the distance from uniform of the extractor output and the entropy

measure to be used is H2(·).
In the following, we start by recalling the hardware setup of the Quantis device, we

introduce some notation, we make some general considerations on the implementation

of a randomness extractor base on universal2 hash functions and we then detail the ex-

tractor proposed in [1]. Subsequently, we describe its software implementation, which was

developed as part of this thesis, and we finally comment the obtained experimental results.

2.4.1 Hardware setup

Let us start by briefly describing the hardware setup of the Quantis. The interested reader

can find more details in [42].

As mentioned in the introduction to this chapter, Quantis bases its randomness on

the fact that a photon impinging onto an ideal semi-transparent mirror is reflected or

transmitted with equal probability [4]. As shown in figure 2.6, a photon source, imple-

mented by a light emitting diode, emits photons that impinge on a 50/50 beam splitter.

The transmitted and the reflected photons are then measured by two detectors with single

photon resolution, each associated to a bit outcome. This optical subsystem is control-

led by a synchronization and acquisition electronic circuit, which then interacts with the

Quantis software package. Furthermore, a continuous status monitoring is performed on

the device, so that eventual hardware failures are signalled at the output.

Despite the intrinsic randomness of this generator, however, the following non-idealities

of the hardware may affect the distance from uniform of its output [43]:

• the beam splitter may not be perfectly unbiased, i.e., it may either transmit or reflect

with a slightly higher probability;
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• the detectors may have slightly different efficiencies, thus resulting in a small bias of

the output sequence;

• the detectors may suffer from after-pulsing. [44], that is, a detection may be more

likely to occur after the detector already clicked;

• the detectors may exhibit slightly different dark count rates.

Aware of these effects, ID Quantique tests all of the components for each Quantis

device, so that they are minimized. Also, the Quantis periodically switches the bit asso-

ciated to each detector. Nevertheless, some residual contributions potentially introduce

some bias and correlation in the output sequence. The extractor [1, 43] described in the

following provides an effective solution for compensating these small imperfections.

2.4.2 Notation

The extraction is performed block-wise via multiplication by a matrix MS ∈ {0, 1}`×n

randomly chosen according to an input seed, S. We denote the random vector repre-

senting the i-th n-bit block produced by Quantis which is input to the extractor by

X(i) = [X(i−1)n+1, . . . , Xin], where Xj is the random variable representing the j-th bit

produced by Quantis; similarly, we denote the corresponding `-bit block which is output

from the extractor by

Y(i) = [Y(i−1)`+1, . . . , Yi`] = MSX(i), (2.31)

where operations are performed modulo 2. Also, we denote by X
(i)
j and by Y

(i)
j the random

variables representing the j-th bit of the i-th input block and the j-th bit of the i-th output

block, respectively, i.e., X(i) = [X
(i)
1 , . . . , X

(i)
n ] and Y(i) = [Y

(i)
1 , . . . , Y

(i)
` ]. Finally, with

lower case letters we denote the specific realization of a given random variable; for instance,

the realization of the i-th input block will be denoted by x(i) = [x
(i)
1 , . . . , x

(i)
n ].

2.4.3 General considerations

Before describing the specific extractor for the Quantis, we make some preliminary remarks

which apply, in general, to any randomness extractor for the post-processing of the output

to a PhyRNG. Despite the straightforward efficient implementation that a solution such as

the one proposed in the following ensures, in real world applications one should also take

into account non-idealities of the system. Let us consider some crucial aspects. Their joint

contribution to the overall performance of the extractor are then assessed in proposition

6.

• Entropy estimation. The impact of the reliability of entropy estimation on the

raw data should be considered when evaluating the overall statistical distance from

uniform of the output. In particular, the entropy is estimated starting from the

empirical distribution of the source, which is derived from a finite number of samples.

If we denote by H̃b
2(X̄) the estimated collision entropy per bit of the raw source and

by Hb
2(X̄) the actual one, we bound the probability of an estimation error as follows
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P
[
H̃b

2(X̄) > Hb
2(X̄)

]
≤ εest. (2.32)

In [1] a method for estimating Hb
2(X̄) with bounded error is provided and we describe

it in the following. Given a sequence of random input bits {Xi}, let us denote by

X[1,m] the random vector representing the sequence of the first m bits, that is,

X[1,m] = [X1, . . . , Xm], and, similarly, let x[1,m] be its realization. Then, we define

the entropy gain obtained by adding 1 bit to an (m− 1)-bit sequence as:

Hm
2 (X̄) , Hεest

2 (X[1,m])−Hεest
2 (X[1,m−1]), (2.33)

where the smoothing parameter εest is the tolerated estimation error.12 Then, H̃b
2(X̄)

should be taken as the asymptotic limit of (2.33), that is,

H̃b
2(X) = lim

m→∞
Hm

2 (X). (2.34)

The collision entropy H2(X[1,m]) can be estimated by the normalized histogram

h(m)(·), that is, the empirical probability distribution ofm-bit strings. More formally,

H̃2(X[1,m]) = − log2

∑
x[1,m]∈{0,1}m

[h(m)(x[1,m])]
2 . (2.35)

As observed in [1], higher values of m require exponentially more memory and sam-

pling time; therefore, the possibility of increasing m is also limited by its computa-

tional feasibility. Fortunately, as for the Quantis device, the authors of [1] observed

a very fast convergence to the asymptotic value, and choosing m ≤ 16 is sufficient.

Then, the histograms for smaller values of m can be derived from h(m)(·) by partial

sums, that is,

h(m−1)(x[1,m−1]) =
1∑

xm=0

h(m)(x[1,m]). (2.36)

Intuitively, this procedure should be repeated several times for evaluating the esti-

mation error. In particular, the estimates for the mean value, H̄b
2(X̄), and for the

statistical error, ∆Hb
2(X̄), have to be derived by standard statistical methods. Then,

given the tolerance on the estimation error εest and a sufficiently high number of

samples (so that the Gaussian approximation can be invoked by the central limit

theorem), we get

H̃b
2(X̄) = H̄b

2(X̄)− α∆Hb
2(X̄), (2.37)

where the value α is chosen so that erfc(α) < εest, being erfc the complementary

error function.

12assuming an error probability εest in the estimate for the collision entropy corresponds, in fact, to
estimating the εest-smooth collision entropy.
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Finally, the estimate for the collision entropy per bit to be considered when applying

the left-over hash lemma has to be chosen as

H̃b
2(X) = min

m
Hm

2 (X). (2.38)

• Non-uniformity of the seed. Also the d-bit seed to the extractor, S̄, may not be

perfectly uniform (this is actually the case in any realistic application), i.e.,

δ
(
PS̄ , Ud) ≤ εseed. (2.39)

As shown in §2.4.4, the value of εseed can be made arbitrarily small, but, still, it has

to be considered while assessing the overall distance from uniform of the output.

• Block-wise extraction effect. Extraction is performed block-wise, as the raw

output bit stream is partitioned in n-bit input blocks that produce `-bit output

blocks, with ` < n . Besides the trade-off between computational overhead and

extraction efficiency, in general also the correlation between subsequent blocks has

to be taken into account. This means that the conditioned entropy should be used

while applying Lemma 5, that is, the distance from uniform of the extractor output,

εext, is such that

εext =
1

2
2
√
`−Hc

2(X), (2.40)

being Hc
2(X̄) the average collision entropy per block conditioned on previous blocks.

For the sake of simplicity, we here assume that this quantity is stationary and, wi-

thout loss of generality, in what follows we temporarily do not consider the statistical

error εest in the collision entropy estimation. In that setting, the following proposi-

tion (which is a re-adaptation of the result shown in [45, Appendix A]) is proven for

the extractor described in §2.4.4.

Proposition 5. Let {X(1), . . . ,X(N)} be a set of n-bit blocks which are input to

the extractor and let {Y(1), . . . ,Y(N)} be the corresponding `-bit output blocks for a

random S, independent of the input blocks. If the input to the extractor satisfies a

Markov condition of length m, that is,

P [X(i)|X(i−1), . . . ,X(1)] = P [X(i)|X(i−1)n, . . . , X(i−1)n−m] (2.41)

and the conditional collision entropy is stationary for all blocks and equal to Hc
2(X̄),

then the distance from uniform per block is bounded as

δ
(
PY(i)S , U` × Ud

)
≤ εseed + εext, (2.42)

where εseed = δ
(
PS , Ud

)
and εext = 1

22
√
`−Hc

2(X).
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Dimostrazione. Let us first assume that the choice of the seed is performed uniformly

at random, namely, δ
(
PS , Ud

)
= 0, and consider the effects of correlations between

blocks. The first block which is output from the extractor does not depend on

previous blocks, that is

δ
(
PY(1) , U`

)
≤ ε1, (2.43)

being ε1 , 1
22
√
`−H2(X(1)). The second block, on the other hand, may depend on the

previous one, thus yielding

δ
(
PY(2)X(1) , U` × PX(1)

)
≤ ε2, (2.44)

being ε2 , 1
22
√
`−H2(X(2)|X(1)). Therefore, the distance from uniform of the joint

probability distribution of the first two output blocks can be bounded as follows:

δ
(
PY(2)Y(1) , U` × U`

)
≤ δ

(
PY(2)Y(1) , U` × PY(1)

)
(2.45)

+ δ
(
U` × PY(1) , U` × U`

)
≤ δ

(
PY(2)X(1) , U` × PX(1)

)
+ ε1 (2.46)

≤ ε2 + ε1, (2.47)

where in (2.45) we used the triangle inequality, in (2.46) the data processing ine-

quality and (2.43), and in (2.47) we used (2.44). Hence, by extending the previous

argument to N blocks, we get

δ
(
PY(1)...Y(N) , U` × . . .× U`

)
≤

N∑
i=1

εi , ε(N). (2.48)

Given (by hypothesis) that the input to the extractor satisfies a Markov condition

of length m, i.e.,

H2(X(i)|X(i−1), . . . ,X(1)) = H2(X(i)|X(i−1)n, . . . , X(i−1)n−m) (2.49)

and that the conditional collision entropy is stationary for all blocks and equal to

Hc
2(X), i.e.,

Hc
2(X) , H2(X(i)|X(i−1)n, . . . , X(i−1)n−m) (2.50)

= H2(X(j)|X(j−1)n, . . . , X(j−1)n−m), ∀i, j

we get

ε(N) = ε1 + (N − 1)εext, (2.51)

where εext , 1
22
√
`−Hc

2(X). Now, since Hc
2(X) ≤ nHb

2(X) (entropy cannot increase

by conditioning), we upper bound ε1 by εext and we finally obtain

δ
(
PY(1)...Y(N) , U` × . . .× U`

)
≤ Nεext. (2.52)
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If we now take into account also the seed, S, we get

δ
(
PY(1)...Y(N)S , U` × . . .× U` × Ud

)
≤ δ

(
PY(1)...Y(N)S , PY(1)...Y(N) × Ud

)
(2.53)

+ δ
(
PY(1)...Y(N) × Ud, U` × . . .× U` × Ud

)
Now, given (by hypothesis) that the input blocks X(1), . . . ,X(N) are independent of

S, we get

δ
(
PY(1)...Y(N)S , PY(1)...Y(N) × Ud

)
= δ
(
PS , Ud

)
= εseed. (2.54)

Eventually, by plugging (2.52) and (2.54) into (2.53), we get the final bound on the

overall distance from uniform of the concatenated output sequence:

δ
(
PY(1)...Y(N)S , U` × . . .× U` × PS

)
≤ εseed +Nεext. (2.55)

Therefore, the distance per block, δ
(
PY(i)S , U` × Ud

)
, is bounded by εseed + εext.

Proposition 5 states that the distance from uniform per block depends neither on

the number of concatenated blocks N nor on the fact that the same seed is reused

several times (provided that the seed is independent of the input to the extractor),

but rather relies on the quality of the seed as well as on the quality of the raw input

bits, measured here in terms of conditional collision entropy. Therefore, the impact

of block-wise hashing is essentially captured by the fact that Hc
2(X) ≤ nHb

2(X).

We note, however, that an appropriate choice of n can easily ensure the conditional

entropy per bit is arbitrarily close to Hb
2(X).

As a conclusion to this section, we summarize the overall distance from uniform per

block due to the three above-mentioned contributions, εest, εseed, εext. More formally, the

following result is proven.

Proposition 6. Given that P
[
H̃c

2(X̄) > Hc
2(X)

]
≤ εest, the overall distance from uniform

of each block which is output to the extractor can be bounded as

δ(PY(i)S̄ , U` × Ud) ≤ εest + εext + εseed. (2.56)

Dimostrazione. Let Q be the event {H̃c
2(X̄) > Hc

2(X̄)} and Q̄ its complementary, where

P [Q] ≤ εest.
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δ(PY(i)S , U` × Ud)

≤ 1

2

∑
(ȳ,s̄)

{
P [Q]

∣∣∣∣pY(i)S|Q(ȳ, s̄)− 1

2n
1

2`

∣∣∣∣+ P [Q̄]

∣∣∣∣pY(i)S|Q̄(ȳ, s̄)− 1

2n
1

2d

∣∣∣∣} (2.57)

≤ P [Q] + P [Q̄] (εext + εseed) (2.58)

≤ εest + (1− εest)(εext + εseed) (2.59)

≤ εest + εext + εseed. (2.60)

Eq.(2.57 follows from the definition of statistical distance and from the total probability

theorem, Eq.(2.58) from the fact that the statistical distance is always smaller than 1 and

from eq.(2.42) (conditioning on Q̄ is actually the hypothesis under which eq.(2.42) has

been derived), Eq.(2.59) from the fact that P [Q] ≤ εest.

Summarizing, the contributions of the entropy estimation error, of the distance from

uniform of the seed and of the block-wise extraction effects have to be carefully taken into

account while assessing the uniformity of the extractor output, and should reasonably be

of the same order of magnitude.

2.4.4 Extractor design

The randomness extractor we describe is the one proposed in [1], which, based on kno-

wn literature results, is tailored for the Quantis device and oriented to its software

implementation.

Extractor parameters. In the framework of universal2 hash functions, the distance

from uniform of the extractor output, εext, can be bounded via the leftover hashing lemma

(lemma 5), so that

εext =
1

2
2
√
`−nHb

2(X̄), (2.61)

where Hb
2(X̄) is the collision entropy per bit of the source X̄. Given εext and n, we then

define the extraction efficiency as

ηext ,
`

n
= Hb

2(X̄)− 2 log2(1/εext)

n
. (2.62)

Hence, as stated in [1], the choice of the extractor parameters, i.e., n and `, undergoes

two conflicting requirements: on one hand, ηext can be raised by increasing the value of

n; on the other hand, the computational complexity of the matrix-vector multiplication

(2.31) is O(n`), thus requiring O(n) operations per output bit.

In [1], the authors propose (n1, `1) = (1024, 768) and (n2, `2) = (2048, 1792) as para-

meters which provide a good trade-off between extraction efficiency and computational

overhead. These parameters ensure a distance from uniform of the output εext < 2−100

as long as Hb
2(X̄) > 0.946 for (n1, `1) and Hb

2(X̄) > 0.973 for (n2, `2). Empirical tests

showed that these conditions are always matched by Quantis, thanks to the continuous
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monitoring of the output to the device (see implementation details [42]). Finally, as for

the Quantis extractor, the choice of n and ` has been restricted to multiples of 64 for

performance reasons (see section 2.4.5).

Extractor matrix generation. The distance from uniform εseed of the extractor matrix

MS is a fundamental parameter for the described construction, as shown in proposition

5. The creation of MS is therefore of crucial importance. Let us also note that, provided

that MS is independent of the extractor input, it can be reused several times without

affecting the overall distance from uniform of the extractor (see, again, proposition 5).

For the parameters (n1, `1) = (1024, 768) and (n2, `2) = (2048, 1792), a seed of 768 Kbits

and 3584 Kbits is required, respectively.

An effective method for producing MS is that of exploiting the procedure and the

result of proposition 3, that is, XORing the output of t independent, weakly-random

sources. This method is not efficient, as it requires t bits from t distinct sources for

producing 1 output bit, but, since the seed has to be determined only once and can be

used for any Quantis device, this does not represent a problem. The value of εseed decreases

exponentially with t, which, therefore, should be chosen sufficiently large to satisfy the

required overall distance from uniform of the extractor output.

In addition, in order to minimize the distance from uniform of the random sequences

produced by each source, the authors of [1] suggest to take some further precautions: first,

to use only bits separated by an interval which is much longer than the auto-correlation

time, in order to get rid of correlations between subsequent bits generated by the same

source (for a Quantis source, a distance of 100 to 1000 bits turns out to be an appropriate

choice, since only short-time correlation are measured for this device); second, to use the

Von Neumann de-biasing algorithm [46] in order to compensate for a bias in the probability

of having either a 0 or 1. From now on, we define as elementary matrix the output of these

sampling and de-biasing steps, while we denote as extractor matrix the random sequence

resulting from XORing t elementary matrices obtained from independent sources.

2.4.5 Software architecture

The randomness extraction algorithm detailed in section 2.4.4 has been finally implemen-

ted and included into the Quantis software library. In particular, a new library, called

libQuantisExtensions, has been developed on the top of the existing libQuantis (see

figure 2.7); while designing its architecture, the following principles were observed:

• seamless integration with libQuantis: the newly introduced functions use the func-

tions of libQuantis for accessing the device and reading raw random bits sequences

and are consistent with its syntax.

• backward compatibility : existing applications which use the libQuantis do not have

to be modified, unless the user wants to take advantage of the randomness extraction.
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Figura 2.7: Quantis software libraries architecture [43].

• computational efficiency : in order to maximize the generation bit-rate of extracted

bit sequences, the minimization of the computational overhead of the randomness

extraction algorithm has been a leading design priority.

• modular structure: the structure of libQuantisExtensions is such that other ex-

traction algorithms could be easily integrated into the software package.

The library has two main set of functions, one devoted to the extraction procedure and

the other one to the generation of the extraction matrix. The first set of functions allows

either to read extracted random data directly from Quantis, or to process an input file;

the user can specify the extraction parameters n and ` depending on the collision entropy

per bit of the raw input sequence (see §2.4.3 for a discussion on the entropy estimation)

and on the required distance from uniform of the output, according to equation (2.61).

The second set of functions allows the creation of the extractor matrix, according to

the procedure described in §2.4.4. More specifically a function is available for creating

an elementary matrix out of a single Quantis source, while another function performs

the XOR of the t input elementary matrices, possibly obtained by means of multiple

Quantis devices. Furthermore, the user who wants to apply the elementary matrix creation

procedure to a source different from Quantis, may use the down-sampling and the Von

Neumann de-biasing functions which are made available in the software package.

As the creation of an extractor matrix requires several independent devices, a default

extractor matrix has been hard-coded in a file delivered within the Quantis software pac-

kage. The embedded extractor matrix has been generated by means of 10 independent

Quantis devices, whose output has been down-sampled so that 1 bit out of 100 has been

used for the elementary matrix generation; since the measured bias is in the order of 10−4,

according to lemma 3 we get εseed ' 5 · 10−40, which is generously compliant with the
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(n, `) Bit-rate [Mbit/s]
TH PC-1 PC-2

(1024, 768) 3.00 2.80 2.90
(2048, 1792) 3.50 3.00 3.30
(4096, 3840) 3.75 3.20 3.40

Tabella 2.3: Theoretical vs. experimental read-and-extract bit-rates with Quantis USB
for different extraction parameters.

required overall distance from uniform. If the user wants to use his own extractor matrix,

however, the default one can easily be replaced.

For further details, the interested reader may refer directly to the source code, available

at http://www.idquantique.com/random-number-generators/resources.html.

2.4.6 Experimental results

We now briefly analyze the performance of the extractor, both in terms of efficiency and

in terms of quality of the produced randomness.

In order to evaluate the efficiency of the extractor, we first recall that a single Quantis

module (such as the one installed on a Quantis USB) produces raw random sequences

at 4 Mbit/s; furthermore, we here assume that the module is operating in the so-called

standard mode, thus meaning that the bit values associated with each detector are perio-

dically switched. Table 2.4.6 shows, for a single Quantis module, the highest theoretical

read-and-extract bit-rate (column TH) that is achievable for three different pairs of extrac-

tion parameters (n, `), together with the experimental results obtained on two different

testing platform. The first one, denoted in table 2.4.6 as PC-1, is a personal computer

running Ubuntu 12.04 64-bit on an Intel Core 2 Duo E7400 CPU (2.8 GHz) with 4 GB

of RAM, while the second one, denoted in table 2.4.6 as PC-2, is a personal computer

running Ubuntu 12.04 64-bit on an Intel i7-2600 CPU (3.4GHz) with 4 GB of RAM. The

experimental bit-rate is affected both by the extractor efficiency, ηext = n/`, and by the

computational overhead of the extraction algorithm, which depends on (n, `) as well as on

the available computational resources. We obtained the highest bit-rate on PC-2 (which is

in fact the most performing platform) while using (n, `) = (4096, 3840); more specifically,

an average bit-rate of 3.4 Mbit/s has been measured, corresponding to a read-and-extract

efficiency ηtot = 0.85 (i.e., the read-and-extract bit-rate is 85% of the raw data reading

bit-rate), whereas the theoretical extractor efficiency is ηext = 3840/4096 = 0.9375%. The

gap between ηtot and ηext is due to the computational overhead, and might be reduced by

deploying more computational resources and by taking advantage of parallel computing

(e.g., by using one thread for reading raw data from Quantis and multiple threads to con-

currently process distinct blocks). It should also be noted that this gap changes according

to the extractor parameters (n, `); for instance, we observe that for (n, `) = (1024, 768)

the computational overhead has an almost negligible impact on the read-and-extract effi-

ciency, with the overall efficiency achieving ηtot = 0.725, which only slightly deviates from

the theoretical optimum, ηext = 0.75.
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Figura 2.8: Empirical distribution of 8-bit sequences of 30 gigabytes of raw data (blue
solid line) and extracted data (red solid line), respectively, and corresponding mean value
(black solid line). The source is a Quantis USB (S/N 060010A410) and the used extractor
parameters are (n, k) = (1024, 768).

Finally, in order to provide a visual example of the improvement of the quality of

randomness ensured by the extractor, in figure 2.8 we compare the empirical probability

distribution of the raw random data, praw(·) (blue line), with the one of the extracted

random data (red line), pext(·), produced by Quantis. In particular, this distribution is

computed for 8-bit sequences on a data-set of 30 gigabytes.13 We see that pext(·) has

a significantly lower variance as compared with praw(·); also, the peaks of praw(·) are

effectively smoothed by the extraction algorithm, and pext(·) slightly oscillates around the

perfectly uniform distribution (black line).

13It should be noted that the deviation from uniform of the Quantis output is noticeable only when
considering a sample space of at least 1 Gigabyte, as otherwise, the observed deviations in the bytes
distribution can be ascribed to the statistical fluctuations.
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Quantum Key Distribution

The problem of generating a shared secret key between two distant parties, known as

secret key agreement, is of utmost importance to most security applications. Several

protocols exist for addressing this problem, but, to date, most practical solutions base

their security on computational assumptions [47]. According to this approach, a key is

assumed to be secret if the adversary is not able to guess it in a feasible amount of time;

typically, this infeasibility result is established on the assumed, yet unproven, hardness of a

mathematical problem. This is the case, for instance, of the Diffie-Hellman scheme [48], a

popular key agreement protocol whose security relies on the non-polynomial complexity of

the discrete logarithm problem. Such infeasibility assumptions, however, are not proven,

and a mathematical or technological breakthrough may, in the near future, open the way

to an efficient solution for such problems.

It is then natural to look for a more general definition of security, that is, one which does

not rely on any assumption on the attacker computing power. This is the rationale behind

the notion of information-theoretic security, a new approach to cryptography pioneered

by Claude Shannon [49]. More precisely, in the context of secret key agreement, Shannon

proposed to establish the security of a cryptographic key based on the maximum amount

of information that an adversary has on the key itself, regardless of her attack strategy or

of her computational power.

While looking towards information-theoretic security, the laws of quantum physics

provide significant advantages over purely classical systems, and allow to effectively bound

the information that the adversary may have on a sequence which is output to the key

distillation procedure. In a quantum channel, in fact, “the leakage of information is

quantitatively related to the degradation of the communication” [50].

In this chapter, we start by reviewing the information-theoretic secret key agreement

scheme that was proposed by Maurer (§3.1), and we extend it to the quantum scenario.

We classify quantum key distribution protocols according to the distribution technique

and to the coding scheme (§3.2), and we then recall some fundamental results for security

(§3.3): the leveraged quantum laws, the considered attack models, and different secrecy

measures. After a description of some explicit QKD protocols (§3.4), i.e., the BB84, the

efficient BB84 and the B92 protocols, we detail the information reconciliation phase (§3.5),

by first providing a classification of different approaches and by then focusing on the the
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analysis of some practical solutions; the described results are used for the experiments

described in chapter 4. Finally, we describe two results obtained in the framework of

privacy amplification against selective individual attacks and presented in [C1] and in

[J1].

3.1 Information-theoretic secret key agreement: system mo-

del

A novel approach to information-theoretic secret key agreement has been proposed by Ueli

Maurer in his seminal paper [35]. In this work, the author provides a practical scheme for

generating a shared secret key in an adversarial scenario with noisy channels, and proves

that it is secure against attackers with unlimited computing power, that is, according

to an information-theoretic approach. This scheme, which, in fact, does not rely on the

laws of quantum mechanics, finds probably its most notable application in quantum key

distribution. In this section, we provide an overview on the general scheme, whereas in

the following sections we detail its building blocks as applied to quantum key distribution.

Let us start by describing the proposed system model, depicted in figure 3.1.

A fA(·, ·) fB(·, ·) BE

pY Z|X(·)X Y

Z

SA SB

C

C C

Figura 3.1: Information-theoretic secret key agreement system model.

Two legitimate parties, Alice and Bob, aim at creating a pair of shared secret keys,

represented by the random variables SA and SB, so that SA = SB = S and a potential

eavesdropper, Eve, has negligible information on them.

In order to do that, Alice transmits a random sequence, X, over an insecure, noisy

channel with two outputs: the first one, Y , is the noisier version of X received by Bob,

whereas the second one, Z, represents the eavesdropped sequence. X and Y are called raw

keys, in that they are obtained by a raw physical transmission with no post-processing.

In Maurer’s scheme, the first step is in fact the transmission over an insecure channel,

with the aim of sharing some correlated information between Alice and Bob, but, unfor-

tunately, introducing some correlation also with the eavesdropper. In principle, Eve may

even share more correlation than Bob with Alice. Formally, this can be written as follows:

I(X;Z) > I(X;Y ), (3.1)
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where I(·) is a generic information measure which depends on the assumed attack scena-

rio (explicit definitions are presented in §3.3.3). However, even in this disadvantageous

condition, it can be shown [35] that Alice and Bob can extract a secret key pair by jointly

post-processing their data. In particular, they need to share some further information, so

that the following conditions may be satisfied:

(correctness) P [SA 6= SB] < εcor (3.2)

(secrecy) I(SA, SB;Z,C) < εsec (3.3)

where εcor and εsec are required to be negligibly small. Then, Alice and Bob communicate

over a public authenticated channel, and the exchanged information is summarized by the

random variable C = [CA, CB], being CA and CB the random variables representing the

messages sent by Alice and Bob, respectively. Eve has complete access to this channel,

but cannot tamper with the sent messages, or forge new messages and pretend to be either

Alice or Bob. Requiring public channel authentication in a secret key agreement scheme

seems contradictory, as for creating a secret key pair, (SA, SB), Alice and Bob first need

to share some further key material. However, this pre-shared secret is needed only at the

first protocol run, as subsequent iterations can use part of the fresh-new generated key.

Hence, from a practical point of view, this issue is easily circumvented by preliminarily

loading a short secret in Alice and Bob’s devices before deploying the agreement scheme

. The correlation shared thanks to the transmission over the insecure channel, together

with the information exchanged over the public channel, allows Alice and Bob, by means

of a set of post-processing functions summarized by fA(·) at Alice’s side and by fB(·) at

Bob’s side, to extract the secret key pair, (SA, SB).

Let us now take an overview of the steps of the practical key distillation scheme pro-

posed by Maurer, as depicted in figure 3.2; further details are provided in the following

sections.

As already mentioned, the first step is the physical transmission over the insecure

channel, which allows Bob to establish some correlated information with Alice. Intuitively,

since the adversary may share even more correlation with Alice as compared with Bob

(see Eq.(3.1)), a post-selection of the transmitted and received sequence, respectively, is

required. This phase, whose output are the sifted keys, XS at Alice’s side and YS at Bob’s

side, is called advantage distillation and aims at fulfilling the following condition:

I(XS;YS) > I(XS;Z,C
′
), (3.4)

that is, at getting an advantage over the eavesdropper. This task is accomplished by

means of a pair of post-selection functions, (f
′
A(·, ·), f ′B(·, ·)), which leverage the public

communication for jointly choosing a subset of the transmitted and received bits at Alice’s

and Bob’s side, respectively. In quantum key distribution, this phase is referred to as

sifting, as it will be detailed in section 3.2.

The next step, called information reconciliation, has the objective of correcting the

errors that the channel may have introduced in the transmission. Again, error correction
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Figura 3.2: Information-theoretic secret key agreement procedure.

is jointly performed by Alice and Bob by exploiting the public channel. In particular, the

information reconciliation functions are denoted by f
′′
A(·, ·) and f

′′
B(·, ·), they take as input

the sifted keys and the exchanged public communication, and they output the reconciled

sequences pair, (XR, YR), so that

P [XR 6= YR] < εcor, (3.5)

with εcor arbitrarily small. Condition (3.5) implies, in fact, the correctness constraint (3.3),

since the final key is essentially derived by randomly choosing a compression function which

is then applied to both reconciled keys (see section 3.6). We stress that there exist different

approaches to information reconciliation, which are going to be detailed in section 3.5.

As a final step, the so-called privacy amplification takes place. Its objective is to

produce a key pair, (SA, SB) such that the attacker has negligible information on it, that

is, such that the secrecy constraint (3.3) is fulfilled. This task is accomplished by means

of the privacy amplification functions f
′′′
A (·, ·) and f

′′′
B (·, ·), which take as input both the

reconciled strings and the exchanged public communication, and output the final key. In

the hypothesis that the two final keys are identical, we denote them by S = SA = SB.

An intuitive plot, showing how the crucial quantities involved in the different phases of

the described secret key agreement scheme change, is shown in figure 3.3. In the following

sections, we are going to describe in more detail these three phases as applied to our focus

scenario, that is, quantum key distribution.

The performance of a secret key agreement scheme are quantitatively described by the

secret key rate. In particular, this rate can be defined as the ratio of the number of final
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Figura 3.3: Evolution of information-theoretic measures involved in a secret key agreement
protocol.

key bits to the number of sent raw key bits or to the number of sifted bits; in the first

case, we denote this quantity as rraw, in the second as rsift. Hence, if we denote by `(·)
the operator length of a string, we can define these rates as

rraw ,
`(S)

`(X)
, rsift ,

`(S)

`(XS)
. (3.6)

Secret key rates can be derived in the asymptotic limit, that is, by assuming keys

of infinite length, or by taking into account non-idealities of practical solutions, such as

finite-length effects and inefficiencies of the protocol. Asymptotic secret key rates will

be discussed for the specific QKD protocols in §3.4, whereas finite-length effects will be

treated in §3.6.2.

3.2 Taxonomy of QKD protocols

Quantum key distribution protocols are nothing but secret key agreement schemes, where

the insecure channel consists of a quantum channel. Depending on the key distribution

technique and on the information coding scheme [51], QKD schemes can be distinguished

into different families. In general, the system model for secret key agreement proposed

in figure 3.1 is not suitable for describing all QKD protocols, but is appropriate for the

sub-class of schemes we hereby consider, as explained at the end of this section.

As for the distribution technique, there exist two types of QKD protocols: prepare-

and-measure (PM) and entanglement-based (EB) schemes. In PM protocols (see, e.g.,

[52, 53]), Alice prepares a sequence of quantum signals and sends them through a quantum

channel to the receiver, Bob, who measures them. On the contrary, in EB schemes, pairs

of entangled signals (see, e.g., [54]) are emitted by an entanglement source and then

measured by Alice and Bob, who then act as two separate receivers. As shown in [55], in

some scenarios EB protocols are essentially equivalent to PM schemes. Nevertheless, they
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allow for a relaxation of the security assumptions typically made in QKD security proofs,

opening the way to the so-called device independent security (see e.g., [56, 57, 58].

The two families of QKD schemes described above can be further distinguished into

three main categories, which differ in the information coding technique: discrete-variables

coding (DV-C), continuous-variables coding (CV-C) and distributed-phase-reference co-

ding (DPR-C). DV-C is the first technique which has been proposed for QKD and, to

date, is probably the most used. According to this approach, information is encoded in

a discrete quantum degree of freedom of photons; in particular, widely used solutions are

photon polarization for free-space implementations and phase coding for fiber-based im-

plementations. The receiver uses a photon detector and only the events which resulted

in a detection are taken into account for key distillation. DV-C protocols have the main

advantage that, if the quantum channel is error-free and no eavesdropper is tampering

with it, the legitimate parties immediately share a perfect secret key. On the other hand,

they suffer from a low efficiency of photon detectors, high dark count rates and rather

long dead-times, thus resulting in high overall losses [51]. These limitations were the dri-

ving reasons for the introduction of CV-C protocols, which are based on the measurement

of quadrature components of light by means of homodyne detection (see, e.g., [59, 60]).

Despite getting rid of hardware limitations of photon detectors, however, in CV-C imple-

mentations losses translate into noise,1 resulting in a decrease of the signal-to-noise ratio.

This entails an overhead in the information reconciliation procedure, which is now required

to deal with noisier signals. In order to overcome the drawbacks of both the DV-C and

the CV-C protocols, some experimental groups proposed a new approach to QKD, where

the raw key bits are encoded into discrete quantum states (as for DV-C) and the quantum

channel is monitored by observing the phase coherence of subsequent pulses. In that way,

the communication efficiency can be improved with respect to DV-C and CV-C schemes.

As previously mentioned, this class of protocols is referred to as DPR-C; examples of such

protocols can be found in [61] and in [62].

In this thesis, we concentrate on discrete-variables, prepare-and-measure schemes.

Please note, however, that part of the described classical algorithms can be straightfor-

wardly extended for EB protocols. As for PM protocols, we may reformulate the system

model shown in figure 3.1 for quantum key distribution as in figure 3.4. Here, |ψX〉 denotes

the qubit prepared and sent by Alice and |ψY 〉 denotes the qubit received by Bob; also, the

quantum operator F [·] represents the interaction of the eavesdropper with the quantum

channel. The nature of such interaction will be clarified in section 3.3.2.

3.3 Security of quantum key distribution protocols

In this section, we formalize the security of quantum key distribution protocols, starting

from recalling the fundamental laws of quantum mechanics which enable this secret key

agreement scheme. We then describe the attack models as applied to such protocols and we

1as said in [51], “because of the uncertainty principle, the measurement of complementary quadratures
is intrinsically noisy”.
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Figura 3.4: System model for prepare-and-measure QKD protocols.

finally provide some appropriate secrecy measures, which depend on the assumed attack

scenario.

3.3.1 Quantum principles for security

As for the quantum key distribution protocols hereby considered (i.e., DV-C, PM), there

are two fundamental results stated in the theory of quantum mechanics which are exploited

in the construction of the secret key agreement scheme.

The first one is formalized in the following lemma.

Lemma 6. (Information-disturbance lemma [63]). In a quantum system, one cannot take

a measurement without perturbing the measured system itself.

The lemma essentially follows from the third postulate of Quantum Mechanics [64]: the

act of measuring an unknown quantum state produces a probabilistic outcome and, after

the measure, the state itself collapses into a specific state,2 so that further measurements

always produce the same result. This lemma has the fundamental consequence that in

a quantum scenario, differently from a classical setting, passive attacks may degrade the

quality of communications, i.e., increase bit error rate and/or losses at the receiver. It

should be stressed, however, that “Alice and Bob would be mistaken if they were to take

a low error rate as evidence that a particular transmission is secure. [...] A combination

of a low error rate and high information leakage is unlikely no matter what strategy the

eavesdropper uses - as distinct from the (false) assertion that high information leakage is

unlikely given a low error rate” [65].

The second fundamental result is the so-called no-cloning theorem:

Theorem 5. (No-cloning theorem [66]). A quantum state cannot be cloned while keeping

the original state unmodified.

Dimostrazione. We here report the proof provided in [64]. Let us consider a quantum

system H in a state |ψ〉. We assume that an eavesdropper wants to copy it to another

2the state is not perturbed if and only if it is an eigenstate of the measurement operator.
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system HE , which is in a generic initial state |ρE〉. Hence, we want the composite system

H⊗HE to evolve from the initial state |ψ〉⊗|ρE〉 to the state |ψ〉⊗|ψ〉. It should therefore

exist a unitary operator U on H⊗HE such that, for any |ψ〉 ∈ H,

U (|ψ〉 ⊗ |ρE〉) = |ψ〉 ⊗ |ψ〉. (3.7)

Since (3.7) holds for an arbitrary |ψ〉, we can also write, for any |φ〉 6= |ψ〉,

U (|φ〉 ⊗ |ρE〉) = |φ〉 ⊗ |φ〉. (3.8)

Now, given the linearity of the tensor product, we get

U [(α|ψ〉+ β|φ〉)⊗ |ρE〉] = α|ψ〉 ⊗ |ψ〉+ α|φ〉 ⊗ |φ〉 (3.9)

6= (α|ψ〉+ β|φ〉)⊗ (α|ψ〉+ β|φ〉) , (3.10)

thus showing that no unitary transformation exists allowing the copy of a quantum state

according to (3.7).

Again, this result provides a significant advantage over classical systems, where information

can be easily copied without being noticed (e.g., think of an arbitrary wireless channel,

where information is readily available to any party in the transmission range).

3.3.2 Attack models

Quantum key distribution has the objective of providing an unconditionally secure cryp-

tographic keys. In particular, bounds on the secrecy level can be derived depending on

the assumed attacker model. According to the traditional classification, three attacks

categories, with increasing generality, can be distinguished:

Individual attacks. Individual attacks (IAs) [67] are the most constrained attacks on

a quantum key distribution system, in that they assume that [50]:

(IA.1) the eavesdropper attacks each qubit independently of all others and by using the

same strategy.

(IA.2) quantum measurements on eavesdropped qubits are perfomed before the classical

post-processing.

A remarkable example of individual attacks are the so-called intercept-and-resend (IR)

attacks. IR attacks are, in fact, a subset of individual attacks, where Eve independently

intercepts the transmitted qubits, performs a measurement on them and, according to

the obtained result, she prepares a new quantum state which she then sends to Bob. A

practical example of such attacks is provided in section 3.4.1

Collective attacks. Collective attacks (CAs) [68] are a generalization of IAs, and are

defined by the following properties:
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(CA.1) the eavesdropper attacks each qubit independently of all others and by using the

same strategy (as (IA.1)).

(CA.2) Eve can take advantage of a quantum memories to store intercepted qubits and

postpone the measurement to any later time convenient to her.

General attacks. General attacks (GAs) are the most general family of attacks on QKD

systems, which drop the assumption that the eavesdropper interacts with each quantum

signal independently (i.e., conditions (IA.1) and (CA.1)), and are then also known as joint

or coherent attacks. GAs, in fact, do not impose any restriction on the attack strategy,

nor on the use of quantum memories.

3.3.3 Secrecy measures

As mentioned above, the security of a QKD system can be defined according to the assumed

eavesdropping model. In particular, the more general the attacker model, the more strict

are the conditions to be verified by the final key. In this section, we briefly recall some

security definitions proposed in the literature as applied to the quantum key distribution

problem.

We start by describing a general framework for defining the security of a key S given an

eavesdropper who has access to a quantum system E. More specifically, we here consider a

generic information measure I(·; ·), whose nature depends on the assumed attacker model

and we define a secrecy and a uniformity constraint:

(εsec-secrecy) I(S;E) ≤ εsec, (3.11)

(εu-uniformity) H(S) ≥ `(S)− εu. (3.12)

Intuitively, (3.11) bounds the information that the eavesdropper has on the final key,

whereas (3.12) bounds the key distribution to be εu-close to uniform. Also, we require

that the key which is output to a quantum key distribution system and, more in general,

to any secret key agreement scheme, is composable with further cryptographic protocols,

that is, the final key should be securely usable in any distinct cryptographic application.3

In the history of cryptosystems, the first secrecy measure that has been proposed was

the one based on classical mutual information, defined by Claude Shannon in his seminal

work [49]. More specifically, given the random variable representing the key, S, and the

random variable summarizing the classical information available to the eavesdropper, Z,

Shannon proves that S is perfectly secret (εsec = 0) if

I(S;Z) = 0, (3.13)

thus meaning that S and Z are statistically independent.

In practical applications of classical information-theoretic cryptography, condition (3.13)

is typically relaxed so that the correlation between S and Z is bounded by a small εsec,

3we are not delving into the composability issue; the interested reader can find more details, e.g., in
[69]
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that is,

I(S;Z) ≤ εsec. (3.14)

This definition, however, assumes that the information available to the eavesdropper is

classical and, therefore, it should be extended for being applied to a quantum adversarial

scenario. This is the motivation behind the introduction of a new secrecy measure, based

on the accessible information [70]. Given the quantum system of the eavesdropper, E, the

accessible information is defined as the maximum mutual information that the attacker

shares on the key by using her optimal strategy, that is,

Iacc(S;E) = max
M

I(S;M[E]), (3.15)

where “the maximum is taken over all local measurements given by a positive operator-

valued measure M on E and where I(S;M[E]) denotes the mutual information between

S and the measured outcome M[E]” [70]. According to this definition, condition (3.14)

can be therefore rewritten as

Iacc(S;E) ≤ εsec (3.16)

It has been proven that this secrecy definition is sound if hypothesis (IA.2) holds, that

is, if we only consider attack scenarios where the eavesdropper cannot take advantage of

a quantum memory, as for individual attacks. On the other hand, if collective or general

attacks are considered, condition (3.16) no longer ensures the secrecy of the final key. In

[70, Proposition 1], in fact, the authors prove that the accessible information is lockable,

that is, “one additional bit of information can increase the accessible information by more

than one bit”. More formally:

[70, Proposition 1]. For any ε > 0 there exists a quantum state on a system E which

depends on the classical random variable S and an m-bit string W , where m is linear in

log(1/εsec), such that the following holds:

1. Iacc(S;E) ≤ εsec

2. Iacc(S;W,E) ≥ H(W ) + 1

In this sense, the security definition based on Iacc(·) is not composable when general attacks

are considered [69], since, if the locking property is exploited, it does not allow to bound

the actual information that the eavesdropper has on the final key. However, while in a

long-term perspective (more than 50 years) security against general attacks is the goal,

in the near future (5-10 years), we know that an ideal intercept-and-resend (IR) attack

is the best option that an eavesdropper can choose because the quantum memory needed

for a general or coherent attack is not yet available. In §4.3.4, we will show that there

are situations in which no key can be extracted if general security is required, while a

pragmatically secure secret key can be obtained. In these cases, requiring general security,

a protection far above actual possibilities of an eavesdropper, prevents key generation.
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We therefore define the notion of pragmatic secrecy, that is, providing security against IR

attacks, by extending condition (3.16).

Definition 22. [J1] A key S is δsec-PS (pragmatic secret) if, for any IR attack strategy,

H(US)−H(S|V ) ≤ δsec (3.17)

being US the uniform key with the same length as S, V the classical random variable which

summarizes all the information available to the eavesdropper and H(S|V ) the equivocation

(conditional entropy) of S given V .

The above definition of pragmatic secrecy implies both the uniformity and the secrecy of

the key, as stated in the following proposition [J1].

Proposition 7. The pragmatic security definition (3.17) implies the following bounds: H(S) ≥ H(US)− δsec (uniformity)

Iacc(S;E) ≤ δsec (secrecy)
(3.18)

Dimostrazione. The uniformity condition trivially derives from the fact that H(S|V ) ≤
H(S). Also, from basic information theory, we know that

I(S;V ) = H(S)−H(S|V ) ≤ H(US)−H(S|V ), (3.19)

since S has maximal entropy if and only if it is uniformly distributed. Now, since condition

(3.17) is verified for any IR attack strategy, and therefore for any outcome V of the

eavesdropper measurement on the quantum system E, the security condition directly

follows.

We stress that, as for incoherent individual attacks, Eq. (3.17) guarantees composable

security, as the eavesdropper, without a quantum memory, cannot exploit the “locking

property” of the accessible information. Hence, pragmatic secrecy, unlike computational

secrecy, offers forward security: if a key is produced today with pragmatic secrecy (without

quantum memory available for Eve), the key or a message encrypted with it will be secure

for any future use.

A definition which ensures composable security against general attacks is the one pro-

posed in [24, 71], which is based on the trace distance ‖·‖1. More specifically, given

the quantum state of the adversary, ρE , and the classical-quantum state describing the

classical key S together with the quantum knowledge of the adversary, defined as

ρSE =
∑
s∈S

PS(s)|s〉〈s| ⊗ ρE|S=s, (3.20)

where {|s〉}s∈S are the orthonormal states representing the value of S, we define general

secrecy as follows.

Definition 23. The key S is said to be εsec-GS (general secret) with respect to ρE if
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1

2
‖ρSE − ρU ⊗ ρE‖1 ≤ εsec. (3.21)

The composability of this criterion follows from two properties of the trace distance

[24], namely:

• ‖·‖1 is sub-additive with respect to tensor products:

∀ ρ, σ ∈ HS , ρ′, σ′ ∈ HE :
1

2
‖ρ⊗ρ′−σ⊗σ′‖1 ≤

1

2

(
‖ρ− σ‖1 − ‖ρ′ − σ′‖1

)
(3.22)

• ‖·‖1 cannot increase when the same quantum operator ξ[·] is applied to both argu-

ments:
1

2
‖ξ[ρ]− ξ[σ]‖1 ≤

1

2
‖ρ− σ‖1 (3.23)

These two results, in fact, ensure that no locking property can be exploited even for

general quantum attacks: “since the trace distance does not increase when appending an

additional quantum system (eq (3.22)) or when applying any arbitrary quantum operation

(Eq. (3.23)), this also hold for any further evolution of the system” [24]. The authors of

[24] also provide an operational meaning for condition (3.21), by claiming that if a key S is

εsec-secret according to (3.21) then S cannot be distinguished from a perfectly secure key

U , uniformly distributed on the key space and independent of the adversary’s information,

with a probability higher than 1− εsec.
4

To conclude, let us prove the following relationship between pragmatic and general

secrecy.

Proposition 8. For non-coherent attacks, δsec-PS secrecy implies εsec-GS secrecy for

δsec = 2
ln 2ε

2
sec.

Dimostrazione. The Pinsker inequality (see section 11.6 in [2] and [79]) ensures that

1

2
‖pSV − uSqV ‖1 ≤

√
ln 2

2
D(pSV ||uSpV ) (3.24)

=

√
ln 2

2
(H(US)−H(S|V )) (3.25)

where uS is the uniform distribution on S and D(p||q) is the relative entropy between the

p and q distributions.

It is then straightforward to see that

H(US)−H(S|V ) ≤ 2

ln 2
ε2

sec ⇒
1

2
‖pSV − uSpV ‖1 ≤ εsec. (3.26)

4security definition (3.21) has been widely accepted and is currently used in most QKD security proofs
(see, e.g., [72, 73, 74]). In a recent debate in the QKD community [75, 76, 77, 78], however, it was
argued that, unless εsec is chosen exponentially small in the key size, (3.21) does not capture the actual
distinguishing advantage of the adversary. The debate is still opened and, as a guideline, the choice of the
parameter εsec should be tailored depending on the required level of secrecy and on the final key length.
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3.4 Explicit QKD protocols

In this section, we describe some remarkable examples of QKD protocols, which were

implemented in the experiments that were performed as part of this work: BB84 [53],

efficient BB84 [74] and B92 [52]. Besides the described solutions, there exist some other

schemes, such as the six-states [80] and the SARG [81] protocols; for a complete overview,

the interested reader could refer to [82] and [51].

3.4.1 Bennett-Brassard 1984 protocol (BB84)

The Bennett-Brassard 1984 protocol [53] (whence the acronym BB84) was the first QKD

scheme that has been proposed. BB84 is a DV-C, PM protocol, where information is

encoded into single polarized photons. More specifically, there exist two polarization

bases, hereby denoted by X and Z, each one specified by a pair of orthogonal polarization

states. X is called horizontal-vertical basis and is specified by the quantum states | 〉
and | 〉, whereas Z is referred to as the diagonal basis and is specified by the quantum

states | 〉 and | 〉. For each basis, a bit-qubit map is defined and Alice, who prepares

the state to be sent throughout the quantum channel, chooses in which basis to encode

each bit. A possible map is shown in table 3.1.

Bit X-basis Z-basis

0

1

Tabella 3.1: Map bit-qubit for the BB84 protocol.

Given this coding map, the BB84 protocol is specified by the following procedure,

which can be reiterated according to the desired key length:

1. Quantum transmission

(a) Alice randomly generates:

i. a sequence of bits, {xm}, i.i.d. in {0, 1};
ii. a sequence of state-preparation bases, {Am}, i.i.d. in {X,Z}.

(b) For each random bit xi, Alice prepares a qubit |ψxi〉, in the form of a single

photon polarized in the Ai basis, and sends it through the quantum channel.

(c) Bob randomly generates a sequence of state-measurement bases, {Bm}, i.i.d.

in {X,Z}.

(d) Bob measures each received qubit, |ψyi〉, in the Bi basis and gets the measured

bit yi.

2. Sifting (advantage distillation)

Alice and Bob exchange, through the public channel, the state-preparation and

the state-measurement bases, {Am} and {Bm}, and discard the bits for which

their choice differs, i.e., the sifted bits at Alice and Bob are, respectively,
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YS = {yi : Ai = Bi}. (3.27)

3. Error estimation

Bob sends to Alice (or viceversa) a random subset C of sifted key bits for esti-

mating the bit error rate Q in the quantum channel (QBER). More specifically,

the estimated qber Q̂ is computed as follows:

Q̂ =

∑
c∈C xS,c ⊕ yS,c

|C|
. (3.28)

The estimated QBER is a crucial parameter for the classical post-processing

phase, that is, for information reconciliation and for privacy amplification, and

affects the secret key rate as shown in (3.30).

xm 0 1 1 0 0 1 1 1

Am X Z Z X Z X X Z
|ψxm〉 | 〉 | 〉 | 〉 | 〉 | 〉 | 〉 | 〉 | 〉
Bm Z Z X X X Z X Z
ym 1 1 0 0 1 1 1 1

yS,m - 1 - 0 - - 1 1

Tabella 3.2: Example of quantum key distribution (up to the sifting phase) according to
the BB84 protocol.

It is straightforward to see that if the quantum channel is ideal and if no adversary is

attacking the system, the BB84 protocol directly produces a secret key. On the contrary,

if an attacker is present, she is forced to interact with the quantum channel before she

knows the chosen state-preparation and state-measurement bases. Hence, the sifting pro-

cedure, which is in fact a specific instance of advantage distillation (see §3.1) as applied to

QKD, enables the legitimate parties to get an advantageous position with respect to the

eavesdropper. This, however, comes at the price of a rate reduction, since, on average,

only 1/2 of the times Alice’s and Bob’s basis choice will match. More specifically, we say

that the raw-sifted efficiency of the BB84 protocol, in the absence of losses, is

ηBB84 =
1

2
. (3.29)

Furthermore, the asymptotic (secret to sifted) key rate for the BB84 protocol has been

derived in [83], and reads as follows:

rBB84 = 1− 2h2(Q). (3.30)

Let us now describe what happens if an eavesdropper independently attacks each sent

qubit with probability p, by first measuring and by then resending it to Bob; this attack is
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known as intercept-and-resend (IR) (§3.3.2). In this scenario, Eve has to choose a state-

measurement basis for extracting the information out of an intercepted qubit.It was shown

[84] that the best she can do is to mimic a legitimate receiver, i.e., to choose uniformly

at random the measurement basis, Ei. Hence, she guesses the state preparation basis

with probability 1/2, and she takes the wrong basis with probability 1/2. When she

picks the correct basis, she also gets the right result, whereas when she picks the wrong

basis, she gets a uniformly random result, thanks to the complete non-orthogonality of

the states in the X and in the Z bases. She then retransmits the measured bit to Bob,

by preparing it with the same basis she used for the measurement. In the hypothesis of

a fixed QBER Q and of an ideal attack setup, that is, with no errors or losses introduced

by the eavesdropper’s devices, we derive the bit error rate in the received sequence under

IR attack rate q as

QIR(q) = (1− q)Q+ q

(
Q

2
+

1

4

)
=
(

1− q

2

)
Q+

q

4
, (3.31)

whereas losses will not be affected. Therefore, the QBER measured at Bob linearly

increases with the attack rate q, up to its maximum value,

QIR(1) = Q+
1

4
. (3.32)

Hence, Eve has to find a trade-off for getting as much information as possible without

been noticed. At the same time, Alice and Bob aim at estimating as precisely as possible

the attack rate q, in order to compensate for the eavesdropped information during the

privacy amplification phase (see §3.6 and §4.2).

3.4.2 Efficient BB84 protocol

As seen in section 3.4.1, the BB84 protocol has a raw-sifted efficiency ηBB84 = 1/2, that

is, in the absence of losses, only half of the raw bits sent by Alice yields a sifted sequence

at Bob. With the aim of increasing this efficiency, a variant of the BB84 protocol, that

we refer to as efficient BB84 (e-BB84), has been proposed in [74].

In standard BB84, both polarization bases are used for raw key transmission and for

attack estimation, and their choice is unbiased. In e-BB84, instead, one basis (say X)

carries the raw key sequence, whereas the other basis (say Z) is used for eavesdropping

detection. Also, the choice of the two bases at Alice and Bob is biased: intuitively, the

basis carrying the raw key is chosen with higher probability, while the detection basis is

chosen less frequently. Let us describe it in more detail.

The e-BB84 protocol is characterized by the sifted key length n and by the number

of bits used for parameter estimation k; both parameters can be chosen according to the

required secret key length and channel conditions as described below. Also, the choice of

n and k yields the probability of picking each of the two bases, namely,

pX =
1

1 +
√
k/n

, pZ = 1− pX. (3.33)
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The protocol consists of the following subsequent steps:

1. Quantum transmission

(a) Alice randomly generates:

i. a sequence of bits, {xm}m∈[1,M ], i.i.d. in {0, 1};

ii. a biased sequence of state-preparation bases {Am}m∈[1,M ] in {X,Z}, chosen

with probabilities pX and pZ, respectively.

where M is such that the condition in the sifting phase is met.

(b) For each random bit xi, Alice prepares a qubit |ψxi〉, in the form of a single

photon polarized in the Ai basis, and sends it through the quantum channel.

(c) Bob randomly generates a biased sequence of state-measurement bases, {Bm}
in {X,Z}, chosen with probabilities pX and pZ, respectively.

(d) Bob measures each received qubit, |ψyi〉, in the Bi basis and gets the measured

bit yi.

2. Sifting (advantage distillation)

Alice and Bob exchange, through the public channel, the state-preparation and

the state-measurement bases, {Am} and {Bm}, and discard the bits for which

their choice differs. Also, they distinguish the bits measured in the X basis and

the ones measured in the Z basis, thus defining the following subsets:

X = {i : Ai = X, Bi = X} (3.34)

Z = {i : Ai = Z, Bi = Z}. (3.35)

The quantum communication is repeated as long as either |X | < n or |Z| < k.

Then, Alice and Bob pick the same n and k indexes, randomly chosen, in X
and in Z, respectively, thus defining the subsets Xn and in Zk. Finally, the

following sifted sequences are defined:

XX = {XX,i} = {xi : i ∈ Xn}, (sifted key at A) (3.36)

YX = {YX,i} = {yi : i ∈ Xn}, (sifted key at B) (3.37)

XZ = {XZ,i} = {xi : i ∈ Zk}, (estimation bits at A) (3.38)

YZ = {YZ,i} = {yi : i ∈ Zk}, (estimation bits at B) (3.39)

3. Error estimation

Bob sends to Alice the whole sequence of estimation bits {YZ,m} for computing

the bit error rate QZ on the eavesdropping detection basis, yielding:

QZ =

∑
c∈Z XZ,c ⊕ YZ,c

|Z|
(3.40)
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Again, this QBER is a crucial design parameter for the classical post-processing

phase, and, in particular, for the privacy amplification phase. On the other

hand, the QBER on the X-basis, QX, is the main design parameter for the

information reconciliation phase, and should be known to the legitimate parties.

In section 4.3 we will describe in detail how these parameters influence the key

distillation procedure.

As it can easily be seen, the efficiency of e-BB84 is

ηe−BB84 = p2
X, (3.41)

and is therefore higher than ηBB84 (see Eq. (3.29)) as soon as pX > 1/
√

2. Also, the

asymptotic (secret to sifted) key rate for the efficient BB84 directly follows from the one

of BB84, that is:

re−BB84 = 1− h2(QX)− h2(QZ). (3.42)

3.4.3 Bennett 1992 protocol

The last QKD protocol we describe is the Bennett 1992 (B92) scheme [52]. B92 is a

DV-C, PM protocol, where information is encoded in two non-orthogonal quantum states.

In particular, a state-preparation basis, P, and a state measurement basis, M, are defined,

so that the following map is defined:

Bit P-basis M-basis

0
1

Tabella 3.3: State-preparation and state-measurement basis for the B92 protocol.

The protocol works as follows:

1. Quantum transmission

(a) Alice randomly generates a sequence of bits, {xm}, i.i.d. in {0, 1}

(b) For each random bit xi, Alice prepares a qubit |ψxi〉, in the form of a sin-

gle photon polarized in the corresponding P-basis state, and sends it through

the quantum channel. Please note that the choice of the P-basis state is now

deterministic, whereas in the BB84 protocol it was random.

(c) Bob randomly generates a sequence of M-basis states, {Bm}, i.i.d. in {P,M}.

(d) Bob projects each received qubit, |ψyi〉, onto the Bi polarization, and gets the

measured bit yi. If |ψyi〉 is orthogonal to Bi, then no detector clicks; otherwise,

the right detector clicks with probability 1/2 and does not click with probability

1/2.

2. Sifting (advantage distillation)
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Bob sends to Alice, through the public channel, the indexes D of the the qubits

that produced a click at the receiver. The sifted bits at Alice and Bob are,

respectively,

XS = {xi : i ∈ D}; (3.43)

YS = {yi : i ∈ D}. (3.44)

3. Error estimation

Bob sends to Alice (or viceversa) a random subset C of sifted key bits for esti-

mating the bit error rate Q in the quantum channel (QBER). More specifically,

the estimated qber Q̂ is computed as follows:

Q̂ =

∑
c∈C xS,c ⊕ yS,c

|C|
(3.45)

xm 0 1 1 0 0 1 1 1

|ψxm〉 | 〉 | 〉 | 〉 | 〉 | 〉 | 〉 | 〉 | 〉
Bm | 〉 | 〉 | 〉 | 〉 | 〉 | 〉 | 〉 | 〉
ym - - - 0 - - 1 -

Tabella 3.4: Example of quantum key distribution (up to the sifting phase) according to
the B92 protocol.

The efficiency of the B92 protocol (in the absence of losses) immediately follows from

the described scheme

ηB92 =
1

2
(P [xi = 0, Bi = | 〉] + P [xi = 1, Bi = | 〉]) =

1

4
. (3.46)

Hence, B92 has a consistently lower efficiency as compared with BB84, and a fortiori, with

e-BB84. On the other hand, B92 relies on a simplified setup, which requires just two non

orthogonal states at both the transmitter and the receiver side, that is, half of the com-

plexity of BB84. Unfortunately, the described setup also comes with a significant security

threat. Due to the deterministic coding of qubits, in fact, an eavesdropper who plays the

man-in-the-middle can mimic Bob’s receiver, and re-transmit the qubits which produced

a click. This attack, known as unambiguous state discrimination (USD) [85], introduces

significant losses, yielding an overall efficiency of (1/4)2 if each qubit is attacked, but does

not affect the measured QBER at the receiver. In the original paper by Bennett [52],

the use of a strong reference was suggested for avoiding this problem, but this enhanced

protocol becomes insecure as soon as the channel losses get higher than a given threshold

which depends on the non-orthogonality of the signal states [86]. A further solution for

making the B92 protocol more robust against losses and noise is the one presented in

[87], where the decoy-states principle (see §3.4.4) is extended to B92 by using additional

uninformative states.
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Finally, the asymptotic (secret to sifted) key rate for the B92 protocol is the same as

for BB84, that is,

rB92 = 1− 2h2(Q). (3.47)

3.4.4 Remarks on the single photon assumption for practical QKD

All the protocols presented above assume that each qubit consists of a single photon,

so that the eavesdropper cannot take advantage of multiple measurements for getting

information on the sent state without perturbing the one which is delivered to Bob (this

attack is called Photon Number Splitting (PNS)). This assumption, in fact, is often not

strictly verified in experimental scenarios, as, until recently, faint laser pulses were used

for the sake of generating single photons [82]. In that scenario, the photon generation

follows a poissonian statistics, and there always exists a non-zero probability that more

than one photon is generated, that is

P [nph > 1|nph > 0] =
1− e−µ(1 + µ)

1− e−µ
. (3.48)

where nph is the number of photons for encoding a generic bit at the transmitter output

and is Poisson distributed with mean µ. In order to reduce the probability (3.48), one

could decrease µ, at the price of a lower bit-rate; typical values are µ ∈ [0.1, 0.4].

As the corresponding rate reduction has a significant impact on the system perfor-

mance, the scientific community looked for a solution to overcome this limitation while

coping with the PNS attack. Besides the proposal of protocols which allowed to slightly

increase µ while ensuring the same security level (SARG04, [88]), a solution suitable for

generic protocols was devised in [89] and first adapted for realistic implementations in [90].

This solution is based on the use of decoy states: in addition to the qubits which encode

the raw key bits, Alice occasionally sends pulses with different intensities which do not

carry information, but are rather used for testing the presence of the eavesdropper. In

particular, if Eve, who ignores the intensity of each signal, performs a PNS attack, she

alters the statistics of photon detections at the receiver, thus allowing Alice and Bob to

effectively bound the number of actual single photon pulses. There exist several works

demonstrating decoy states as applied to QKD protocols, both in free-space (e.g., [91, 92])

and in fiber optics (e.g., [93]), and eventually including the analysis with finite statistics

[94, 95]. In this thesis, we do not include decoy states neither in the analysis of the secret

key rate nor in the experimental implementations, but existing literature results could be

effectively integrated in the proposed analysis for extending the security of the considered

systems to PNS attacks.

3.5 Information reconciliation

Information reconciliation is the second step of a secret key agreement protocol which

allows to correct the errors between Alice and Bob, so that the final keys are equal with
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high probability and the correctness constraint (3.2) is ensured.

Information reconciliation protocols can be classified according to two main features:

the direction of the reconciliation and the error correction strategy. As for the first feature,

three different approaches can be distinguished:

• direct reconciliation [96, 97, 98]: Alice’s string is considered to be correct, i.e., XR =

XS, and Bob’s string is reconciled accordingly, i.e., YR = X̂S.

• reverse reconciliation [99, 60]: Bob’s string is considered to be correct, i.e., YR = YS,

and Alice’s string is reconciled accordingly, i.e., XR = ŶS.

• two-way reconciliation [100, 101]: Alice’s and Bob’s sifted string are dynamically

modified so that XR 6= XS, YR 6= YS and XR = YR with high probability (1 − εcor,

according to constraint (3.2)).

As detailed in [102, Chapter 8], the choice of the best approach depends on the ap-

plication scenario, being reverse reconciliation more suitable for continuous-variable QKD

with high channel losses [60]. Two-way reconciliation, on the other hand, allows to cope

with high bit error rates on the quantum channel; while its correction capability enables

key distillation even in very noisy scenarios (up to Q = 20%), its efficiency for Q . 10% is

typically much lower than that of one-way protocols [100]. As in this work we concentrate

on discrete-variables coding QKD protocols (see §3.2 for a classification of QKD schemes),

we decided to focus on direct reconciliation schemes; in particular, we are going to describe

some practical constructions at the end of this section.

3.5.1 Direct reconciliation: problem statement and coding approaches

Let xS and yS be the random vectors representing the n-bit sifted keys to be reconciled

at the transmitter and at the receiver, respectively; furthermore, let x̂S be the random

vector representing the n-bit reconciled key at the receiver. Namely,

xS = [xS,1, xS,2, . . . , xS,n]T ∈ {0, 1}n, (3.49)

yS = [yS,1, yS,2, . . . , yS,n]T ∈ {0, 1}n, (3.50)

x̂S = [yR,1, yR,2, . . . , yR,n]T ∈ {0, 1}n, (3.51)

where the superscript T represents the transposition operator. Information reconciliation

has the aim of reliably reconstructing x̂S, given the received sifted key yS and the public

communication, summarized by c, so that the least possible amount of information is

disclosed on the public channel. More formally, we can define the following objectives:

(reliability) P [xS 6= x̂S] < εcor, (3.52)

(min. information leakage) LEC , `(c) ≈ `(xS)H(XS|YS), (3.53)

where `(·) is the length operator and H(·|·) is the conditional Shannon entropy.

In particular, the performance of an information reconciliation protocol can be expres-

sed through the so-called reconciliation efficiency [98], i.e.,
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ηEC =
`(c)

`(xS)H(XS|YS)
≥ 1. (3.54)

Therefore, the closest is ηEC to 1, the more efficient is the considered reconciliation proto-

col. Furthermore, since we consider the quantum channel to be a binary symmetric channel

with transition probability Q, we get H(XS|YS) = h2(Q), and (3.54) can be rewritten as

ηEC =
`(c)

`(xS)h2(Q)
. (3.55)

The reconciliation efficiency is a crucial parameter for the performance and for the fea-

sibility of quantum key distribution, as the information disclosed on the public channel

must be compensated during privacy amplification (see section 3.6): the LEC bits that

are leaked for error correction, in fact, will decrease the final secret key length by the

same amount. In this sense, lower values of ηEC allow to obtain longer secret keys or, in

the limit, to distil a key when it would not be possible with less efficient protocols. In

the following, reconciliation efficiencies will be evaluated and discussed for some practical

protocols.

As mentioned above, different error correction strategies can be chosen and, again, the

best strategy depends on the considered scenario. More precisely, we can distinguish three

possible approaches for error correction in an information reconciliation protocol: interac-

tive, systematic encoding and hashing. In the following we formalize their construction for

direct reconciliation protocols.

Interactive approach

According to this approach, yS is interactively reconciled with xS by means of multiple,

subsequent public communications.

To the best of the author’s knowledge, the only examples of natively5 interactive infor-

mation reconciliation are the ones proposed by Bennett and Brassard, known respectively

as Binary and Cascade, which are both described in the seminal paper by Brassard and

Salvail [96] dated 1993. The two protocols share a common structure, which is described

in the following:

5some protocols use interactivity in order to enhance their performance, but error correction is not
intrinsically interactive.
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∀ pair of blocks (x
(i)
S ,y

(i)
S ), compute the reconciled block x̂

(i)
S at the receiver according

to the following algorithm:

1. if
⊕

(x
(i)
S ) =

⊕
(y

(i)
S )⇒ x̂

(i)
S = y

(i)
S

2. if
⊕

(x
(i)
S ) 6=

⊕
(y

(i)
S ) ⇒ split

⊕
(x

(i)
S ) and

⊕
(y

(i)
S ) in two halves, i.e., x

(i)
S =

[x
(i,1)
S |x(i,2)

S ], y
(i)
S = [y

(i,1)
S |y(i,2)

S ]:

(a) if
⊕

(x
(i,1)
S ) =

⊕
(y

(i,1)
S ), set x̂

(i,1)
S = y

(i,1)
S and fed x

(i,2)
S and y

(i,2)
S as input

to step (2a).

(b) if
⊕

(x
(i,1)
S ) 6=

⊕
(y

(i,1)
S ), fed x

(i,1)
S and y

(i,1)
S as input to step (2a) and set

x̂
(i,2)
S = y

(i,2)
S .

The Binary protocol actually consists only of the algorithm described above, while

the Cascade protocol, in addition, keeps track of block parities in subsequent iterations,

so that when a new error is corrected, another one can be found in blocks of previous

iterations with even parity in which the corresponding bit was located and so on.

The main advantage of Binary and Cascade is that of being natively usable with any

input bit error rate, since the procedure does not need to know the bit error rate in

advance, except for the optimal choice of block sizes. Its major drawback, on the other

hand, lies in its interactivity: given a block with odd parity and length b, it takes log2(b)

interactions to find the (single) error to correct.

Systematic encoding approach

The systematic encoding approach leverages classical channel codes for correcting the

errors that the quantum and the classical channel may have introduced, and, hence, it

could be convenient for those scenarios where also the classical channel is prone to errors.6

Let us now describe this approach more formally. Consider a (b + p, b) code C with

generator matrix G ∈ {0, 1}(b+p)×b; we assume G to be in systematic form, i.e., G =

[Ib|P]T , being Ib the identity matrix of size b and P ∈ {0, 1}p×b. Now, xS is considered as

a sequence of b-bit information words, x
(i)
S , to be fed as input to an (b+ p, b) encoder for

error correction; x̂S is then obtained as the concatenation of the output of the decoding

of y
(i)
S with side information granted by channel coding. More formally:

6this could be the case if the classical channel model is at the physical or at the data-link layer.

64



CAPITOLO 3. QUANTUM KEY DISTRIBUTION

∀ (x
(i)
S ,y

(i)
S ), compute the reconciled block x̂

(i)
S at the receiver according to the

following algorithm:

1. Alice computes the i-th parity sequence as

c(i) = Px
(i)
S . (3.56)

2. Alice sends c(i) to Bob over the classical channel.

3. Given the received parity bits d(i) (i.e., the possibly corrupted version of c(i)),

Bob concatenates them with y
(i)
S and decodes the received sequence according

to a decoding map µd
a so that

[x̂
(i)
S |d̂

(i)] = µd([y
(i)
S |d

(i)]). (3.57)

4. Bob outputs x̂
(i)
S .

athe choice of such decoding map is discussed at the end of this section.

The overall block diagram is depicted in figure 3.5.

XS
Quantum

channel (sifted)

Classical channelP

µd X̂S

x
(i)
S

c(i) d(i)

y
(i)
S x̂

(i)
S

Figura 3.5: Direct reconciliation, systematic encoding scheme.

The choice of the decoding map depends on the model for the classical channel that we

consider [103]. More specifically, if we access the channel at the physical layer, we could

take advantage of the available bit reliability values for performing a soft-decoding (e.g.,

maximum-likelihood), whereas if we consider a channel at the data-link layer we are forced

to choose a hard-decoding algorithm, e.g., minimum distance.

Examples of information reconciliation protocols using the systematic encoding ap-

proach can be found in [104], where the adoption of LDPC codes is proposed, and in [105],

where BCH codes are preferred.

65



CAPITOLO 3. QUANTUM KEY DISTRIBUTION

Hashing approach

The hashing approach takes advantage of channel codes, but, as compared with the

systematic encoding one, it uses them in a different fashion.

First, we give an intuitive description of such scheme. More precisely, xS is considered

as a sequence of b-ples, x
(i)
S , for each of which, by means of a hashing function, a hash

c(i) is computed. The hash is sent over the public channel, which is now supposed to be

error-free,7 and is jointly used with the received bits in order to get x̂
(i)
S ; in particular, each

reconciled b-ple is chosen as the one with hash c(i) and with minimum Hamming distance

from the y
(i)
S . Incidentally, the hashing function can be chosen as the parity check matrix

of a linear block (b, b − p) code, with parity-check matrix H ∈ {0, 1}p×b. The reconciled

key x̂S is then obtained as the concatenation of subsequent x̂
(i)
S .

Let us now define this approach more formally.

∀ (x
(i)
S ,y

(i)
S ), compute the reconciled block x̂

(i)
S at the receiver according to the

following algorithm:

1. Alice computes the i-th syndrome (i.e., the i-th hash) as

c(i) = Hx
(i)
S . (3.58)

2. Alice sends c(i) to Bob over the classical channel, assumed to be error-free.

3. Bob performs a minimum-distance decoding of the received sequence so that

x̂
(i)
S = µ∗d(y

(i)
S , c(i)) = arg min

α:Hα=c(i)

{dH(α,y
(i)
S )}. (3.59)

4. Bob outputs x̂
(i)
S .

In figure 3.6 the block diagram for this approach is depicted, where µ∗d represents the

decoding procedure described by Eq. (3.59).

To the best of the author’s knowledge, the first information reconciliation protocol

to use this approach was Winnow [97], a protocol based on Hamming codes. Another

significant, recent example is that of [106, 107], where the authors introduce rate-adaptive

LDPC codes for Quantum Key Distribution.

Remarks

The interactive approach takes advantage of its flexibility at the price of a very high

interactivity. It exhibits an unequalled efficiency in scenarios where the bit error rate in

the strings to be reconciled rapidly changes (e.g., in quantum key distribution), but it

suffers a high latency due to interactive communications.

7if the public channel introduces errors, in fact, the decoding procedure is likely to introduce further
errors, as the whole procedure works given that the received hash is correct.
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XS
Quantum

channel (sifted)

Classical channel
(error free)

H

µ∗d X̂S

x
(i)
S

c(i) c(i)

y
(i)
S x̂

(i)
S

Figura 3.6: Direct reconciliation, hashing scheme.

The systematic encoding approach and the hashing approach try to overcome this

severe limit through the use of channel codes; while looking in this direction, the main

problem is that of rate-adaptability in case the protocol has to be applied to a channel with

dynamic characteristics. Significant improvements towards this direction were pursued in

[106, 107].

Even though the systematic encoding approach and the hashing approach present a similar

structure, a significant difference has to be stressed: in the systematic encoding approach

redundancy is used to correct errors both in the quantum channel and in the public

channel, while, in the hashing approach, it is committed to correct errors only in the

quantum channel. As a consequence, the systematic encoding approach is better suited

to scenarios where the public channel is affected by non-negligible transmission errors

(physical and data-link layers), while the hashing approach fits environments where the

public channel is assumed to be error-free (network, transport or upper layers). It should

be noted, however, that the hashing approach is more efficient in terms of information

disclosed on the public channel and is thus generally preferable in QKD scenarios, as the

correctness of the information sent on the public channel can be ensured without affecting

the final secret key rate.

In table 3.5 we show some examples of how the choice of the coding approach depends

on the considered classical channel model.

Classical channel Channel Condition Delays Coding
(layer) type approach

Physical AWGN high SNR none systematic (soft)

Data link binary low BER low systematic (hard)

Net & up packet error free long interactive, hashing

Tabella 3.5: Examples of coding approaches for different classical channel models.
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3.5.2 Analysis of the Winnow protocol

The Winnow protocol [97] mixes the hashing and the interactive approach in order to

build a flexible, still lowly interactive solution. Winnow is based on two fundamental

ingredients, Hamming codes and syndrome decoding, and it leverages these tools over

multiple iterations in order to ensure the correctness constraint (3.2).

In this subsection, we first describe the protocol and we then propose its analysis in a

way that we think is more intuitive with respect to the one proposed in [97].

Winnow error correction algorithm.

Given two n-bit sifted sequences xS and yS, let us define the block size b = 2p, for any

arbitrary p. Furthermore, we define with H(p) the (2p− 1, 2p− 1− p) Hamming code and

we denote its parity check matrix by H. A single iteration of the Winnow error correction

algorithm works as follows:

1. split xS and yS in B = dn/be blocks of b bits; let us denote with x
(i)
S and y

(i)
S the

pair of the i-th blocks.

2. ∀ (x
(i)
S ,y

(i)
S ), compute the corrected block x̂

(i)
S at the receiver according to the

following algorithm:

(a) if
⊕

(x
(i)
S ) =

⊕
(y

(i)
S )⇒ x̂

(i)
S = y

(i)
S

(b) if
⊕

(x
(i)
S ) 6=

⊕
(y

(i)
S ):

i. define the (b − 1)-bit strings obtained by removing the last bit from x
(i)
S

and y
(i)
S :

p
(i)
S , [x

(i)
S (1),x

(i)
S (2), . . . ,x

(i)
S (b− 1)] (3.60)

q
(i)
S , [y

(i)
S (1),y

(i)
S (2), . . . ,y

(i)
S (b− 1)] (3.61)

ii. compute the syndromes

s(p
(i)
S ) = Hp

(i)
S (3.62)

s(q
(i)
S ) = Hq

(i)
S (3.63)

and their difference

s
(i)
d = s(p

(i)
S )− s(q(i)

S ) (3.64)

A. if the computed syndromes match (s
(i)
d = 0):

p̂
(i)
S = q

(i)
S , (3.65)

x̂
(i)
S = [p̂

(i)
S ,y

(i)
S (b)⊕ 1] (3.66)
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B. if the computed syndromes match (s(p
(i)
S ) 6= s(q

(i)
S )):

p̂
(i)
S = arg min

γ:Hγ=s
(i)
d

{dH(γ,q
(i)
S )} (3.67)

x̂
(i)
S = [p̂

(i)
S ,y

(i)
S (b)] (3.68)

3. output x̂S = [x̂
(1)
S , . . . , x̂

(B)
S ].

The Winnow correction algorithm is typically used over multiple iterations with in-

creasing block size b; Hamming codes, in fact, are capable of correcting just one error

per block, and in order to make the residual error probability sufficiently lower it may be

required to perform a few iterations. In particular, the block sizes, which are constrained

to be powers of 2 by construction, should be chosen so that the event of having more than

one error per block is unlikely.

For evaluating the performance of the Winnow protocol, we want to compute Pout,

i.e., the residual bit error rate on the b-bit string after the execution of a single pass of

the protocol, and LEC, i.e., the number of bits disclosed in the process. Let us define the

following random variables:

• number of errors in the b-bit string received by Bob, y
(i)
S :

N ,

 b∑
j=1

x
(i)
S (j)⊕ y

(i)
S (j)

 (3.69)

• number of errors in the (b− 1)-bit string received by Bob and deprived of the parity

bit, q
(i)
S :

N ′ ,

b−1∑
j=1

p
(i)
S (j)⊕ q

(i)
S (j)

 (3.70)

• number of errors in (b − 1)-bit string obtained from q
(i)
S by means of syndrome

decoding, p̂
(i)
S :

R′ ,

b−1∑
j=1

p
(i)
S (j)⊕ p̂

(i)
S (j)

 (3.71)

• number of errors in b-bit string obtained from p̂
(i)
S by adding the (eventually flipped)

parity bit, x̂
(i)
S :

R ,

 b∑
j=1

x
(i)
S (j)⊕ x̂

(i)
S (j)

 (3.72)

Residual bit error rate

The residual bit error rate can be computed from the joint statistical description of the

random variables N , N ′ and R′. As it will be shown later on, R is in fact a deterministic
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function of N , N ′ and R′. The joint probability distribution of these random variables

can be expressed as

pR′N ′N (β, α, δ) = pR′|N ′(β|α)pN ′|N (α|δ)pN (δ). (3.73)

In the following, we derive an explicit expression for each contribution on the right-hand

side of Eq. (3.73).

Finding pN (δ). Assuming that the channel can be modeled as a BSC (Binary Symmetric

Channel) with i.i.d errors and transition probability Q, pN (δ) is a binomial distribution,

that is

pN (δ) =

(
b

δ

)
Qδ(1−Q)b−δ. (3.74)

Finding pN ′|N (α|δ). Let us start from considering that, given that there are δ errors in

x
(i)
S , the number of errors α in p

(i)
S is equal either to δ (the parity bit is correct) or to

δ− 1 (the parity bit is not correct). Being the errors uniformly distributed and given that

there are δ errors in x
(i)
S , the probability that the parity bit is not correct is equal to the

probability that one of the δ errors is exactly on the parity bit, that is, δ/b. On the other

hand, the probability that the parity bit is correct and that all the δ errors are in p
(i)
S is

equal to 1 − δ/b. In conclusion, the probability distribution pN ′|N (α|δ) can be expressed

as

pN ′|N (α|δ) =


δ
b , if α = δ − 1,

1− δ
b if α = δ,

0, otherwise.

(3.75)

Finding pR′|N ′(β|α). The last probability distribution requires a slightly more complex

procedure in order to be derived. First of all, given an (2p − 1, 2p − p − 1) Hamming

code H with parity check matrix H, let us define C(α) as the number of codewords with

Hamming weight wH(α), that is

C(α) = |{γ ∈ C : wH(γ) = α}|. (3.76)

The following equality holds [108]:(
b

α

)
= (α+ 1)C(α+ 1) + C(α) + (b− α+ 1)C(α− 1),

so that, given C(α) and C(α− 1), we can compute C(α+ 1).

In addition to C(α), we define the function D(α, β), representing the number of words

with weight α for which the closest Hamming codewords have weight β. We know that the

Hamming decoding procedure may lead to the correction of a single error (i.e., β = α−1),

to the introduction of an additional error (i..e, β = α+ 1) or eventually not even alter the
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number of errors (β = α). We are therefore interested in computing D(α, β) just for the

pairs (α, β) for which β = α+ ξ, where ξ ∈ {−1, 0, 1}. We get:
D(α, α) = C(α)

D(α, α+ 1) = (α+ 1)C(α+ 1)

D(α, α− 1) = [(b− 1)− (α− 1)]C(α− 1)

(3.77)

Furthermore, given the syndrome of p
(i)
S , s(p

(i)
S ) = Hp

(i)
S , the following equality holds:

p̂
(i)
S = arg min

γ:Hγ=s(p
(i)
S )

{dH(γ,q
(i)
S )} (3.78)

Finally, let e and δ be the (b − 1)-bit error words respectively before and after the

Hamming decoding, i.e., e = q
(i)
S − p

(i)
S

ê = p̂
(i)
S − p

(i)
S

(3.79)

so that α = wH(e) = dH(q
(i)
S ,p

(i)
S )

β = wH(ê) = dH(p̂
(i)
S ,p

(i)
S )

(3.80)

We remark that, according to Eq.(3.78), p
(i)
S and p̂

(i)
S have the same syndrome, and ê

then turns out to be a code word.8 Then, by using Eq. (3.79), we can rewrite Eq.(3.78)

as

p̂
(i)
S = p

(i)
S + ê = p

(i)
S + arg min

ê∈H(p)
{dH(ê, e)}. (3.81)

Furthermore, being α the number of errors in q
(i)
S and β the number of errors in p̂

(i)
S ,

the transition probability from α to β errors after the Hamming decoding is equal to

pR′|N ′(β|α) =
D(α, β)(
b−1
α

) . (3.82)

Expressing R as a function R′, N ′ and N . Once the joint probability distribution

of R′, N ′ and N is obtained, we still have to find how R is dependent on the realizations

of such random variables. First, let us consider that if δ is odd, this relationship depends

on the parity bit handling; according to the protocol described in the first part of this

section, the parity bit is reinserted unaltered if the syndrome difference relative to p
(i)
S

and q
(i)
S is not equal to the zero string, and is flipped otherwise. Summarizing, when δ is

odd we can distinguish four different cases:

8we remind that, given a code C, a word belongs to C if its syndrome is the zero string. In our
setting, where H(p) is the (2p − 1, 2p − p − 1) Hamming code with parity check matrix H, we have

Hê = H(p̂
(i)
S − p

(i)
S ) = Hp̂

(i)
S −Hp

(i)
S = s(p̂

(i)
S )− s(p(i)

S ) = 0; consequently ê ∈ H(2p − 1, 2p − p− 1).
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1. β = α, α = δ : the parity bit is correct and the syndromes of p
(i)
S and q

(i)
S coincide;

the parity bit is flipped before being reinserted (thus introducing a new error).

2. β = α, α 6= δ: the parity bit is not correct and the syndromes of p
(i)
S and q

(i)
S

coincide; the parity bit is flipped before being reinserted (and therefore it does not

increase the number of errors).

3. β 6= α, α = δ: the parity bit is correct and the syndromes of p
(i)
S and q

(i)
S are not

identical; the parity bit is reinserted without modifications (and therefore it does

not increase the number of errors).

4. β 6= α, α 6= δ: the parity bit is not correct and the syndromes of p
(i)
S and q

(i)
S are

not identical; the parity bit is reinserted without modifications (thus introducing a

new error).

On the other hand, if δ is even, the number of residual errors is equal to δ, since no

correction is performed.

In conclusion, R is a deterministic function of β, α and δ such that

R = fR′N ′N (β, α, δ) =


δ, if δ is even

β + 1, if δ is odd ∧ {(δ = α) ∧ (α = β)} ∨ {(δ 6= α) ∧ (α 6= β)}

β, otherwise

(3.83)

Final computation. Finally, we can express Pout as

Pout =
E[R]

n
. (3.84)

The expectation of R can be written as

E[R] =
b∑

δ=0

α2∑
α=α1

β2∑
β=β1

fR′N ′N (β, α, δ)pR′N ′N (β, α, δ) (3.85)

=
b∑

δ=0

α2∑
α=α1

β2∑
β=β1

fR′N ′N (β, α, δ)pR′|N ′(β|α)pN ′|N (α|δ)pN (δ) (3.86)

=
b∑

δ=0

α2∑
α=α1

β2∑
β=β1

fR′N ′N (β, α, δ)
D(α, β)(
b−1
α

) · pN ′N (α, δ) ·
(
b

δ

)
εδ(1− ε)b−δ,(3.87)

where

α1 = max{0, δ − 1} β1 = max{0, α− 1}

α2 = min{b− 1, δ} β2 = min{b− 1, α+ 1}.
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Expectation of the fraction of disclosed bits

The procedure for computing the expectation of the fraction of bits disclosed by Winnow

is by far less complicated than the one required for the residual bit error rate. More

specifically, we just consider the following facts:

1. 1 bit is disclosed for each block by the protocol in order to perform the parity check;

2. p = dlog2(n)e bits are revealed for blocks with mismatching parities in order to

perform Hamming decoding.

We therefore define the probability Pblk,odd that an odd number of errors occurs in a

block of b bits. Assuming that the quantum channel can be modelled as binary symmetric

with transition probability Q, we get:

Pblk,odd =
∑
i∈I

(
b

i

)
Qi(1−Q)b−i, (3.88)

being I = {i ∈ [1, b], i odd}, and the error correction leakage per block can be written as

LEC,blk = 1 + p · Pblk,odd = 1 + p ·
∑
i∈I

(
b

i

)
Qi(1−Q)b−i. (3.89)

Theoretical analysis and simulations

In this section we evaluate the performance of the Winnow scheme according to the theore-

tical analysis and to simulations results. Also, we compare them with the error correction

mechanism leveraged by the Cascade algorithm, that is, the binary error search (Bina-

ry). The cascading principle, in fact, can be applied also to Winnow, thus yielding an

improvement in the reconciliation efficiency but also a higher interactivity. Since the ana-

lysis would be by far more involved, we therefore decided to compare the core correction

mechanisms adopted in these two protocols.

Figure 3.7a shows the residual bit error rate, Pout, after a single iteration of the Binary

and of the Winnow protocol, respectively, as a function of the quantum bit error rate

Q and with block size equal to 8 bits; both simulation results and theoretical values are

reported and, as it can be seen, they perfectly match. Simulations were performed with

1000 random, independent realizations of 320000-bit sequences. It can be noticed that the

plots of the two protocols are very similar, though Binary performs slightly better, with

an advantage which becomes more appreciable for higher values of Q. This is due to the

fact that the Binary protocol always corrects one error per block, whereas Hamming codes

may even introduce errors when a block exhibits an odd number of errors greater than 2.

On the other hand, if we consider the associated fraction of disclosed bits (figure 3.7b), we

see that in a single iteration the two protocols disclose exactly the same number of bits:

given a block of length b, in fact, both Binary and Winnow disclose dlog2(b)e+ 1 bits. It

should be stressed, however, that this correspondence does not hold if multiple iterations

are performed, as shown in the following.
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Figura 3.7: Comparison of a single iteration of Binary and Winnow with block size equal
to 8 bits.

Let us now consider (figures 3.8a and 3.8b) the case of 4 protocol iterations with block

sizes equal to L = [8, 16, 32, 64] bits, respectively. We note that Binary and Winnow have

approximately the same performance for low QBER values, but then Binary outperforms

Winnow; in the considered interval, however, the difference never exceeds a factor of

approximately 3 · 10−2 for both Pout and LEC/n. We also point out that for moderate

QBERs, both Binary and Winnow achieve excellent correction capability; more precisely,

it can be shown that the specific L we here consider ensures a residual bit error rate below

10−8 for Q = 3.1 · 10−2 (see next paragraph on the block size optimization).

The observed advantage of the Binary protocol over Winnow in terms of both Pout

and LEC can be explained by considering how the Hamming decoding algorithm works.
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Figura 3.8: Comparison of Binary and Winnow with 4 iterations and block sizes L =
[8, 16, 2, 64].

We recall, in fact, that by definition a Hamming code is able to correct 1 error and detect

2 errors, but if more errors are present then the outcome depends on the specific word

which is fed as input to the algorithm. More specifically, we recall a few significant cases:

1. if Hamming decoding is applied to a word with 1 error, then the error will be

corrected;

2. if Hamming decoding is applied to a word with 2 error, then the decoded word will

end up with exactly 3 errors;
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3. if Hamming decoding is applied to a word with 3 error, then the decoded word could

have either 3 or 4 errors, depending on the specific pattern.

Hence, if there is more than 1 error per block, then Winnow may even introduce additional

errors, thus worsening the residual bit error rate at the end of the protocol iterations.

Furthermore, the newly introduced errors propagate in subsequent iterations, thus leading

to an overall performance degrading.

On the other hand, the Winnow protocol exhibits a significant advantage in terms of

interactions between the transmitter and the receiver. Even if the messages of the Binary

protocol are sent in parallel for multiple blocks, in fact, they cannot compare to the single

message sent from Alice to Bob for a single Winnow protocol iteration. In figure 3.9 we

show the expected number of interactions for both Cascade and Winnow for three different

reconciliation block sizes Li and for different QBERs. As it can be seen, Winnow converges

to 1 interaction, whereas the Cascade protocol rapidly reaches log2(Li) interactions per

block.
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Figura 3.9: Expected number of interactions for Cascade and Winnow depending on the
reconciliation block size.

Block size optimization.

Given the maximum number of iterations, Imax, the maximum block size, Lmax, and the

target bit error rate at the output, Tout, we have investigated the optimal sequence of

block sizes in order to minimize the fraction of disclosed bits while ensuring the target bit

error rate. We recall, in fact, that the block size is a crucial parameter in each iteration

of an information reconciliation protocol. In particular, both Binary and Winnow are

optimal9 if only 1 error is present in a block, since they can correct at most 1 error per

9in this context, “optimal” means that they correct all errors.
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iteration. Furthermore, the preliminary parity check does not reveal an even number of

errors, which therefore remain undetected, eventually up to the next protocol iteration.

In figures 3.10a and 3.10b, the thin lines represent the plots relative to different block

sizes combinations and the thick one corresponds to the optimal choice with respect to

the fraction of disclosed bits. The target bit error rate is set to Tout = 10−8 (dashed line

in figure 3.10a), with Imax = 6 and Lmax = 1024 bits. As we can see in figure 3.10a,

the optimal choice of the block sizes rapidly changes with the QBER, so that the target

bit error rate condition is fulfilled. Figure 3.10b shows that the optimal (i.e., minimum)

fraction of disclosed bits grows with the QBER almost linearly.
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Figura 3.10: Winnow block size optimization with Imax = 4, Lmax = 512 bits and Tout =
10−8.

Moreover, it is interesting to consider how the reconciliation efficiency changes for

77



CAPITOLO 3. QUANTUM KEY DISTRIBUTION

different values of the target bit error rate and as a function of the QBER. Figure 3.11

shows this plot for the Winnow protocol. As expected, we see that lower values of Tout

yields better reconciliation efficiencies ηEC, since the requirement on the residual bit error

rate are less stringent. Also, we note that the gap between the three curves increases

with Q. For each Tout, in fact, we expect that there exists a maximum Qmax that can

be corrected by the Winnow while ensuring the output bit error rate requirement: the

closer is Q to Qmax, the higher will be ηEC. Furthermore, we observe that the curves are

not smooth; this can be explained by looking at figures 3.10a and 3.10b: optimal block

lengths, in fact, do not change gracefully but are sudden, since each optimal combination

is kept until the bound on the target bit error rate is satisfied, and, as soon as it is no

longer verified, the optimal block size suddenly jumps to a new combination.
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Figura 3.11: Winnow reconciliation efficiency for different target bit error rates, with
Imax = 6 and Lmax = 1024 bits.

3.5.3 LDPC codes for information reconciliation

In the past few years, LDPC codes [109] have gained an increasing interest in the scientific

community dealing with information reconciliation for quantum key distribution. LDPC

codes are in fact capacity-approaching linear codes which allow for highly efficient decoding

even for large block sizes and at present they are widely deployed in classical systems. In

particular, their efficiency is attractive while trying to design a non-interactive information

reconciliation protocol which allows to increase the secret key rate and/or the maximum

transmission distance.

Early works on LDPC codes for information reconciliation applications in QKD appea-

red starting from 2004 [110, 111, 112], but the proposed systems had to cope with some

crucial issues [113], mainly the design of an optimized generator matrix, and the code rate

adaptation by puncturing and shortening algorithms. The problem of rate adaptability, in
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fact, is critical in the setting of quantum key distribution due to the intrinsic unsteadiness

of the quantum channel.10

Despite these foreseen obstacles, in the last few years several works improved the feasi-

bility of LDPC error correction as applied to QKD. In [98] the authors propose a solution

for optimizing LDPC codes for binary symmetric channels. More specifically, an evolu-

tionary optimization algorithm, called Density Evolution [114], is used and decoding is

performed by means of belief propagation. A discrete family of codes is designed for dif-

ferent values of the transition probability (i.e., the quantum bit error rate), with a block

length of 106 and so that a residual bit error rate below 1.5 · 10−6 is achieved. Unfortu-

nately, since the number of codes is limited, the reconciliation efficiency ηEC exhibits a

saw behaviour [98, Fig.1]; as the number of codes increases the saw shaping is gradually

smoothed. The authors of [98] propose to use local randomization in order to selectively

worsen the error rate on the strings to be reconciled and thus make the designed codes

work in their optimal region. The proposed solution outperforms Cascade for transition

probabilities greater than 2%, getting an advantage up to nearly 20% as the transition

probability gets close to 10%. Furthermore, the maximal admissible transition probability

threshold is raised up to nearly 11% (i.e., the theoretical limit which allows a reconciled

string to be extracted), whereas the Cascade protocol does not exceed 9.5%.

A further step has been made by the same authors in [106, 107], where information

rate adaptability is investigated, and a solution for rate modulation based on puncturing

and shortening is proposed. With respect to [98], this solution allows for a smoother

reconciliation efficiency and for a much lower implementation complexity, as the proposed

protocol adjusts the rate of pre-built LDPC codes. Conversely, the LDPC codes without

shortening and puncturing proposed in [98] behave slightly better near their threshold,

but this disadvantage is definitely negligible in the overall performance assessment and

the efficiencies of the two solutions nearly coincide. As a conclusion to this paragraph,

let us underline that the approaches described in [106, 98, 107] fall within the hashing

approach formalized in §3.5.1.

Finally, for the sake of completeness, we point out that there exist also alternative pro-

posals based on a systematic encoding approach. In particular, the authors of [115, 104]

assume a composite channel model. On the quantum channel, which is regarded as a

“hard-output” binary symmetric channel, the information bits are transmitted, while the

classical channel, which is considered as a “soft-output” AWGN channel, is the tran-

smission medium for redundancy bits. At the receiver, the metrics derived from the two

channels are jointly processed according to a specific weighting function and decoding is

performed by means of belief propagation. The authors claim that, given an LDPC code

with code rate 0.5, decoded with 100 iterations and with optimal metrics weight, their

solution ensures a residual bit error rate in the order of 10−6 even for QBER = 0.11, while,

if the LDPC code has a code rate equal to 0.61, residual bit error rates reach up to 10−7

for Q = 0.015.

10It should be noted that each non-interactive protocol has to face with this difficulty; indeed, the
Cascade and the Binary protocols smartly overcome this problem thanks to their interactivity, which, on
the other hand, turns out to be also their main drawback.
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Implementation of an LDPC-based rate-adaptive information reconciliation

scheme

In this section, we briefly recall the rate-adaptive protocol based on LDPC codes proposed

in [106], with some improvements resulting from [116].

The protocol takes as input the following parameters:

• a fixed codeword length, n,

• a set C ofN LDPC codes with rates {Ri}i∈[1,N ] and parity check matrices H1, . . . ,HN ,

• a target frame error rate Φ,

• an estimate for the QBER, Q̂.

Depending on these parameters, the best punctured LDPC code obtainable from the

codes in C is derived. First, the target reconciliation efficiency ηEC is computed according

to the result shown in [116], which is based on results similar to those presented in [117,

118]:

ηEC ≈ ηLDPC(h2(Q) +

√
v(Q̂)

n
Q−1(1− Φ))/h2(Q̂) (3.90)

where ηLDPC > 1 is a parameter describing the efficiency of the codes which takes into

accounts non-idealities (such as limited codeword length). Then, the optimal LDPC code

and its puncturing parameters are derived by the following procedure:

Choice of the LDPC code and of the puncturing parameters.

1. Choose the i-th LDPC code in C with the rate Ri closest to the optimal

one for the estimated QBER, that is

Ri = arg min
R∗∈C

{R∗ + ηECh2(Q̂)− 1} (3.91)

2. Determine the optimal puncturing positions P; this could be done, for

instance, by using the untainted puncturing algorithm proposed in [119].

3. Find the optimal number of punctured bits for the estimated QBER as

p = n− nRi

1− ηECh2(Q̂)
(3.92)

We are now ready to introduce the error correction mechanism.
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Rate-adaptive LDPC error correction mechanism.

∀ pair of (n − p)-bit sequences (x
(i)
S ,y

(i)
S ), compute the reconciled block x̂

(i)
S as

follows

1. Define a pair of n-bit words (v(i),w(i)) such that, given P =

{P(1), . . . ,P(p)} and P̄ = {1, . . . , n}/P:

v(i)(P) = Up, v(i)(P̄) = x
(i)
S (3.93)

w(i)(P) = U ′p, w(i)(P̄) = y
(i)
S (3.94)

where Up and U ′p denote two distinct uniformly random p-bit sequences.

2. Compute the syndrome of the sifted key at Alice

s(x
(i)
S ) = Hix

(i)
S (3.95)

and send it to Bob.

3. At Bob, perform a maximum-likelihood decoding with non-zero syndro-

me (see §3.5.1 on hashing approach), with log-likelihood of the punctured

symbols set to 0.

4. Output the decoded word x̂
(i)
S

Finally, we implemented the described algorithm with a set of 4 LDPC codes. The

codes, with rates {0.5, 0.6, 0.7, 0.8}, are designed with the progressive edge growth (PEG)

algorithm [120] given the degree distributions provided in [121] and the fixed codeword

length n = 104. We then compared the reconciliation efficiency of the Winnow scheme

(Imax = 6 and Lmax = 1024) with the proposed rate-adaptive LDPC error correcting

protocol. In order to allow a fair comparison, we chose Tout = 10−7 for the Winnow

protocol and Φ = 10−3 for the LDPC correction, being the block size n = 104. As we can

see in figure 3.12,11 Winnow performs better for low QBER values, i.e., for Q . 4 · 10−2,

where the LDPC correction suffers from its less flexible rate adaptation. On the other

hand, LDPC correction rapidly outperforms Winnow for higher values of Q, where the

LDPC codes work close to their optimal region.

In principle, more efficient LDPC codes with n = 104 could be designed with different

techniques and parameters or, analogously, we could leverage the cascade effect for Win-

now, so that better reconciliation efficiencies could be achieved. However, besides these

technicalities, figure 3.12 highlights the fundamental advantages of the two schemes. Win-

now is intrinsically rate-adaptable, its information leakage dynamically changes, so that

syndromes are disclosed on the public channel only for those blocks with mismatching

parities; it is then more suitable for scenarios where there is at most 1 error per block.

On the other hand, LDPC correction exhibits better reconciliation efficiencies in the codes

11we only consider values of Q in [0, 7.5 · 10−2], since, with the chosen parameters and with the given
set of LDPC codes, the target frame error rate Φ = 10−3 cannot be ensured for higher values of Q.
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Figura 3.12: Comparison of the reconciliation efficiency for Winnow (Imax = 6, Lmax =
1024, Tout = 107) and LDPC correction (n = 104, Φ = 10−3).

optimal region, but, for a given code rate, the same amount of redundancy bits is disclosed

on the public channel; hence, for low QBER values, it turns out to be less efficient than

Winnow or Cascade. Finally, let us remark that the choice of Winnow is more convenient

in scenarios where the number of sifted bits is limited to a few thousands or hundreds

(see §4.3 for an experimental application); in that setting, in fact, the efficiency of LDPC

codes rapidly drops. On the other hand, as shown in [98] and in subsequent works, LDPC

codes provide unequalled efficiency for very long sifted sequences (e.g., n = 106).

3.5.4 Error verification

After the information reconciliation phase, Alice and Bob must verify that their reconciled

strings, XR and YR, are equal with a sufficiently high probability, so that the correctness

constraint (3.2) is ensured. An effective solution, used in [74], is based on universal2

hash functions: Alice and Bob agree on a random universal2 hash function, g : {0, 1}n →
{0, 1}log2d1/εcore, and compute the respective hashes, gA = g(XR) and gB = g(YR). The

two hashes are then disclosed on the public channel, and if they match, i.e., gA = gB, the

key distillation procedure continues, if not the whole protocol aborts. A proof that this

algorithm ensures εcor-correctness is provided in [122, Theorem 1].

3.6 Privacy amplification

Privacy amplification is the last step of the secret key agreement scheme described in

section 3.1 and, by compressing the reconciled keys, XR and YR, it allows to distill a pair

of privacy amplified keys, SA and SB, on which the adversary has a negligible information.

As mentioned in §3.3.3, the nature of this information depends on the assumed attacker

model and the key which is output to the privacy amplification algorithm should fulfill
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both a secrecy and a uniformity constraint. In this sense, the connection with randomness

extractors, described in chapter 2, is evident and privacy amplification for a QKD protocol

can be seen as a randomness extraction problem in a quantum adversarial scenario.

In the QKD setting, it is of fundamental importance that the adversary does not

know the privacy amplification function before the sifting procedure, because she could

otherwise adapt her attack strategy to that specific function. Hence, seeded randomness

extractors are to be used in order to address the privacy amplification target: the seed

should be chosen uniformly at random at each protocol run and it can be disclosed on the

public channel after the sifting procedure. Depending on the specific QKD application, the

choice of the optimal seeded extractor may be driven by constraints on the computational

overhead, on the extraction efficiency or on the seed length (see §2.3 for a discussion).

In the following sections, we describe some different approaches for determining a cru-

cial parameter for the privacy amplification, that is, the output key length which allows to

provide the required level of secrecy. We first recall a fundamental result on the asymptotic

information leakage under selective individual attacks, and contextually propose a tighter

bound for a specific class of privacy amplification functions. Secondly, we introduce the

notion of finite-key analysis and describe a generalization to an arbitrary QKD protocol

of the finite-key result recently published in [J1].

3.6.1 Asymptotic information leakage under selective individual attacks

To the best of the author’s knowledge, the first results for determining the length of

the privacy amplification key appeared in [123, 21]. Here the authors use the mutual

information as a security measure (see §3.3.3) and the analysis does not take into account

finite-key effects. The main result is stated in the following theorem, where universal2

hash functions are used as seeded randomness extractors.

Theorem 6. Let xR be a random m-bit string with uniform distribution over {0, 1}m, let

zP = e(xR) for an arbitrary eavesdropping function e : {0, 1}m → {0, 1}e for some e ≤ m,

let ` < m − e be a positive security parameter and let ` = m − e − s. If Alice and Bob

choose S = G(xR) as their secret key, where G(·) is chosen at random from a universal2

class of hash functions from {0, 1}m to {0, 1}`, then Eve’s expected information about the

secret key S, given zP and G, satisfies

I(S; G, zP) ≤ 2−s

ln(2)
. (3.96)

In the remainder of this section, we propose a tighter bound on I(S; G, zP) and we brie-

fly discuss the effects of finite-key effects on the choice of the privacy amplification output

length. More results are shown in chapter 4 for some specific QKD implementations.

Tight bound for leaked information under selective individual attacks

In this section we describe a privacy amplification framework for bounding the amount of

leaked information in the presence of selective individual attacks; this analysis is presented
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in [C1].

Let us start by noting that the nature of leaked information is twofold: deterministic

and known to the legitimate parties on one hand, due to the disclosure of LEC bits in

the information reconciliation phase, and random and not known to the legitimate parties

on the other one, due to eavesdropping on the quantum channel. Therefore, in order

to perform an effective privacy amplification, we could consider the two contributions

separately, even though, typically, they are treated together.12 We then start by proposing

a common framework for the compensation of both the deterministic and the unknown

leakage; we call the former bit deletion and the latter core privacy amplification.

Let us consider the processing (either bit deletion or core privacy amplification) of the

n-bit strings x and y. Let xG and yG be the `-bit string which are output to Alice and

Bob respectively and let z be the u-bit string which represents the bits of information

leaked to Eve. For a generic attack in which Eve has observed some u-bit linear function

z of x, we can write the input-output relationships as follows (we omit yG as, after the

information reconciliation procedure, it should be x = y except with probability εcor):

z = GEx (3.97)

xG = GLx (3.98)

where GE is a u×n matrix and GL is a `×n hashing matrix randomly chosen. As output

to the privacy amplification, one wishes to obtain:

1. perfect uniformity: HGL
(xG) = `

2. perfect secrecy: IGL,GE
(xG; z) = 0

where the subscripts GL and GE in the entropy and mutual information underline that

these quantities depend on the two matrices; please also note that classical mutual infor-

mation is a composable security definition in the attack scenario we here consider (see

discussion in §3.3.3).

Let N (·) denote the null space of a matrix. The following propositions are proven:

Proposition 9. If x is uniformly distributed and GL has full row rank, then the entropy

of xG is maximal.

Dimostrazione. Let us start by considering that the entropy of an `-bit string xG is boun-

ded by `, that is, H(xG) ≤ `, and the equality holds when ` bits are independent and

identically distributed. Furthermore, given that xG = GLx, the probability mass function

of xG can be expressed as

pxG(b) = P [xG = b] = P [GLx = b] = P [x ∈ IGL
(b)] =

∑
a∈IGL

(b)

px(a). (3.99)

12some protocols for information reconciliation (e.g., Cascade [96] and Winnow [97]) already embedded
a bit deletion mechanism in the original proposals. In the present work, however, we prefer to separate
reconciliation from deletion, as the latter is more properly situated in the context of privacy amplification.
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where IGL
(b) is the anti-image of b given GL, that is,

IGL
(b) = {a : GLa = b} = a0 +N (GL), (3.100)

being a0 an arbitrary particular solution such that GLa0 = b.

Now, since we assume x to be uniformly distributed over {0, 1}n and rank(GL) = `,

we can rewrite Eq.(3.99) as follows:

pxG(b) =
∑

a∈IGL
(b)

2−n = |IGL
(b)|2−n = |N (GL)|2−n = 2n−rank(GL)2−n = 2−rank(GL) = 2−`.

(3.101)

Hence, given that x is uniformly distributed and rank(GL) = `, we have H(xG) = `,

that is, the entropy of xG is maximal. In addition, one can easily prove that the condition

on the row rank of GL is not only sufficient but also necessary. On the contrary, having

a uniformly distributed input x is not necessary, as other distributions may satisfy the

maximal entropy condition.

Proposition 10. If dimN (GE)− dim (N (GE) ∩N (GL)) = rank(GL) and x is uniform

over {0, 1}n, then xG is uniform and perfectly secret.

Dimostrazione. In order to prove the claimed statement, we must show that xG and z are

statistically independent, that is, pxG|z = pxG . As shown in the proof of proposition 9, if

x is uniformly distributed over {0, 1}n, then also the distribution of xG is uniform over

{0, 1}rank(GL). Hence,

pxG(b) =
1

rank(GL)
, ∀ b ∈ {0, 1}rank(GL). (3.102)

By Bayes’s theorem [2], we can write pxG|z as follows

pxG|z(b|c) =
pxGz(b, c)

pz(c)
=
P [GLx = b,GEx = c]

P [GEx = c]
=
P [x ∈ IGL

(b),x ∈ IGE
(c)]

P [x ∈ IGE
(c)]

=

=
|N (GE) ∩N (GL)|

|N (GE)|
=

2dim(N (GE)∩N (GL))

2dim(N (GE))
, (3.103)

where, again, IGL
(b) and IGE

(c) represent, respectively, the anti-image of b according to

GL and the anti-image of c according to GE. Given that, by hypothesis, dim(N (GE))−
dim(N (GE) ∩N (GL)) = rank(GL), we get

pxG|z(b|c) =
2dim(N (GE)∩N (GL))

2dim(N (GE))
=

1

2rank(GL)
, ∀ xG ∈ {0, 1}rank(GL), z ∈ {0, 1}u.

(3.104)

Therefore, under the above assumptions, xG is statistically independent of z.
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From these propositions, the following corollaries immediately follow:

Corollary 1. xG is uniform and perfectly secret if the following conditions hold:

1. x is uniformly distributed over {0, 1}n,

2. rank(GL) = `,

3. dim(N (GE))− dim(N (GE) ∩N (GL)) = `.

{0, 1}n{0, 1}t {0, 1}s

∼ N (A)

∼ N (M)

z

M
x

A

k

Figura 3.13: Illustration of Proposition 10.

Corollary 2. The information leaked to Eve about xG, given the eavesdropper matrix GE

and the privacy amplification matrix GL, is

IGL,GE
(xG; z) = `− (dimN (GE)− dim (N (GE) ∩N (GL))) (3.105)

= `− rank(GLNGE
) (3.106)

where NGE
is any matrix whose columns form a basis for N (GE).

Compensating error correction leakage: bit deletion

Let xR and xD be respectively the n-bit reconciled key and the m-bit bit-deleted reconciled

key and let zD be the p information bits associated with xR and known to the eavesdropper

thanks to the communication over the public channel. We can describe the input-output

relationship according to the structure detailed in the previous section, replacing GE with

DE and GL with DL, that is:

zD = DExR (3.107)

xD = DLxR (3.108)

where DE is a p × n matrix, known to the legitimate parties, which, given xR as input,

outputs the bits transmitted on the public channel and DL is the m × n matrix which,
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given xR as input, outputs the bit-deleted reconciled key xD. Since DE is completely

known to the legitimate parties as soon as the reconciliation protocol is specified, a matrix

DL which perfectly counteracts the error correction leakage can be designed. In particular,

it should be noted that, in addition to the conditions listed in corollary 1, matrix DL has

to be a sub-matrix of the identity, since it has to output a subset of xR which corresponds

to the reconciled key deprived of some bits in order to balance the ones revealed for error

correction. We now present a bit deletion algorithm as applied to the Winnow protocol.

Bit deletion in Winnow. In this analysis, we restrict the bit deletion algorithm to

blocks with mismatching parity. For each of these b-bit blocks, x
(i)
S , and given a (2p−1, 2p−

p− 1) Hamming code with parity check matrix H ∈ {0, 1}p×b, p = log2(b) and p′ = p+ 1,

Winnow [97], after the preliminary parity bit, sends over the public channel its syndrome

according to the chosen code, that is, c(i) = [⊕x
(i)
S ,Hp

(i)
S ] for each i ∈ {1, . . . , Bmis},

being Bmis the number of blocks with mismatching parities (please refer to §3.5.2 for the

notation). In order to counteract the disclosure of these p′ bits, the authors of [97] propose

to remove in each block the bits at positions {2j}, where j ∈ {0, . . . , p′ − 1}.
For example, if we choose a (7, 4) Hamming code, DL is a diagonal block matrix,

DL =



D
(1)
L 0 · · · · · · 0

0 D
(2)
L 0 · · · 0

... 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 · · · · · · D
(Bmis)
L


, (3.109)

whose blocks are Bmis identical matrices D
(i)
L ∈ {0, 1}(b−p

′)×b defined as

D
(i)
L =


0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

 , i ∈ {1, . . . , Bmis}. (3.110)

We highlight that each D
(i)
L has full rank; this involves that also DL has full rank, given

its diagonal structure. Thus, if xS is uniformly distributed, proposition 9 ensures that the

entropy of the bit-deleted key is maximal for such a choice of DL.

On the other hand, in the considered scenario DE is a block diagonal matrix

DE =



D
(1)
E 0 · · · · · · 0

0 D
(2)
E 0 · · · 0

... 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 · · · · · · D
(Bmis)
E


, i ∈ {1, . . . , Bmis}, (3.111)

whose blocks are Bmis identical matrices D
(i)
E ∈ {0, 1}p

′×b defined as
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D
(i)
E =


1 0 1 0 1 0 1 0

0 1 1 0 0 1 1 0

0 0 0 1 1 1 1 0

1 1 1 1 1 1 1 1

 , i ∈ {1, . . . , B}. (3.112)

Again, each D
(i)
E has full rank, and so does DE. It is now easy to see that such DL and

DE fulfill also condition 3 in corollary 1, so that the output of the bit deletion is perfectly

secret with respect to the error correction leakage.

Counteracting selective individual attacks: core privacy amplification

According to the proposed framework, given the bit-deleted key xD ∈ {0, 1}m, the final

key xP ∈ {0, 1}` is obtained as xP = PLxD, for a given realization of the matrix PL ∈
{0, 1}`×m, whereas the information leaked to the eavesdropper is modelled as zP = PExD.

A customary solution in practical QKD systems is to choose PL as a randomly generated

binary (Toeplitz) matrix [124]. Since both the class of binary matrices and its Toeplitz

subclass are universal2, the bound in theorem 6 holds, and is usually invoked to guarantee

the security of the distilled key. However in such (and similar) bounds the eavesdropper is

assumed to have learned exactly (or at most) e bits of information from the reconciled key,

and the measure of information leakage I(xP; zP,PL) is taken as average over all possible

realizations of PL.

We consider selective individual attacks (see §3.3.2) where the eavesdropper learns

each transmitted bit with probability q (and learns nothing of it with probability 1− q),
independent of all the others. Each realization of such an attack can be modeled as linear

with NPE
= I−j, being I−j the matrix obtained from the m×m identity by erasing the

columns with indexes in j, corresponding to the bits observed by Eve.

Based on this attack model, we can derive the information leaked to Eve after privacy

amplification, for each choice of the hashing matrix GL.

Proposition 11. For a given hashing matrix PL ∈ {0, 1}`×m, the average (over the attack

statistics) of the information leaked to Eve in the final key xP is given by

IPL
(xP; zP) =

∑
j∈Im

q`(j)(1− q)m−`(j)rank(PL,−j) (3.113)

where Im denotes the set of all possible index vectors and `(j) is the length of vector j.

Dimostrazione. Since, according to the described attack model, the eavesdropped sequen-

ces Im are binomially distributed with parameters (m, q), by taking the average with

respect to GE (or, equivalently, with respect to the observed indexes vectors j) of Eq.

(3.106) in corollary 2, we get Eq. (3.113)

Since the value of q can be estimated by Alice and Bob prior to privacy amplification,

Eq. (3.113) would yield them the expected amount of information leaked. However, it
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10−3

10−2

10−1

1
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q

IPL
(xP; zP)/`

Figura 3.14: Average fraction of key information leaked to Eve under a selective individual
attack versus the attack rate q, for the classes of binary (solid line) and binary Toeplitz
(dashed line) matrices. Here, m = 12, ` = 8. The upper bound in [21, Corollary 4] is also
plotted for comparison (dotted line).

should be pointed out that even for moderate values of m the calculation of all the ranks

in Eq. (3.113) becomes impractical.

In Figure 3.14 we plot the result of averaging equation 3.113 over a uniform choice

of GL in the class of full row rank binary matrices and in its Toeplitz subclass. It can

be seen that the result is much lower than the average bound in [21], thus showing that

Eq. (3.113) provides a significantly tighter bound for the specific attack model we hereby

consider.

3.6.2 Finite-key analysis

In standard QKD unconditional security proofs, the final secret key length is upper-

bounded by the asymptotic limit which is achievable in the limit of infinitely long keys

(see for instance [51]), with the use of shorter blocks leading to lower key rates. However,

in QKD implementations, the length of processed blocks is chosen as a trade-off between

link duration constraints and memory resources on one side and efficiency (in terms of

secret key rate) on the other. This trade-off usually results in long blocks, of at least a

million sifted bits. However, in some scenarios such a choice may rather be constrained

by the physical channel, as in the perspective use with satellites, where the passage of

the orbiting terminal over the ground station is restricted to a few minutes in the case of

Low-Earth-Orbit (LEO) satellite [125, 126] or to a fraction of one hour for the Medium-

Earth-Orbit (MEO) ones [127]. Hence, for practical use of QKD in cryptography, it is of
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crucial importance to develop and test methods that give the achievable secure key rates

in the bounded key length scenario, since the number of exchanged bits between the two

parties is always finite. In the last years, great efforts from the quantum communication

community were directed to this subject, due to its relevance for a number of application

scenarios [94, 128, 95, 93, 129, 130, 72]. In this section, we propose a generalization of the

finite-key analysis appeared in [J1], which provides security against selective individual

attacks (see also §4.3).

Let us consider the following setup. For a given sifted key at Alice, xS, we define a

k-bit subset, Z, and an n-bit subset, X. Similarly, we define two subsets of Bob’s sifted

key, yS, thus getting Z′ and X′, respectively. The pair of k-bit strings is devoted to

the eavesdropping estimation, whereas the pair of n-bit strings is used for the actual key

distillation. We further assume that if an error rate on the k-bit sequences higher than a

given threshold Qtol is detected, that is, if

QZ =

∑k
i=1 Z(i)⊕ Z′(i)

k
≤ Qtol, (3.114)

the protocol aborts (we denote by pabort the probability that this happens). Given

that Eve performs an intercept-and-resend attack on each qubit, we define the following

probabilities:

• qZ, the probability that introduces an error in Z′,

• qX, the probability that Eve knows the attacked bit in X.

As an example, in the efficient BB84 protocol, we get qZ = 1/2 and qX = 1. In BB84 and

in B92, if Eve randomly chooses the eavesdropping basis, we get qZ = 1/4 and qX = 1/2.

We now prove the following result.

Theorem 7. The distilled `-bit key S is δsec-PS if

∃ a ∈ N : f(a, `) ≤ δsec

1− pabort
(3.115)

where

f(a, `) = ` max
q

[IqqX(a+ 1, n− a)I1−qqZ(k(1−Qtol), kQtol + 1)] +
2−(nEC−`−a)

ln 2
, (3.116)

with nEC = n−LEC − dlog2(1/εcor)e and Ix(a, b) denoting the regularized incomplete beta

function [131, section 6.6],

Ix(a, b) =
B(x; a, b)

B(1; a, b)
, B(x; a, b) =

∫ x

0
ta−1(1− t)b−1 dt. (3.117)

Dimostrazione. Let t be the number of qubits known by Eve in X among the n sifted bits.

Then the Rényi entropy of order 2 for the sifted key, given all the information available

to the eavesdropper, is lower-bounded by

H2(X|V ) ≥ nEC − t, (3.118)
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being H2(X|V ) = −
∑

v pV (v) log2

(∑
s p

2
S|V (s|v)

)
.

Let us define the following pairs of complementary events:A = {QZ > Qtol} (protocol abort)

Ā = {QZ ≤ Qtol} (no abort)
(3.119)

R = {H2(X|V ) ≥ nEC − a} (tolerable eavesdropping)

R̄ = {H2(X|V ) < nEC − a} (non-tolerable eavesdropping)
(3.120)

Also, let us denote by pS|V (s|v) the conditional probability mass function of the key S

given the adversarial classical information V , for S = s and V = v. Then, by splitting Ā

into R ∩ Ā and R̄ ∩ Ā, we get

H(S|V ) = E[− log2 pS|V (S|V )|Ā] (3.121)

= E[− log2 p(S|V )|R ∩ Ā]P [R|Ā] (3.122)

+ E[− log2 P (S|V )|R̄ ∩ Ā]P [R̄|Ā]. (3.123)

The multiplication of H(S|V ) by the probability of not aborting yields

P [Ā]H(S|V ) = E[− log2 p(S|V )|R ∩ Ā]P [R|Ā]P [Ā] (3.124)

+ E[− log2 P (S|V )|R̄ ∩ Ā]P [R̄|Ā]P [Ā] . (3.125)

Then, we can write

P [Ā]`− P [Ā]H(S|V ) = P [Ā]`− E[− log2 pS|V (S|V )|R ∩ Ā]P [R ∩ Ā] (3.126)

− E[− log2 pS|V (S|V )|R̄ ∩ Ā]P [R̄ ∩ Ā] (3.127)

and, again splitting Ā into R ∩ Ā and R̄ ∩ Ā, we get

P [Ā]`− P [Ā]H(S|V ) = (P [R ∩ Ā] + P [R̄ ∩ Ā])` (3.128)

− E[− log2 P (S|V )|R ∩ Ā]P [R ∩ Ā] (3.129)

− E[− log2 P (S|V )|R̄ ∩ Ā]P [R̄ ∩ Ā] (3.130)

= P [R ∩ Ā](`− E[− log2 P (S|V )|R ∩ Ā]) (3.131)

+ P [R̄ ∩ Ā](`− E[− log2 P (S|V )|R̄ ∩ Ā]) (3.132)

Then, by observing that, trivially, P [R∩ Ā] < 1 and E[− log2 P (S|V )|R̄∩ Ā] > 0, we write

P [Ā](`−H(S|V )) ≤ `− E[− log2 P (S|V )|R ∩ Ā] + P [R̄ ∩ Ā]` (3.133)
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By applying corollary 4 in Ref. [21] to S we get

E[− log2 P (S|V )|R ∩ Ā] ≥ `− 2−(nEC−`−a)

ln 2
(3.134)

`− E[− log2 P (S|V )|R ∩ Ā] ≤ 2−(nEC−`−a)

ln 2
(3.135)

Finally, by plugging (3.135) into (3.133), we get

P [Ā](`−H(S|V )) ≤ 2−(nEC−`−a)

ln 2
+ `P [R̄ ∩ Ā] . (3.136)

From (3.118), we can upper bound the probability on the right-hand side of (3.136) as

P [H2(X|V ) < nEC − a,QZ ≤ Qtol] ≤ P [t > a,QZ ≤ Qtol] (3.137)

= P [t > a]P [QZ ≤ Qtol], (3.138)

since the two events in the right-hand side brackets of equation (3.137) refer to disjoint

qubit sets, namely those in (X,X′) and in (Z,Z′), respectively, and are therefore inde-

pendent. Furthermore, according to the selective individual attack model with attack

rate q, t is a binomial random variable with parameters (n, qqX). Similarly, the number

of measured errors on Z′, kQZ, is a binomial random variable with parameters (k, qqZ).

Therefore, we can rewrite equation (3.138) as

P [t > a]P [QZ ≤ Qtol] = (1− Fn,qqX(a))(Fk,qqZ(kQZ
tol)) (3.139)

= IqqX(a+ 1, n− a)I1−qqX(k(1−QZ
tol), kQ

Z
tol + 1),(3.140)

with Fn,qqX(·) denoting the cumulative distribution function of a binomial random variable

with parameters (n, qqX), and similarly for Fk,qqZ(·). The last step is then assured by

equation 6.6.4 in Ref. [131].

Eventually, condition (3.115), together with definition (3.116) and given that P [QZ ≤
Qtol] = 1− pabort, ensures that, for any q ∈ [0, 1], we get

`−H(S|V ) ≤ δsec

1− pabort
, ∀ a, `. (3.141)

Based on (3.115), we can therefore choose the optimal secret key length as

` = max

{
b : min

a
f(a, b) ≤ δsec

1− pabort

}
. (3.142)

In chapter 4, we are going to describe an application of this result and compare, in a

realistic scenario, the corresponding secret key rate with the one achievable with εsec-GS

secrecy.
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Capitolo 4

Experimental free-space Quantum

Key Distribution

Quantum key distribution may be considered the first successful example of quantum

information protocol that reached the everyday applications. Commercial devices com-

municating via optical cables are already operated worldwide; in particular, we mention

the Cerberis by ID Quantique,1 the Cygnus by SeQureNet,2 the Q-Box by MagiQ,3 and the

QLE by Quintessence Labs.4 However, the need for optical fibers infrastructures, which

entail both high costs and, as long as quantum repeaters are not available, a non-scalable

network topology,5 make the deployment of such schemes unpractical for most application

scenarios.

Hence, free space QKD is considered very attractive, as it would eliminate the need

for cable links between terminals. Its applications include terrestrial links [132], earth-to-

moving-terminal links (e.g., [133]), and the very relevant case of key exchange with orbiting

terminals, that is, satellite QKD. This extension of the QKD application has been fostered

for years, being included in the major Quantum Information road-maps [134, 135, 136],

and has been the subject of several feasibility studies [137, 126, 138, 139].

This chapter is devoted to the description of the results obtained in three different

QKD experiments over free-space links, performed by using a full-fledged system capable

of distilling secret keys in real-time. The architecture of the implemented software is

detailed in §4.1.

A first experiment implementing the B92 protocol over a 50 meters indoor free-space

link is then described in §4.2. The experiment led to the publication of [C2,C3] and proves

the feasibility of real-time key distillation with our prototype setup while considering the

selective individual attacker model.

A second experiment, based on the efficient BB84 protocol, is then detailed in §4.3.

The experiment investigates the effect of noise on the secret key rate computed with finite-

1http://www.idquantique.com
2http://www.sequrenet.com
3http://magiqtech.com
4http://quintessencelabs.com
5an end-to-end connection is in fact required for creating each shared secret key pair.
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key analysis and according to two different attack models, i.e., general quantum attacks

and selective individual attacks. The described results were published in [J1].

We finally detail a novel approach to QKD over free-space links, which leverage the

atmospheric turbulence as a resource for enabling key distillation even when the average

QBER is higher than the security threshold, that is, Q > 11%. In particular, a classical

probe is jointly used with the quantum channel for performing an adaptive real-time

selection of the transmitted packets corresponding to a sufficiently low QBER. It was

shown that a correlation between the probe signal intensity and the QBER exists and can

be successfully exploited for key generation. The work is to be submitted [P1].

Let us conclude this introduction by mentioning that a further experiment for investi-

gating the feasibility of inter-satellite experimental QKD has been partially prepared as

a part of this thesis, within a joint project with Thales-Alenia Space Italy funded by the

European Space Agency (Applications of optical-quantum links to GNSS, Specification,

ESA Statement of Work TEC-MMO/2010/47). Unfortunately, due to some technical pro-

blems, the experiment has not been performed yet and, therefore, was not included in this

manuscript. We refer the interested reader to the preliminary results presented in [140].

4.1 Software implementation

We start by describing the architecture of the developed software, for whose implemen-

tation a consistent part of this Ph.D. has been spent. The structure of the software has

been designed to be as modular as possible, so that modules implementing new algorithms

of protocols can be easily plugged in. Also, it can be used with any QKD protocol with

minor changes; as of now, the system is fully compatible with the BB84, eBB84 and B92

protocol.

The whole software has been developed in Matlab, as this work is mainly focused on

investigating the feasibility of experimental QKD schemes and on their analysis rather

than on raw, speed performance. As shown in figure 4.1, the software has three core

components: the FPGA software interface, the processing and the networking modules.

The modules are described in more detail in the following subsections.

The developed software can be used either in local or in network mode, being the

former suitable for off-line key distillation and the latter designed for real-time processing.

In general, raw and sifted keys are stored in indexed files as soon as they are successfully

sent or received, by Alice and Bob respectively. On the other hand, final keys are stored in

a SQL database, so that they are readily available to other applications. In principle, this

may open a security breach for real-world applications, as a näıve implementation of the

database may incur into attacks such as SQL injections; however, we are not delving into

these issues, since we believe that this solution is sound for the sake of our experimental

setup and is beyond the scope of this work.
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Figura 4.1: Software architecture.

4.1.1 FPGA software interface

The optical subsystem is controlled by two FPGAs, one at the transmitter and one at the

receiver. Details on the hardware setup can be found, for each described experiment, at

the beginning of the corresponding section.

We are providing a technical description of this module. Suffice it to say that, in

general, this module handles the communication with the FPGA, that is performed via

UDP over Ethernet. Configuration sequences and raw key packets are sent to Alice’s

FPGA, whereas Bob receives the output of the detectors, by means of the Matlab scripts

FPGA transmitter and FPGA receiver, respectively.

4.1.2 Processing module

The processing module consists of three main blocks, each devoted to a different phase of

the secret key agreement protocol, namely: channel estimation, information reconciliation

and privacy amplification.

The channel estimation module computes the transmission losses and, according to

the underlying QKD protocol, it selects a subset of sifted bits for estimating the QBER.

Furthermore, as for the security countermeasures described in section 4.2, it computes the

overall estimated attack probability.

For performing error correction, the user can choose between the Binary protocol [96],

the Winnow protocol (see §3.5.2) and the solution based on LDPC codes presented in

§3.5.3 and based on [106]. Binary and Winnow share the same iterative structure and

their implementation is then strictly modular. Two different set of functions have been
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developed, one for performing the actual error correction and the other for the protocol

analysis and optimization. As for the first set, the following functions are defined:

correctionWinnow perfoms the Winnow error correction on single blocks.

correctionBinary performs the binary error search on single blocks.

iterationBW performs a single iteration of either the Binary or the Winnow
protocol; it splits the sifted sequences into blocks, check the
parity of corresponding blocks at the transmitter and at the re-
ceiver, calls the error correction function (correctionWinnow
or correctionBinary) and finally permutes the corrected
sequences.

globalBW performs a complete series of iterations of either the Binary or
the Winnow protocol, by iteratively calling iterationBW.

On the other hand, the second set is made of the following functions:

analyzeIterationBW evaluates the performance of a single iteration for either Binary
or the Winnow protocol, according to the results presented in
§3.5.2

analyzeGlobalBW evaluates the performance of a complete series of iterations of
either the Binary or the Winnow protocol

optimizationBW chooses the optimal block size combination for leaking the mi-
nimum number of bits on the public channel while still fulfil-
ling a target output bit error rate Tout (see §3.5.2); it uses the
analytical results output to analyzeGlobalBW.

Please note that for every function, it is possible to specify whether bit deletion (see §3.6.1)

should be enabled or not. From a practical point of view, the computation of the optimal

block sizes for different values of the QBER, Q, and of the target output bit error rate,

Tout, is performed once; resulting optimization data is stored in a file, one for each Tout,

so that they are readily available for real-time key distillation.

The LDPC-based error correction procedure described in §3.5.3 is implemented by

means of the following functions:

chooseLdpcCode given the estimate of the QBER, it selects the LDPC co-
de with rate Ri closest to the optimal, among the available
ones (up to date, 4 different codes are available, with rates
{0.5, 0.6, 0.7, 0.8}; more details can be found in §3.5.3)

getLdpcPuncturing chooses the optimal puncturing positions according to the
protocol described in [119] in order to perform rate adaptation.

correctionLdpc performs the actual syndrome decoding for correcting errors in
the input block.

globalLdpc performs the whole rate adaptable LDPC protocol: splits the
sifted sequences into blocks, chooses the best available LDPC
code, computes the syndromes at Alice and performs syndrome
decoding at Bob.

Error verification is implemented by a simple function, which compares the hashes of

the reconciled keys according to the protocol described in §3.5.4.
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Then, the privacy amplification module consists of two main blocks. The first is

devoted to the choice of the final key length, which depends on the attacker model and

on the (eventual) finite-key analysis; the module takes as input the error and, eventually,

the loss estimates, together with the information reconciliation leakage and the required

security parameters. In particular, the following functions are implemented:

getAsymptoticKeyLength computes the length of the privacy amplified key
according to the asymptotic bound (see §3.4).

getPragmaticSecKeyLength computes the length of the privacy amplified key accor-
ding to (4.17) or to (4.21), depending on the considered
scenario.

getGeneralSecKeyLength computes the length of the privacy amplified key
according to (4.19).

The second module implements the actual privacy amplification algorithm and consists

of a single function, privacyAmplification, which takes as input the reconciled key

(eventually after bit deletion), the extractor type (see §2.3). Here, only one solution is

available, that is, 2-universal hashing by matrix multiplication; in particular, we use of

the class of Toeplitz matrices, which take advantage of a compact representation and of

an efficient implementation based on the Fast Fourier Transform (FFT) [37].

4.1.3 Networking module

The networking module is based on a protocol for handling the communication on the

classical channel which was jointly designed with the author of [141]. The protocol works

at the application layer, so that it can transparently use either TCP or UDP as transport

protocols; furthermore, no restrictions on the physical channel and data-link layer are

present, though, in the experiments we performed, we used either an ethernet or a wireless

802.11 connection.

The protocol has been designed according to two different state-transition models; its

structure, in fact, is intrinsically asymmetric, since the two communication parties, Alice

and Bob, perform different tasks during the key distillation procedure.

For the authentication of messages sent through the classical channel, three main

protocols are available, based on different familes of εauth-almost strongly universal hash

functions: Toeplitz matrices (as for privacy amplification), Reed-Solomon codes [142] and

Stinson’s construction [143]. We recall from [144] that a family of hash functions H :

X → Y is εauth-almost strongly universal hash functions if it is εauth-almost universal (see

definition 17), and if it further verifies the condition

|{h ∈ H : h(x) = y}| = εauth|H|, ∀ x ∈ X , ∀ y ∈ Y, (4.1)

thus bounding the number of functions that may generate a given tag.6 In particular,

the message is first hashed according to an εauth-strongly universal hash function and

6this is fundamental for authentication schemes, where the adversary should not gain information on
the authentication function, as he could otherwise forge message tags.
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the authentication tag is then XORed with a secret key of equal length. The security

ensured by these solutions can be tailored depending on the system security requirements,

and is captured by the parameter εauth. The hash functions used for authentication are

periodically renewed, in order to ensure that the information potentially leaked to the

adversary (see, e.g., [145]) is periodically wiped out. Details on these protocols and on

their practical implementation are provided in [141].

Before moving to a more detailed description of the networking module, let us specify

that up to date the protocol is fully compatible only with the B92 QKD scheme. Minor

changes in the sifting procedure, however, would make it usable with other protocols.

Networking packets

The messages sent over the classical channel for performing the key distillation are encoded

into packets with a common header structure, shown in figure 4.2; the payload is then

formatted differently depending on the specific packet type. The content of each field of

the header is described in the following.

seq num 16-bit sequence number, it is required for synchronizing the transmit-

ter and the receiver and to validate transition events (a transition

is triggered only if a packet with the expected sequence number is

received).

type Identifies the packet type. Currently allowed types and corresponding

IDs are listed in table 4.1. The more Fragmentation flag, specifies if the

packet refers to a single message which was split in multiple packets. It

is set to 1 if the packet with subsequent sequence number carries the

continuation of the same message, to 0 otherwise (single message packet

or last packet of a split message).

auth Flag which specifies if the current packet contains the authenticating

tag, which is appended to the message. exp hash Flag for signalling

that the sender’s hash function has expired.

unused Dummy field used to make the header length a multiple of 8 bits.

l b l Last block length: specifies the number of bits in the last byte of the

packet.

The packet type defines the content of each packet and is associated with a state

transition, as described in the next subsection.
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Figura 4.2: Packet header.

START Packet for signalling the protocol start, it does not include any payload.

It may be sent by Alice and Bob.

SIFT Packet containing the sifting information, sent by Bob to Alice. The

following cases are distinguished:

1. if an unprocessed sifted key is available, the packet contains an

authenticated message with the information required for starting

the processing.

2. if no sifted key is available but a key was generated in the previous

iteration, the packet contains the header and the authentication

tag for the previous round.

3. if no sifted key is available and no key was generated in the previous

round, the packet is not authenticated and it contains just the

header.

In case 1 and 2, the authentication tag is calculated for the concatenation

of all the packets (of any type) that Bob sent from the last authenticated

SIFT message, including the current one, if a key was generated in the

previous round, otherwise just for the current SIFT packet.

PROCESS Packet containing data needed to perform the key processing, that is,

parameters and data for information reconciliation and privacy ampli-

fication. The content of the packet depends on the specific protocol

chosen for performing the two key distillation steps. The last PROCESS

packet sent by Alice during a key generation round includes a tag that

authenticates all the messages that were sent starting from the reception

of the authenticated SIFT packet.

ABORT Packet resetting the protocol if some error occurred. Every partial key

material which was not properly validated before receiving this packet

is wiped out.

For each system, a time-out for the reception of packets is fixed, so that if no packet

is received within the allowed time window, the protocol is reset to the STARTING state.
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type ID

START 0
NEWHASH 1
SIFT 2
PROCESS 3
ABORT 7

Tabella 4.1: Packet types.

State transition models

The state transition diagrams for Alice and Bob are shown in figure 4.3a and 4.3b, respec-

tively. States are represented by blocks and each transition is labelled with the triggering

event or packet type, followed by the triggered packet type which is subsequently sent.

In general, in fact, a state transition is triggered either by a packet reception or by a

time-out event. If the received packet sequence number is correct and if its type is admitted

by the current state, a transition towards the next step is performed. Otherwise, and in

the additional case of a time-out event, an ABORT message is sent and system is reset to

the STARTING state.

Let us now describe the system states more in details. For each state, we first provide

a brief description and then separately detail the actions taken by Alice and Bob.

STARTING

Start up system state. No active or valid connection to the communication party is present.

• Alice. Periodically send a START packet to Bob. If no valid hash function is set up

at Alice or if it has expired, the exp hash flag is set to 1. Upon reception of Bob’s

START packet, a transition to the LOADING state is triggered, unless an expired hash

function has been signalled by one of the two sides. In that case, the transition is to

the HASH RENEWAL state.

• Bob. Upon reception of Alice’s START packet, reply with a further START packet; if

a valid hash function is not available, the exp hash flag is set to 1. Then, switch to

the SIFTING state or, if an expired hash function has been signalled by one of the

two sides, to the HASH RENEWAL state.

HASH RENEWAL

State triggered when one of the communication parties does have a valid hash function for

authentication, and has successfully signalled the event with a START, PROCESS, or SIFT

packet. While in this state, Alice chooses the keys to be used for generating the hash

function and transmits their IDs to Bob.

• Alice. Retrieve the seed for defining a new hash function from the key database

and generate it. Then, send a NEWHASH packet containing the addresses (IDs) of

the retrieved keys; the packet is authenticated with the new hash function. The
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Figura 4.3: State transition diagrams.
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new hash function is correctly validated if Bob replies with a NEWHASH packet with

valid authentication; in that case, a transition to the LOADING state is triggered.

Otherwise an ABORT packet is sent and the whole system is reset to the STARTING

state.

• Bob. Wait for a NEWHASH packet from Alice. Upon reception of a valid packet, fetch

from the key database the keys identified by the enclosed IDs and generate the new

hash function. Then, check that the packet has been correctly authenticated by

using the new hash function. If this is the case, send an empty validated NEWHASH

packet to Alice and then trigger a transition to the SIFTING state, otherwise send

an ABORT packet and reset to the STARTING state.

SIFTING

State triggered by Bob when a valid START packet is received. This state is available only

for Bob.

• Bob. The following cases are distinguished:

1. if at least one unprocessed sifted key is available, select it and send to Alice an

authenticated SIFT packet containing: the sifted key ID, the positions of the

sifted bits in the raw key, and the bits to be used for error estimation. Then,

trigger a transition to the PROCESSING state.

2. if no sifted key is available, send an empty SIFT packet to Alice, eventually

including the authentication tag for the previous key distillation round if a key

was successfully generated. No state transition occurs (wait for available sifted

keys).

LOADING

State triggered by Alice when a valid SIFT packet is received. This state is available only

for Alice.

• Alice. The following cases are distinguished

1. Authentication and sifting - Upon reception of an authenticated SIFT packet

with non-empty payload, check authentication tag. If it is not valid, send an

ABORT packet and trigger a transition to the STARTING state. If it is valid, store

the key generated in the previous round into the key database and perform the

following steps

(a) load the raw key with the index specified in Bob’s SIFT packet.

(b) perform sifting and channel estimation.

(c) send the first PROCESS packet to Bob containing information reconciliation

protocol parameters, redundancy bits, and privacy amplification parame-

ters (type, seed). In this is the only PROCESS packet that is going to be sent
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during the current round, an authentication tag of the concatenation of the

packet together with the distilled key is embedded, and no state transition

occurs. Otherwise, if an iterative protocol for error correction is used, a

transition to the PROCESSING state is triggered.

2. Authentication only - Upon reception of an authenticated SIFT packet with

no payload, check the authentication tag: if valid, store the key distilled in the

previous round in the key database and stay in the LOADING state; if not, send

an ABORT packet and trigger a transition to the STARTING state.

3. Empty SIFT packet - Upon reception of an empty, unauthenticated SIFT

packet, do nothing.

PROCESSING

State for classical processing of the sifted keys. Please note that Alice reaches this state

only if an iterative protocol for error correction is used, as specified in the description of

the LOADING state.

• Alice. Send and receive PROCESS packets, according to the information reconciliation

protocol currently in use. In the last PROCESS packet, besides the data for error

correction, include the authentication tag for the concatenation of all the PROCESS

packets sent by Alice and of the final key. Then trigger a transition to the LOADING

state. If an error occurs, send an ABORT packet and switch to the STARTING state.

• Bob. Send and receive PROCESS packets, according to the information reconciliation

protocol currently in use. Upon reception of the last PROCESS packet, generate the

final key and check the authenticity of all the received PROCESS packets. If the

authentication tag is valid, store the final key in the key database and trigger a

transition to the SIFTING state; otherwise, send an ABORT packet and switch to the

STARTING state.

Comments

Let us finally make some concluding remarks on the networking module.

First, the described network protocol ensures that the messages that led to the ge-

neration of a key, and were confirmed by an authenticated reply, are genuine and not

tampered with by third parties. In fact, all the information that leads to the generation

of a key is authenticated by an unconditionally secure authentication scheme, as required

by any QKD scheme. Of course, denial of service (DoS) attacks are trivially deployable,

by, e.g., flooding either Alice or Bob with ABORT packets, but it should recalled that in

general, in QKD systems, the attacker can always and easily disrupt the key distribution

by simply altering the quantum channel statistics (e.g., by performing an intercept-and-

resend attack) or by making the channel itself unusable (e.g., by preventing a line-of-sight

communication in free-space applications). This kind of attack, however, is inconclusive

for the attacker in most application scenarios, as no key is produced and used for further

security mechanisms he may want to attack.
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Second, the correctness of the final key is ensured by the fact that, in her last PROCESS

packet, Alice authenticates also the privacy amplified key. In particular, if an εauth-almost

strongly universal hash function is used for authentication, then εcor-correctness is ensured

with εcor = εauth. On the other hand, XORing the tag with a secret key ensures that

no information is leaked to the adversary on the final key. Please note, however, that

implementing a stand-alone error verification step would be straightforward.

4.2 Experimental B92 over 50 meters free-space link

In this section we report the setup and the results obtained with an experimental QKD

system based on the B92 protocol (see §3.4), as described in [C2] and [C3]. The system is

designed to provide protection against selective individual attacks, such as intercept-and-

resend, unambiguous state discrimination and photon number splitting.

4.2.1 Transmission setup and protocol

The optical setup for our prototype is shown in fig. 4.4. The transmitter (Alice) uses two

infra-red (850 nm) attenuated diode lasers to send the bits 0 and 1, encoded in the vertical

| 〉 and in the +45◦ linear | 〉 polarization of photons, respectively, that is, according to

the preparation basis P. A 808 nm laser beam is also used along for synchronization. The

receiver (Bob) uses a dichroic mirror (DM) to separate the information qubits from the

synchronization signal: the latter is reflected and detected by an avalanche photodiode,

whereas the qubits, trasmitted by the DM, impinge on a 50/50 beam splitter (BS). On

either output of the BS, a polarizer and a single photon avalanche photodiode (SPAD)

detect the −45◦ linear 〈 | or horizontal 〈 | polarization photons, respectively, that is,

measurements are performed in the M basis. Each click of either SPAD corresponds to

the reception of a sifted 0 or 1, respectively.

Figura 4.4: Schematic representation of our optical setup

The transmitted data structure is shown in fig. 4.5. A raw key of 288 kbit is divided

into 50 packets of 5760 bits each, which are in turn divided into 12 frames for the ease of

synchronization. In fact, each frame consists of 11 header slots and 240 payload slots, each

with a duration of 800 ns. The header consists of the pattern ‘100000xxxx1’, where ‘xxxx’

is the 4-bit frame number, encoded one bit per slot in a pulse-duration modulation of the
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Figura 4.5: Data frame structure

synchronization beam (a 400 ns or 200 ns pulse encodes the bit 1 or 0, respectively). As

regards the payload slots, the first 200 ns are used to send the synchronization beam, then,

after the synchro-laser, Alice waits 200 ns and then sends two bits separated by 200 ns.

The resulting raw key rate is therefore upper bounded as Rraw ≤ 2.39 Mbit/s.

The measured sifted key rate Rsift allows to estimate the total loss along the source-

channel-detector chain, α = Rsift/Rraw. This includes also the fraction of pulses that carry

no photons, due to the Poissonian statistics of the faint source, and the B92 protocol

efficiency ηB92 = 1/4.

4.2.2 Attack model

We consider selective individual attacks, where Eve measures each photon independently

with probability 0 < q < 1, using either basis, X or Z, randomly chosen. In the Intercept-

and-Resend (IR) attack [146] (see §3.4.1 for a description of the attack as applied to the

BB84 protocol), each measured bit is resent with the same encoding as used by Alice,

thus increasing the error rate at Bob. In particular, observe that by considering Alice and

Bob’s sifted keys as input and output, respectively, the quantum channel can be modeled

as a binary symmetric channel (BSC) with some error probability Q. When a single

qubit is observed by Eve according to an IR attack, the error probability at Bob for the

corresponding bit is set to 1/4 due to the random and independent choice of the basis

used by Alice and Eve. More precisely, it was shown in [84] that 1/4 is a lower bound on

the error probability induced by the IR attack, for any basis chosen by the eavesdropper

to measure the incoming qubits and resend them to Bob. Hence, an individual IR attack

with probability q increases the quantum bit error rate (QBER) value to

Q′ = (1− q)Q+ q
1

4
= Q+ q

(
1

4
−Q

)
, (4.2)

whereas it is conservatively assumed to leave channel losses unaffected.

On the other hand, in the unambiguous state discrimination (USD) attack [85] only

the 0’s that are measured with the Z basis and the 1’s that are measured with the X basis
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are retransmitted to Bob, thereby introducing further losses at the legitimate receiver but

no additional errors. When a qubit is observed by Eve and resent according to the USD

scheme, the random choice of the basis introduces a further loss factor of 1/4. Hence,

individual USD attacks with probability q increase channel losses to the value

α′ = (1− q)α+ q
α

4
= α− 3

4
qα. (4.3)

We also consider the photon number splitting (PNS) attack [67]. In this case, qubits

carried by two or more photons might be observed by Eve without introducing any effect at

Bob’s receiver. However, since this attack can only be successfully carried out on multiple

photon qubits, the probability that one bit of the sifted key is observed by the adversary

is upper bounded by

qPNS ≤ P [nph > 1|nph > 0] =
1− e−µ(1 + µ)

1− e−µ
. (4.4)

where nph is the number of photons in a generic bit at the transmitter output, that is

Poisson distributed with mean µ.

Eventually, while considering the above attacks in the design of privacy amplification,

we upper bound the amount of information available the eavesdropper with what she

would get by correctly detecting all the observed qubits. As for the PNS attack, we

observe that our estimate is more conservative as compared with the one obtainable by

using decoy states, which allow to precisely estimate the number of single photon pulses

(see [50, Section IV.B]). In particular, in the context of selective individual attacks, our

technique yields a lower secret key rate, though relying on a simplified hardware setup.

4.2.3 Channel estimation

In each round of the key-agreement protocol, Bob sends the positions of the received

qubits over the public channel and discloses the value of a fraction of them, in order to

allow the transmitter to estimate the channel losses and the QBER. The objective of

channel estimation is twofold: it predicts losses and the error rate introduced by the noisy

quantum channel in order to properly perform the key reconciliation stage. Moreover, it

is used to reveal the presence of an eavesdropper,that is, to determine the probability q

that a photon has been observed by Eve, according to the attack schemes described in

Section 4.2.2. A misdetection probability lower than Pmiss is assured, where the misde-

tection event represents the case in which Eve is observing on average more photons than

the number predicted by the channel estimation protocol.

The QBER is estimated at each round by randomly choosing Nqber bits from the sifted

key to be disclosed over the public channel. Then, the maximum likelihood (ML) estimate

of Q is simply defined as

QML =
1

Nqber

Nqber∑
i=1

ei, (4.5)

106



CAPITOLO 4. EXPERIMENTAL FREE-SPACE QUANTUM KEY DISTRIBUTION

where ei = 1 if there is an error in the corresponding bit of the publicly disclosed portion

of the sifted key, and ei = 0 otherwise. Then, the estimator QML is a random variable

that exhibits a different statistical description conditioned on the fact that an adversary

is implementing the IR attack or not. More in details, the mean and standard deviation

of QML are given by

mML = Q , σML =

√
Q(1−Q)

Nqber
. (4.6)

when the photons sent by Alice are not measured by any eavesdropper, whereas

m′ML = Q′ , σ′ML =

√
Q′(1−Q′)
Nqber

. (4.7)

when the system is subject to an IR attack. In order to be able to reveal the presence of

an eavesdropper that is carrying IR attacks with a given probability qIR, the legitimate

parties guarantee that the number of qubits used for QBER estimation is high enough to

discriminate the case in which the BSC error probability is Q or Q′. In other words, it

must hold

mML + βσML < m′ML − βσ′ML, (4.8)

with β denoting an appropriate multiplicative factor that determines the confidence inter-

val of the QBER estimate. For the sake of tractability, we approximate the random varia-

ble QML with a Gaussian random variable with same mean and same standard deviation.

Then, it is possible to guarantee a miss detection probability up to, e.g., Pmiss = 5 · 10−3

by imposing

β = Q−1(Pmiss) ≈ 2.6, (4.9)

with Q−1(·) denoting the inverse of the Q-function, Q(x) = 1√
2π

∫∞
x exp

(
−u2

2

)
du. Then,

on substituting (4.2), (4.6) and (4.7) in (4.8), after simple algebraic manipulations, it is

possible to determine the maximal undetectable IR attack probability as a function of the

parameter Nqber, namely

qIR =

(
1
4 −Q

)
·
(

2β
√

Q(1−Q)
Nqber

+ β2

Nqber

)
+ β2

Nqber

(
2Q2 − Q

2

)
(

1
4 −Q

)2 − β2

Nqber

(
Q
2 −Q2 − 1

16

) . (4.10)

On assuming that all the errors introduced by the quantum channel are corrected during

the key reconciliation phase, the QBER estimate can also be refined at Bob by counting the

number of bits that are flipped after reconciliation. In this way, it is possible to decrease

the maximal undetectable IR attack probability to the value obtained by substituting

Nqber with Nsift in (4.10).

Analogously, channel losses are estimated by counting all Bob’s sifted bits. Similarly

to the case for the QBER estimation, the ML estimator for channel losses is obtained as

αML =
1

Nraw

Nraw∑
i=1

ai, (4.11)
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where ai = 1 for the indexes corresponding to bits in the raw key that made Bob’s detectors

click, and ai = 0 otherwise. Again, the channel losses estimator αML is a random variable

with mean and standard deviation given by

mML = α , σML =

√
α(1− α)

Nraw
, (4.12)

or

m′ML = α′ , σ′ML =

√
α′(1− α′)
Nraw

, (4.13)

depending on the presence of an eavesdropper carrying a USD attack. By following closely

similar steps to those used to determine qIR in (4.10), the maximal undetectable USD

attack probability can be found as

qUSD =

3
2β

(√
α(1−α)
Nraw

−
(

1
2 − α

) β
Nraw

)
9
16α

(
1 + β2

Nraw

) . (4.14)

4.2.4 Classical processing

Errors introduced on the sifted key by the quantum channel (polarization degradation due

to the atmosphere, noise in the devices, etc) are corrected by implementing the Winnow

scheme (see §3.5.2). The probability of a reconciliation failure is kept below a fixed value

Pfail, by guaranteeing a residual BER on the reconciled key smaller than Pfail/Nrec, where

Nrec = Nsift − Nqber is the number of sifted . Given these constraints, the number of

iterations of the protocol and the block sizes for parity checking are chosen to minimize

the number of bits Nrev revealed over the public channel, as detailed in §3.5.2.

The reconciled keys at Alice and Bob are compressed following a two steps procedure

aiming at reducing the information leakage to Eve. First, Nrev out of the Nrec = Nsift −
Nqber bits of the reconciled key are deleted according to the procedure of bit deletion

described in §3.6.1 and in [97, Section 3], in order to eliminate the information revealed

over the public channel to perform key reconciliation. In this way, the information leaked

to the eavesdropper during the key reconciliation stage is reduced exactly to zero (see

§3.6.1 for a discussion).

After bit deletion, privacy amplification is obtained by hashing with a full column

rank, random, binary Toeplitz matrix [124], renewed at each round. The number of rows

in the Toeplitz matrix, that is, the final secret key length, is a design parameter for this

phase of the key processing, which depends on the amount of information on the key that

Eve is estimated to have gathered during the previous stages of the protocol.

For instance, the system described in [147] complies with two different methods in

estimating the information gathered by Eve with IR attacks. One method is due to

Bennett [84] and it links the number of errors revealed after key reconciliation with the

information gained by the eavesdropper. More precisely, on denoting with e the total

number of errors revealed on the sifted key, the information leaked to the eavesdropper is
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approximated by the value
4e√

2
+ β

√
(4 +

√
2)e, (4.15)

where the confidence margin was chosen as β = 5. A second estimate, provided in [65]

defines an upper bound on Eve’s Renyi entropy in the limit of long transmissions, that

is when Nsift → ∞. Then, the information leakage due to multiphoton pulses is handled

separately, and added to the previous quantity.

On the other hand, in our experiment, according to the three attack models and the

channel estimation scheme described in the previous sections, each bit in the reconciled

key is assumed to have been observed by the eavesdropper with probability not larger than

qtot = qIR +qUSD +qPNS, independently of all the others. Then Eve’s Rényi information on

the reconciled key is a binomially distributed random variable t ∼ B(Nrec−Nrev, qtot), and

we can use the results in [21] to determine a probabilistic upper bound on the information

Ileak leaked to Eve after privacy amplification. In fact, with probability at least 1−Pmiss,

it is

Ileak ≤ Itar(Nsec, b) = NsecP [t > b] +
1

2(Nrec−Nrev−Nsec−b) ln 2
, (4.16)

for any value of b, and with Nsec denoting the length of the secure key at the output of

the privacy amplification stage. Under the constraint that Ileak < θsec, the secure key rate

is thus maximized by choosing

Nsec = max

{
a : min

b
Itar(a, b) ≤ θsec

}
. (4.17)

This result has a similar structure as compared with the one stated in theorem 7.

Nevertheless, a few comments are to be made. First, theorem 7 considers only IR attacks,

whereas here we are taking into account also USD and PNS attacks. Second, in theorem 7

an upper bound to the tolerable error rate on the eavesdropping basis is fixed, whereas here

we estimate the attack rate based on a Gaussian approximation of induced error rates and

losses, that is, we introduce a further assumption on their distribution. However, theorem

7 could be further generalized to the considered case, so that an upper bound on the

tolerable losses is set.

4.2.5 Authentication and transmission over the public channel

In our prototype, communication on the public discussion channel between Alice and Bob

is implemented with user datagram protocol (UDP) over IP, and by means of 802.11g

wireless transmissions. Therefore no security services are leveraged other than the uncon-

ditionally secure authentication we provide at the application layer.

The concatenation of all messages transmitted by a terminal in a protocol round is

hashed by means of a keyed function to a 100 bit tag, which is then XORed with a one time

pad (OTP). The hash function is chosen from the Stinson ε-almost strongly universal2

class [143], and is renewed every 25 rounds. The hashing key and the OTP altogether

require 250 secure bits per round, that are taken from the previously generated keys, thus

lowering the net key rate. More details on Stinson’s authentication can be found in [141].
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Transmission parameters
packet rate Rptk = 12.5 pkt/s
raw key rate Rraw = 72 kbit/s

Channel parameters
overall loss rate α = 6.4 · 10−2

quantum bit error rate ε = 2.1 · 10−2

sifted key rate Rsift = 4.6 kbit/s
undetected eavesdropper rate qtot < 0.41

Security parameters
secret key rate Rsk = 600 bit/s
prob. of failed reconciliation Pfail < 0.02
information leakage rate Rleak ≤ 0.2 kbit/s
prob. of higher leakage Pmiss < 5 · 10−3

Tabella 4.2: Performance measurements at the Palazzo della Ragione experiment.

4.2.6 Experimental results

Our prototype was publicly demonstrated on October 3-4, 2011 at Palazzo della Ragione

in Padua with indoor daylight conditions over a 50 m free-space link along the south

wall of the Great Hall. It was kept up and running for 5 hours on October 3rd, and

for 8 hours on October 4th. Along with the key agreement procedure the two terminals

carried out the secure exchange text messages and images provided by guests and visitors

over a wireless radio link. The distilled secure keys were used for OTP encryption and

decryption at the transmitted and receiver side, respectively. As for the communication of

this application, we employed the transport control protocol (TCP) over Internet protocol

(IP) and IEEE 802.11g wireless transmission.

The measured performance parameters for the QKD system in the setting are summa-

rized in Tab. 4.2. These results are derived while imposing θsec = 1 bit, i.e., by requiring

that the adversary knows only 1 bit per key (the average measured secret key length was of

approximately 2400 bits). However, according to the operational interpretation provided

in lemma 1 and in lemma 2, this value should be significantly lowered, so that θsec � 1.

4.3 Efficient BB84 in free-space with finite-key analysis

In this section we propose the results which were recently published in [J1]. More precisely,

we report the analysis and the experimental results obtained for a QKD system based

on the efficient BB84 protocol (see §3.4.2). Based on the results presented in [74], this

work is inspired by the need for proving the experimental feasibility of quantum key

distribution with finite-length keys and investigates the required number of qubits as a

function of the key size and of the ambient quantum bit error rate. The experiment, in

fact, is performed in different channel conditions, and assuming two distinct attack models:

individual attacks or general quantum attacks. The results indicate that viable conditions

for effective symmetric, and even one-time-pad, cryptography are achievable.
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4.3.1 Experimental setup

1-T
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Figura 4.6: Schematic of the experimental setup. The qubits are generated by
attenuating four differently polarized lasers. The FPGA board controls which laser should
be turned on in each qubit transmission. At the receiver side, by a beam splitter with
transitivity T , Bob perform the measurement in the X (with probability T ) or Z basis
(with probability 1−T ). NPBS, beam splitter; PBS, polarizing beam splitter; HWP, half
wave plate; Filters, neutral density filters, SPAD, single photon avalanche diode.

The optical setup of our prototype implementing the quantum communication is shown

in Fig. 4.6. The transmitter (Alice) uses four infrared (850nm) attenuated diode lasers

driven by a Field Programmable Gate Array (FPGA) to send the bits 0 and 1 encoded in

the different polarization bases of the photons. By properly configuring the FPGA, it is

possible to set the probabilities pX and pZ. The receiver (Bob) uses a variable beam splitter

(BS) with transmission T to send the received qubits to the measures in the two bases. The

probability pX is equal to the transmissivity T of the BS. On one BS output, a polarizing

beam splitter (PBS) and two single photon avalanche photodiodes (SPAD) measure the

photons in the X basis; on the other side a half-wave plate (HWP) is positioned before

the PBS to allow the measurement in the Z basis. The counts detected by the four SPAD

are stored on a second FPGA. A cable between the two FPGAs is also used along for

synchronization.

As for the transmitted qubits, we used the same data structure of [C3], that is, the

one shown in figure 4.5 and described in §4.2.1, with the only difference that a raw key is

now composed by N packets of 2880 bits each. It is worth noting that the experimental

setup of this protocol is very similar to the original BB84: the main difference lies in the

interpretation of received bits in the two different bases.

4.3.2 Classical post-processing

As described in chapter 3, after the quantum transmission and the sifting of the raw data,

four subsequent tasks take place: parameters estimation, information reconciliation, error

verification and privacy amplification.

The first task, parameters estimation, is required to measure the quantum bit error

rate (QBER) on the Z basis, QZ. In fact, we here assume that the quantum channel

is stable, i.e., that QBER on the X-basis, QX, is constant in time (note that, in general,
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QX 6= QZ) and does not need to be estimated at each protocol run. It should be noted that

this assumption does not affect the security of the scheme, as if QX increases (for instance

because an attacker is tampering with the channel), then the information reconciliation will

fail. The failure will be detected during the error verification phase, and the protocol will

abort. On the other hand, the empirical QBER in the Z basis is dynamically computed

at each protocol run according to equation (3.40), in order to check for the presence

of an eavesdropper. The protocol aborts if Q̂Z > QZ
tol, where QZ

tol is a given channel

error tolerance on the Z basis which has been determined a priori based on the expected

behavior of the quantum channel and the required level of security.7 The probability that

the protocol aborts is denoted by pabort.

After the parameter estimation phase, information reconciliation is performed. We re-

call that information reconciliation (according to the direct reconciliation approach, §3.5)

aims at correcting the discrepancies between X and X′ that the channel may have intro-

duced, thus allowing Bob to compute an estimate X̂ of X. As a practical solution, we have

chosen the Winnow scheme (see §3.5.2) which, by leveraging Hamming codes of different

lengths over multiple iterations, allows an adaptive and lowly interactive error correction

and represents a good trade-off between the high interactivity required by CASCADE and

the low flexibility of LDPC code with limited key length.8 We fix an upper bound Pfail

to the probability of a reconciliation failure and, under this constraint, we optimize the

parameters of the Winnow scheme in order to minimize the expected (average) classical

information leakage E[LEC]. First, given the average QBER on the X basis QX, a threshold

QX
max > QX is fixed so that the empirical QBER Q̂X in the sifted key is higher than QX

max

with probability less than Pfail/2. Then, the block sizes are chosen so that the output

BER is lower than Pfail/(2n) whenever Q̂X < QX
max and E[LEC] is minimized, as detailed

in [C3].

Subsequently, an error verification mechanism such as the one proposed in [74] and

described in §3.5.4 ensures that the protocol is εcor-correct, i.e., that P [X 6= X̂] < εcor, by

comparing hashes of (dlog2(Pfail/εcor)e) bits. Namely, Alice chooses the hash function g

randomly and uniformly from a class of universal2 hash functions [34] (the class of Toeplitz

matrices in our experimental setup) and computes her hash value gA = g(X). She then

sends gA and a compact representation of g to Bob, who computes gB = g(X̂). The

protocol aborts if the two hashes are different, i.e., if gA 6= gB.

Finally, during the so-called privacy amplification, X and X̂ are compressed by means

of a function which is, again, randomly and uniformly chosen from a class of universal2 hash

functions, in order to get the final secret keys S and Ŝ. The length ` of the final key and

the corresponding amount of compression depend on the required level of secrecy, on the

overall classical information leakage LEC + dlog2(Pfail/εcor)e, on the assumed attacker’s

model and on the estimate of the information leaked to the eavesdropper during the

transmission over the quantum channel.

7The Z-basis error tolerance, QZ
tol, is in fact optimized for maximizing the final secret key rate, as a

function of the expected channel behavior and of the required level of security, captured in the following
by the parameter εsec.

8see remark at the end of this section.
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Remarks on the choice of the Winnow protocol. As for the choice of the Winnow

scheme, let us make the following observations, which were partially introduced in §3.5. In the low

and moderate key length regime, as opposed to the asymptotic limit, the value of the QBER in a

single key exhibits random fluctuations around its average value, especially in realistic experimental

conditions, as in the scenario we are here considering. In this case, the error reconciliation protocol

must be designed with some margin on the maximum QBER it can correct, with respect to the

average QBER value (the choice of QX
max > QX in our scheme). However, forward error correction

schemes such as LDPC, BCH or Reed-Solomon always disclose the same number of bits over the

public channel, even for those keys in which the QBER is much lower than the design value. As an

approximation in [74] the reference value of r = 1.1 n h2(QX
max) bit is used, but it should be noted

that such value (10% over the asymptotic Shannon limit) is only achieved by LDPC codes with very

long keys (for instance n = 106, in [98]). On the contrary, interactive protocols such as Cascade

or Winnow have the advantage of intrinsically adjusting to the QBER of each single key, since,

for blocks that have no errors, only a single parity check bit is disclosed over the public channel,

and, therefore, they are particularly appropriate in the low QBER regime. Observe, also, that

Winnow, while yielding approximately the same performance as Cascade in terms of residual error

rate and number of disclosed bits (see §3.5.2), requires less rounds of interactive communication

between Alice and Bob, since it does not implement log2(L) rounds of a binary search to locate

the bit errors in length L blocks. That said, and considering that the classical channel used for the

post-processing is much faster with respect to the quantum one, the Winnow scheme is suitable

for the application scenario we consider.

4.3.3 Finite-length secret key rate

We here consider two possible attack models, that is, general and intercept-and-resend attacks.

Correspondingly, we use the security definitions 23 and 22.

According to definition 23, general secrecy requires that the final shared keys are secret with

respect to the most general quantum attacks, and it is based on the secrecy criterion provided in

[70] and recalled in (3.21). In particular, since we now consider a protocol which possibly aborts

with probability pabort, we should rewrite (3.21) as

1

2
‖ρSE − ρU ⊗ ρE‖1 ≤

εsec
1− pabort

. (4.18)

Then, if the bases X and Z are chosen as described above and assuming that Alice uses an ideal

single photon source, the authors of [74] show that an εsec-GS key can be extracted out of the

reconciled key, with length

` ≤ n(1− h̃2(QZ
tol + µ))− LEC − log2

2Pfail

ε2secεcor
(4.19)

where µ =
√

n+k
nk

k+1
k ln 2

εsec
, h2(x) = −x log2 x− (1−x) log2(1−x) is the binary Shannon entropy

function, h̃2(x) = h2(x) for 0 ≤ x ≤ 0.5 and h̃2(x) = 1 for x > 0.5.

On the other hand, pragmatic secrecy (definition 22) ensures that the final key is secret with

respect to intercept-and-resend (IR) attacks [146], i.e., a specific class of selective individual attacks,

which, however, represents the most realistic and feasible attack strategy based on the experimental

technology nowadays available: collective or more general attack models (see [51]), in fact, require

ancillary qubits and quantum memories in order to be deployed. Again, since the protocol may

abort with probability pabort, we can rewrite (3.17) as
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Figura 4.7: Experimental bits. Joint empirical distribution of sent and received bits,
as obtained in one experiment with the best channel conditions (corresponding to QX =
0.33% and QZ = 1.48%). The probabilities of sending and measuring in the X and Z basis
were pX = 0.51 and pZ = 0.49, respectively.

H(US)−H(S|V ) ≤ δsec
1− pabort

(4.20)

Now, the pragmatic security of the distilled key can be assessed through theorem 7, by substituting

qX = 1, qZ = 1/2 and by setting nEC = n − LEC − dlog2(Pfail/εcor)e. Also, based on (3.116), we

can choose the optimal secret key length as

` = max
{
b : min

a
f(a, b) ≤ δsec

}
(4.21)

Please note that, in order to allow a comparison with the tight bound (4.19), we have derived the

secure key length in the hypothesis that Alice uses a single photon source.

Finally, given the probability εrob that the protocol aborts even if the eavesdropper is inactive

[74], we can compute the final raw to secret key rate for both general and pragmatic secrecy as

r(`, n, k, εrob) = (1− εrob)
`

M(n, k)
(4.22)

where M(n, k) = n+k+ 2
√
nk is the expected number of qubits that have to be sent until n sifted

key bits and k parameter estimation bits are collected.

4.3.4 Experimental results

We conducted experiments with different noisy channels yielding different values for the average

QBERs QX and QZ, each of them realized with different encoding probabilities (pZ, pX). We varied

the noise value in the channel by coupling to the receiver an external unpolarized source of suitable

intensity, that increased the background signal. It is worth noting that by this operation we are

modelling the following depolarizing channel

C : ρ→ (1− P )ρ+
P

4

3∑
j=0

σjρσj , (4.23)
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Figura 4.8: Experimental key rates. Experimental secret key rates r vs. sifted key
length n for different probabilities of encoding and measuring on the two bases pZ, pX =
1 − pZ and for different channel conditions (values of the average QBERs QX, QZ): (a)
QX = 0.3 %, QZ = 1.5 %; (b) QX = 2.4 %, QZ = 3.9 %; (c) QX = 4.9 %, QZ = 6.0 %; (d)
QX = 8.3 %, QZ = 8.1 %. For each case we report the key rates obtained for εsec-GS (solid
lines) and δsec-PS (dashed lines) keys with εsec = 10−10, δsec = 2

ln 2ε
2
sec, Pfail = 10−3 and a

correctness parameter εcor = 10−10. The standard deviation of experimental rates are on
the order of 10−3 for both εsec-GS and δsec-PS keys. Error bars are not reported in the
plot for the sake of clarity. For comparison, we also report the asymptotic key rate in the
infinite length limit, and the εsec-GS bound achievable by optimizing the probability pZ
and the thresholds QZ

tol, Q
X
max for each value of n.
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where σj are the Pauli matrices, being σ0 the identity and P the parameter representing the

probability that any detected photon is coming from the background.

In figure 4.7 we show the joint empirical distribution of the transmitted and received bits on

the X and Z bases obtained in one run with the best environmental conditions (i.e., with additional

background), for the case pZ = 49% and pX = 51%. As expected, in this case the QBER is very low:

the main source of errors are imperfections in the waveplates used in the measurement, yielding

QX = 0.33% and QZ = 1.48% on average.

In Figure 4.8 we show the measured experimental key rates for each data set and for both

general and pragmatic secrecy. First of all, let us recall that, in order to consistently compare the

secrecy rates obtained with general and pragmatic secrecy, the security parameters εsec and δsec

have to be chosen so that δsec = 2
ln 2ε

2
sec, as shown in proposition 8. As a performance reference,

we plot the asymptotic theoretical bound r = 1− h2(QX)− h2(QZ), holding in the limit of infinite

length keys (labelled as “asymptotic” in Fig. 4.8) and the optimal theoretical bound for εsec-GS

keys (labelled as “numerically optimized pZ” in Fig. 4.8). The experimental key rates are obtained

by the following procedure: for each data set the n-bit sifted key X and the k-bit parameter

estimation string Z (X′ and Z′) at Alice’s (Bob’s) side are obtained by the experiment. The error

correction is performed on X and X′ by using the Winnow scheme; in particular, the Winnow

parameters were chosen so that a maximum of 6 subsequent iterations is allowed with block sizes

up to 256 bits. We then performed privacy amplification by compressing the error-free keys by

multiplication with a random binary Toeplitz matrix. The amount of compression depends on `, the

secret key length, given by Eq. (4.19) and (4.21) for general and pragmatic security, respectively.

On the other hand, the optimal bound for εsec-GS keys is numerically derived by maximizing the

secret key rate r (Eq. (4.22), with ` given by Eq. (4.19)) over pZ , QZ
tol and QX

max for each n.

In the numerical procedure used to find the optimal bound for εsec-GS keys, since an analytical

expression is not available for LEC or εrob, LEC is approximated as LEC = 1.1 · n · h2(QX) and,

similarly, εrob is replaced by the following upper bound (see equation A5 of ref. [122] for details):

εrob ≤ exp

[
−k(QZ

tol −QZ)2

1− 2QZ
ln

(
1−QZ

QZ

)]
. (4.24)

Experimental values obtained for εrob show that such bound is rather loose. On the other hand, as

QX increases, the approximate expression for LEC is lower than the average value for the Winnow

scheme. As a consequence, the experimental secret key rates may slightly exceed the optimal

bound in some low QBER cases, as we can see in fig. 4.8a.

As a further comment, we note that, for an asymmetric channel with QX < QZ, using the Z
basis for key encoding and X for eavesdropper detection provides a higher optimal secret key rate

(4.22). However, when the two error rates QX and QZ have similar values, a minor gain in r is

obtained. For instance, when n = 106, εcor = εsec = 10−10, with QZ = 4% and QX = 2%, we can

achieve r = 0.31; by exchanging the role of Z and X, r = 0.33 can be achieved.

In situations such as satellite quantum communications, the amount of sifted bits is expected

to fluctuate as it depends on the variable channel conditions during the passage. From the ex-

perimental point of view it is easier to fix the values of pZ and pX and accumulate data as long

as possible. The value of pX will constrain the ratio between k and n according to the relation

pX = 1

1+
√
k/n

. In the performed experiments, we thus fixed the value of pZ and pX = 1− pZ. For

each value of the background noise we run different acquisitions with pZ belonging to the discrete

set {9%, 16%, 28%, 40%, 49%}.
Experimental results for the εsec-GS key rates are plotted with thin solid lines, while δsec-PS

key rates are plotted with thin dashed lines; different colors correspond to different (pZ, pX). We

used Pfail = 10−3, εcor = 10−10 and εsec = 10−10. As expected, pragmatic secrecy always allows
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Figura 4.9: Required bits for a secret key. Minimum number of received bits M(n, k)
needed to obtain a εsec-GS key of a given length ` (as labelled on each curve) versus the
quantum BER QX. Different colors divide the regions with different secret key lengths.
Crosses represent our experimental results, the colored regions and the solid lines that
delimit them are derived from the numerically optimized bound, assuming QZ = QX.

the achievement of higher secret key rates with respect to general secrecy, which pays the price for

the higher level of secrecy it provides. The gain becomes more evident when the channel becomes

noisier and the QBER increases. We also observe that with QX = 4.9% εsec-GS secure keys are

obtained for pZ = 16%, pZ = 28%, pZ = 40% and pZ = 49% and not for pZ = 9%, whereas, when

QX = 8.3%, only keys secure against pragmatic secrecy can be extracted with the parameters we

used.

We point out that the bounds derived for the general and pragmatic secrecy do take into

account statistical fluctuations: if the measured Q̂Z is greater than QZ
tol the protocol aborts, while

for Q̂Z < QZ
tol the protocol gives a secure key with security parameter εsec. As an example, given

QX = 4.9%, QZ = 6.0%, n = 100000 and pZ = 9%, the parameter µ which takes into account these

fluctuations for general secrecy (see Eq. (4.19)), is approximately equal to 0.15, a value which, for

an experimentally realistic number of bits disclosed during the information reconciliation procedure,

and even without the contribution of QZ
tol, yields the impossibility of producing a secret key.

Moreover, we notice that higher values of pZ (∼ 50%) better suit lower values of n for both

general and pragmatic secrecy in all considered cases: for instance, when QX = 0.3% in the general

secrecy case, pZ = 49% is optimal for n < 3 · 103; on the other hand, as n increases, it is possible

to decrease pZ and when n ' 105 the highest rate is obtained with pZ = 16%. This feature can

be understood in the following way: for a short sifted key X, an almost equally long string Z

(k ∼ n) is needed to reliably detect eavesdropping; when n grows, less bits of Z (in percentage)

are necessary. In fact, in the large n limit, it is possible to choose k so that k/n vanishes as n goes

117



CAPITOLO 4. EXPERIMENTAL FREE-SPACE QUANTUM KEY DISTRIBUTION

to infinity and the secret key rate approaches the asymptotic bound, r = 1− h2(QX)− h2(QZ).

It is worth noting that, in the asymptotic limit, a biased choice of the bases gives a higher

secure key rate with respect to the BB84 protocol (§3.4.1) whenever pX >
√

1/2. In fact, in

the infinite limit, the fraction of secure over sifted bits is given by 1 − 2H(Q) in both cases (for

simplicity we here assume Q̂X = Q̂Z = Q); however, a biased choice of the bases gives a number of

sifted bits that is approximately a fraction p2X > 1/2 of the sent bits (also in the finite size regime),

while for the BB84 protocol the sifted bits are 1/2 of the sent bits. In particular, by using a large

pX, namely pX ∼ 1, in the infinite key limit we approach a double secret key rate with respect to

BB84. In Fig. 4.8 the asymptotic bound of the secure key rate r, defined as the number of secure

bits over number of sent bits, is twice the corresponding asymptotic bound of the BB84 protocol.

With the obtained data we also estimated the minimum number of received qubits M that are

needed in order to obtain a key of given length `. In figure 4.9 we show this quantity as a function of

the QBER (in this case we assumed that QX = QZ). Solid lines represent the theoretical minimum

M necessary to obtain a general secret key for different lengths `. With markers of different colors

we indicate the experimental received qubits for the different values of `. Clearly, as the QBER

grows, it is necessary to increase the number of exchanged qubits to obtain a given key length `.

On the other hand, when the channel is almost noiseless, a secret key of reasonable length can be

extracted by using a relatively small number of qubits: for instance, more than 1000 secure key

bits can be obtained by exchanging less than 20000 photons (see Fig. 4.9).

4.3.5 Discussion

In conclusion, we have experimentally demonstrated the feasibility of key distillation according to

the finite-key analysis proposed in [74] and compared it with a less stringent definition of security,

called pragmatic, that protects the protocol against intercept and resend attacks. We compared

the two analyses for different amounts of depolarizing noise added to the quantum channel.

With pragmatic security, a significantly secret key rate with finite keys is demonstrated, even

in conditions near the theoretical QX, QZ bound of 11%. Its drawback is the insecurity against

collective attacks, which however are not presently available. We stress that, when the channel is

very noisy (QX = 8.3%) no key that is secure against the most general quantum attack could be

extracted up to 2 ·105 sifted bits; however, by considering only intercept and resend attacks, in this

case a secrect key rate up to 7.5% was obtained. When QX, QZ > 11% it is not possible to obtain a

secure key even in the asymptotic large n limit. This shows that, for highly noisy channels, the use

of pragmatic secrecy is a viable solution to obtain some secret bits for a experimentally realistic

number of exchanged photons. We believe that this work can have important applications for

free-space quantum communication and for all QKD scenarios in which the number of exchanged

qubits is limited by physical constraints, such as in the inter-satellites link scenario.

4.4 Long distance free-space quantum key distribution using

turbulence as a resource

The transmission of quantum states to a receiver located far away on the Earth or on some

mobile, or even orbiting, station is the frontier of Quantum Communications, aiming to extend

the networking currently available through fiber to a planetary scale and beyond.

The protocols devised for such purposes rely on a clean detection of quantum bits - or qubits -

that are most conveniently encoded in single light-quanta. In free-space communications, a number

of background photons are always present, together with detector non-idealities such as dark counts

and dead-time. These effects are detrimental to the quantum protocol accomplishment. In the case
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of quantum key distribution (QKD), a threshold on the overall quantum bit error rate (QBER),

due to experimental imperfections and noise, limits the possibility of exchanging a secure key, in

that, for a higher QBER, the unconditional secrecy of the key cannot be guaranteed.

Current demonstrations of QKD have avoided the condition of normal background by operating

in dark nights or by using a very strict filtering that imposes a low key rate already on urban scale

(see, e.g., [148, 149, 132, 59, 150, 151]). However, while aiming at QKD over long links in realistic

conditions including daylight, a breakthrough in the protocol is needed for enabling key distillation

even when the QBER is above the secure threshold. Due to unavoidable background photons, the

QBER is below the threshold only in case of high channel transmission. We devise here a solution

that, by exploiting the atmospheric turbulence, allows secret key generation in part of the link

time, even when the average transmission is below the limit of secure communication.

In a link with fluctuating transmission coefficient and a significant attenuation, due to turbu-

lence and to the combination of optical diffraction and scintillation, respectively, it is possible to

devise a solution to the high QBER problem on the base of a sound characterization of the channel

transmission. A recent study [152] pointed out that the temporal profile of the transmissivity

typically has peaks lasting for a few milliseconds, distributed in a low transmissivity background.

Post-selection techniques based on QBER estimation in short time frames are ineffective here,

because the QBER value cannot be reliably estimated on this time scale. An additional resource

may be introduced to estimate the link transmissivity in its intrinsic time scale with the use of an

auxiliary classical laser beam co-propagating with the qubits, but conveniently interleaved in time.

In this way the link scintillation is monitored in real-time and the selection of the time intervals of

high channel transmissivity corresponding to a viable QBER for a positive key generation is made

available.

In the following sections, we present a demonstration of a protocol for adaptive real-time

selection implementing this approach, in conditions of losses equivalent to long distance and satellite

links, and with a range of scintillation corresponding to moderate to rough weather. A useful

criterion for the selection of the low QBER interval is presented. The proposed solution employs

a train of intense pulses propagating on the same path as the qubits, with parameters chosen such

that its fluctuation in time reproduces that of the quantum communication.

4.4.1 Experimental setup

The link used in our QKD demonstration is the 143 Km free-space channel between La Palma and

Tenerife islands shown in figure 4.10. The B92 protocol (see §3.4.3) was chosen for the experiment,

because of its simple implementation.

The transmitter (Alice) was located at the JKT observatory in the island of La Palma where two

850 nm attenuated lasers provided the quantum signal and a 808 nm laser was used as atmospheric

probe. The polarization of the 850 nm lasers was set to the two different B92 preparation states

(| 〉 for bit 0 and | 〉 for bit 1, respectively) by means of half wave plates and quarter wave plates.

The encoding of the quantum signal was then obtained by controlling the lasers with an FPGA.

Classical and quantum lasers were coupled into mode fibers and injected into a fiber beam splitter.

One of the two beam splitters output was delivered to a suitably designed Galilean telescope whose

main characteristic is a singlet aspheric lens with diameter 230 mm and focal length 2200 mm. This

lens allowed us to get, after 143 Km of propagation, a beam spot comparable to the dimensions of

the primary mirror of the receiving telescope, so that the power transfer between the two parties

was maximized. In order to compensate the beam wandering induced by the atmosphere, we

implemented a feedback loop for controlling the direction of the transmission: the fiber delivering

the signal to the transmitter was mounted on a XYZ movable stage in correspondence of the

focal place of the 230mm lens, with computer controlled stepped motors. On this same stage, we
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Figura 4.10: Experimental setup: Alice located at JKT observatory in La Palma, sends
qubits by firing two 850 nm FPGA-controlled attenuated lasers and an atmospheric laser
probe (30mW @ 808 nm). Both the quantum and probe signals are coupled into the same
optical path of a custom made telescope. The telescope is also used to track a beacon
laser sent by Bob, located at the Optical Ground Station (OGS) in Tenerife. Bob receives
through the OGS telescope both the signals: the probe is monitored by an APD and the
qubits are detected with two SPADs.

mounted a CCD sensor which acquired a green (532 nm) “beacon” laser sent by Tenerife towards

Alice’s telescope. The camera recorded an image of the singlet focal plane. The wandering of the

beacon on the CCD was then analyzed in real-time by a software that moved the XYZ stage in

order to compensate for the movement of the beacon spot on the camera.

At the receiver (Bob), located in Tenerife, we used the 1 m aperture telescope of the ESA

Optical Ground Station to receive the signals. After the Coudè path, we collimated the beam

and the classical and quantum signals (at different wavelength) were divided by a dichroic mirror.

The qubits were measured in two bases, using polarizing beam splitters (PBS) and waveplates.

The counts detected by two single-photon avalanche photodiodes (SPAD) were stored on a FPGA.

The probe beam was detected by an high-bandwidth APD (Avalanche Photon Detector) and then

registered and stored by an oscilloscope.

As for the transmitted qubits, we used the data structure described in §4.2.1. In particular, a

raw key is composed by N packets of 1440 bits each, which are divided into 6 frames for the ease

of synchronization. In fact, each frame consists of 11 header slots and 240 payload slots with a

duration of 800 ns; as regards the payload slots, Alice sends two qubits separated by 200 ns. The

two FPGAs are synchronized every second by a pulse-per-second (pps) signal equipped by two

GPS receivers located in the two islands.

As a conclusion to this section, we point out that at the transmitter side, we were not working

in the single photon regime, thus meaning that the transmitted qubits had, on average, more

than one photon per pulse. This choice arises from that the experimental hardware used for this

experiment had a maximum transmission rate of 2.5 MHz. Hence, the 30 dB average attenuation

of the channel would have made the acquisition too slow for the allocated available time slots at

the Observatories of Santa Cruz de La Palma and Tenerife. Our aim, however, was to simulate
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a possible, realistic scenario where one could employ a faster free-space QKD system (hundred of

MHz to GHz, see, e.g., [151]). In particular, by assuming a transmitter emitting single photon

pulses with a repetition rate of 100 MHz, we would observe approximately the same photon rate

we registered, given that the key distribution would be affected by the same levels of optical and

atmospheric attenuation. Therefore, in the present proof-of-principle, our experimental conditions

can be assimilated to a regime of single photon per pulse at the receiver.

Some further details on how the experimental data were prepared for the analysis, can be found

in [153].

4.4.2 Preliminary analysis

In order to test the ability of estimating the link transmissivity, we first sent on the same free-

space channel, two signals: the classical probe detected with a fast photodiode at the receiver,

and a single strongly attenuated laser. The classical signal was made by pulses of 100 µs at 1 kHz

repetition rate, while the attenuated laser at 850 nm fired a continuous beam. At the receiver,

the quantum signal was detected by a Single Photon Avalanche Diode (SPAD) and acquired in

packets with duration of 1 ms.

In order to test the correspondence between the intensity of the received classical beam and

the photons received on the quantum channel, we compared the photon counts detected in each

packet with the voltage registered by the fast photo-diode. In Figure 4.11 we show these signals

for 11 s of acquisition time; as it can be seen in the inset, there is a strong correspondence between

them.

Figura 4.11:

To further demonstrate the correlation, we performed the following analysis. Given a set of L

packets (each with a duration of 1 ms ), we let Vi be the probe signal amplitude, Si the number of

detected photons in the quantum signal for the i-th packet, respectively. We set a threshold value

VT for the probe voltage and select only those packets such that Vi > VT; in particular, we denote

by I(VT) = {i ∈ [1, L] : Vi > VT} the indexes of the packets for which the above condition holds
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and by P (VT) the corresponding number of packets, that is, P (VT) = |{I(VT)}|. Furthermore, we

define the following quantities:

S(VT) =
∑

i∈I(VT)

Si, S(VT) =
S(VT)

P (VT)
(4.25)

with S(VT) representing the total number of detected bits and S(VT) the mean number of detections

per packets after the adaptive real-time selection performed with threshold VT.

The effect of the adaptive real-time selection can be clearly appreciated in Fig. 4.12, where

S(VT) is plotted (green line) as a function of the threshold, showing that a larger mean number of

counts per packet corresponds to a higher threshold value . This demonstrates that the probe and

quantum signals are strongly correlated and one can improve significantly the SNR by thresholding.

As a side effect, we have that the adaptive real-time selection decreases the overall number S(VT)

of detections in the transmission, as can be noticed by considering the ratio S(VT)/S(VT = 0)

(blue line). Hence, a trade-off between these conflicting effects should be found while looking for

the threshold which maximizes the final key rate, as discussed in the following paragraphs.
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Figura 4.12: Mean counts per packet S(VT) and fraction of total count S(VT)/S(VT = 0)
as a function of the probe threshold.

We now apply the above results to a QKD experiment. In particular, we show that increasing

the SNR by thresholding with the adaptive real-time selection protocol gives, in some cases, benefits

in terms of the secret key length, even if the total number of sifted bits will decrease. In fact, when

the QBER is above 11%, i.e., the maximum QBER tolerable for standard QKD using one-way

reconciliation with no noisy pre-processing, adaptive real-time selection reduces the QBER below

this limit, thus enabling secure key generation. More details on how the data was stored and

prepared for the analysis can be found in [153].

First, given the number of errors Ei in the i-th packet, we define the overall number of errors

E(VT) and the quantum bit error rate Q(VT) in the real-time selected packets as

E(VT) =
∑

i∈I(VT)

Ei , Q(VT) =
E(VT)

S(VT)
. (4.26)
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For evaluating the actual impact of the adaptive real-time selection on the performance of a

quantum key distribution system, it is then important to study how the two complementary effects

of thresholding, i.e. the increase of mean detected bits per packet S(VT) versus the decrease of

total detections S(VT), influence the achievable secret key rate of the system, so that the optimal

trade-off can be found. Given these quantities, the asymptotic key rate of a QKD system based

on the B92 protocol and with the described probe thresholding mechanism reads as follows:

R(VT) =
S(VT)

S(0)
[1− 2h2 (Q(VT))] . (4.27)

It is worth noting that evaluating the asymptotic rate instead of the finite-length one [74, J1]

may appear as a restrictive approach, especially because the real-time selection further reduces

the number of available sifted bits. However, the size of the blocks to be fed as input to the key

distillation procedure (i.e., information reconciliation and privacy amplification) can be chosen,

without loss of generality, so that the asymptotic bound provides a reasonable approximation of

the actual rate.

4.4.3 QBER and secret key rate prediction

As demonstrated in [152], the statistics of the transmission of a long free-space channel follows

a log-normal distribution. The measured probe voltage at the receiver, being the transmitted

intensity constant in time, follows the same distribution, given by

p(V ;mV , σ
2) =

1√
2πσ

1

V
e
−[(ln V

mV
+ 1

2σ
2)]2/(2σ2)

, (4.28)

where σ2 is defined as function of the mean mV and of the variance vV of the probe intensities

distribution, that is,

σ2 = ln

(
1 +

vV
m2
V

)
. (4.29)

As an example, Figure 4.13 shows the distribution of the measured voltages of the data used in

figure 4.11, that, according to the theory, follows a log-normal distribution [152].

In the following analysis, we assume that the number of detected photons and the probe

intensity have completely correlated log-normal distributions [152]. This trivially implies that

both distributions have the same parameter σ2. By this hypothesis, we can predict the number

of packets above threshold, Pth(VT), and the number of sifted bits surviving the thresholding,

Sth(VT), in case of null background as

Pth(VT)

P (0)
=

∫ +∞

VT

p(V ;mV , σ)dV, (4.30)

Sth(VT)

S(0)
=

∫ +∞

VT

V

mV
p(V ;mV , σ)dV (4.31)

where P (0) and Sth(0) are the overall experimental number of packets and sifted bits, respectively,

when no threshold is used. By taking into account the background clicks we get:

Pth(VT) = P (0)
1

2

[
1− erf

(
ln VT

mV
+ 1

2σ
2√

2σ2

)]
, (4.32)

Sth(VT) = nbPth(VT) +
1

2
[S(0)− nbP (0)]

[
1− erf

(
ln VT

mV
− 1

2σ
2√

2σ2

)]
, (4.33)
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Figura 4.13: Comparison of the empirical probe intensity distribution and of its log-normal
fit.

where nb is the experimental average number of background counts per packet. In fact, the

assumption of complete correlation between the quantum and the probe signal is not strictly

verified in our experiments and eq. (4.33) turns out to be an approximation of the experimental

values. Still, it allows to derive an effective real-time selection threshold, as will be seen in the

following (e.g., in figure 4.14).

We now define a further predictive model for estimating the bit error rate on the quantum

channel as a function of the probe threshold. Let us assume that the average bit error rate on the

quantum channel is mQ and that the number of counts per packet due to background noise is nb.

Now, since background counts output a random result, the corresponding bit error rate is 1/2, and

we can write the predicted quantum bit error rate Qth as a function of the threshold VT, namely,

Qth(VT) = mQ

(
1− nb

Sth(VT)

)
+

1

2

nb

Sth(VT)
, (4.34)

where the predicted value for Sth(VT) = Sth(VT)/Pth(VT) is obtained by using equation (4.33).

Hence, we can finally write the predicted secret key rate as follows

Rth(VT) =
Sth(VT)

S(0)
[1− 2h2 (Qth(VT))] . (4.35)

4.4.4 Experimental results

In figure 4.14, we compare the expected (solid line) and the experimental values (circles) for

both the QBER (red) and the asymptotic key rate (black) as a function of the probe intensity

threshold in a QKD run. The curves for the expected QBER and for the key rate were obtained

by substituting maximum likelihood estimates for the log-normal parameters mV and σ2 in eq.

(4.34) and in eq. (4.35). The other two parameters, S(0) and P (0), required for predicting S(T )

and P (T ), are directly measured (they correspond to the total number of sifted bits and the total

number of packets received respectively).
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The experimental data refer to an acquisition of 5 · 105 sifted bits in condition of high back-

ground, simulated by an external light source. The intensity of the background was chosen in

order to obtain a mean QBER larger than 11%. In particular, we measured an average value of

nb = 35.17 for the background clicks per packet and we assume mQ = 5.6 · 10−2. As clearly shown

in the figure, eq. (4.34) provides a good approximation of the experimental curve.

As one can appreciate from the same Figure, we have a remarkable correspondence between the

shape of the theoretical rate, Rth, and the measured rate, Rexp. The fact that the experimental

points do not fit the expected curve can be ascribed to the discrepancy in the empirical joint

distribution of probe intensities and counts with respect to the model; in particular, we measured

the following fitting parameters for the normalized log-normal distributions: σ2
V = 0.967 for the

probe intensities and σ2
S = 0.716. However, the derivation of the optimal threshold for maximizing

the secret key length (green dashed line) from the probe distribution yields the optimal VT also for

the experimental data. In particular, the optimal threshold inferred from the probe distribution

is V
(th)
T,opt = 375 mV, and coincides with the one resulting from optimization on the experimental

data, yielding a rate of R(V
(th)
T,opt) = 5.55 · 10−2.
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Figura 4.14: Predicted (solid lines) and experimental (markers) values for the QBER and
for the secret key rate depending on the real-time threshold value. The optimal threshold,

V
(th)
T,opt = 375 mV, is shown by the magenta line.

Also, we observe that for VT < 100 mV no key can be extracted, being the QBER higher than the

theoretical maximum (i.e., Q = 11%), whereas by increasing the threshold value a non-zero secret

key rate is achievable. With the optimal threshold value, the measured QBER is Q(V
(th)
T,opt) =

8.34 · 10−2; a significant gain with respect to the initial value, Q(0) = 13.14 · 10−2 is therefore

achieved. Finally, we observe that for increasing values of VT > V
(th)
T,opt the QBER still decreases,

but so does the rate, since the reduction in the residual number of sifted bits does not compensate

the advantage obtained thanks to the the lower QBER. This result is of absolute practical relevance,

as it shows that leveraging the probe intensity information is an enabling factor for quantum key

distribution, since it allows to distill a secret key even when without the real-time selection it would

not be possible.

125



CAPITOLO 4. EXPERIMENTAL FREE-SPACE QUANTUM KEY DISTRIBUTION

4.4.5 Comment on security and conclusions

As for the security of the proposed adaptive real-time selection protocol as applied to a QKD

system, no advantage is delivered to a potential attacker in the true single photon regime, being

the thresholding nothing but a further sifting step on the received bits [101, 100]. If the attacker

tried to force Alice and Bob to select a particular bit, in fact, she would alter the probe signal

before the disclosure of the preparation bases on the public channel, and, therefore, before she

could actually know if her measured bit is correct. On the other hand, altering the probe statistics

or interrupting the probe transmission would not yield any advantage to the attacker, as it would

just break the correlation between the quantum and the classical signal and would thus result in

a denial of service attack. The security analysis gets more involved if we allow photon number

splitting (PNS) attacks. In that case, the attacker may force Bob to receive just the qubits for

which the PNS attack was successful, i.e., only those pulses with multiple photons. A decoy state

protocol may counteract this strategy, but its effectiveness with a turbulent free-space link has to

be investigated (see [154] for some considerations).

Summarizing, we showed that the turbulence of the channel can be exploited for allowing secret

key distillation even when the average QBER of the transmission is above the critical threshold of

11%. The proposed adaptive real-time selection protocol was demonstrated in a realistic scenario,

and, by leveraging the classical information provided by the probe signal, it allowed to reduce

the QBER and to enable secret key distillation even in low SNR scenarios; more in general, the

protocol could allow to increase the secret key rate. The prediction of the optimal threshold can

be inferred by just observing the probe intensity statistics, and the predicted value is consistent

with the experimental one. Finally, let us remark that the protocol can be integrated with existing

systems.
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Conclusions

This work has explored two main topics at the cross-road of information theory and quantum

physics, that is, randomness extraction as applied to quantum random number generation and

quantum key distribution. We moved from the problem of creating uniform randomness to the

one of sharing secret random sequences between distant parties, so that a bounded information

leakage to the adversary is guaranteed in an information-theoretic security framework. With these

problems in mind, classical processing algorithms for quantum information security have been

investigated, with a strong focus on their application to realistic scenarios.

A randomness extractor for a commercial quantum random number generator has been de-

veloped and the uniformity of its output has been quantitatively evaluated. More in general, a

framework for randomness extraction for block-wise randomness extractors was described, so that

the implemented solution could be easily applied to other physical random number generators, by

properly choosing the extractor parameters according to the collision entropy of the input source.

In the domain of Quantum Key Distribution, a taxonomy of information reconciliation pro-

tocols was proposed. Then, different protocols were analyzed and their performance evaluated

depending on the input parameters. In particular, a novel, thorough analysis of the Winnow sche-

me was carried out, and its performance were analytically assessed. An optimization method for

its parameters was then provided, so that a given target bit error rate could be ensured at the

protocol output.

As for the privacy amplification phase, a security analysis in the scenario of selective individual

attacks has been carried out. As a first step, a tight bound on the information leakage while using

the class of random binary matrices (and the one of random Toeplitz binary matrices) has been

derived, showing that the average bound was rather loose, though much easier to compute. Then,

the security analysis for a possibly aborting protocol was proposed in the finite-key scenario, so

that the secret key length can be derived according to the required secrecy level.

The obtained theoretical results and the considered classical algorithms were then implemented

and exploited for the practical implementation of Quantum Key Distribution systems in free-space.

In particular, three experiments were carried out. The first one, performed over a 50 meters link,

tested the real-time feasibility of free-space quantum key distillation under selective individual

attacks, including intercept-and-resend, unambiguous state discrimination and photon number

splitting. The second experiment was based on the efficient BB84 protocol, and extended the

adversarial scenario to general quantum attacks. The achievable secret key rates were compared

under different noise conditions and according to two distinct security definitions, pragmatic and

general secrecy. The results have shown that secret keys can be distilled even when considering

finite-key effects in noisy scenarios. In the last experiment, a novel approach to free-space Quantum

Key Distribution was proposed, leveraging the turbulence of the channel to enable key distillation
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even in harsh conditions. The feasibility of key distillation over a 143 Km free-space link was

shown, even when the average bit error rate on the quantum channel would have prevented the

key exchange. The application scenarios for this new protocol include daylight Quantum Key

Distribution over long distances, and its extensions to satellite communications.
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