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ABSTRACT 

The paper investigates an often-overlooked issue in the use of coupled computational 

techniques: the assessment of overall static equilibrium. The analysis is focused on a 

peridynamic and FEM coupling computational method recently proposed by the authors. The 

magnitude of the out-of-balance forces obtained in all the examples is a fraction of a per cent 

of the applied forces, but it cannot be considered as a numerical error. The paper shows that 

the main reason for the occurrence of the out-of-balance forces is the presence of a highly non-

linear rate of change of displacements in the coupling zone of the models. 

 

Keywords: Peridynamic, FEM-PD coupling, out-of-balance forces. 

1 INTRODUCTION 

Cracks and defects are an unavoidable presence in many structures in particular in aeronautical 

and aerospace applications. Consequently, safety and economic needs require the capability to 

predict damage and crack evolution by adequate numerical techniques. Computational methods 

based on Classical Continuum Mechanics (CCM) have not been naturally developed to simulate 

problems involving discontinuities in the displacement field. Therefore, CCM-based 

computational tools have to be equipped with ad hoc extensions to cope with crack propagation 

problems. At the beginning of this century a new non-local theory formulated with integral 

equations, named Peridynamics (PD) [1-2], was presented with the aim of including cracks as 

part of the solution. However, PD is not computationally efficient, due to the non-local nature 

of the approach and that is a limitation to its practical use. To solve this issue, we introduced a 

FEM-PD coupling technique [3] in order to use the PD approach only in the regions of the 

model where cracks can arise or interact. The current coupling method [3] satisfies the usual 

numerical tests, that is rigid body motion, uniform and linear strain cases, but an often-

overlooked issue in the use of coupled computational methods, adopting different models of 

solid mechanics [4], is the verification of overall structural equilibrium.  

We will illustrate the problem through simple structural examples, partially discretized with a 

PD method and partially with a classical mechanics FEM approach. In our examples, using the 

coupling method presented in [3], the magnitude of the out-of-balance forces is small, compared 

to that of the acting forces, but it cannot be assumed to be a numerical error. Our work will 

study how the variation of the main features of the coupled model can affect the magnitude of 

the out-of-balance forces.  
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The paper is organized as follows: section 2 gives an overview of PD and FEM-PD coupling 

method; section 3 presents the out-of-balance forces issue in overall equilibrium; section 4 

shows the results of several examples and, finally, the discussion of section 5 concludes the 

paper. 

2 OVERVIEW OF PERIDYNAMICS AND FEM-PD COUPLING METHOD 

2.1 Peridynamics and its discretization 

In a body (B) modelled by PD a material point with position vector x (in the following referred 

to as point x) is associated to an infinitesimal volume dVx, and it interacts with all surrounding 

points within a neighbourhood H(x). The equation of motion of point x is defined by the 

following integro-differential equation: 
 

𝜌(𝒙)𝒖̈(𝒙, 𝑡) =  ∫ (𝑻[𝒙, 𝑡]
𝐻(𝒙)

〈𝒙′ − 𝒙〉 − 𝑻[𝒙′, 𝑡]〈𝒙 − 𝒙′〉)𝑑𝑉𝒙′ + 𝒃(𝒙, 𝑡), 𝒙′ ∈ 𝐻(𝒙)   (1) 
 

where 𝜌 is the mass density, u is the displacement field, b is the body density force, 

𝑻[𝒙, 𝑡]〈𝒙′ − 𝒙〉 stands for the force vector state which indicates the force density vector that 

point x′ exerts on point x, and the neighbourhood 𝐻(𝐱)∶={𝐱′∈Ω∶ |𝐱′−𝐱|≤𝛿} is the integration 

region usually taken to be a sphere, in 3D, or a circle, in 2D, centred at x . The radius 𝛿 of H(x) 

is called the horizon of x. The vector of relative position between two points 𝛏= 𝐱′− 𝐱 is called 

bond.  In OSB-PD [2], the material is taken to be homogenous and the force state 𝑻 depends 

only on the deformation state so that a force density vector is aligned with the corresponding 

deformed bond. In this way, the force density can be written as: 
 

𝑻[𝒙, 𝑡]〈𝒙′ − 𝒙〉 = 𝑡[𝒙, 𝑡]〈𝒙′ − 𝒙〉𝒆̅        (2) 
 

where 𝑡 is the modulus state the value of which depends on the constitutive law of the material. 

According to [2], 𝑡 can be determined in terms of classical constants in the case of linear elastic 

solids [5,6] and 𝒆 is a unit vector aligned with the deformed bond. Bond Based -PD (BB-PD) 

[1] can be considered as a particular case of the OSB-PD. In fact, in BB-PD the interaction 

between two points is completely independent of other bonds, and the force density that point 

x′ exerts on point x (𝑻[𝒙, 𝑡]〈𝒙′ − 𝒙〉) and that point x exerts on point x′ (𝑻[𝒙′, 𝑡]〈𝒙 − 𝒙′〉) are 

equal in magnitude but opposite in sign. Therefore, in BB-PD the force density of a bond 𝝃 is 

called the pairwise force function f. These assumptions simplify the formulation; however, BB-

PD is restricted to a fixed value of Poisson’s ratio which is 𝜈= 1∕4 for 3D and plane strain cases 

and 𝜈= 1∕3 for plane stress cases. Ref. [7] introduces the Prototype Microelastic Brittle (PMB) 

model for a linear elastic material so that the pairwise force function, for the case of small 

deformation, is determined by: 
 

𝒇(𝒖′ − 𝒖, 𝒙′ − 𝒙, 𝑡) =  𝜇(𝜉, 𝑡)
𝑐𝜔(𝜉)

|𝜉|
(𝒖(𝑥′) − 𝒖(𝑥))𝒆 =  𝜇(𝜉, 𝑡)𝑐(|𝜉|)(𝒖(𝑥′) − 𝒖(𝑥))𝒆   (3) 

 

where 𝜇 is a history dependent damage function that, based on the bond status, takes either the 

value of 0 (broken bond) or 1 (active bond). c(||) is the micromodulus function, c is the 

micromodulus, 𝜔 is the influence function that specifies the degree of nonlocal interactions 

between points, e is the unit vector along the directions of the relative position vector in the 

current configuration; c can be expressed in terms of material classical constants E and 𝜈 [1,8].  

In the PMB material the failure of a bond happens when the relative elongation of a bond 

exceeds a predefined value s0 the value of which can be obtained in terms of the critical energy 

release rate of the material G0 [7,9]. In the present paper, we make use of a meshfree 

discretization scheme introduced in [7] which is easy to implement. Each node xi interacts with 

all nodes within its neighbourhood H(xi), xi is the source node and all xj are its family nodes. 

The horizon 𝛿 is expressed as 𝛿=𝑚 Δ𝑥. m is the ratio between the horizon 𝛿 and the grid spacing 
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Δx and its value determines how many family nodes are in H(xi). To proceed with the spatial 

integration, we adopt the one-point Gauss quadrature rule and thus the discretized form of 

Eq.(1) can be written as: 
 

𝜌𝒖̈𝑖
𝑛 = {

∑ {𝑻[𝒙𝑖
𝑛]〈𝒙𝑗

𝑛 − 𝒙𝑖
𝑛〉 − 𝑻[𝒙𝑗

𝑛]〈𝒙𝑖
𝑛 − 𝒙𝑗

𝑛〉}𝛽(𝝃)𝑽𝑗 + 𝒃𝑖
𝑛,   𝑓𝑜𝑟 𝑂𝑆𝐵 − 𝑃𝐷𝑗

∑ 𝒇(𝒖𝑗
𝑛 − 𝒖𝑖

𝑛, 𝒙𝑗 − 𝒙𝑖)𝑗 𝛽(𝝃)𝑽𝑗 + 𝒃𝑖
𝑛,   𝑓𝑜𝑟 𝐵𝐵 − 𝑃𝐷

  , ∀𝒙𝑗 ∈ 𝐻(𝒙𝑖)   (4) 

 

where n represents the time step, and subscripts denote the node number (e.g., 𝐮𝑛𝑗 = 𝐮(𝐱𝑗,𝑡𝑛) ). 

𝛽() plays the role of a correction factor through which we can evaluate the portion of Vj that 

falls within the neighbourhood of the source node xi. In this study, we apply 𝛽() as 

recommended in [10]. 

2.2 FEM-PD coupling method 

The coupling of PD grids to FEM meshes could be a way to obtain an efficient numerical 

approach able to combine the capabilities of both FEM and PD methods. The coupling approach 

is based on the idea presented in [3], where the coupled stiffness matrix is defined. 

 

 

Figure 1: Coupled 1D model of a bar. Diamonds are FEM nodes, circles PD nodes; thick straight lines 

represent finite elements and thin curved lines peridynamic bonds. The dashed line is the transition 

between the FEM and the PD portion of the model. The rectangle contains the nodes of the coupling 

zone. 

The coupling method is presented with the help of the simple 1D example of Fig. 1, where a 

model of a bar is shown. In Fig.1 diamonds represent finite element nodes and circles 

peridynamic nodes. In the present work, the PD part of the body is discretised in space, 

according to the bond-based version of the theory. In the example of Fig. 1, the horizon  is 

double the grid spacing, i.e. =2x, where x is the uniform distance between two adjacent 

nodes. FEM nodes are connected by finite elements whereas peridynamic nodes are connected 

by bonds. At the transition between the two zones we assume that the last FEM node (node 4 

in Fig.1) is connected to the peridynamic part of the model by a single finite element (element 

d in the figure) whereas the first peridynamic node (node 5 in the figure) is non-locally 

connected to all nodes, FEM or PD, within its horizon. The coupling zone can be defined where 

forces are exchanged between the FEM and PD parts of the domain. In the example presented 

in Fig. 1, the coupling zone is composed of the nodes 3, 4, 5, and 6. Bonds are considered to 

act only on PD nodes, whereas finite elements apply forces only on FEM nodes. The assembly 

of the global stiffness matrix is performed by making sure that equilibrium equations of FEM 

nodes contain only terms coming from the FEM formulation and equilibrium equations of PD 

nodes include only terms derived from the Peridynamic theory. The case of Fig.1 produces Eq. 

(5), where a=EA/x, and b= cViVj/x [11], ui are the nodal displacements, fi are the nodal forces, 

E is the elastic modulus, A is the cross-sectional area, c=2EA/2 is the micromodulus constant 

[11], and Vi is the volume associated with node i. The solution of a single equation satisfies 

node equilibrium. The overall equilibrium of the whole structure requires the sum of the nodal 

forces to be equal to zero. 
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3 OUT OF BALANCE FORCES IN OVERALL EQUILIBRIUM 

3.1 Problem description 

In Fig. 2, the 2D model of a homogeneous, isotropic and linear elastic rectangular plate is 

shown. This structure with dimensions 80x40 (Lx and Ly, respectively) is studied imposing as a 

load condition two vertical forces (Fext= -0.5) acting at the top edge. The plate is constrained 

so that the points of the bottom edge of coordinates (x=10) and (x=70) cannot move along the 

vertical direction, i.e. v=0. The central point of the bottom edge cannot move along the 

horizontal direction, i.e. u=0. The values of the main model parameters are E=1 (Young’s 

modulus), = 1/3 (Poisson’s ratio) and h=1 (plate thickness). Model parameters such as E, A, 

Lx, Ly, x=y are given conventional values which are not associated to the usual units. This 

study considers a plane stress condition. To investigate the static equilibrium of this structure, 

three models have been implemented using three different computational approaches, i.e. Finite 

Element method, bond-based Peridynamic theory (BBPD) and the FEM-PD coupling strategy 

described in Sec 2.2. 

      
Figure 2: On the left the studied 2D model is shown, the boundary conditions are applied on the 

bottom edge, in the upper edge 2 vertical external forces are applied. On the right the coupled FEM-

PD model is shown, the PD region, located at the centre of the plate, is shown using dot markers. 
 

Model description Fext vertical Rvertical er 

Only FEM  -1.0 1.00000 2.5210-14 

Only PD  -1.0 1.00000 4.2710-14 

FEM-PD coupled -1.0 1.00699 6.9910-03 

Table 1: Reaction forces and out of balance relative error resulting for each numerical simulation. 

Table 1 reports the reaction values for the three models and the resulting out-of-balance relative 

error, defined by the following relation: 
 

𝑒𝑟 = 
𝐹𝑒𝑥𝑡+∑𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

|𝐹𝑒𝑥𝑡|
                                                                  (6) 
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where Reactions is the sum of the vertical reaction forces. Table 1 shows that the static 

equilibrium equations are not exactly fulfilled by the coupled FEM-PD models characterized 

by non-uniform strain distributions. The out of balance forces are rather small, compared to the 

overall forces, but they are not as small as round-off errors. To examine this issue a simpler 1D 

case is studied in the following section. 

4 NUMERICAL EXAMPLES 

The proposed coupling method assumes the continuity of the displacements between the two 

portions of the model, in [3] authors showed that for a linear or quadratic displacement field 

distribution the force equilibrium is satisfied. In this section the equilibrium check will be 

extended to more complex displacement fields distributions. The 1D model of a bar is 

composed by 51 nodes as shown in Fig. 4. The PD portion of the model is composed by nodes 

with coordinates higher than 0.5 while the remaining part is modelled with FEM. The main 

parameters are L=1 (bar length), E=1 (elastic modulus) and A=1 (bar cross-sectional area). For 

the PD region of the model the horizon is =0.06, the m ratio is m=3 and the micromodulus c 

is c=2EA/2=555.555. In the FEM-PD coupled model the displacement is imposed to all nodes 

and the required nodal forces are computed using Eq.(5). The imposed displacement field is 

defined by a polynomial curve, with the following equation: 
 

𝑢(𝑥) = 𝑎0 ∙ 𝑥𝛾                  (7) 
 

in which the coefficient a0 is a0=0.01 and the exponent  can vary, in this study, between 1 and 

4. The resulting out of balance relative error is evaluated in the X direction through the 

following relation 
 

𝑒𝑟 =
∑𝑓

(∑𝑓) 2⁄
                         (8) 

 

Where f is the sum of the nodal forces generated by the applied displacement field.  

 

 
Figure 3: displacement fields imposed on the coupled FEM-PD model; left, linear displacement distribution 

(=1); right, quadratic displacement distribution (=2). Green dots are PD nodes, short dashed red vertical lines 

define the coupling zone. 

 

 
Figure 4: displacement fields imposed on the coupled FEM-PD model; left, displacement distribution described 

by a third order polynomial function (=3); right, displacement distribution described by a fourth order 

polynomial function (=4).  
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Exponent used in Eq. (7) f er FEM force at 

the transition 

PD force flux at 

the transition 

 = 1 (linear displ. distr.) -2.3910-16 -2.3910-14 0.010000 0.010000 

 = 2 (quadratic displ. distr.) -2.9810-16 -1.5710-14 -0.009800 -0.009800 

 = 3 (third order displ. distr.) 8.0010-6 2.9510-04 0.007204 0.007212 

 = 4 (fourth order displ. distr.) 1.5710-5 4.5710-04 0.0047079 0.0047236 

Table 2: Reaction forces and relative out-of-balance error resulting from each numerical simulation. 

The results collected in Table 2 show that the relative out-of-balance error appears when the 

applied displacement field distribution is described with a polynomial function of the third-

order or higher. The table reports also the forces at the transition between the FEM and PD 

region evaluated respectively with the FEM method and the PD approach (see appendix in [3]). 

In an equilibrated system these forces should be equal. 

 

In the second example we verify that the lack of the equilibrium in the coupled FEM-PD model 

occurs only if the highly non-linear rate of change of the applied displacement appears in the 

coupling zone. In this example the applied displacements field is composed by 2 linear 

displacement distributions and between them a third-order polynomial curve selected to ensure 

the continuity of the displacement field and its first derivative. For all cases the magnitude of 

the relative out-of-balance error, er , is computed by keeping fixed the position of the PD portion 

and all the main model parameters and by changing only the position of the third-order 

polynomial displacement distribution field. 
 
 

    
(a) (b) (c) 

Figure 5: Imposed displacement fields with a cubic displacement distribution located in different 

positions along the one-dimensional FEM-PD coupled model. The cubic displacement distribution, 

represented by crossed lines, is placed in (a) the FEM-only region, (b) the PD-only part, and (c) the 

FEM-PD coupling zone. 

 

Table 3 shows the results obtained in terms of external reaction forces sum and out-of-balance 

error for the three different configurations which have been investigated. In the first two cases 

(see configurations (a), (b) in Fig. 5) the third-order polynomial displacement distribution is 

located away from the two coupling zones of the bar model, respectively in the FEM-only and 

in the PD-only portion of the model. In the case (c) the polynomial curve is placed in 

correspondence of the coupling zone. As shown in Table 3, only case (c) exhibits a significant 

static out of balance, since the magnitude of the resulting relative error cannot be considered as 

numerical error. The numerical simulations show that the resulting relative out-of-balance error 

changes significantly when varying the position of the polynomial displacement distribution 

with respect to that of the coupling zone.  
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=0.06, m=3 f er 

Case (a) -2.26·10-17 -2.51·10-14 

Case (b) -3.31·10-18 -2.00·10-14 

Case (c) 2.06·10-07 6.94·10-04 

Table 3: Reaction forces and relative out-of-balance error resulting for the cases presented in Fig.5. 
 

The last example investigates the influence of the horizon size  on the relative out-of-balance 

error. The horizon  is reduced by keeping fixed the m ratio, Fig. 6 shows the applied 

displacement fields for the first three cases studied and Tab.4 reports the relevant relative out-

of-balance errors.  

 
Figure 6: Imposed displacement fields with the cubic displacement distribution, represented by 

crossed lines, located across the FEM-PD coupling zone (Case (c) in Fig.5). The plots have been 

obtained by keeping fixed the position of the cubic curve and performing a δ-convergence study. 
 

PD model parameters f er 

δ=0.06, m=3   2.0610-07 6.94·10-04 

δ=0.03, m=3   5.1410-08 1.7310-04 

δ=0.015, m=3   1.2910-08 4.3410-05 

δ=0.0075, m=3   3.2210-09 1.0810-05 

Table 4: Reaction forces and relative out-of-balance error obtained locating the cubic curve across the 

FEM-PD coupling zone (see Case (c) in Fig.5) and performing a δ-convergence study. 
 

Tab.4 shows that the relative out-of-balance error can be reduced by decreasing the horizon 

size. Finally, Fig.7 verifies that the relation between the relative out-of-balance error and the 

quantity  is linear: if the horizon  is reduced by ½ the relative out-of-balance error is 

decreased by a factor ¼. 

 
Figure 7: Variation of the relative out-of-balance error versus 2. The dashed line is the linear fitting 

curve. 

5 CONCLUSIONS 

Coupling different models of solid mechanics to describe the mechanical behaviour of a body 

can produce some kind of error. The paper focuses on a peridynamic and FEM coupling 
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computational method proposed by the authors [3], but probably similar problems can affect 

other coupling techniques. We show, for the first time, that an often-overlooked issue in the use 

of coupled models is the lack of overall equilibrium. We study the problem through a set of 

numerical analyses on one-dimensional and two-dimensional FEM-PD coupled models. We 

show that the out-of-balance forces are related to the rate of change of displacements in the 

coupling zone: the issue appears for cubic, or higher order, displacement field distributions. 

The relative out-of-balance error is a fraction of a per cent and it can be controlled by reducing 

the horizon size. This suggests that a generic rapidly varying strain distribution could require a 

fine mesh/grid in the coupling zone, where the real strain distribution could be represented, with 

acceptable accuracy, as a linearly varying strain. 
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