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Abstract
Relying on recent advances in the theory of motives we develop a general formalism
for derived categories of motives with Q-coefficients on perfect ∞-prestacks. We
construct Grothendieck’s six functors for motives over perfect (ind-)schemes perfectly
of finite presentation. Following ideas of Soergel–Wendt, this is used to study basic
properties of stratified Tate motives on Witt vector partial affine flag varieties. As an
application we give a motivic refinement of Zhu’s geometric Satake equivalence for
Witt vector affine Grassmannians in this set-up.
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1 Introduction

1.1 Motivation

The Satake isomorphism [23] plays a foundational rôle in several branches of the
Langlands program. Let p be a prime number, and fix p1/2 ∈ Q. For a split reductive
groupG and a non-archimedean local field likeQp or Fp((t)), this isomorphism relates
spherical functions pertaining to G to the representation theory of the Langlands dual
group ̂G:

Cc(G(Qp)//G(Zp)
) ∼=−→ R(̂G)

∼=←− Cc(G(Fp((t)))//G(Fp[[t]])
)

(1.1)

The so-called spherical Hecke algebras at the right and left consist of finitely sup-
ported Z[p±1/2]-valued functions on the G(Zp)- (resp. G(Fp[[t]])-)double cosets in
G(Qp) (resp. G(Fp((t)))). In the middle, ̂G denotes the Langlands dual group formed
over Q using a fixed pinning (T , B, X) of G. By the classification of split reduc-
tive groups in terms of their root data, it can be described by switching characters
and cocharacters, as well as roots and coroots. For example [13], ̂GLn = GLn ,
̂SLn = PGLn and ̂Sp2g = SO2g+1. The ring R(̂G) is the Grothendieck Z[p±1/2]-
algebra of algebraic representations of this dual group.

The chain of isomorphisms (1.1) is an instance of the resemblance [35] betweenQp

andFp((t)), in which the uniformizer p corresponds to the uniformizer t . Despite being
only a superficial similarity –given that the addition andmultiplication in the two fields
are severely different– the kinship is strong enough so that the characteristic functions
of the double cosets G(Zp)pμG(Zp) and G(Fp[[t]])tμG(Fp[[t]]) correspond to each
other under (1.1). Here μ : Gm → T is any dominant cocharacter.

The geometric Satake equivalence might be regarded, at the same time, as a
geometrization and a categorification of the right hand isomorphism above: the right-
most term is geometrized by means of the affine Grassmannian, whose Fp-points
are the quotient G(Fp((t)))/G(Fp[[t]]). The categorification is achieved by relating
the entire category of algebraic ̂G-representations (as opposed to its Grothendieck
ring) to certain equivariant perverse sheaves on the affine Grassmannian. This circle
of ideas has been worked on by various authors including Lusztig [26], Ginzburg
[21], Belinson–Drinfeld [5] and Mirković–Vilonen [27]. For the relation with (1.1)
the reader is referred to [32,38].

In analogy to the function field case, a geometrization and categorification of the left
hand isomorphism in (1.1) was proven by Zhu [37]. To begin with, such an endeavour
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is made possible by [37] and Bhatt–Scholze [9] who have shown that the cosets
G(Qp)/G(Zp) are the Fp-points of an algebro-geometric object known as the Witt
vector affine Grassmannian, and denoted GrG → Spec(Fp) in this paper. For a fixed
prime nubmer � �= p and a choice of half twist Q�(

1
2 ), Zhu proves an equivalence of

Tannakian categories

PervL+G
(

GrG;Q�

)0,ss ∼=−→ RepQ�

(

̂G
)

(1.2)

between semi-simple perverseQ�-sheaves on GrG of weight 0 which are furthermore
equivariant with respect to the action of the positive loop group L+G. This positive
loop group has as Fp-points the group G(Zp); it lies inside the full loop group LG,
whose Fp-points are G(Qp).

Building upon our earlierwork [30,31], the goal of the present paper is to refine (1.2)
into an equivalence between the category ofmixed Tatemotives on the double quotient
L+G\LG/L+G and representations of Deligne’s extended dual group ̂G1, a certain
extension of Gm (which records the weights) by ̂G. This equivalence is independent
of the choice of � �= p present in (1.2) via the use of �-adic cohomology. We refer to
Remark 5.8 for the relation with (1.1). Also we remark that Zhu [39] has explained the
construction of a motivic Satake equivalence using numerical motives. This approach
is based on an explicit enumeration of algebraic cycles on affine Grassmannians. By
comparison, the approach taken in this paper is more strongly relying on the general
framework of motives given by Ayoub [2,3] and Cisinski–Déglise [11].

1.2 Results

A prestack over Fp is a functor from affine Fp-algebras to anima (called spaces in
[25], Kan complexes, or∞-groupoids or, in classical terminology, simplicial sets up
to weak equivalences). Examples of prestacks include (ordinary) presheaves such as
Fp-schemes and ind-schemes (via their functor of points), but also homotopy quotients
of such objects by group actions, and more general geometric objects such as higher
stacks over Fp. In [31] we have constructed a stable∞-category DM(X) of motives
withQ-coefficients on any prestack X . For example, we can speak of and conveniently
work with DM(L+G\LG/L+G), the category of motives on the indicated double
quotient.

In order to state our results, we first need to deal with the general process of per-
fection, see §6 in the first arXiv version of [31], and also [17], or the recent preprint of
Bouthier–Kazhdan–Varshavsky [8, §2.3.5]. There are two ways to turn a Fp-prestack
X perfect, i.e., to ensure that pullback along the absolute Frobenius σ is an isomor-
phism: the limit perfection

limσ X
def= lim

(

. . .
σ→ X

σ→ X
σ→ X

)

,

and the colimit perfection Xperf := colimT→X limσ T . The latter is constructed by
glueing the perfections of all affine Fp-schemes covering the prestack (see Defini-
tion 2.3).
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Proposition 1.1 (Corollary 2.6) For any Fp-prestack X, there are maps

limσ X ←− (limσ X)perf
�−→ Xperf

inducing equivalences on categories of motives

DM(limσ X) � DM((limσ X)perf) � DM(Xperf).

Recall from [9,37] (or see Sect. 2.3 for a brief recapitulation) that perfectly finitely
presented (pfp) Fp-schemes are precisely those Fp-schemes X which arise as X �
limσ X0 for some finite-type Fp-scheme X0. Such a scheme X0 is called a model of
X . We have DM(X0) � DM(X) by the previous proposition. A typical example of a
pfp scheme is (A1

Fp
)perf = SpecFp[t p−∞], the perfection of A1

Fp
.

Theorem 1.2 (Theorems 2.10 and 2.12) The equivalences of Proposition 1.1 can be
used to endow motives on pfp schemes over Fp with a six functor formalism obeying
all the standard properties including base change, localization, h-descent, duality and
homotopy invariance with respect (A1

Fp
)perf .

Similar results also hold for motives on ind-(pfp schemes), i.e., objects presented
as N-indexed colimits X = colimXi , where the Xi are pfp schemes and the transi-
tion maps Xi → Xi+1 are closed immersions. An example is the Witt vector affine
Grassmannian GrG = (LG/L+G)ét which is shown to be an ind-(pfp scheme) in [9].

Such a convenient formalism lends itself to applications in geometric representation
theory. Extending previous work of Soergel–Wendt [34] for finite type schemes and of
[31] for ind-schemes of ind-(finite type) to the (ind-)pfp case,we say that a stratification
on an ind-(pfp scheme) X is Whitney–Tate if the derived categories of Tate motives on
the individual strata “glue” in a meaningful manner (see Definition 3.3 for the precise
condition).

Theorem 1.3 (special case of Theorem 4.5)

(i) The stratification on the Witt vector affine Grassmannian GrG by L+G-orbits is
Whitney–Tate. Accordingly, the stable∞-category DTM(GrG) of stratified Tate
motives is well-defined: such motives are characterized by the property that their
restriction to the L+G-orbits are Tate, i.e., generated (under shifts and extensions)
by motives of the form 1(n), n ∈ Z on the L+G-orbits.

(ii) The categoryDTM(GrG) admits a “motivic” t-structurewhose heartMTM(GrG)

is generated by intersection motives ICμ(n), n ∈ Z as simple objects, where
μ : Gm → T ranges over the dominant cocharacters of the fixed maximal torus
T ⊂ G.

In fact, this result is as a special case of Theorem 4.5 where we prove the same
result more generally for stratifications on Witt vector (partial) affine flag varieties
Flf = (LG/Pf)

ét associated to any parahoric subgroup Pf ⊂ LG, in place of L+G.
An example is the Iwahori subgroup B ⊂ LG associated to the choice of the Borel
subgroup B ⊂ G.
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The convolution product of functions in the Hecke algebra is enhanced by the
convolution product (Sect. 4.3)

-�- : DM(L+G\LG/L+G)× DM(L+G\LG/L+G)→ DM(L+G\LG/L+G).

Byétale descent,motives on LG/L+G are equivalent tomotives on the étale sheafifica-
tionGrG = (LG/L+G)ét . Therefore,motives on the double quotient L+G\LG/L+G
are equivalent to L+G-equivariant motives on GrG .

We define a category of equivariant stratified Tate motives

DTM(L+G\LG/L+G) ⊂ DM(L+G\LG/L+G) (1.3)

by requiring that the underlying (non-equivariant) motive on GrG is stratified Tate
in the sense above. By Theorem 4.6, the category DTM(L+G\LG/L+G) inherits a
t-structure from the t-structure on DTM(GrG). The heart of this t-structure is denoted
MTM(L+G\LG/L+G). In relation to the outline in Sect. 1.1, this category is an
independent-of-� version of perverse L+G-equivariant �-adic sheaves on GrG subject
to the condition that their restriction to the strata are Tate twists of the (possibly shifted)
constant sheaf.

Theorem 1.4 (special case of Theorem 4.8) The convolution product functor � pre-
serves the subcategory (1.3).

Again, this statement is shown in Theorem 4.8 in the greater generality for Witt
vector (partial) affine flag varieties as above. The following statements, however, are
specific to the choice of L+G. In Proposition 5.3 we prove, as a consequence of
the semi-simplicity of MTM(Fq) and Kazhdan–Lusztig’s parity vanishing, that the
forgetful functor

MTM(L+G\LG/L+G)→ MTM(GrG) (1.4)

is an equivalence of semi-simple (abelian) categories whose generators are the sim-
ple objects ICμ(n) mentioned in Theorem 1.3(ii). This category is stable under the
convolution product � and hence inherits a monoidal structure by Theorem 4.8(iii).

Wewrite ̂G1 for themodification of the Langlands dual group introduced by Frenkel
and Gross [19] following a suggestion of Deligne [15]. IfG is simply connected, ̂G1 is
the (direct) product of ̂G andGm, where theGm-factor arises from the presence of Tate
twists. In general, ̂G1 is a not necessarily split extension of Gm by ̂G, a phenomenon
which is related to the necessity of fixing p1/2 ∈ Q in the Satake isomorphisms (1.1).
Our main result is the motivic Satake equivalence for Witt vector affine flag varieties.

Theorem 1.5 (Theorems 5.2 and 5.7) The monoidal structure on (1.4) given by the
convolution product is part of the structure of a Q-linear Tannakian category, and as
such there is, after extending scalars to Q, an equivalence

MTM(L+G\LG/L+G;Q)
�−→ RepQ(̂G1).
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This statement is independent of � since no category of �-adic (perverse) sheaves
is required for its formulation. Furthermore, this equivalence is uniquely determined
by its compatibility with (the appropriate version of) the �-adic equivalence (1.2).
As mentioned in Sect. 1.1 a similar result was also obtained in [39] using a different
route, namely an explicit enumeration of algebraic cycles on the Witt vector affine
Grassmannian, and working with the category of numerical motives. As is explained
by the material in the sections below, working with the six functor formalism of
motives as in this paper offers more flexibility including, say, handling the derived
categories DTM(B\LG/B) of doubly Iwahori-equivariant stratified Tate motives on
the loop group: the convolution product on this category does not respect the abelian
subcategory of equivariantmixedTatemotives, so thatworkingwith numericalmotives
is prohibitive in such a situation.

2 Motives on perfect (ind-)schemes

2.1 Recollections on prestacks

In order to treat motives on the Witt vector affine Grassmannian and to relate them
to motives on ordinary affine Grassmannians, it is very useful to use the definition of
a category of motives on arbitrary prestacks developed in [31, §2]. We briefly recall
the rudiments in this subsection. A very similar theory, for �-adic sheaves instead of
motives, has been developed very recently in [8].

For a field k, AffSchftk is the category of affine k-schemes of finite type. We denote
by AffSchk its κ-pro-completion, i.e., the category of affine k-schemes whose under-
lying k-algebra is generated by at most κ elements. Here κ is a large enough regular
cardinal fixed once and for all. For all purposes in this paper, we may choose κ to be
the countable cardinal. The∞-category of prestacks is defined as the∞-categorical
presheaf category, i.e.,

PreStkk
def= Fun

(

AffSchopk ,Ani
)

.

Here, following the terminology and discussion in [14, §5.1.4], Ani denotes the∞-
category of anima, i.e., the free completion of the category of finite sets under sifted
homotopy colimits, or, equivalently, the ∞-category of spaces [25, §1.2.16], also
called ∞-groupoids. Prestacks are an extremely general class of algebro-geometric
objects: bymeans of its functor of points, any k-scheme defines a prestack. In addition,
prestacks are closed under all (homotopy) limits and colimits. In particular, any strict
ind-scheme X = colimXi is a prestack, as is a quotient (always understood in the
∞-categorical sense, otherwise also known as a homotopy quotient) Y/G, where G
is a group-valued presheaf acting on a presheaf Y .

We denote by DGCatcont the ∞-category of presentable, stable dg-∞-categories
with continuous (i.e., colimit-preserving) functors.

Construction 2.1 In [31, Definition 2.2.1], we have defined a category DM(X) in
DGCatcont of motives on any prestack X with the following features:
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(i) For a scheme X of finite type over k, the homotopy category of DM(X) (which is
a triangulated category) recovers the usual triangulated category of motives with
rational coefficients due to Ayoub and Cisinski–Déglise [2,3], [11, §14].

(ii) If X = limn∈N Xn is an affine pro-algebraic scheme, i.e., Xi/k is affine and of

finite type and so are the transition maps Xn
pn−→ Xn−1, then

DM(X) = colim

(

DM(X0)
(p0)!−→ DM(X1)

(p1)!−→ . . .

)

where the colimit is taken in DGCatcont (we emphasize that this category consists
of colimit-preserving functors only).

(iii) If a prestack X admits a presentation X = colimXi , where Xi ∈ AffSchk , then

DM(X) = lim
(

DM(Xi ), ( fi j )
!)

where the maps Xi
fi j−→ X j are the ones in the colimit diagram defining X . More

colloquially speaking, a motive on X is a family of motives on all the “covers”
Xi compatible with the system defining the colimit diagram.

(iv) For any map of prestacks f : X → Y , there is a functor f ! : DM(Y ) → DM(X).
These yield a presheaf DM : PreStkop → DGCatcont which is shown to be a sheaf
in Voevodsky’s h-topology in [31, Theorem 2.2.16]. If we need to emphasize the
nature of the pullback functors, we also write DM! for this (pre)sheaf.

(v) In both preceding items, we use !-pullback instead of the more easily defined
∗-pullback in order to obtain the desired categories DM(X) for ind-schemes X ,
see [31, Corollary 2.3.4]. For X = Y/G, the quotient of an action of a smooth
algebraic groupG on afinite type k-schemeY , the approachwith∗- and !-pullback
yields equivalent categories, though, cf. the discussion in [31, Remark 2.2.2] and
after [31, Lemma 2.2.7]

2.2 Perfection of prestacks

In this section we develop a general formalism of colimit perfections for∞-prestacks,
and compare it to the limit perfection as used in [37, Appendix A], [9] (cf. also [7])
and [36, Appendix A].

Let p be a prime, and let k be a perfect field of characteristic p. For each T =
SpecR ∈ AffSchk , letσT : T → T be the absolute Frobeniusmorphismgiven by R →
R, x �→ x p. This defines an endofunctor σ of the identity transformation on AffSchk .
Let AffSchperfk be the full subcategory of objects T ∈ AffSchk such that σT is an

automorphism. These are called perfect affine k-schemes. The inclusion AffSchperfk ⊂
AffSchk admits a right adjoint given by T �→ limσ T = Spec(colimr �→r p R).

Precomposition with σ defines a (co-)limit preserving endofunctor of the identity
on PreStkk , denoted by the same letter. The category of perfect prestacks1 is the

1 Recall that we fixed a regular cardinal κ in Sect. 2.1.
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∞-category

PreStkperfk
def= Fun

(

(AffSchperfk )op,Ani
)

.

The natural restriction functor res : PreStkk → PreStkperfk clearly preserves limits and
colimits.

Lemma 2.2 There is an adjunction

incl : PreStkperfk � PreStkk : res

which under the Yoneda embedding extends the adjunction AffSchperfk � AffSchk .
Both functors incl and res preserve colimits, and satisfy res ◦ incl = id. In particular,
incl is a full embedding, and σ is an equivalence on objects in the essential image.

Proof The adjunction (incl, res) exists by [25, Proposition 5.2.6.3]. Here incl is the
colimit preserving functor constructed in [25, Theorem 5.1.5.6]. Hence, the claim
res ◦ incl = id follows, by continuity of both functors, from the corresponding fact
for affine schemes. 
�
Definition 2.3 The (colimit) perfection is the endofunctor on PreStkk defined by

(-)perf
def= incl ◦ res(-).

For X ∈ PreStkk , X = colimT→XT with T ∈ AffSchk , it is computed as Xperf =
colimT→X limσ T .

In the following, we identify PreStkperfk � incl(PreStkperfk ) ⊂ PreStkk . This is the
full subcategory of all objects X such that the counit of the adjunction Xperf → X is
an equivalence. Note that the perfection of ind-objects produces ind-(perfect objects),
so that the functor (-)perf is well-suited for working with ind-schemes.

The following lemma appeared in an early arxiv version of [31]. A more refined
statement for SH[ 1p ], the stable A1-homotopy category localized at the characteristic
(as opposed to DM with rational coefficients) is due to Elmanto and Khan [17].

Lemma 2.4 Let X ∈ PreStkk be any prestack.

(i) The pullback σ ! : DM(X) → DM(X) is equivalent to the identity.
(ii) The counit of the adjunctionπ : Xperf → X induces an equivalenceπ ! : DM(X) �

DM(Xperf).

Proof For (i), first let X ∈ AffSchftk . Invariance of DM under pullback along finite
surjective radicial maps [11, Proposition 2.1.9] shows that the natural map id → σ∗
is invertible. Thus, we get id � σ ! by adjunction (using σ∗ = σ!). This equivalence
extends to PreStkk by continuity.

For (ii), we reduce to the case X ∈ AffSchk by continuity. Then Xperf = limσ X =
limX→T limσ T for T ∈ AffSchftk , and we reduce further to the case X = T ∈
AffSchftk . In this case, π ! : DM(X) → DM(Xperf) = colimσ !DM(X) is the natural
map which is an equivalence by (i). 
�
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Definition 2.5 The (limit) perfection is the endofunctor on PreStkk defined by

lim
σ

X
def= lim

(

. . .
σ→ X

σ→ X
σ→ X

)

,

where the limit is indexed by the positive integers.

Restricted to schemes, this functor is used in [9,37]. It gives another way of con-
structing prestacks on which σ acts as an equivalence. In general, the natural map

Xperf → lim
σ

X

is not an equivalence. For a counter-example, take the ind-schemeA∞ = colim(A0 0→
A1 id×0→ A2 . . . ). For a k-algebra R, the natural map

(A∞)perf(R) = ⊕i≥0
(

lim
σ

R
)→ lim

σ

(⊕i≥0 R
) = lim

σ
A∞(R).

is bijective if R is reduced (so that Frobenius is injective), but not in general (e.g.,

take R = k[� 1
p∞ ]/(�)). However, as DM is invariant under Nil-thickenings, the

categories of motives on these two prestacks are equivalent:

Corollary 2.6 For any prestack X ∈ PreStkk , there is a commutative diagram of
prestacks

(limσ X)perf �
πperf

Xperf

limσ X
π

X ,

where π is the natural projection. In particular by Lemma 2.4(ii), the !-pullback
induces equivalences DM(X) � DM(limσ X) � DM(Xperf).

Proof Wehave to show thatπperf is an equivalence, andwe claim that res◦π is already
an equivalence. Namely, Hom(T , limσ X) � Hom(T , X) for any T ∈ AffSchperfk .
Indeed, for any map f : T → X and any r ≥ 0, the diagram

T

σ r �

f
X

σ r

T
f

X ,

commutes up to equivalence. 
�
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Remark 2.7 If X is a scheme, then the canonical map Xperf → limσ X induces an iso-
morphism after Zariski sheafification. Indeed, ifU → X is an open affine subscheme,
then U perf = limσ U → limσ X is an open affine subscheme by [9, Lemma 3.4 (ix)].
This easily implies (Xperf)Zar ∼= limσ X .

2.3 Motives on perfect schemes

In order to obtain a six functor formalism, we need to put suitable finiteness assump-
tions on the objects.

Definition 2.8 ([37, Definition A.13], [9, Proposition 3.11]) A map f : X → Y
of perfect qcqs schemes is called perfectly of finite presentation or just pfp if
the induced map SpecA → SpecB of any open affines in X , resp. Y factors as
SpecA � limσ (SpecA0) → SpecA0 → SpecB, where A0 is a finitely presented
B-algebra. The full subcategory of Schk spanned by the qcqs pfp perfect k-schemes,
or just pfp schemes, is denoted by Schpfpk .

Lemma 2.9 (i) ([37, Proposition A.17]) The functor Schftk → Schpfpk , X �→ limσ X

is full and essentially surjective. Thus, each object X ∈ Schpfpk and similarly
each morphism f admits a model, i.e., a finite type k-scheme X0 such that X =
limσ X0.

(ii) It induces an equivalence of categories Schftk [S−1] ∼= Schpfpk on the localization
with respect to the class S of finite radicial surjective maps in Schftk .

(iii) The equivalence in ii) induces an equivalence on small étale sites.
(iv) If Z ⊂ X ⊃ U is a diagram consisting of a closed and complementary open

immersion in Schpfpk , then there is a model Z0 ⊂ X0 ⊃ U0 again consisting of a
closed and open immersion.

Proof Part (iii) follows from (ii), see [33, Tag 04DZ]. A map f in Schftk lies in S iff
it is a universal homeomorphism, cf. [33, Tags 04DF, 01WJ, 01S4] or, equivalently
by [9, Lemma 3.8], iff limσ f is an isomorphism. It remains to show that any functor
ϕ : Schftk → C to a category C that sends maps in S to isomorphisms factors uniquely

over the perfection functor. By Zhu’s result in (i) ψ : Schpfpk → C is unique if it

exists. Also, to show the existence we may replace Schpfpk by the full subcategory of

Schpfpk spanned by the image of the perfection functor. We define ψ on objects by
fixing a model X = limσ X0 for each X , and set ψ(X) := ϕ(X0). By definition [9,
Proposition 3.11], given any pfp map f : X → Y , there is some n � 0 such that
we have the diagram below, where X (n)

0 is the n-th stage of the limit defining X (it is

http://stacks.math.columbia.edu/tag/04DZ
http://stacks.math.columbia.edu/tag/04DF
http://stacks.math.columbia.edu/tag/01WJ
http://stacks.math.columbia.edu/tag/01S4
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abstractly isomorphic to X0, but the structural map to k differs by σ n):

X = limσ X0
f

Y = limσ Y0

X (n)
0

σ n

f (n)
0

Y0

X0.

We define ψ( f ) as the composite ϕ( f (n)
0 ) ◦ ϕ(σ n)−1. This is well-defined indepen-

dently of n. One immediately checks that it is also compatible with composition. This
shows the existence of a factorization, hence (ii).

For (iv), let X0 be a reduced model of X . Then |X | = |X0| on the underlying
topological spaces, and we define Z0 (resp. U0) as the reduced closed (resp. open)
subscheme X0 defined by the closed subset |Z | (resp. open subset |U |) in |X | = |X0|.
The limit perfection preserves open and closed immersions by [9, Lemma 3.4], so that
Z0 ⊂ X0 ⊃ U0 is a model for Z ⊂ X ⊃ U . 
�

Theorem 2.10 Motives on pfp schemes enjoy a six-functor formalism with the follow-
ing properties. Throughout, let X, Y denote objects, resp. f a morphism in Schpfpk .
Let X0, Y0, resp. f0 be models thereof.

(i) The presheaves DM∗ and DM! on Schftk (given on objects by X �→ DM(X), and
on morphisms by f �→ f ∗, resp. f !) factor uniquely over functors

DM∗,DM! : (Schpfpk )op → DGCatcont.

On objects X ∈ Schpfpk , these two presheaves take the same values, denoted
simply DM(X). The functor DM! agrees with the restriction of the presheaf DM
in Construction 2.1(iv) from PreStkk to Sch

pfp
k .

(ii) The natural map p : X → X0 induces an equivalence of∞-categories

p! : DM(X0)
∼=−→ DM(X), (2.1)

which preserves the monoidal unit 1 and is compatible with all functors below.
In particular, if X has a regular model X0/k, then

HomDM(X)(1X , 1X (n)[m]) = (K2n−m(X0)⊗Q)(n) = CHn(X0, 2n − m)Q,

where the terms at the right are the n-th Adams eigenspace in the algebraic
K -theory of X and Bloch’s higher Chow group, both tensored with Q.
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(iii) There are adjunctions

f ∗ : DM(Y ) � DM(X) : f∗.
f! : DM(X) � DM(Y ) : f !.

If f has a smooth model, there is an adjunction

f
 : DM(X) � DM(Y ) : f ∗.

These functors are functorial in f . Under the equivalence (2.1), they correspond
to ( f0)∗ etc.

(iv) If f has a proper model, then f! = f∗; if f has an étale model, then f ! = f ∗.
More generally, if f has a smooth model f0 of relative dimension n, there is a
functorial equivalence (called relative purity)

f ! � f ∗(n)[2n]. (2.2)

Yet more generally, the latter equivalence holds if f is a perfectly smooth map
of relative dimension n in the sense of [37, Definition A.25].

(v) For the projection p : (Gm)perf ×k X → X, and any M ∈ DM(X), the map
p
 p∗M[−1] → M[−1] inDM(X) is a split monomorphism. The complementary
summand is denoted by M(1). The functor M �→ M(1) is an equivalence with
inverse denoted by M �→ M(−1).

(vi) The categoryDM(X) is compactly generated by the objects t
1(n), t : T → X pfp
smooth and n ∈ Z. In particular, the monoidal unit 1X ∈ DM(X) is compact. The
functors f
, f∗, f ∗, f!, and f ! preserve compact objects and preserve arbitrary
(homotopy) colimits.

(vii) For any pfp map f , there is a projection formula ( f!M)⊗ N � f!(M ⊗ f ∗N ).
(viii) If p : X → Speck denotes the structural map, the dualising functor

DX
def= Hom(−, p!1) (2.3)

is a contravariant involution on the subcategory DM(X)c of compact objects,
i.e., DX ◦ DX = id. Furthermore, on compact objects, there are equivalences

DY f! = f∗DX , f ∗DY = DX f !.

(ix) For a pfp closed immersion i : Z → X with open complement j : U → X, there
are equivalences

DM(X) = laxlim

(

DM(U )
i ! j!−→ DM(Z)

)

,

DM(X) = laxlim

(

DM(U )
i∗ j∗−→ DM(Z)

)

.
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Here laxlim denotes the lax limit [20]whose objects can be colloquially described
as triples (M ∈ DM(U ), N ∈ DM(Z), α : i ! j!M → N ), where α is any
map (and the non-lax limit would be the subcategory where this map is an iso-
morphism). Equivalently, the (co)units of the adjunctions above assemble into
so-called localization homotopy fiber sequences

i!i ! → id→ j∗ j∗
[1]→, (2.4)

j! j ! → id→ i∗i∗
[1]→ . (2.5)

(x) For a cartesian diagram in SchpfpS (necessarily consisting of pfp maps)

X ′ g′

f ′

X

f

Y ′ g
Y ,

there are natural equivalences

g! f∗
∼=−→ f ′∗g′!, (2.6)

f ∗g!
∼=−→ g′! f

′∗. (2.7)

(xi) The category DM is perfectly homotopy-invariant in the sense that for the pro-
jection map p : (An)perf ×k X → X for any n ∈ Z≥0, the counit and unit maps
p
 p∗ → id and id→ p∗ p∗ are functorial equivalences in DM(X) [11, 2.1.3].

(xii) The presheaves DM∗ and DM! are sheaves for the h-topology on pfp schemes,
i.e., if f : X → Y admits a model which is an h-covering in Schftk , then the
natural map

DM(Y ) → lim

(

DM(X)
(p1)∗
⇒

(p2)∗
DM(X ×Y X) . . .

)

is an equivalence, and likewise with !-pullbacks instead. We refer to this property
as h-descent.

(xiii) Suppose X is separated. The categoryDM(X) is equippedwith aweight structure

(DM(X)w≤0,DM(X)w≥0).

If X admits a regular model, 1X is in the heart DM(X)w=0 = DM(X)w≤0 ∩
DM(X)w≥0 of this weight structure. Moreover, f ∗ and f! are weight-left exact
(preserve “w ≤ 0”) while f∗ and f ! are weight-right exact (preserve “w ≥ 0”).
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(xiv) Let � be a prime number different from p = chark. There is a �-adic realization
functor

ρ� : DM(X) → Dét(X ,Q�) := Ind(Db
cons(X ,Q�))

taking values in the ind-completion of the bounded derived category of con-
structible Q�-adic étale sheaves constructed in [37, §A.3]. It commutes with the
six functors f∗, f ∗, f!, f !,⊗,Hom.

Proof (i) follows from Lemma 2.9 and the above-mentioned fact that f ∗ and f ! are
equivalences for any finite radicial surjective map f [11, Proposition 2.1.9].

(ii) The prestack approach to DM(X) yields DM(X) � DM(X0) by Corollary 2.6.
With (i) and (ii) in hand, the remaining statements mostly follow directly from

the classical assertions for finite-type k-schemes, which for the large majority are
due to Ayoub and Cisinski–Déglise and, for functoriality for non-separated maps
and h-descent proven in [31, Theorem 2.1.13, Proposition 2.1.14]. We will use these
classical properties below without further comment, and refer to [31, Synopsis 2.1.1]
for a detailed list of references.

The equivalence (2.1) is immediate from Lemma 2.9 using invariance of DM under
finite radicial surjective maps (hence DM is well-defined on the localization) and
Corollary 2.6. The statements in (iii)–(vi), (x), (xi) are then direct consequences of the
corresponding assertions for finite type k-schemes.

For (vii) note that the functoriality f! and f ∗ and also the tensor product are induced,
by definition, from ( f0)!, ( f0)∗ and the tensor product on DM(X0) etc. Similarly for
the internal Hom in (viii).

The purity equivalence in the case of a perfectly smooth map f follows from the
smooth case and the étale descent property in (xii).

In the definition of DX as stated in (2.3), note that the pullback functor p! exists
by virtue of the general formalism of motives on prestacks. Under the equivalence
DM(X) = DM(X0), it can also be computed as Hom(−, p!01), where p0 : X0 → k
is the structural map. This again reduces all the assertions to the classical duality
statements for motives on finite type k-schemes.

In the situation of (ix), apply Lemma 2.9(iv) to get the localization fiber sequences
(2.4), (2.5) from the corresponding statements for DM on Schftk due to Ayoub. In the
presence of the base change equivalence in (x), these fiber sequences are equivalent
to the formulation involving the lax limit, cf. the argument in [1, Example 4.1.6].

For (xiii) note that X is separated iff it admits a separated model X0, so that the
weight structure on DM(X0) can be used.

In the same vein, (xiv) follows from the equivalence (2.1) and its �-adic counterpart
Db
cons(X) = Db

cons(X0) [37, §A.3.1]. 
�

2.4 Motives on perfect ind-schemes

As an extension of Definition 2.8, we consider the full subcategory IndSchpfpk of ordi-
nary presheaves consisting of strict ℵ0-ind-(pfp schemes), i.e., objects are countable
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filtered colimits of pfp schemes with transition maps being closed immersions. See
for example [31, §A.1], or the notes [29, §1] for details on ind-schemes.

For brevity, the objects of IndSchpfpk are called ind-(pfp schemes). Similarly to [29,
Lemma1.10] one shows that this category has final object Spec(k), is closed under fibre
product and countable disjoint unions. As an example we note that if X = colimXi

is an ind-scheme of ind-(finite type) over k, then the Zariski sheafification of the
perfection (Xperf)Zar = colim limσ Xi is an ind-(pfp scheme) by Remark 2.7. We
have the following basic lemma.

Lemma 2.11 Every quasi-compact map between ind-(pfp schemes) is schematic and
pfp.

Proof Let X → Y be a quasi-compact map of ind-(pfp schemes). Choosing a presen-
tation Y = colim Yi by pfp schemes, it is enough to show that each X ×Y Yi is a pfp
scheme. We reduce to the case where Y = Yi is a pfp scheme, and in particular quasi-
compact. By assumption X = colimXi is quasi-compact as well. Being an object in
IndSchpfpk the underlying topological space |X | = colim|Xi | is Jacobson. Hence, the
sequence of reduced schemes Xi = Xi,red stabilizes by [29, Corollary 1.24] which
shows that X = Xi , i >> 0 is a pfp scheme. 
�

Theorem 2.12 Motives on ind-(pfp schemes) X ∈ IndSchpfpk satisfy the properties
listed in Theorem 2.10, with the following adjustments:

• The statement in (ii) has no analogue for ind-(pfp schemes), since they need not
have models among ind-schemes of ind-(finite type).

• The description of compact generators (cf. (vi) above) is as follows: the category
DM(X) is compactly generated by the images of the compact objects in DM(Xi ),
where X = colimXi is a presentation.

• The weight structure on DM(X) exists if there is a presentation X = colimXi ,
where the Xi ∈ Schpfpk are separated.

• The functor f ∗ exists (and satisfies the properties as stated in the remaining items)
if f is quasi-compact (hence schematic and pfp).

• If X is componentwise quasi-compact, then p∗1 is a monoidal unit, for the struc-
turalmap p : X → Speck. In general,DM(X) only carries a non-unital symmetric
monoidal structure.

• The condition that f has a smooth model (resp. is a pfp closed immersion, pfp open
immersion) has to be replaced with “ f has a schematic smooth model f0” (has a
model which is a schematic pfp closed, resp. open immersion). The h-covering in
xii) has to be schematic. The term “proper” has to be replaced by “ind-(perfectly
proper)” in (iv).

Proof Recall from [31, Theorem 2.4.2] that the corresponding assertions hold for
motives on ind-schemes. From there, the theorem as stated follows from Lemma 2.9,
in the same way as the assertions for motives on pfp schemes follow from those on
finite-type k-schemes. 
�
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3 Stratified Tatemotives for perfect ind-schemes

With this convenient extension of the six functor formalism for the categories DM of
motives on pfp schemes and their ind-variants, we can quickly adapt the contents of
[31, §§3–5].

Definition 3.1 A stratified ind-(pfp scheme) is a map of ind-(pfp schemes)

ι : X+ :=
⊔

w∈W
Xw → X ,

where ι is bijective on the level of underlying sets, each Xw is a pfp scheme, each
restriction ι|Xw is an immersion and the topological closure of each ι(Xw) is a union
of strata. Here W is a countable index set which is partially ordered by the closure
relations on the strata, i.e., ι(Xv) lies in the closure of ι(Xw) if and only if v ≤ w.

Since each Xw is pfp (hence quasi-compact), each restriction ι|Xw : Xw → X is a
quasi-compactmap of ind-(pfp schemes) and hence schematic and pfp byLemma2.11.
A map of stratified ind-(pfp schemes) is required to be quasi-compact (hence, again,
schematic and pfp), and to map strata to strata.

Definition 3.2 A perfect cell is a k-scheme isomorphic to the perfection of a cell
An
k ×Gr

m,k . A pfp scheme X is perfectly cellular if it admits a smooth model over k,
and admits a stratification into perfect cells. (We do not require that the smooth model
admits a stratification into cells.) A perfectly cellular stratified, or just pcs ind-scheme
is a stratified ind-(pfp scheme) X where each Xw, w ∈ W is a perfectly cellular
k-scheme.

For a pfp scheme X , or a disjoint union of those, the category of Tate motives
DTM(X) ⊂ DM(X) is the full subcategory generated under arbitrary shifts and
colimits by 1X (n), n ∈ Z. By Theorem 2.10(ii), it is equivalent to DTM(X0) as
defined in [31, Definition 3.1.8], where X0 is any model of X . Indeed, the equivalence
σ ! : DM(X0) → DM(X0) restricts to an equivalence of the DTM-subcategories by
Theorem 2.10(ii).

For the next definition, we note that by quasi-compactness of ι the pullback ι∗ is
well-defined, cf. Theorem 2.12.

Definition 3.3 A stratified ind-(pfp scheme) X is Whitney–Tate if ι∗ι∗ : DM(X+) →
DM(X+) preserves the subcategory DTM(X+), i.e., (ιw)∗(ιv)∗ induces DTM(Xv) →
DTM(Xw) for all v,w ∈ W . In this case, the category of stratified Tate motives

DTM(X , X+)
def= laxlim

w∈W DTM(Xw)

is well-defined. Here the transition functors used to form the lax limit is (ιw)∗(ιv)∗.
Since DM(X) is equivalent to the lax limit of the categories DM(Xw), the category
DTM(X , X+) is a full subcategory of DM(X). A map π between stratified ind-(pfp
schemes) is aWhitney–Tate map if π∗ preserves stratified Tate motives.
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The characterization of Whitney–Tate stratifications in [31, Definition and
Lemma 3.1.11] holds literally. Also the perfection of a cellular stratified k-scheme of
finite type in the sense of [31, Definition 3.1.5] is pcs. Conversely, every pcs scheme
�Xw → X admits a model �Xw,0 → X0 where each Xw,0 is smooth. We now show
that the t-structures on the individual strata Xw, which are induced from amodel Xw,0,
glue together for any pcs (ind-)scheme.

Recall from [24] that the Beilinson–Soulé vanishing conjecture for k is equivalent
to the existence of a t-structure on DTM(Speck) such that 1Speck(r) is in the heart for
all r ∈ Z. By Quillen’s work, this conjecture holds for k = Fq . By Harder’s work,
it holds for a function field Fq(t) and therefore, by the compatibility of algebraic
K -theory with filtered colimits of rings, it also holds for its perfection k = Fq(t)perf .

Definition and Lemma 3.4 Suppose k satisfies the Beilinson–Soulé vanishing conjec-
ture. Let X be a pcs Whitney–Tate ind-scheme over k. Then each DTM(Xw) carries a
unique t-structure such that 1Xw(n)[dw], dw := dim(Xw) is in the heart.

The subcategories

DTM(X , X+)≤0 := {

M ∈ DTM(X) | ι∗M ∈ DTM(X+)≤0
}

DTM(X , X+)≥0 := {

M ∈ DTM(X) | ι!M ∈ DTM(X+)≤0
}

definea compactly generated t-structure onDTM(X , X+). Theheart of this t-structure
is denoted byMTM(X , X+) or just byMTM(X) if the stratification is clear from the
context.

Proof By assumption there exists a finite stratification �i X (i)
w → Xw into perfect

cells. We may choose a model �i X (i)
w,0 → Xw,0 where both source and target are

smooth. (Here the schemes X (i)
w,0 are cells, but this map is only a stratification after

perfection.) Then the first claim follows from [31, Lemma 3.2.4] using that the equiva-
lence DTM(Xw) = DTM(Xw,0) in Theorem 2.10(ii) commutes with the six functors
(by construction). The second statement is also shown similarly as in op. cit.: for any
w ∈ W , the t-structure on DTM(X≤w, X+)c arises by glueing the t-structures on the
strata Xv , v ≤ w. Given that the compact objects in DM(X , X+) are supported on
some finite union of X≤w, this gives a t-structure on DTM(X , X+)c and therefore a
compactly generated t-structure on DTM(X , X+). 
�

Restricting the �-adic realization functor to Tate motives continues to have the
pleasant properties—such as conservativity and faithfulness—we know from the case
of cellular Whitney–Tate stratified ind-schemes. The proof of the following statement
is a verbatim copy of [31, Lemma 3.2.8] and [30, Corollary 2.20].

Proposition 3.5 Let X be a pcs Whitney–Tate ind-scheme over k and suppose that
k satisfies the Beilinson–Soulé vanishing conjecture. The restriction of the �-adic
realization functor ρ� from DM(X) to DTM(X) := DTM(X , X+) has the following
properties:

(i) it is conservative,
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(ii) it creates the motivic t-structure in the sense that M ∈ DTM(X)c is in positive
(resp. negative) degrees of the motivic t-structure iff ρ�(M) has the corresponding
property for the perverse t-structure. In particular, it restricts to a functor

ρ� : MTM(X)c → Perv(X ,Q�). (3.1)

Furthermore, this latter functor is faithful.

4 Motives onWitt vector affine flag varieties

Let K/Qp be a finite extension with uniformizer � ∈ OK and residue field k/Fp.
Let G be a split reductive group over OK . In this section, we introduce Tate motives
on the Witt vector affine flag varieties for G and prove basic properties thereof.

4.1 Loop groups and their affine flag varieties

For any k-algebra R, we denote by WOK (R) the ring of ramified Witt vectors,
cf. e.g. [18, §1.2]. If R is perfect, then

WOK (R) = W (R)⊗W (k) OK =
{

∑

i≥0
[λi ]� i

∣

∣ λi ∈ R
}

,

whereW (k)→ OK is the unique map, and where [·] : R → W (R) is the Teichmüller
lift. The (Witt vector) loop group is the group-valued functor on the category of perfect
k-algebras given by

LG(R)
def= G

(

WOK (R)
[ 1
p

]

)

.

For any smooth, affineOK -group scheme G, theWitt vector positive loop group is the
group-valued functor on the category of perfect k-algebras given by

L+G(R)
def= G(

WOK (R)
)

.

If G ⊗ K = G ⊗ K , then L+G ⊂ LG defines a closed subgroup functor, cf. [37,
Lemma 1.2 (i)]. Being presheaves on AffSchperfk , LG and L+G are also perfect
prestacks, so that we can consider categories such as DM(LG) etc.

Fix a Borel pair T ⊂ B inG overOK . Denote byA = A (G, T , K ) the associated
apartment of the Bruhat–Tits building of G(K ) equipped with the base point 0 corre-
sponding toG/OK . The choice of B induces a unique alcove a0 ⊂ A in the dominant
chamber whose closure contains 0. For each facet f ⊂ A , there is a parahoric group
scheme Gf overOK with generic fibre G⊗K by [10, §5.2]. Recall that Gf is a smooth,
affine OK -group scheme with connected fibers such that Gf(OK ) ⊂ G(K ) fixes f
pointwise.
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Lemma 4.1 (i) The functor LG is representable by a group ind-(perfect affine
scheme).

(ii) For every smooth, affine OK -group scheme G, the functor L+G = limi≥0 Gi
is representable by the perfection of an inverse system of smooth, affine group
schemes with smooth, surjective transition maps. For each i ≥ 0, the kernel
ker(Gi+1 → Gi ) is the perfection of a vector group. In particular, every L+G-
torsor in the fpqc-topology admits sections étale locally. If G = Gf for some facet
f ⊂ A , then each Gi = Gf,i is moreover the perfection of a cellular k-scheme,
i.e., the perfection of a smooth (finite type) k-scheme which can be stratified by
pieces isomorphic to Ar

k × Gs
m,k .

Proof For the representability statements see [9, Proposition 9.2], and the references
cited therein. For the étale local triviality, we note that L+G is already representable
as a functor on the category of all k-algebras by the same formula by Greenberg
[22] (cf. also [37, §1.1.1], [9, Remark 9.3]). It is the perfection of the pro-algebraic
group limi≥0 Hi where Hi : R �→ G(WOK (R)/V i

�WOK (R)) and V� denotes the
Verschiebung on the ramified Witt vectors. Consequently, L+G = limi≥0 Gi where
Gi = Hperf

i . For any k-algebra R, there is a short exact sequence

0→ R → WOK (R)/V i+1
� WOK (R) → WOK (R)/V i

�WOK (R)→ 0.

By [31, Proposition A.4.9] we have V(Ei ) = ker(Hi+1 → Hi ) where Ei is the
vector space given by the formula [31, (A.4.11)] applied with X = Spec(WOK (R)),
D̂ = colimi≥0Di for Di = Spec(WOK (R)/V i

�WOK (R)). Restricting back to perfect
k-algebras, we see that V(Ei )perf = ker(Gi+1 → Gi ) is the perfection of a vector
group. Now by [37, Lemma A.9] a torsor under Gi = Hperf

i is trivial if and only
if its pushout along Gi → Hi is trivial. In particular, each Gi -torsor is étale locally
trivial, and each affine ker(Gi+1 → Gi )-torsor is trivial. Thus, [31, Lemma A.4.3,
Corollary A.4.8] applies to show that each fpqc-L+G-torsor is étale locally trivial.
Finally, let G = Gf for some facet f. By the same argument as in [31, Lemma 4.2.7]
each Hf,i is cellular, and thus Gf,i = Hperf

f,i is perfectly cellular. 
�
For any facet f ⊂ A , we denote by Pf := L+Gf ⊂ LG the associated parahoric

subgroup. The Iwahori subgroup is denoted B := Pa0 , and the positive loop group is
denoted L+G := P{0}.
Definition 4.2 The Witt vector (partial) affine flag variety is the étale sheaf quotient

Flf
def= (LG/Pf)

ét,

i.e., the étale sheaf associated with the (ordinary) presheaf LG/Pf in PreStk
perf
k .

By Lemma 4.1, the étale sheaf Flf is an fpqc sheaf, so the definition agrees with [37,
§1.1.2] and [9, Definition 9.4]. In particular, it is representable by an ind-scheme Flf =
colimi Xi where each Xi is the perfection of a projective k-scheme [9, Corollary 9.6].
In particular, it is a strict ind-(pfp scheme) over k.
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Now fix two facets f, f′ ⊂ A contained in the closure of the base alcove. The
definitions and arguments in [31, §4] translate (almost) literally: the left action of Pf′
on Flf induces a presentation

Flf = colim
w

Flf,≤w, (4.1)

where w ranges through the double quotient Wf′ \W/Wf of the Iwahori–Weyl group
by the reflection subgroups associated with the facets, defined analogously to [31,
(4.2.9)]. Here the Schubert varieties Flf,≤w are defined as the scheme-theoretic image
of the orbit mapPf′ → Flf, p′ �→ p′ · ẇ ·e analogously to [31, Definition 4.4.1]. Then
each Flf,≤w is the perfection of a projective k-variety by [9, Corollary 9.6]. The étale
sheaf image Flf,w ⊂ Flf,≤w of the orbit map is representable by the perfection of a
smooth k-variety, and identifies with the étale sheaf quotient Pf′/Pf′∪wf (combine the
argument of [31, Lemma4.3.7]with [37, PropositionA.32].)HerePf′∪wf := L+Gf′∪wf
whereGf′∪wf is the Bruhat-TitsOK -group schemewith geometrically connected fibers
determined by the subset f′ ∪ wf ⊂ A .

There is a stratification

ι : Fl+f :=
⊔

w∈Wf′ \W/Wf

Flf,w −→ Flf, (4.2)

where the closure relations of the strata are given by the Bruhat order on Wf′ \W/Wf.
This follows from the existence ofDemazure resolutions [37, (1.4.1)] using themethod
in [28, Proposition 2.8]. If f′ = a0, we refer to this stratification as the Iwahori
stratification. We summarize important properties in the following lemma.

Lemma 4.3 Let f, f′ ⊂ A be contained in the closure of the base alcove.

(i) The stratification (4.2) is a pcs stratification in the sense of Definition 3.2.
(ii) The stabilizers of the Pf′ -left action on Flf are geometrically connected.
(iii) If Pf′ ⊂ Pf, the projection π : Flf′ → Flf is schematic, perfectly proper, and

étale locally on the target isomorphic to the projection Pf/Pf′ × Flf → Flf. The
induced map on the Iwahori strata π+ : Fl+

f′ → Fl+f is a Whitney–Tate map and

admits a section s+ : Fl+f → Fl+
f′ which is an open and closed immersion.

(iv) In iii), the étale quotient Pf/Pf′ is the perfection of an homogenous space.

Proof Part (i) follows from the discussion above, and the following observation: For
each w ∈ Wf′ \W/Wf, we have the Iwahori stratification Flf,w = ⊔

v
a0Flf,v , where v

runs through Wf′wWf/Wf, cf. [37, §1.4]. Each Iwahori orbit a0Flf,v is isomorphic to
(Al(v)

k )perf where l(v) is the length in W/Wf. This is proven as in [31, (4.3.10)], but
working with perfections everywhere: for each affine root α, there is a root subgroup
Uα ⊂ LG, Uα � (A1

k)
perf , and an isomorphism

�
α
Uα

�−→a0Flf,v , (uα) �−→ ( 
 uα

) · ẇ · e, (4.3)
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where the product (taken in any order) ranges over all affine roots α such that (wα)|a0
takes positive values and α|f takes negative values. Part (ii) follows from the pre-
sentation Flf,w = Pf/Pf′∪wf and the geometrical connectedness of Pf′∪wf explained
above. Part (iii) is proven analogously to [31, Proposition 4.3.13]; note that s+ is
open since it is an inclusion of a disjoint union of certain Iwahori strata. For (iv),
let Pf,0 = Hperf

0 , Pf′,0 = (H′0)perf be the Greenberg realization as in the proof of
Lemma 4.1. Let P̄f′,0 = im(Pf′,0 → Pf,0), and let H̄′0 = im(H′0 → H0) which is a
parabolic subgroup of H0. Then on étale quotients

Pf/Pf′ ∼= Pf,0/P̄f′,0 ∼= lim
σ

(H0/H̄′0).

For the second isomorphism,we use that these étale quotients are already fpqc sheaves,
and that taking perfections preserves faithfully flat maps [9, Lemma 3.4 (xii)], hence
P̄f′,0 ∼= (H̄′0)perf . See also [7, Theorem 6.1]. 
�
Example 4.4 Let s ∈ S be a simple affine reflection. Let fs be the unique facet of
maximal dimension in the closure of a0 such that s(fs) = fs , i.e., Wfs is the subgroup
of W generated by s. We specialize Lemma 4.3(iii) to the case f′ = a0, and f = fs ,
so that π : Fl := Fla0 → Flfs is the projection from the full affine flag variety. In
this case, π has general fiber Pfs/B = limσ P1

k by Lemma 4.3(iv) (cf. also [37, above
(1.4.1)]). If w ∈ W , and w = v · s is a reduced decomposition, then

(π+)−1
(

Flfs ,v
) = Flv � Flvs .

Here π+|Flv is an isomorphism, and π+|Flvs is isomorphic to the projection (A1
k)

perf×
Flv → Flv .

4.2 Motives on affine flag varieties

All results from [31, §§5.1–5.3] except [31, Corollary 5.3.6] (there seems to be no
such Gm-action on Witt vector loop groups) translate to the setting of Witt vector
affine flag varieties. For the purposes of this paper, the salient features are as follows:

Theorem 4.5 Let f, f′ ⊂ A be contained in the closure of the base alcove.

(i) The pcs stratification (4.2) into Pf′ -orbits on Flf is Whitney–Tate. In particular,
by Definition 3.3 and Lemma 3.4 there are well-defined categories of motives

MTM(Flf) ⊂ DTM(Flf) ⊂ DM(Flf).

The Q-linear abelian category MTM(Flf) is generated (by means of extensions
and direct sums) by the simple objects called intersection motives

ICw(n) := (ιw)!∗(1(n))

for n ∈ Z, w ∈ Wf′ \W/Wf. These objects are defined as the Tate twists of
intermediate extensions along the inclusions ιw : Flf,w → Flf. (Note that the
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dependency of the categories DTM(Flf) and MTM(Flf) on the choice of f′ is
suppressed in the notation.)

(ii) Let � be a prime number �= p. The �-adic realization functor ρ� (cf. (3.1)) maps
ICw(n) to the �-adic intersection complexes on the Schubert varieties Flf,≤w. A
compact object M ∈ DTM(Flf)c lies inMTM(Flf)c iff ρ�(M) is a perverse �-adic
sheaf.

Proof The proofs in [31, §§5.1–5.3] carry over literally, as we briefly indicate. The
Whitney–Tate property is shown in three steps: First, for f′ = f = a0, the Whitney–
Tate condition in (i) is a consequence of the geometric properties listed in Example 4.4
together with an induction on the length of w. Second, the case f′ = a0 and arbitrary
f follows from a general criterion [31, Lemma 3.1.19] that allows to carry over the
Whitney–Tate property along the projection map Fla0 → Flf, using the geometric
properties of thismap listed inLemma4.3(iii). Third, for both f, f′ arbitrary,we use [31,
Proposition 3.1.23]: aPf-equivariant motive is Tate with respect to the stratification by
Pf-orbits as soon as it is Tate with respect to the finer stratification by Iwahori-orbits
(i.e. Pa0 -orbits). This latter property holds by the second step.

The category DTM(Flf,w) of (unstratified) Tate motives on the strata Flf,w carries a
t-structure whose heart MTM(Flf,w) is an abelian category whose simple objects are
of the form 1(n)[dim Flf,w] (Lemma 3.4). These t-structures are glued together, as is
classical in the context of perverse sheaves [4, §1.4]; see also [34, Theorem 10.3] for
an application of this idea in the context of stratified Tate motives.

The description of the simple generators then follows from the description of the
simple generators in the categories that are glued together [31, Theorem 5.2.3].

ii) is then a direct consequence of Proposition 3.5. 
�
Theorem 4.6 (i) The full subcategories of DM(Pf′ \LG/Pf),

DM(Pf′ \LG/Pf)×DM(Flf) DTM(Flf) and DM(Pf′ \LG/Pf)×DM(Flop
f′ ) DTM(Flop

f′ )

agree where Flop
f′ := (Pf\LG)ét. (For example, the first category consists of those

motives on Pf′ \LG/Pf whose underlying, i.e., non-equivariant motive on Flf is a
stratified Tate motive with respect to the stratification byPf′ -orbits.) This category
is denoted DTM(Pf′ \LG/Pf).

(ii) For f = f′, there is a t-structure on DTM(Pf′ \LG/Pf) such that the forgetful

functors to DTM(Flf) (and also to DTM(Flopf )) are t-exact. The heart of this t-
structure is the category of mixed Tate motives on the double quotient, denoted
MTM(Pf′ \LG/Pf). The functor forgetting the Pf-equivariance of a mixed Tate
motive,

MTM(Pf\LG/Pf)→ MTM(Flf),

is fully faithful, and induces a bijection of isomorphism classes of simple objects
as described in Theorem 4.5(i).
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Proof (i) is shown by exhibiting an explicit set of generators, in the same way as in
[31, Theorem 5.3.4]. (ii) The t-structure on DTM(Pf′ \LG/Pf) is an instance of a t-
structure on a limit of a diagram of stable∞-categories equipped with t-structures and
t-exact transition functors [31, Lemma 3.2.18]. For f = f′ (but not in general, because
of the shift by the dimension of Flwf ), this t-structure is identical to the one obtained
by using the underlying non-equivariant motive on Flopf [31, Theorem 5.3.4].

The full faithfulness of the forgetful functor is a general consequence of [31, Propo-
sition 3.2.20]: the key point is that the stabilizers of the Pf-action on Flf are connected
by Lemma 4.3(ii) and that for the perfection of a connected algebraic group H , the
pullback functor MTM(X) → MTM(X × H) is fully faithful [31, Lemma 3.2.12],
which implies that the forgetful functor

MTM(X/H) = lim
(

MTM(X) ⇒ MTM(X × H) . . .
)→ MTM(X)

is fully faithful as well. Finally, the intersection motives ICw(n) are Pf-equivariant
by construction and therefore also generate the subcategory MTM(Pf\LG/Pf) ⊂
MTM(Flf) (again, by means of extensions and direct sums). 
�

4.3 The convolution product

In this section, we discuss the convolution product on the category MTM(Pf\LG/Pf)

by indicating how the corresponding arguments in the equi-characteristic situation
carry over to the case considered here.

We define the convolution product by the same formula as in [30, Definition 3.1]:

-�- := m! p!(- � -) : DM(Pf\LG/Pf)× DM(Pf\LG/Pf) −→ DM(Pf\LG/Pf),

where p and m are the projection and multiplication maps:

Pf\LG/Pf × Pf\LG/Pf Pf\LG ×Pf LG/Pf
p m Pf\LG/Pf .

As in [31, Proposition 2.4.4], the exterior product

� : DM(Pf\Flf)× DM(Pf\Flf) → DM(Pf\Flf × Pf\Flf)

is defined using that the kernels of Pf → Pf,i are perfectly split pro-unipotent (i.e., of
the form limGi , where the underlying schemes of G0 and all of the ker(Gi+1 → Gi )

are perfections of vector groups, cf. the proof of Lemma 4.1) and the perfect homotopy
invariance of DM (Theorem 2.10(xi)). The pushforward m! exists by Theorem 2.12
(and the descent of functoriality expressed in [31, Lemma 2.2.9]) since the multiplica-
tion map induces a schematic map of ind-schemes Flf˜×Flf := (LG×Pf LG/Pf)

ét →
Flf. Note that the convolution of two compact objects is again compact.

Remark 4.7 The exterior product for motives on Flopf /Pf can be used to define
another convolution product functor. At least on the level of the homotopy categories
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Ho(DM(Pf\LG/Pf)), these two functors are isomorphic as can be shown like in [30,
Proposition 3.4], using that LG≤w = PfwPf is perfectly placid, i.e., a countable
filtered limit of affine pfp schemes whose transition maps are perfections of smooth
maps.

Theorem 4.8 The convolution product � has the following properties:

(i) It is compatible with the convolution product defined in the �-adic situation
[37, p. 432] under the �-adic realization functor ρ� : DM(Pf\LG/Pf)

c →
Db
cons,Pf

(Flf) (taking values in the bounded derived Pf-equivariant category of

constructible sheaves on Flf).
(ii) It admits an associativity isomorphism.
(iii) It preserves the subcategory DTM(Pf\LG/Pf) ⊂ DM(Pf\LG/Pf). For Pf =

L+G, it also preserves the abelian subcategoryMTM(L+G\LG/L+G).

Proof Part (i) holds since both convolution product functors are defined as the con-
catenation of the same functors (motivic, resp. �-adic) and Theorem 2.10(xiv). Part
(ii) results from the base-change isomorphism for proper maps of ind-(pfp schemes)
(cf. (2.6)) as in [30, Lemma 3.7].

For (iii), we review the key geometric arguments in case Pf is the Iwahori group B,
and refer to [30, Proposition 3.26] for the reduction to this case and for further details
concerning the case Pf = B. Writing ιw : Flw → Fl := Fla0 for the inclusion of the
stratum, the claim (ιw)!1�(ιw′)!1 ∈ DTM(Fl) is first shown in casew = w′ is a simple
reflection s. In this case the map

Fl≤s˜×Fl≤s (pr1,m)→ Fl≤s × Fl≤s

is an isomorphism because it is a closed immersion of 2-dimensional irreducible
perfectly proper schemes. There is a stratification of Fl≤s = Fls � Fle ∼= (A1)perf �
Speck. Furthermore, the multiplication map m̃ : Fl≤s˜×Fl≤s → Fl≤s is a Whitney–
Tate map with respect to the this stratification. This can be seen as in loc. cit., except
that all the affine lines (intervening as strata) are replaced by their perfections. The
second step uses the isomorphism (see loc. cit.) Flw˜×Flw′ → Flww′ for w,w′ ∈ W
such that l(ww′) = l(w) + l(w′). This isomorphism is a consequence of (4.3) and
Bruhat–Tits theory, applied to the Witt vector affine flag variety. The remaining steps
(still for Pf = B) are then formal consequences.

The preservation of MTM as stated holds because of the corresponding assertion
in the �-adic case [37, Proposition 2.2] together with (i). Here we use Theorem 4.5(ii)
to reduce to �-adic (perverse) sheaves. 
�

5 Themotivic Satake equivalence

We keep the notation from Sect. 4: K/Qp is a finite extension with ring of integers
OK and finite residue field k/Fp. Let G be a split reductive group over OK . Fix a
maximal split torus contained in a Borel subgroup T ⊂ B ⊂ G over OK .
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Let ̂G denote the Langlands dual group over Q formed with respect to the pair
(T , B) and a fixed pinning X ∈ Lie(B). Recall that (̂G, ̂T , ̂B, ̂X) is a split reduc-
tive Q-group scheme equipped with a pinning whose root datum is dual to the root
datum of (G, T , B). Denote by ̂Tad the image of ̂T in the adjoint group ̂Gad. Via
X∗(T ) = X∗(̂T ), we can view the half-sum of the B-positive roots in G as a cochar-
acter ρ : Gm,Q → ̂Tad. Then Gm,Q acts from the right on ̂G via conjugation as
Adρ : (g, λ) �→ ρ(λ)−1gρ(λ). This action preserves the pair (̂T , ̂B).

Definition 5.1 The extended Langlands dual group is the Q-group scheme ̂G1 :=
̂G �

Adρ Gm,Q equipped with the pinning (̂T1, ̂B1, ̂X1).

Here ̂T1 := ̂T �
Adρ Gm,Q ⊂ ̂B�

Adρ Gm,Q =: ̂B1 and ̂X1 := (̂X , 0) is the principal
nilpotent element in Lie(̂B1) = Lie(̂B) × Ga,Q. We note that ̂G1 is a split reductive
Q-group scheme with split maximal torus ̂T1 = ̂T × Gm,Q, since Adρ acts trivially
on ̂T . One easily verifies that the map (g, λ) �→ (g · 2ρ(λ), λ2) induces a short exact
sequence of Q-group schemes

1→ µ2 → ̂G ×Gm,Q → ̂G1 → 1,

where µ2 is generated by (ε,−1) with ε := (2ρ)(−1) ∈ ̂G(Q). Thus ̂G1 is the same
as the group constructed in [19, §2] following [15], cf. also [6, Proposition 5.39 ff.] for
further examples. We denote by d : ̂G1 → Gm,Q/µ2 � Gm,Q the character where the
isomorphism is induced from the square map λ �→ λ2. As an example takeG = PGL2
in which case ̂G1 = SL2×µ2Gm,Q = GL2, and the character d identifies with the
determinant.

We write RepQ(̂G1) for the category of algebraic ̂G1-representations on Q-vector
spaces. The subcategory RepfdQ(̂G1) of finite-dimensional representations is a semi-
simple abelian category with (absolutely) simple objects

Vμ(n)
def= Ind

̂G1
̂Bop
1

((μ, n)), μ ∈ X∗(T )+, n ∈ Z, (5.1)

where ̂Bop
1 ⊂ ̂G1 denotes the Borel opposite to ̂B1, andμn : ̂Bop

1 → ̂T1 → Gm,Q is the
composition of the projection with the character (μ, n) ∈ X∗(T )+ × Z = X∗(̂T1)+.
Note that the restriction ofVμ(n) along ̂G×Gm,Q → ̂G1 is the representationVμ⊗d⊗n
where Vμ is the ̂G-representation of highest weight μ.

Extending scalars from Q to Q we obtain the categories

Repfd
Q

(̂G1) ⊂ RepQ(̂G1)

of algebraic ̂G1,Q-representations on Q-vector spaces which have the same simple
objects (5.1).

The aim of this section is to prove the following theorem due to Zhu [37] in the
context of �-adic sheaves and in the context of numerical motives [39, §2]. It will be
stated and proven in a slightly sharper form in Theorem 5.7 and Remark 5.9 below.
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Theorem 5.2 There is an equivalence of Q-linear abelian tensor categories

MTM
(

L+G\LG/L+G
)

Q

∼=−→ RepQ(̂G1),

under which ICμ(n) �→ Vμ(n) for all μ ∈ X∗(T )+, n ∈ Z. For each prime number
� �= p, this equivalence is compatible under the �-adic realization with the geometric
Satake equivalence constructed in [37].

At the left hand side, MTM
(

L+G\LG/L+G
)

denotes the category of stratified
mixed Tate motives on the loop group double quotient constructed in Theorems 4.5
and4.6.The subscriptQ indicates thatwe consider this categorywithQ-coefficients (as
opposed to Q-coefficients like in the preceding sections). The simple objects ICμ(n),
μ ∈ X∗(T )+, n ∈ Z are Tate twists of intersection cohomology motives of the
Schubert varieties. We already know that the convolution product � for motives on
L+G\LG/L+G preserves mixed Tate motives (Theorem 4.8). In order to prove the
above theorem, we will perform the following steps: we show in Theorem 5.6 that

(

MTM
(

L+G\LG/L+G
)c

, �, ω
)

(5.2)

is a neutral Tannakian category. The fiber functor ω is given by taking global motivic
cohomology. We show that the Tannaka dual group is reductive by showing that
the category is semi-simple (Proposition 5.3). This step relies on the Kazhdan–
Lusztig parity vanishing and on the semisimplicity of MTM(k). In particular, every
object in MTM

(

L+G\LG/L+G
)

is a (possibly infinite) direct sum of ICμ(n)’s.
We further identify, at least over Q, the Tannaka dual group ˜G1 := Aut�(ω) of
MTM

(

L+G\LG/L+G
)c with ̂G1, by relying on the �-adic Satake equivalence for the

Witt vector affine Grassmannian due to Zhu. Once this is done, we obtain Theorem 5.2
by passing to ind-completions, cf. Remark 5.9.

5.1 Semisimplicity

The Witt vector affine Grassmannian GrG = (LG/L+G)ét admits a stratification by
left L+G-orbits which yields a presentation as ind-(perfectly proper pfp k-schemes)
by Witt vector Schubert varieties:

GrG = colim
μ

GrG,≤μ.

Hereμ ranges of the partially ordered semigroup X∗(T )+ of B-dominant cocharacters.
Recall that GrG,≤λ ⊂ GrG,≤μ if and only if λ ≤ μ in the dominance order, i.e.,
μ− λ is a sum of positive coroots with non-negative integral coefficients. The dense
open stratum GrG,μ ⊂ GrG,≤μ is an irreducible perfectly smooth pfp k-scheme of
dimension 〈2ρ,μ〉. Here ρ denotes the half-sum of the positive roots in B and 〈-, -〉 is
the natural pairing between the characters and cocharacters. In particular, the L+G-
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orbit stratification satisfies the parity property

GrG,λ ⊂ GrG,≤μ �⇒ dim(GrG,μ) ≡ dim(GrG,λ) mod 2, (5.3)

because 〈2ρ,μ− λ〉 = 2〈ρ,μ− λ〉 is an even integer. Recall from Theorem 4.5 the
abelian categoryMTM(GrG) ofmixed stratifiedTatemotiveswith respect to the L+G-
orbit stratification. Its simple objects are the Tate twists of the intersection motives
ICμ(n), μ ∈ X∗(T )+, n ∈ Z of the Schubert varieties GrG,≤μ. By Theorem 4.6 the
forgetful functor

MTM(L+G\LG/L+G) −→ MTM(GrG), (5.4)

is fully faithful and yields a bijection on simple objects. The following proposition is
analogous to [27, Proposition 2.1].

Proposition 5.3 The forgetful functor (5.4) is an equivalence of abelian categories.
Both categories are semisimple with simple objects ICμ(n), μ ∈ X∗(T )+, n ∈ Z.

Proof The argument follows closely [30, §5.1].Weoutline the key steps for the reader’s
convenience. If MTM(GrG) is semisimple, then MTM(L+G\LG/L+G) is semisim-
ple as well by the full faithfulness of (5.4). In this case (5.4) is an equivalence because
the simple objects agree.

To prove the semisimplicity of MTM(GrG) it is enough to show that all extensions
between simple objects vanish, i.e., that

Ext1MTM(GrG )

(

ICλ(m), ICμ(n)
) = 0 (5.5)

for all λ,μ ∈ X∗(T )+, m, n ∈ Z. By the conservativity and t-exactness of the �-adic
realization (Proposition 3.5) and (5.3), the Kazhdan–Lustig parity vanishing holds,
i.e.,

mHi
(ι∗A) = 0, whenever i �≡ 0 mod 2,

where A ∈ MTM(GrG) and ι : X ⊂ GrG is a finite union of Schubert varieties and
where mHi denotes the truncation with respect to the motivic t-structure on X . This
formally implies

Ext1MTM(GrG )

(

ICλ(m), ICμ(n)
) =

{

ExtMTM(k)(1k(m), 1k(n)) if λ = μ

0 else

wherewehave used thatMTM(Grμ) = MTM(k), cf. the argument in [30, Lemma6.3].
Finally, the higher algebraic K -groups of the finite field k are torsion (i.e., their ratio-
nalizations vanish), so that MTM(k) is semisimple. This shows (5.5). 
�

5.2 The tensor structure

By Theorem 4.8 the category MTM(L+G\LG/L+G) is stable under the convolution
product � compatible with the �-adic realization, i.e., for each pair of such motives
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A, B, there is a functorial isomorphism of �-adic perverse sheaves

ρ�(A�B) ∼= ρ�(A)��ρ�(B), (5.6)

where

ρ� : MTM(L+G\LG/L+G)c → PervL+G(GrG ,Q�) (5.7)

denotes the �-adic realization taking values in the category of L+G-equivariant per-
verse �-adic sheaves on GrG (cf. Theorem 4.8), and where �� denotes the convolution
of �-adic complexes.

Proposition 5.4 The convolution product � can be upgraded to a unique symmetric
monoidal structure onMTM(L+G\LG/L+G) such that the �-adic realization functor

ρ� : MTM(L+G\LG/L+G)c → PervL+G(GrG ,Q�)

is a symmetric monoidal functor, where the target category carries the symmetric
monoidal structure established in the geometric Satake equivalence [37, Proposi-
tion 2.21].

Proof There exist functorial commutativity and associativity constraints

cA,B : A�B ∼= B�A, and aA,B,C : (A�B)�C ∼= A�(B�C),

which are uniquely determined by the following two properties:

(i) The isomorphisms are colimit-preserving in each argument.
(ii) The constraints map under the �-adic realization (5.7) to the constraints used in

geometric Satake as in [37, Proposition 2.21].

The uniqueness follows from the faithfulness of the �-adic realization (Proposi-
tion 3.5). The associativity constraint is constructed in Theorem 4.8. The construction
of the (correct) commutativity constraint is the most subtle part and follows [37,
§2.4.3]. For details the reader is referred to [30, Proposition 5.9]. Here we only sketch
the main ideas. The anti-involution θ : G → G is defined by g �→ (g∗)−1 = (g−1)∗,
where (-)∗ denotes the Cartan involution. By functoriality, we obtain an anti-involution
on LG preserving L+G, and thus an equivalence of prestacks, still denoted

θ : L+G\LG/L+G �−→ L+G\LG/L+G.

Then for A, B ∈ MTM(L+G\LG/L+G) we have a functorial isomorphism
θ !(A�B) ∼= (θ !B)�(θ !A). Also we have a (carefully chosen) equivalence θ ! � id of
endofunctors on MTM(L+G\LG/L+G). The point being that θ preserves Schubert
varieties and hence also intersection motives. However, to obtain the correct equiva-
lence θ ! � id compatible with the �-adic realization one needs to introduce a carefully
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chosen sign, cf. the aforementioned references. Combining the above equivalences
leads to the commutativity constraint c′A,B : A�B ∼= B�A. We finally define

cICμ(n)�ICλ(m) := (−1)〈2ρ,μ+λ〉c′ICμ(n)�ICλ(m),

and extend it linearly to all objects in MTM(L+G\LG/L+G) using the semisimplic-
ity, cf. Proposition 5.3. 
�

5.3 The Tannakian structure

Next we equip the Q-linear, abelian, symmetric monoidal, semisimple category
(MTM(L+G\LG/L+G), �)with a tensor functor valued in vector spaces (VectQ,⊗)

leading to the aforementioned Tannakian structure. Following [30, §5.3] we define the
fibre functor as the composition

ω : MTM(L+G\LG/L+G) ∼= MTM(GrG)
ε!−→ DTM(k)

grcl−→ MTM(k)
grW−→ MTM(k)w=0 ∼= VectQ

of the forgetful functor (which is an equivalence by Proposition 5.3; note that mixed
Tate motives are with respect to the stratification by L+G-orbits), the pushforward
along the structural map ε : GrG → Spec(k) (which preserves Tate motives by [31,
Lemma3.1.19], using that the stratificationofGrG by L+G-orbits is perfectly cellular),
followed by the grading functors for the classical (which agrees in this case with the
motivic) t-structure grcl and the weight structure grW, and finally the equivalence [24]
of pure Tate motives of weight 0 with the category of Q-vector spaces.

Lemma 5.5 The fibre functor ω : MTM(L+G\LG/L+G) → VectQ has a natural
monoidal structure with respect to the convolution product on the source and the
ordinary tensor product on the target which is compatible with the �-adic realization.

Proof At least on the level of homotopy categories the composition of functors

DM(L+G\LG/L+G) −→ DM(GrG)
ε!−→ DM(k)

has a naturalmonoidal structurewith respect to convolutionon the source and the tensor
product on the target, cf. [30, Proposition 5.13] whose arguments translate literally.
Next the conservativity of the �-adic realization implies the Kazdhan–Lusztig parity
vanishing clHi (ε!ICμ(n)) = 0whenever i �≡ 〈2ρ,μ〉 mod 2.Hence, the composition

MTM(L+G\LG/L+G) ∼= MTM(GrG)
ε!−→ DTM(k)

grcl−→ MTM(k)

admits a natural monoidal structure as well. The vanishing is needed in order to obtain
a monoidal structure as opposed to a Z/2-graded monoidal structure coming from a
sign in the formation of tensor products of complexes. Using the natural monoidal



44 Page 30 of 34 T. Richarz, J. Scholbach

structure on the weight graduation functor grW we obtain a monoidal structure on ω.
The compatibility with the �-adic realization follows from Theorem 2.10(xiv) and the
fact that the �-adic fiber functor is defined by the analogous functors. 
�
Theorem 5.6 The category MTM(L+G\LG/L+G)c of compact mixed Tate motives
on the double quotient, endowed with the convolution product, the constraints from
Proposition 5.4 and ω as fibre functor is a neutral Tannakian category over Q [16,
Chapter II, Definition 2.19].

Proof Note that the restriction of ω to compact objects takes values in finite-
dimensional vector spaces. As in [30, Theorem 5.14] we check the conditions in
[16, Chapter II, Proposition 1.20]:

(i) The functor ω has the structure of a tensor functor. This is Lemma 5.5.
(ii) The functor ω is Q-linear, exact and faithful. The functor ω is clearly Q-linear

and additive. Hence, it is exact becauseMTM(L+G\LG/L+G)c is semi-simple.
The faithfulness follows from the compatibility with the �-adic realization, the
faithfulness of the latter, and the faithfulness of the �-adic fiber functor ω� [37,
Corollary 2.10].

(iii) The constraints constructed in Proposition 5.4 give the usual constraints inVectQ
after applying ω. This is immediate from Lemma 5.5 and the �-adic case, cf. [37,
Proposition 2.21].

(iv) Neutral object. This is the skyscraper IC0 supported at the base point.
(v) Any M ∈ MTM(L+G\LG/L+G)c with dimQ ω(M) = 1 admits a dual object

M−1 such that M�M−1 = IC0. Any such object is necessarily of the form
M = ICμ with 0-dimensional support, in which case M−1 = IC−μ.


�

5.4 The Tannakian group

Theorem 5.7 There is an equivalence of Tannakian categories

(

MTM(L+G\LG/L+G)c
Q
, �, ω

)

�
(

Repfd
Q

(̂G1), ⊗, v
)

,

where the subscript Q indicates the category with the same objects, but Hom-spaces
are tensored withQ. At the right, v : Repfd

Q
(̂G1) → VecQ denotes the forgetful functor.

The intersection motives ICμ(n) correspond to the simple ̂G1-representations Vμ(n)

for (μ, n) ∈ X∗(T )+ × Z = X∗(̂T1)+.
Proof The argument is very similar to the proof of [30, Theorem 6.8]; it relies on the �-
adic geometric Satake equivalence proven in [37]. Let us recall the key points. Denote
by ˜G1 := Aut�(ω) the affine Q-group scheme of tensor automorphisms provided by
Theorem 5.6. We need to prove an isomorphism ˜G1 � ̂G1 of Q-group schemes.

For a primenumber � � p, the �-adic realization induces an equivalence ofTannakian
categories

(

MTM(L+G\LG/L+G)c
Q
, �, ω

)⊗Q Q�

∼=−→ (

SatG,�, ��, ω�

)

, (5.8)
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where SatG,� denotes the full semi-simple subcategory of L+G-equivariant Q�-adic
perverse sheaves sheaves onGrG generated by the Tate twisted intersection complexes
ICμ,�(n), μ ∈ X∗(T )+, n ∈ Z. The affine Q-group scheme of tensor automorphisms
Aut�(ω�) is isomorphic to ̂G1 ⊗Q� by the �-adic geometric Satake equivalence as in
[37]. This reference is for the ordinary affine Grassmannian, but the arguments carry
over to the case of Witt vectors, see also [39, §2]. Hence, (5.8) implies that there is an
isomorphism of Q�-group schemes

˜G1 ⊗Q� � ̂G1 ⊗Q�

for all prime numbers � � p. In particular, ˜G1 is a reductive Q-group scheme by fpqc
descent along the extension Q�/Q for one fixed prime number � � p. We conclude
˜G1 � ̂G1 by the isomorphism theorem for split reductive groups. 
�
Remark 5.8 The relation with the classical Satake isomorphism [23] is as follows,
cf. also [30, §6.4] for a detailed discussion in the (completely analogous) equal char-
acteristic case. Consider the spherical Hecke ring

HG
def= Cc(G(K )//G(OK );Z)

of functions G(OK )\G(K )/G(OK ) → Z supported on finitely many double cosets
with ring structure given by the convolution product. Taking the trace of geometric
Frobenius on motives as in [12] induces a surjective ring homomorphism from the
Grothendieck ring

K0
(

MTM(L+G\LG/L+G)c
) → HG ⊗Z Z[q−1], M �→ fM ,

with kernel generated by the class [IC0(−1)]−q[IC0] (the trace of geometric Frobenius
on Q(−1) is given by multiplication with q). Hence, under Theorem 5.7 the map
[ICμ(n)] �→ [Vμ(n)] induces an isomorphism of rings

HG ⊗ Z[q−1] ∼=−→ R(̂G1)/([d−1] − q),

where R(̂G1) = K0RepfdQ(̂G1). This is immediate from the preceding discussion using

[V0(−1)] = [d−1] in R(̂G1). Now choosing a square root q1/2 ∈ Q the composition
gives the classical Satake isomorphism as in [23, Proposition 3.6, (3.12)],

HG ⊗ Z[q±1/2] ∼= (

R(̂G1)/([d−1] − q)
)[q±1/2] ∼= R(̂G)⊗ Z[q±1/2],

where the last isomorphism is induced from [Vμ(0)] �→ q〈ρ,μ〉[Vμ].
Remark 5.9 Theorem 5.7 implies Theorem 5.2 by passing to ind-completions.
Indeed, the category of algebraic representations RepQ(̂G1) is compactly gener-

ated by its subcategory Repfd
Q

(̂G1) of finite-dimensional representations. Similarly,

MTM(L+G\LG/L+G) is compactly generated by MTM(L+G\LG/L+G)c.
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Remark 5.10 We expect that the analogue of Theorem 5.7 for Q-coefficients (as
opposed to Q-coefficients) holds as well. For this, one needs to show that the Tan-
nakian group ˜G1 = Aut�(ω) is Q-split. It will then be automatically isomorphic to
̂G1 by the isomorphism theorem. In order to obtain a more canonical identification
˜G1 � ̂G1 it would be interesting to construct constant term functors in this setting.

Also, we expect that Theorem 5.7 admits, similarly to [37], a generalization from
split reductive groups to unramified reductive groups. For this a key input is the exis-
tence of motivic t-structures on categories of stratified Artin–Tate motives (as opposed
to Tate motives). Here we expect the methods of [31, § 3] to carry over.
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27. Mirković, I., Vilonen, K.: Geometric Langlands duality and representations of algebraic groups over
commutative rings. Ann. Math. (2) 166(1), 95–143 (2007)

28. Richarz, T.: Schubert varieties in twisted affine flag varieties and local models. J. Algebra 375, 121–147
(2013). https://doi.org/10.1016/j.jalgebra.2012.11.013

29. Richarz, T.: Basics on affine Grassmannians. (2019). https://timo-richarz.com/teaching/
30. Richarz, T., Scholbach, J.: The motivic Satake equivalence (2019). arXiv:1909.0832
31. Richarz, T., Scholbach, J.: The intersectionmotive of themoduli stack of shtukas. ForumMath. (Sigma)

8, e8 (2020). https://doi.org/10.1017/fms.2019.32. arXiv:1901.04919
32. Richarz, T., Zhu, X.: Appendix to: the geometric Satake correspondence for ramified groups. Ann. Sci.

Éc. Norm. Supér. (4) 48(2), 409–451 (2015). https://doi.org/10.24033/asens.2248
33. The Stacks Project Authors. Stacks Project (2017). http://stacks.math.columbia.edu
34. Soergel, W., Wendt, M.: Perverse motives and graded derived categoryO. J. Inst. Math. Jussieu 17(2),

347–395 (2018). https://doi.org/10.1017/S1474748016000013. arXiv:1404.6333v3
35. Weil, A.: Sur l’analogie entre les corps de nombres algébriques et les corps de fonctions algébriques.

In: Oeuvres Scientifiques, Collected papers. vol. I, pp. 236–240. Springer, New York (1979)
36. Xiao, L., Zhu, X.: Cycles on Shimura varieties via geometric Satake (2017). arXiv:1707.05700
37. Zhu, X.: Affine Grassmannians and the geometric Satake in mixed characteristic. Ann. Math. (2)

185(2), 403–492 (2017). https://doi.org/10.4007/annals.2017.185.2.2
38. Zhu, X.: An introduction to affine Grassmannians and the geometric Satake equivalence. In: Geometry

of moduli spaces and representation theory. IAS/Park City Mathematics Series, vol. 24, pp. 59–154.
American Mathematical Society, Providence (2017)

http://www.numdam.org/item?id=PMIHES_1984__60__5_0
http://www.numdam.org/item?id=PMIHES_1984__60__5_0
https://doi.org/10.1007/978-3-030-33242-6
http://arxiv.org/abs/0912.2110
http://arxiv.org/abs/1905.03478
http://arxiv.org/abs/1912.10932
https://publications.ias.edu/sites/default/files/2007%20Serre_0.pdf
https://doi.org/10.1112/plms.12280
http://arxiv.org/abs/1812.07506
https://doi.org/10.4007/annals.2009.170.1469
http://arxiv.org/abs/9511007
https://doi.org/10.2307/1970321
https://doi.org/10.2307/1970321
https://doi.org/10.1017/CBO9780511662010.006
https://doi.org/10.1016/j.jalgebra.2012.11.013
https://timo-richarz.com/teaching/
http://arxiv.org/abs/1909.0832
https://doi.org/10.1017/fms.2019.32
http://arxiv.org/abs/1901.04919
https://doi.org/10.24033/asens.2248
http://stacks.math.columbia.edu
https://doi.org/10.1017/S1474748016000013
http://arxiv.org/abs/1404.6333v3
http://arxiv.org/abs/1707.05700
https://doi.org/10.4007/annals.2017.185.2.2


44 Page 34 of 34 T. Richarz, J. Scholbach

39. Zhu, X.: Geometric Satake, categorical traces, and arithmetic of Shimura varieties. In: Current Devel-
opments in Mathematics 2016, pp. 145–206. International Press, Somerville (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


	Tate motives on Witt vector affine flag varieties
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Results

	2 Motives on perfect (ind-)schemes
	2.1 Recollections on prestacks
	2.2 Perfection of prestacks
	2.3 Motives on perfect schemes
	2.4 Motives on perfect ind-schemes

	3 Stratified Tate motives for perfect ind-schemes
	4 Motives on Witt vector affine flag varieties
	4.1 Loop groups and their affine flag varieties
	4.2 Motives on affine flag varieties
	4.3 The convolution product

	5 The motivic Satake equivalence
	5.1 Semisimplicity
	5.2 The tensor structure
	5.3 The Tannakian structure
	5.4 The Tannakian group

	Acknowledgements
	References




