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Abstract

Accurate prediction of future human positions is an es-
sential task for modern video-surveillance systems. Current
state-of-the-art models usually rely on a “history” of past
tracked locations (e.g., 3 to 5 seconds) to predict a plausible
sequence of future locations (e.g. up to the next 5 seconds).
We feel that this common schema neglects critical traits of
realistic applications: as the collection of input trajectories
involves machine perception (i.e., detection and tracking),
incorrect detection and fragmentation errors may accumu-
late in crowded scenes, leading to tracking drifts. On this
account, the model would be fed with corrupted and noisy
input data, thus fatally affecting its prediction performance.

In this regard, we focus on delivering accurate predic-
tions when only few input observations are used, thus poten-
tially lowering the risks associated with automatic percep-
tion. To this end, we conceive a novel distillation strategy
that allows a knowledge transfer from a teacher network to
a student one, the latter fed with fewer observations (just
two ones). We show that a properly defined teacher super-
vision allows a student network to perform comparably to
state-of-the-art approaches that demand more observations.
Besides, extensive experiments on common trajectory fore-
casting datasets highlight that our student network better
generalizes to unseen scenarios.

1. Introduction

Pedestrian trajectory forecasting deals with predicting
future paths through the exploitation of individual trajectory
information and mutual influence between pedestrians. This
task has several practical applications in advanced surveil-
lance systems [23], behavioral analysis [31], intrusion de-
tection [38], smart vehicles and autonomous systems [4,36].

While several recent works focused on novel deep-
network architectures tailored for this task [13, 14, 19, 34,
48, 51], we believe the inference phase of a trajectory pre-

dictor has not been thoroughly addressed and investigated
yet. Typically, data-driven models are trained and evalu-
ated on large public datasets of tracked trajectories refined
with a human intervention to correct missed detections and
identity switches. However, this process is unfeasible at in-
ference time: therefore, the input trajectories required to
condition the prediction have to be automatically extracted
by a tracking system.

In this regard, the widely adopted 8-12 protocol [1,14,19,
21,33,47,51] (i.e., 8 input time steps and 12 ones for predic-
tion), which require data collected at 2.5 FPS, does not pro-
vide a large margin of correction for the above situations. In
real-time applications, a visual tracking system may provide
inaccurate observations for sequences of such length [11]:
occlusions, false detections and non-rigid shape deforma-
tions pose non-trivial issues.

To overcome the aforementioned limitations, one poten-
tial solution is to reduce the length of the input trajecto-
ries to the extent we can minimize the tracking associa-
tions errors. Based on this intuition, this work proposes
an approach based on Knowledge Distillation [17], which
recovers a reliable proxy of the same information obtained
with more input observations. We show that it allows for
an effective inference schema, requiring fewer samples than
the training one. We also demonstrate that properly condi-
tioning a model on shorter input trajectories provides more
room to generalize across different experimental settings.

From a technical perspective, this work implements our
idea by deploying a teacher-student paradigm [17]: a stu-
dent network is trained to mimic a teacher’s behaviour
using less input observations. Each network devises a
transformer-based architecture that accounts for both spa-
tial and temporal interactions through an attention mecha-
nism. To deal with a limited number of observations, we
propose a distillation procedure that acts on both encoder
and decoder stacks of the transformer architecture. Finally,
our objective function takes into account ground-truth data
and distillation losses to conveniently match teacher and
student internal representations.



We remark the following contributions: i) to the best of
our knowledge, this is the first attempt to in-depth analyze
the effectiveness (at inference time) of the evaluation pro-
tocol commonly employed by current trajectory prediction
models; ii) we introduce a novel distillation strategy to re-
duce the length of the input trajectories while keeping the
prediction accurate; iii) we explore the student’s capabili-
ties in adapting and transferring its knowledge to scenar-
ios exhibiting different levels of complexity in terms of hu-
man dynamics and scene interactions. Indeed the experi-
ments highlights that is possible to construct a solid trajec-
tory forecasting system that at inference time is fed only
with just 2 observation (i.e. last two) per-pedestrian. This
is possible only through the thoughtful exploitation of the
global knowledge that can be inferred from training data
and distilled into the inference model.

2. Related Work

Social models. Modelling human-human interactions plays
a fundamental part in predicting plausible trajectories. Pi-
oneering works take advantage of hand-crafted relations,
energy-based features or rule-based models [3, 16, 26, 40,
44], which fail to adapt to scene changes and model com-
plex crowd dynamics. In recent years, data-driven ap-
proaches received increasing attention: in their seminal
work, Alahi et al. [1] capture these interactions by aggre-
gating the hidden states of neighbouring agents with a ded-
icated grid-based “Social Pooling”. Gupta et al. [14] im-
proved this mechanisms which is extended to all the agents
involved in the scene by max-pooling their hidden states.
Such modules have also been extended with attention-based
mechanisms [2], while other works propose architectures
combining social pooling with context information (e.g.
scene semantic, groups or head poses) [4, 8, 15, 25, 33].

Recent improvements in graph machine learning [20,24,
27, 42] motivated the adoption of such flexible structures
to model agents relationships. Several solutions [6, 19, 21,
37, 39, 43] consider agents as graph nodes whose features
are represented by their hidden states. This solution enables
the use of message-passing mechanisms and grants the pos-
sibility to aggregate information at each node with power-
ful Graph Neural Networks (GNNs) like Graph Attention
Networks [42]. Zhang et al. [51] similarly treat the pedes-
trian space as a fully-connected graph but design a cus-
tom message-passing solution that integrates a motion gate
to perform a feature selection based on pedestrian move-
ments. Finally, Yu et al. [47] only rely on attention mecha-
nisms to predict future locations exploiting recent advances
in transformer-based architectures [41].

Knowledge distillation. Knowledge distillation has been
firstly investigated as an approach for model compres-
sion [9, 17]: a small model (student) has to mimic the be-

haviour of an over-parameterized one (teacher). As a result,
the student manifest a smaller memory footprint without
experiencing a large drop in the overall performance. [30]
aims to reduce both student and teacher feature maps; [17]
suggests to match the soft-targets before the final classifica-
tion layer; [49] matches the features of attention regions.

In this work, we employ knowledge distillation in a dif-
ferent fashion. Inspired by [12, 50], our aim is not to com-
press a model yet to improve its performance. This pro-
cedure is usually referred to as self-distillation, since the
student network shares the same architecture of its teacher.
Similarly to [7, 28], our approach sets up asymmetric net-
works: the student is encouraged to overcome its knowledge
gap by following the guide of its teacher, eventually boost-
ing its performance. This is done in the specific context of
trajectory forecasting, and we demonstrate that knowledge
distillation can lead to effective predictions even when the
model has access to very few observations.

3. Model

Trajectory forecasting is usually defined as a time-series
prediction problem [31]. The task is particularly challeng-
ing because: i) human motion is inherently multi-modal,
and ii) agents simultaneously interact with each other and
with static scene elements.

To meet these two points, we design a novel approach
modelling both temporal and spatial relationships occurring
between agents. Specifically, this section describes how we
extend the original Transformer [41] architecture to deal
with trajectory forecasting.

3.1. Vanilla Transformer for Trajectory Prediction

To deal with sequence-to-sequence tasks, transformers
follow the well established encoder-decoder paradigm. In-
stead of relying on internal recurrent layers, input sequences
are processed as a whole through a purely attentive mecha-
nism. Self-attention aims to discover relationships between
every pair of elements in the sequence: this reduces the
risk of forgetting past information and allows the network
to learn long-range dependencies [41].

From a technical perspective, each embedding et (from
time step t = 1 up to t = T ) is linearly projected into a
triplet of vectors: a query qt, a key kt and a value vt. Then,
transformers exploit the dot product between queries and
keys to compute attention coefficients (scaled dot-product
attention), the latter being used to weight the corresponding
values and provide the final output. This operation is per-
formed h times (heads) on different linear projections of Q,
K and V to attend information from several representations
at different positions.
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Figure 1. Our spatio-temporal attention module. A temporal
encoder exploits temporal relationships between subsequent time
steps of input sequences while a spatial encoder collects human-
human interactions that occur between agents at a fixed time step.

3.2. Spatio-Temporal Transformer (STT)

As in [41], our proposal firstly attends on the temporal
axis with a scaled dot-product attention module. This way,
it is able to recover temporal dependencies across differ-
ent time steps and capture characteristic motion patterns of
the monitored agents. However, this vanilla sequence-to-
sequence model does not explicitly account for high-level
spatio-temporal structure, i.e., no interactions are consid-
ered. For this reason, the output of our temporal attention
is fed to a second self-attention module that acts on the spa-
tial axis. While in the temporal attention queries, keys and
values refer to different time steps of a specific agent, here
Q, K and V refer to the embeddings of all the agents at a
fixed time step. This way, each agent can additionally at-
tend on the information of its neighbours, recovering useful
spatial information. Fig. 1 shows a visual representation of
our encoder architecture (the same applies to the decoder).

Relation with previous works. While the approach dis-
cussed in [13] consists of a transformer network treating
each pedestrian separately (thus handling only temporal in-
formation), our self-attention mechanism takes into consid-
eration also spatial interactions between pedestrians. This is
somewhat similar to what has been devised by the authors
of [47], who equipped a spatio-temporal transformer with
an auxiliary memory retaining representations of previous
predictions. However, our approach significantly differs in
the design of the decoder: while [47] adopts a fully con-
nected layer, we stay close to the original transformer [41]
and mirror the encoder into the decoder.

4. Distilling the Observations (DTO)
Our goal is to set up a model capable of accurately pre-

dicting future positions when only a few observations are
available: this way, we can address the inference-time short-
comings outlined in Sec. 1. More specifically, we devise a
two-fold approach (depicted in Fig. 2):

• firstly (Sec. 4.1), we train a teacher network to estimate
trajectories given 8-length observation sequences;

• secondly (Sec. 4.2), we freeze its parameters and at-
tempt to transfer its predictive capability to a student
network. Importantly, the latter is forced to operate
with an information gap, i.e., using only a small frac-
tion of available inputs (e.g., two last observations).

4.1. Teacher training

To train our teacher network, we follow the standard pro-
tocol and consider 8 observation time steps and 12 predic-
tion time steps. The network is trained by teacher forcing,
i.e., when predicting the next time step, the decoder is con-
ditioned on past ground-truth samples rather than its own
predictions. We mark the beginning of the prediction se-
quence with a start token and mask the information related
to the future time steps. Mean Squared Error (MSE) be-
tween predictions and ground-truth positions is used as loss
function while training our teacher network:

LGT =
1

P

P−1∑
p=0

∥∥xp,[:] − x̂p,[:]

∥∥2 , (1)

where P is the number of pedestrians and xp,[:] (x̂p,[:]) rep-
resents the sequence of ground-truth (predicted) positions
of a pedestrian p at time t.

By contrast, the inference procedure resembles an auto-
regressive model. The decoder forecasts the first future po-
sition using the last hidden state of the encoder stack and an
input sequence initially composed only by the start token.
At each step, the predicted position x̂t is concatenated to the
current input sequence: this partial sequence is fed again to
the decoder to predict the next position x̂t+1.

4.2. Student training

To preserve teacher’s predictive capabilities given only
few observations, our training strategy relies on transferring
the knowledge lying in the entire input sequence: to achieve
this, we act on both encoder and decoder stacks.

Encoder distillation. Firstly, we force the student encoder
to mimic the behaviour of its teacher’s counterpart. Given
the information gap between the two networks, the higher
the transfer occurring at this level, the higher the capabil-
ity of the encoder to infer the missing information from the
(few) spatio-temporal interactions it observes. Technically,
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Figure 2. A comprehensive picture of our framework, termed Distilling the Observations (DTO), which provides a training strategy for
obtaining accurate trajectory predictions when only few observations are available.

we focus on the final hidden representations produced by
the encoder stack (i.e., the outputs of the fully connected
layer) and match those corresponding to the common time
steps using the following loss:

LED =
1

P

P−1∑
p=0

∥∥∥hT
p,[T−K:T ] − hS

p,[0:K]

∥∥∥2 , (2)

where hT
:,: are the activations of the teacher encoder, hS

:,: are
the student’ ones, while T and K are the number of obser-
vations we feed to the teacher and the student, respectively.

Decoder distillation. At the same time, we focus on match-
ing the function space spanned by both teacher and student
decoders. We pursue our goal relying on two terms: on one
hand, we match the activations prior to the fully connected
layer that give the final prediction, i.e. x̂p,t = FC(oTp,). On
the other hand, as proposed in [45], we exploit the self-
attention coefficients AT

p,[:] of the last decoder layer as an
additional learning guidance. The corresponding objective
function is defined as follows:

LDD =
1

P

P−1∑
p=0

∥∥∥oTp,[:] − oSp,[:]

∥∥∥2 + ∥∥∥AT
p,[:] − AS

p,[:]

∥∥∥2 . (3)

Overall objective. Finally, the student objective consists
of a weighted sum of the prediction loss, which takes into
account ground-truth positions, and the distillation losses:

L = αLGT + βLED + γLDD, (4)

where α, β and γ are three hyperparameters balancing the
contribution of each term.

5. Experiments
Metrics. We consider two standard error metrics in our
comparisons: the Average Displacement Error (ADE) and
the Final Displacement Error (FDE) [26]. While the ADE
indicates the average Euclidean distance between all the
predicted time steps and the ground-truth ones, the FDE ex-
presses instead only the error regarding the final position.

5.1. Datasets

ETH/UCY. As usually done [1, 14], we stitch together two
scenes from ETH [26] (ETH and Hotel) and three scenes
from UCY [22] (Univ, Zara-1, Zara-2). The resulting
dataset contains more than 1500 pedestrians, taking linear
and non-linear paths in outdoor scenarios. We follow the
common leave-one-scene-out protocol, training on 4 scenes
and testing on the remaining one.
Stanford Drone Dataset (SDD). [29] is a large scale
dataset collected by a drone monitoring crowded university
campus scenarios. It contains multiple interacting agents
(e.g., pedestrians, cyclists, cars) and is composed of a large
diversity of urban scenes (e.g., intersections and parks)
where people exhibit complex dynamics. We split the SDD
World Plane Human-Human dataset [32] into train (70 %),
val (10 %) and test (20 %) sets, respectively.
Lyft Prediction Dataset. [18] is one of the largest collec-
tion of traffic agent motion data. It includes tracks of cars,
pedestrians and other traffic agents recorded by cameras and
lidar sensors of Lyft autonomous fleet. We split the reduced
version of this dataset (1000 agents) in train (70 %), val
(10 %) and test (20 %) sets.



ETH Hotel Univ Zara-1 Zara-2 AVG

CVM [35] 1.07 / 2.28 0.32 / 0.61 0.52 / 1.17 0.43 / 0.95 0.32 / 0.72 0.53 / 1.15
ST-GAT 1V-1 [19] 0.69 / 1.36 0.44 / 0.90 0.58 / 1.23 0.47 / 1.02 0.40 / 0.86 0.52 / 1.07
Ind-TF [13] 0.60 / 1.25 0.27 / 0.50 0.64 / 1.23 0.57 / 1.09 0.42 / 0.81 0.50 / 0.96
SR-LSTM [51] 0.63 / 1.25 0.37 / 0.73 0.51 / 1.10 0.41 / 0.90 0.32 / 0.70 0.45 / 0.94
STAR [47] 0.56 / 1.11 0.26 / 0.50 0.52 / 1.13 0.40 / 0.89 0.31 / 0.71 0.41 / 0.87

STT (8 obs) 0.54 / 1.10 0.24 / 0.46 0.57 / 1.15 0.45 / 0.94 0.36 / 0.77 0.43 / 0.88
STT (2 obs) 0.72 / 1.45 0.48 / 0.48 0.53 / 1.09 0.64 / 1.21 0.44 / 0.88 0.57 / 1.12
STT + DTO (2 obs) 0.62 / 1.22 0.29 / 0.56 0.58 / 1.14 0.45 / 0.98 0.34 / 0.74 0.46 / 0.93

Table 1. Comparisons (in terms of ADE/FDE) on ETH/UCY. Our teacher network (STT) trained according to the standard protocol shows
comparable results w.r.t the competitors, while our student network (STT + DTO) shows similar performance despite its knowledge gap.

5.2. Comparison with the State-of-the-art

Since our proposal is deterministic (i.e., it gives a single
future sample), we leave aside stochastic methods [14, 21,
33] and compare our model to the following state-of-the-art
deterministic solutions:

• Constant Velocity Model (CVM) [35]: a simple but ef-
fective baseline that estimates future positions by con-
sidering solely the latest two timesteps;

• ST-GAT [19]: graph-based attention network using
LSTMs to model temporal correlations. We consider
the 1V-1 version, i.e. without variety loss and with one
output sample per input;

• Ind-TF [13]: vanilla transformer without explicit inter-
actions modelling;

• SR-LSTM [51]: LSTM-based network integrating a
system of motion gates that refines cells’ hidden states
using neighbourhood information;

• STAR [47]: encoder-decoder architecture based on a
transformer network to model temporal information
and spatial interactions. We consider its deterministic
version obtained removing the Gaussian noise.

Tab. 1 and Tab. 2 report our results: when trained accord-
ing to the common protocol (8 observations – 12 predic-
tions), our teacher network (STT – 8 obs) performs com-
parably to state-of-the-art approaches. Notably, the student
network (STT + DTO – 2 obs, last row of Tab. 1 and Tab. 2)
shows remarkable results: it approaches the teacher on all
the datasets, suggesting that the last two observations are an
informative summary of the input trajectory. Notably, triv-
ial strategies using only two observations do not achieve the
accuracy of our approach: both the CVM and training from
scratch with short sequences (STT – 2 obs) deliver higher
errors. Instead, our training procedure successfully bridges
the huge informative gap simulated at inference time.

It is worth noting that two observations as input do
not necessary generate straight lines as output: in this
case, our approach would have achieved results in line with

SDD Lyft

Ind-TF [13] 0.74 / 1.46 0.31 / 0.62
CVM [35] 0.69 / 1.39 0.29 / 0.61
SR-LSTM [51] 0.72 / 1.47 0.20 / 0.43

STT (8 obs) 0.63 / 1.26 0.24 / 0.53
STT (2 obs) 0.73 / 1.44 0.31 / 0.56
STT + DTO (2 obs) 0.64 / 1.27 0.27 / 0.55

Table 2. ADE/FDE results on SDD and Lyft.

Sampling strategy ADE / FDE

VRNN-1 one sample 0.73 / 1.49
VRNN-20 argmin KL(q ∥ p) 0.75 / 1.51
VRNN-20 argmin MSE(·,GT) 0.58 / 1.17

STT (ours) one sample 0.63 / 1.26

Table 3. Comparison between our approach and the V-RNN [10].

those of the Constant Velocity Model (CVM) (which pre-
dicts straight lines by design). Instead, our results show
that this does not happen: even observing two observations
solely, indeed, our method takes also spatial relationships
among pedestrians into account. This aspect is further cor-
roborated by the superiority of our proposal w.r.t. Ind-TF,
which treats every trajectory independently. In this regard,
we argue that handling spatial interactions interacts well
our distillation technique, closing the gap between using
8-samples input trajectories (Ind-TF) and 2-samples alone
(STT – 2 obs): the teacher may drive the student towards
novel robust representations (e.g. a better understanding of
the spatial interactions within the local neighborhood).

Finally, to support our choice of considering only de-
terministic methods, we rank multiple trajectories based on
other criteria which do not require ground-truth annotations
at inference time (e.g., for a V-RNN model, the aggregated
KL-divergence between the approximate posterior and the



Scene
Ground Truth Tracked trajectories

STT (8 obs) DTO (2 obs) STT (8 obs) STT (2 obs) CVM (2 obs) DTO (2 obs)

bookstore 0.48 / 0.97 0.49 / 0.95 0.58 / 1.08 0.54 / 1.01 0.55 / 1.02 0.53 / 0.99
nexus 0.64 / 1.26 0.72 / 1.39 1.38 / 2.10 1.33 / 2.07 1.38 / 2.15 1.29 / 2.03
deathCircle 0.76 / 1.55 0.85 / 1.74 0.99 / 1.83 0.97 / 1.83 0.99 / 1.86 0.94 / 1.82
gates 0.75 / 1.63 0.82 / 1.72 1.20 / 2.15 1.00 / 1.94 1.10 / 1.97 0.94 / 1.84
hyang 0.37 / 0.80 0.38 / 0.78 0.39 / 0.82 0.48 / 0.95 0.41 / 0.85 0.46 / 0.89
coupa 0.20 / 0.40 0.20 / 0.38 0.28 / 0.49 0.21 / 0.41 0.26 / 0.44 0.20 / 0.38

overall 0.55 / 1.12 0.60 / 1.19 0.84 / 1.46 0.80 / 1.40 0.84 / 1.40 0.77 / 1.37

Table 4. On the SDD’s scenarios, a comparison (ADE / FDE) between teacher (STT) and student (STT + DTO) on both ground-truth and
tracked trajectories.

conditional prior). In this regard, Tab. 3 proposes a com-
parison between our proposal and a V-RNN model with dif-
ferent sampling strategies: remarkably, only the (unviable)
criterion based on ground-truth trajectories yields higher ac-
curacy w.r.t. DTO.

5.3. Towards an “in-the-wild” evaluation: a tracker
in the middle

As outlined in Sec. 1, on-line scenarios cannot rely
on human intervention to correct detection and re-
identification errors at inference time. Based on this mo-
tivation, we advocate for employing shorter temporal hori-
zons while estimating future trajectories (2 time steps in
place of the common 8 ones), since a tracker can still pro-
vide reliable predictions for so short fragments. To shed
light on this point, we conduct an experiment on the Stan-
ford Drone Dataset: more precisely, we focus on input tra-
jectories and replace ground-truth associations with Deep
SORT’s [46] output, which is a tracking-by-detection al-
gorithm that leverages a deep metric for modelling appear-
ance. For each scene, we extract all the detections contained
in the observation history; then, we run this tracker on the
obtained detections and select as our new observation se-
quence the most similar tracklet to the ground-truth one.
For the sake of simplicity, we restrict our analysis to exam-
ples that are successfully followed for at least 8 time steps
(hence, we discard cases suffering from identity switches).

In this setting, we evaluate the performance of teacher
(namely, STT fed with 8-length tracklets) and student net-
works (namely, STT trained via DTO fed with 2-length
tracklets). As reported in Tab. 4, while DTO appears not ad-
vantageous in ideal scenarios (i.e. using ground-truth obser-
vations), switching to a fully-automatic inference (i.e. us-
ing tracked trajectories) turns the table: in almost all SDD
scenes, our model trained via DTO experiences a dimin-
ished degradation in performance w.r.t. the teacher. Its
worsening is mainly due to errors accumulation occurring
on long sequences: as depicted in Fig. 3a, tracker’s errors
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Figure 3. a) histograms of displacements errors between ground-
truth trajectories and their estimations provided by Deep SORT; b)
spread of the attention coefficients assigned by the decoder to each
encoder state.

(measured as ADE between ground-truth and re-tracked in-
put trajectories) spread on higher values for longer tracklets.
By contrast, when restraining the model to just a few obser-
vations, the average association error tends to be lower, thus
affecting less the downstream forecasting model.

Additionally, Tab. 4 draws a comparison between DTO
and two baselines that use only 2 observations: STT trained
from scratch with 2 observations and the Constant Velocity
Model (CVM). As reported, the effectiveness of DTO in
a fully-automatic context is not merely due to the use of
few time steps, but, more interestingly, also derives from
the exploitation of our knowledge distillation paradigm.

5.4. Why Distilling the Observations works

Results reported above suggest that information about
future positions can be often recovered by looking solely
at the most recent observations. This finding is also inves-
tigated by Schöller et al. [35], who report that forecasting
methods retain only partial input data. Furthermore, Becker
et al. [5] show that the contribution of the latest time step is
80.3% while for the second-latest is only 8.3%.



Dataset Training obs=2 obs=3 obs=4 obs=5 obs=6 obs=7 obs=8

ETH
UCY

From scratch 0.56 / 1.12 0.51 / 1.08 0.48 / 1.01 0.47 / 0.90 0.46 / 0.96 0.45 / 0.95 0.43 / 0.88

Variable obs. 0.64 / 1.33 0.63 / 1.31 0.61 / 1.28 0.62 / 1.28 0.62 / 1.29 0.63 / 1.31 0.64 / 1.31
Past generation 0.50 / 1.06 0.47 / 1.01 0.46 / 0.98 0.46 / 0.96 0.45 / 0.95 0.45 / 0.91 -
DTO 0.46 / 0.93 0.44 / 0.91 0.43 / 0.88 0.43 / 0.88 0.43 / 0.88 0.43 / 0.88 0.43 / 0.91

Lyft

From scratch 0.31 / 0.56 0.30 / 0.60 0.28 / 0.58 0.27 / 0.57 0.26 / 0.60 0.26 / 0.58 0.24 / 0.53

Variable obs. 0.43 / 0.83 0.41 / 0.76 0.41 / 0.72 0.36 / 0.67 0.36 / 0.67 0.43 / 0.73 0.57 / 0.87
Past generation 0.36 / 0.67 0.35 / 0.72 0.36 / 0.81 0.36 / 0.73 0.32 / 0.70 0.28 / 0.64 -
DTO 0.27 / 0.55 0.26 / 0.52 0.25 / 0.52 0.24 / 0.54 0.25 / 0.54 0.24 / 0.55 0.25 / 0.55

Table 5. Comparison (ADE/FDE) between different training strategies; all methods are trained and tested on the same number of time
steps, reported in the header. Best results are in bold. The distillation teacher is in underlined italic.

To verify if this behaviour also affects our spatio-
temporal transformer, Fig. 3b reports an analysis of the val-
ues assumed by the coefficients in the encoder-decoder self-
attention, i.e., the coefficients that represent the contribution
of each encoder state to the decoding of future positions.
Similarly to [35], we observe that, while earlier steps ex-
ert an (albeit small) influence, subsequent states provide a
higher contribution. In this regard, we conjecture that the
robustness of DTO resides in how the model handles the
earlier information: at training time, initial time steps are
not drastically discarded (as would happen when training
from scratch on fewer steps) but, instead, the student learns
to dispense with their limited informative content.

5.5. On the “length-shift” problem

We also argue that exploiting longer sequences overly
binds the model to the amount of data considered at train-
ing time. To prove our intuition, we investigate how mod-
els behave when the number of input time steps changes at
evaluation time: as shown in Fig. 4, reducing the number
of past observations results in a sudden and huge perfor-
mance drop, even for small variations as removing a single
time step. This behaviour – which we refer as “length-shift
problem” – is a common trait among different splits (8–12,
7–12, etc.) and architectures 1. This issue could reduce the
applicability of these models when limited or partial anno-
tations are available. For this reason, in the following, we
explore several strategies that attempt to mitigate this issue:
among all, DTO appears the most promising paradigm.

Addressing the length-shift problem. The naı̈ve approach
for dealing with this problem is to directly train a forecast-
ing model using fewer time steps (i.e., the same number of
observations expected at inference time). However, as re-
ported in Sec. 5.2 and Tab. 5, this choice does not allow

1See supplementary materials for the same assessment on the Varia-
tional RNN [10] and SR-LSTM [51]
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Figure 4. Performance trends using a different number of observa-
tions at evaluation time (ETH). The optimum occurs when training
and test conditions match; otherwise, the fewer the observations,
the higher the overall error (ADE).

the model to extract valuable motion patterns. To this end,
we explore a second strategy, training a single instance of
our STT with a variable number of observations (from 2
to 8 time steps). As reported in Tab. 5 (Variable observa-
tions), this strategy brings no benefits: we conjecture that
the model learns an average set of motion features, thus
granting predictions that are less sensitive to changes in the
number of time steps; however, it is far from extracting the
set of features that is optimal for each specific input length.

A third approach (Past generation) reckons on an aux-
iliary network to fill the input sequence with a set of gen-
erated observations: namely, when the number of observa-
tions is less than the one used at training time, we employ a
secondary model that predicts the missing part of the input
trajectory, which is then concatenated to available positions
and fed to the primary forecasting model. This represents
a step forward, but still delivers unsatisfactory results: we
conjecture that the main limitation of this approach regards
the amount of noise injected by the auxiliary module, which
then spreads to the model that generates future locations.

Finally, we found particularly beneficial the additional
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Figure 5. A qualitative comparison between predicted trajectories generated by our teacher and its 2–obs distilled student (on Stanford
Drone Dataset). In (a) and (b), our student generates more realistic samples, while in (c) and (d), due to more complex dynamics, few
observations are not enough to forecast positions close to the ground-truth trajectories.

supervision delivered by our distillation strategy. While the
student network can collect novel motion patterns from few
observations as if it was trained from scratch, it also inher-
its a broader knowledge lying in teacher’s activations. This
strategy shows a remarkable gain in performance that al-
lows the student to outperform all the aforementioned solu-
tions and reach the teacher’s results (8 – 12).

5.6. On the “domain shift” problem – Knowledge
Transfer

Regarding the generalization capabilities of the student,
we discuss here its higher degree of robustness to domain-
shifts (i.e., a change in the underlying data distribution be-
tween training and test sets). We expect that exploiting only
a few observations limits an excessive specialization on the
dataset-specific statistics, thus granting a superior strength
to distribution shifts. We validate our claim by investigating
the following experimental setting: we use SDD as training
set and then test both teacher and student networks on novel
scenarios, embodied by the test sets of ETH and Lyft.

As reported in Tab. 6, the presence of DTO favours
knowledge transfer and outperforms its distillation-less
counterpart. Moreover, in some cases, this strategy even
outperforms the results provided by the upper bound, i.e.,
when there is a match between source and target datasets
(e.g., ETH → ETH). On the one hand, we conjecture that
this is due to the fact that Stanford Drone collects more
representative instances of motion dynamics: indeed, the
complexity of the learned motion patterns eases the network
effort when evaluated on more straightforward scenarios,
such as ETH. On the other hand, our framework proves to
be beneficial against shifts, thus providing a solution that
addresses scenarios with limited available labels.

5.7. Qualitative analysis

In some cases (Fig. 5a and 5b), the knowledge gap that
occurs between our two networks does not seem to im-
pact the corresponding predictions. When observations are

Train.
Set DTO

# of training/evaluation obs

2 3 4 5 6 7 8

ETH ✗ 0.72 0.68 0.66 0.60 0.58 0.57 0.54
SDD ✗ 0.71 0.59 0.57 0.58 0.57 0.57 0.55
SDD ✓ 0.66 0.57 0.58 0.54 0.56 0.54 0.55

(a) Performance on the test set of ETH.

Train.
Set DTO

# of training/evaluation obs

2 3 4 5 6 7 8

Lyft ✗ 0.31 0.30 0.28 0.27 0.26 0.26 0.24
SDD ✗ 0.70 0.53 0.41 0.41 0.44 0.46 0.41
SDD ✓ 0.35 0.30 0.30 0.42 0.36 0.28 0.34

(b) Performance on the test set of Lyft.

Table 6. Results of transfer knowledge among different datasets
(ADE). We highlight in bold the highest results obtained in case of
dataset-shift (i.e., second and third rows of each of the two tables).

part complex dynamics, e.g., pronounced turns (see Fig. 5c
and 5d), the student incurs some limitations: here, observ-
ing only few positions does not provide enough information
to grasp such sophisticated dynamics.

6. Conclusion
This paper proposes an in-depth analysis of the evalu-

ation protocol usually employed to assess trajectory pre-
diction models. We conceive a novel training strategy to
train a transformer-based architecture to deal with scenarios
where only a few observations are available. Our teacher-
student paradigm reduces the information gap experienced
by the student, thus providing a practical and viable infer-
ence scheme for on-line scenarios. We also investigate is-
sues that could emerge at inference time. Our experiments
suggest that our strategy also enables a better knowledge
transfer capability across different training scenarios.
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[42] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph at-
tention networks. In Proc. of the International Conference
on Learning Representations (ICLR), 2018. 2

[43] Anirudh Vemula, Katharina Muelling, and Jean Oh. Social
attention: Modeling attention in human crowds. In Proc. of
the IEEE international Conference on Robotics and Automa-
tion (ICRA), 2018. 2

[44] Jack Wang, Aaron Hertzmann, and David J Fleet. Gaussian
process dynamical models. In Proc. of Advances in Neural
Information Processing Systems (NeurIPS), 2006. 2

[45] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang,
and Ming Zhou. Minilm: Deep self-attention distillation for
task-agnostic compression of pre-trained transformers. In
Proc. of Advances in Neural Information Processing Systems
(NeurIPS), 2020. 4

[46] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple
online and realtime tracking with a deep association metric.
In 2017 IEEE international conference on image processing
(ICIP), pages 3645–3649. IEEE, 2017. 6

[47] Cunjun Yu, Xiao Ma, Jiawei Ren, Haiyu Zhao, and Shuai Yi.
Spatio-temporal graph transformer networks for pedestrian
trajectory prediction. In Proc. of the European Conference
on Computer Vision (ECCV), 2020. 1, 2, 3, 5

[48] Ye Yuan, Xinshuo Weng, Yanglan Ou, and Kris Kitani.
Agentformer: Agent-aware transformers for socio-temporal
multi-agent forecasting. In Proc. of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), 2021. 1

[49] Sergey Zagoruyko and Nikos Komodakis. Paying more at-
tention to attention: Improving the performance of convo-
lutional neural networks via attention transfer. In Proc. of
the International Conference on Learning Representations
(ICLR), 2017. 2

[50] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chen-
glong Bao, and Kaisheng Ma. Be your own teacher: Improve
the performance of convolutional neural networks via self
distillation. In Proc. of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), 2019. 2

[51] Pu Zhang, Wanli Ouyang, Pengfei Zhang, Jianru Xue, and
Nanning Zheng. Sr-lstm: State refinement for lstm towards
pedestrian trajectory prediction. In Proc. of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 1, 2, 5, 7


	. Introduction
	. Related Work
	. Model
	. Vanilla Transformer for Trajectory Prediction
	. Spatio-Temporal Transformer (STT)

	. Distilling the Observations (DTO)
	. Teacher training
	. Student training

	. Experiments
	. Datasets
	. Comparison with the State-of-the-art
	. Towards an ``in-the-wild'' evaluation: a tracker in the middle
	. Why Distilling the Observations works
	. On the ``length-shift'' problem
	. On the ``domain shift'' problem – Knowledge Transfer
	. Qualitative analysis

	. Conclusion

