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Abstract

Fungal reproduction is regulated by the mating-type (MAT1) locus, which typically comprises two idiomorphic genes. The presence

of one or both allelic variants at the locus determines the reproductive strategy in fungi—homothallism versus heterothallism. It has

beenhypothesized that self-fertility via homothallism is widespread in lichen-forming fungi. To test this hypothesis, we characterized

theMAT1 locusof41genomesof lichen-forming fungi representingawide rangeofgrowth formsandreproductive strategies in the

class Lecanoromycetes, the largest group of lichen-forming fungi. Our results show the complete lack of genetic homothallism

suggesting that lichens evolved from a heterothallic ancestor. We argue that this may be related to the symbiotic lifestyle of these

fungi, and may be a key innovation that has contributed to the accelerated diversification rates in this fungal group.
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Introduction

Sexual reproduction in filamentous fungi is controlled by

genes of the mating-type locus (MAT1) (Coppin et al. 1997;

Kronstad and Staben 1997). This locus comprises two highly

dissimilar allelic variants, the MAT1-1 and MAT1-2 idiomorphs

(Metzenberg and Glass 1990). These variants encode highly

divergent proteins: a region encoding an a1 domain charac-

terizes the core MAT1-1 gene, while a MATA_HMG (high-

mobility group)-box characterizes the core MAT1-2 gene

(Turgeon and Yoder 2000). The transcription factors of the

MATA_HMG domain are involved in sexual development and

have been proposed to be the ancestral fungal sex determi-

nant in fungi (Idnurm et al. 2008; Lee et al. 2008). The mo-

lecular function of the a-box is still unclear, although evidence

suggests that it may act as transcriptional coactivator (Hagen

et al. 1993).

Fungal mating systems can be classified based on the genic

content of the MAT1 locus as, in general, sexual reproduction

requires the expression of genes from both MAT1 idiomorphs

(Ni et al. 2011; Dyer et al. 2016). Individuals of heterothallic

(out-breeding) species possess genes from only one of the

two idiomorphs. Individuals of heterothallic species are thus

obligately out-crossing as they require a compatible partner

for sexual reproduction to occur (Dyer 2008).

On the other hand, homothallism is an umbrella term that

describes a variety of distinct mechanisms that collectively

allow for single individuals to be self-fertile and may be clas-

sified as primary and secondary homothallism (Wilson et al.

2015). Primary (i.e., genetic) homothallic species possess

genes of both MAT1-1 and MAT1-2 idiomorphs within a

single genome. Secondary homothallism refers to

other mechanisms that allow for homothallic behavior such
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as: 1) uni-/bidirectional mating-type switching when individu-

als of one or both mating types are able to reversibly (or irre-

versibly) switch to the opposite mating type forming a mixed,

functionally heterothallic colony; and 2) unisexuality when

individuals of the same mating type are able to undergo sex-

ual reproduction regardless of the absence of a compatible

mating partner. Self-fertility can also be achieved via pseudo-

homothallism, when opposite mating-type nuclei are packed

within a single spore which produces, upon germination, a

heterokaryotic, self-fertile mycelium (Whitehouse 1949: Olive

1958; Nelson 1996; Yun et al. 1999; Whittle et al. 2011). All

these different systems of secondary homothallism allow,

from one side, the preservation of homothallic mating under

conditions in which the compatible mating partner is absent

or not easily accessible, while retaining the ability to outcross.

Lichen-forming fungi have two alternative reproductive

strategies: asexual reproduction and sexual ascospore-

producing reproduction. Asexual reproductive systems

generally result in the simultaneous propagation of fun-

gal and photosynthetic symbionts (Dal Grande et al.

2012, but see Wornik and Grube 2010), either in gran-

ules of varying size containing algal cells and fungal hy-

phae (soredia or isidia), which are easily detached out-

growths from the lichen thallus. Although asexual

reproduction codisperses the fungal and photosynthetic

partners, exclusive asexuality has often been interpreted

as an evolutionary dead end (Normark et al. 2003).

Sexual reproduction decouples the symbionts and the

fungus must find a suitable photosynthetic partner for

the establishment of a new lichen thallus. While the mor-

phological underpinnings of the reproductive modes in

lichens have been dissected in detail (Büdel and

Scheidegger 2008), the genetic basis of sexual reproduc-

tion in lichens remain, however, largely unknown be-

cause of the failure to induce sexuality in vitro

(Murtagh et al. 2000).

Primary homothallism is widespread among filamentous

ascomycetes, where it is derived from heterothallic ancestors

via genetic capture (Beukeboom and Perrin 2014). Self-fertility

via homothallism has been proposed to be a prevalent char-

acteristic of lichen-forming fungi (Murtagh et al. 2000), which

represent about half of the known ascomycetes (reviewed in

Hawksworth 2015).

Primary homothallism has been unequivocally demon-

strated for only one lichen-forming fungus of the class

Eurotiomycetes, Endocarpon pusillum, based on results of

whole-genome analysis (Wang et al. 2014). On the other

hand, for the Lecanoromycetes, the largest class of lichenized

fungi, reports of homothallism have mostly been based on

indirect evidence, such as genetic uniformity based on RAPD-

PCR fingerprinting of ascospores from the same ascomata

(Murtagh et al. 2000; Seymour et al. 2005; Honegger et al.

2007). Obligate, behavioral homothallism has been reported

for only two species of the order Teloschistales, Xanthoria

elegans, and X. parietina (Scherrer et al. 2005). In the first

case, both mating types were detected in all haploid, single

spore isolates, although the exact mating-locus architecture

has not been recovered. The latter, instead, represents the

firstly reported example of a unisexual lichen species: al-

though genetically heterothallic having lost MAT1-1,

descendants of meiosis displayed no segregation at the mat-

ing locus. Results based on MAT1 sequencing via PCR ampli-

fication and population genetic data have unequivocally

demonstrated genetic and behavioral heterothallism for sev-

eral Lecanoromycetes species from different families repre-

senting various reproductive strategies (Ludwig et al.

2017)(Tripp et al. 2017; Dal Grande et al. 2018), such as

from predominantly sexually reproducing (e.g., Parmelina car-

porrhizans, Parmeliaceae) (Alors et al. 2017) to predominantly

vegetatively reproducing species (Lobaria pulmonaria,

Lobariaceae) (Singh et al. 2012, 2015). It has been hypothe-

sized that homothallism might be widespread among lichen-

forming fungi, especially in the order Lecanorales (Murtagh

et al. 2000). It is still unclear, however, whether this repro-

ductive mode represents the ancestral or derived state in liche-

nized ascomycetes.

In this study, we tested the hypothesis of widespread, an-

cestral primary homothallism in lichen-forming fungi using

genomic data. For this purpose, we gathered whole-

genome sequence data and characterized the MAT1 locus

of a set of genomes of lichen-forming fungi representing a

wide range of growth forms and reproductive strategies, with

particular focus on the Lecanoromycetes, the largest clade of

lichenized fungi. Our findings will contribute to the under-

standing of the regulation of reproductive processes and

the evolution of the mating locus in the Lecanoromycetes.

This will further contribute to our understanding of the mech-

anisms behind the accelerated diversification of this important

and diverse group of symbiotic fungi.

Results and Discussion

While a solid foundation on morphological and anatomical

understanding of the reproductive modes in lichens have

been presented in great detail (Büdel and Scheidegger

2008), the genetic basis of sexual reproduction in lichens re-

main largely unknown. Here, we analyzed the mating-type

locus from 41 genomes representing 4 classes and 9 orders of

lichenized fungi. Our results show the loss of primary homo-

thallism in the Lecanoromycetes, the largest group of liche-

nized fungi (fig. 1). In all 39 Lecanoromycete genomes, we

found the same organization of the mating locus, with a sin-

gle MAT1 core gene, MAT1-1 or MAT1-2, flanked by the

highly conserved cytoskeleton protein (SLA2) and DNA lyase

(APN2) genes (fig. 2 and supplementary table S1,

Supplementary Material online). This is in accord with studies

reporting heterothallic organization for several species in this
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group. Sequences flanking the core MAT1 genes were rather

conserved and the transition between similar/dissimilar

regions in both idiomorphs was abrupt (supplementary fig.

S1, Supplementary Material online). This is similar to the do-

main organization found in the heterothallic ascomycete

Cochliobolus heterostrophus (Turgeon et al. 1993). We found

a novel gene between MAT1-1 and SLA2 in every species

containing a MAT1-1 idiomorph. Within MAT1-2 loci, a differ-

ent auxiliary gene was detected between MAT1-2 genes and

APN2 in every MAT1-2 species, with the exception of Graphis

scripta. Preliminary phylogenetic analysis suggests that these

genes might be lichen-specific (supplementary fig. S2,

Supplementary Material online): the auxiliary MAT1-1 genes

of Lecanoromycetes clustered together forming an unsup-

ported monophyletic group with an unsupported sister rela-

tionship to the MAT1-1-4 gene cluster, the latter commonly

found in Eurotiomycetes, for example in Paracoccioides bra-

siliensis (Desjardins et al. 2011); similarly, the auxiliary MAT1-

2 genes also formed an unsupported monophyletic group

clustering all Lecanoromycete species, except Xanthoria pari-

etina, which clustered with Aspergillus MAT1-2-4. Sequence

analysis showed high divergence among Lecanoromycetes

species; in addition, a different number of introns were

found depending on the species (supplementary table S3,

Supplementary Material online). Interestingly, in some

species, for example, Cetraria islandica, Cetraria

FIG. 1.—Phylogenetic placement of the class Lecanoromycetes within the Pezizomycotina. This is a phylogenetic tree from an IQTree analysis based on a

concatenated alignment of 81 CEGMA genes. The tree includes 53 species (see supplementary table S2, Supplementary Material online) representing the

major groups of Pezizomycotina. The nodes were collapsed at the class rank for clarity of presentation. On the right, gray and white circles represent

heterothallic and homothallic organization, respectively. All nodes received maximum ML bootstrap support values (100%).
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commixta, and Umbilicaria pustulata (Dal Grande et al.

2018), the MAT1-2 auxiliary genes displayed a conserved

homeodomain leucine-zipper domain (pfam11569,

supplementary fig. S1, Supplementary Material online).

The characterization of these new genes warrants further

study.

FIG. 2.—Left: Evolutionary relationships of 41 lichen-forming fungi based on a concatenated alignment of 735 single-copy protein-coding genes. The

tree is a ML tree from an IQTree analysis. Numbers represent ML bootstrap support values based on 1,000 bootstrap pseudoreplicates. Arrow indicates the

clade that includes members of the Lecanoromycetes. Right: Schematic representation of the organization of the mating locus in each genome. Except for

the two outgroup species that showed homothallic organization either on the same (Endocarpon pusillum) or different scaffolds (Arthonia rubrocinta), all

remaining genomes (i.e., Lecanoromycetes) displayed heterothallic organization.
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Evolutionary transitions between homothallism and het-

erothallism have commonly occurred in both directions

throughout the fungal kingdom (Lin and Heitman 2007).

These transitions between inbreeding and outcrossing are

likely a response to biological and/or environmental cues

that favor one or the other strategy. It has been suggested

that homothallism represents the primary reproductive mode

of lichen-forming fungi (Murtagh et al. 2000). The key argu-

ment in support of this hypothesis was that, based on initial

analyses of MAT gene organization in lichens, homothallism

was presumed to be widespread. Our findings suggest the

opposite, that is, that heterothallism is the prevalent organi-

zation of the MAT1 locus across the wide taxonomic diversity

of the Lecanoromycetes under study, including several sup-

posedly asexual lichens. Furthermore, our results indicate a

highly conserved organization and synteny of the MAT1 locus

in lichens. By and large, our results strongly support the hy-

pothesis of an ancestral heterothallic state in lichens. This sce-

nario is thus similar to what has been described for the

evolution of breeding systems in other ascomycete genera

such as Cochliobolus (Yun et al. 1999) and, more recently,

Aspergillus (de Vries et al. 2017; Ojeda-Lopez et al. 2018).

The lack of primary homothallism in the Lecanoromycetes,

the most phenotypically diverse class of lichenized fungi, is

somewhat surprising. This may well be influenced by the sym-

biotic lifestyle of these fungi. On the one hand, from the

fungal perspective, heterothallism, or obligate outcrossing,

can be considered as a high-risk, high-reward strategy.

Some portion of the population may, in fact, not be able to

find a compatible mating partner, especially for those species

with skewed distributions of the MAT idiomorphs. On the

other hand, the progeny of successful matings will have

higher genetic diversity (Otto 2008). Compared with homo-

thallic systems, outbreeding fungi may display accelerated

adaptive evolution and more efficient elimination of deleteri-

ous mutations, thus they might be more able to avoid Muller’s

Ratchet (Roach and Heitman 2014). This is particularly true in

environments with more novel factors (Murtagh et al. 2000).

It is thus tempting to speculate that the tendency to engage in

more prominent outbreeding might be responsible for the

accelerated diversification found in this fungal clade (Gaya

et al. 2015; J.P. Huang et al., submitted).

From the perspective of the lichen holobiont, sexual repro-

duction allows for the possibility of reshuffling of the sym-

bionts to generate novel fungus–alga pairs (Dal Grande et al.

2012). As shown recently, these new associations may be key

to expanding a lichen’s niche (Rolshausen et al. 2017). On the

other hand, the absence of compatible mating partners in the

population in case of obligatory outcrossing lichen-forming

fungi would comport the risk of being stuck with suboptimal

or maladapted photobionts. In this respect, the widespread

heterothallism in the Lecanoromycetes would still be advan-

tageous in the presence of mechanisms that would reduce

the cost of sex and avoid the problem of mate finding. Results

from literature and our own ongoing research seem to sup-

port this scenario.

First, there have been several reports of population and

seasonal effects on ascospore discharge and germination in

this fungal group. In this regard, for example, seasonality was

shown to be the regulating factor in Cladonia furcata (Jahns

et al. 1979) and a few species of the Parmeliaceae (Ruibal,

personal communication) Constantino Ruibal, thallus size in

Umbilicaria pustulata (Hestmark 1992), Xanthoparmelia cum-

berlandia (Pringle et al. 2003), and thallus age in Parmelia

sulcata (Honegger et al. 2007). This would mean that, like in

many other fungi, the timing of sexual reproduction in lichens

could be adjusted to when the costs are lowest (Lee et al.

2010; Stelzer 2015). The reproductive strategy being selected

for a particular species would therefore depend on interactions

among many factors, either environmental (e.g., nutrient avail-

ability, competition for space and/or photobiont pools) and/or

biological (e.g., population structure, thallus age, and size).

Second, data suggest that many species in this group may

be secondarily homothallic. Secondary homothallism in the

Lecanoromycetes consists of different strategies or a combi-

nation of them, such as unisexuality, the formation of hetero-

karyotic, self-fertile thalli, and pseudohomothallism. Scherrer

et al. (2005) demonstrated unisexuality in the invariably fertile

Xanthoria parietina as, although being genetically heterothal-

lic, all descendants of meiosis contained only MAT1-2. A uni-

sexual cycle may be essential for lineage survival when

conditions are unfavorable for heterosexual mating or com-

patible mating-type partners are not available. This is, for in-

stance, the case for species of the genus Cryptococcus that

are able to produce spores only via a unisexual or heterosexual

cycle (Billiard et al. 2012; Fu et al. 2015). The presence of

unisexual mating indicates that in certain ecological niches

(e.g., for ruderal species and pioneer colonizers) there may

be strong evolutionary pressure for homothallism to arise as

the derived state. Unisexual reproduction utilizes a similar ge-

netic pathway as heterosexual reproduction (Feretzaki and

Heitman 2013). As such, unisexually derived meiotic spores

carry clear advantages over clones or mitotic spores (conidia)

in terms of survival rates, especially in adverse environmental

conditions (Trapero-Casas and Kaiser 2007). Another advan-

tage of the maintenance of sex via unisexuality may be the

reduction of the number of transposons in the genome via

increased selection (Roach et al. 2014). The formation of het-

erokaryotic, self-fertile thalli may be achieved via the joint

dispersal and germination of ascospores from the same ascus.

The joint ejection and germination of ascospores from

Xanthoria species, typically early colonizers, was reported by

Molina and Crespo (2000) and Honegger et al. (2004). The

authors reported that, after only two days from ejection, a

mucilage of unknown origins would glue the germinating

spores together. We observed a similar phenomenon in sev-

eral species of the Parmeliaceae (fig. 3, top). This suggests that

lichen thalli of the Lecanoromycetes might be often
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composed of mycelia of opposing mating types, thus being de

facto self-fertile. This would also mean that lichen thalli would

comprise multiple mycobiont genomes, thus rendering meta-

genomic assemblies further challenging (Meiser et al. 2017;

Tripp et al. 2017). The fact that we could retrieve a single,

complete mating-type locus in all analyzed metagenomes,

could be explained by a skewed mating-type ratio in the thal-

lus portion that was used for DNA extraction. In pseudoho-

mothallism, self-fertility is the result of the packaging of

opposite mating-type nuclei within a single spore (Wilson

et al. 2015). Although pseudohomothallism in lichen-

forming fungi has not yet been reported, we observed bi-

or multipolar germination of ascospores in members of the

Parmeliaceae (Lecanoromycetes), suggesting the presence of

multinucleated spores (fig. 3, bottom) (Molina and Crespo

2000). Multinucleate ascospores are a common feature in

the order Pertusariales (Lecanoromycetes) (Pyatt 1968).

Future studies should thus focus on characterizing the asco-

spore mating type in these species.

Conclusions

This is the first broad scale study dissecting the genetic archi-

tecture of the mating locus in lichen-forming fungi. We char-

acterized the MAT1 locus in the genomes of several lichen-

forming fungal species representing a wide range of growth

forms and reproductive strategies (isidia, soralia, and asco-

spores). Noteworthy, we showed widespread heterothallism

in the largest, phenotypically most heterogeneous group of

lichen-forming fungi. We hypothesize that this is related to

the symbiotic lifestyle of this fungal group. Furthermore, the

consistency of this character allows us to speculate that this

may be implicated in the accelerated diversification rates

found in the Lecanoromycetes (J.P. Huang et al., submitted).

FIG. 3.—Top: Simultaneous, unipolar germination of spores ejected from one ascus in Melanelixia glabra (Parmeliaceae, Lecanoromycetes; left) and

Cetraria sepincola (Parmeliaceae, Lecanoromycetes; right) at 9 and 8days after ejection, respectively. Bottom: bipolar (Xanthoparmelia stenophylla,

Parmeliaceae, Lecanoromycetes; left) and multipolar (Menegazzia cincinnata, Parmeliaceae, Lecanoromycetes; right) spore germination at 7 and 14days

after ejection, respectively. Ascospore isolation and germination followed the method by Molina and Crespo (2000). Scale bars represent 10lm.
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As such, our study sets the stage for further exploration of the

reproductive strategy of lichens, as well as of its evolutionary

outcomes.

Materials and Methods

Taxon Sampling

A total of 41 lichen-forming fungal species were included in

this study (supplementary table S1, Supplementary Material

online). We included genomes of species belonging to differ-

ent classes and orders of lichen-forming fungi. In the class

Lecanoromycetes, we analyzed genomes of species belonging

to the order Teloschistales (Xanthoria parietina and Gyalolechia

flavorubescens), Umbilicariales (Umbilicaria pustulata [Dal

Grande et al. 2017; Dal Grande et al. 2018], Umbilicaria

hispanica [Dal Grande et al. 2018] and Umbilicaria muehlen-

bergii), Ostropales (Graphis scripta), Peltigerales (Leptogium

austroamericanun), and Lecanorales (family Cladoniaceae:

Cladonia grayi, C. macilenta, C. metacorallifera; Cladonia maci-

lenta, Cladonia metacorafilera Lecanoraceae: Rhizoplaca mel-

anophthalma; Icmadophilaceae: Dibaeis baeomyces;

Parmeliaceae: 27 species representing six of its seven major

clades; see supplementary table S1, Supplementary Material

online). Additionally, we included two species belonging to

the sister class Eurotiomycetes (Endocarpon pusillum) and

Arthoniomycetes (Arthonia rubrocinta).

DNA Isolation and Sequencing

Total genomic DNA of 27 specimens of Parmeliaceae were

extracted from apothecia or thalli using the Quick-DNA

Fungal/Bacterial Miniprep Kit (Zymo Research, Irvine, CA) fol-

lowing the manufacturers’ instructions. DNA concentration

was measured using the Qubit dsDNA BR Assay kit (Thermo

Fisher Scientific, San Diego, CA). Paired-end libraries (250 bp)

were built either using TrueSeq or Nextera XT DNA library

preparation kits (Illumina, San Diego, CA). Sequencing of

Nextera XT libraries was carried out by the University of

Illinois at Chicago Research Resource Center (Chicago, IL)

on Illumina NextSeq platform while TruSeq libraries were se-

quenced on Illumina MiSeq platform at the Pritzker

Laboratory for Molecular Systematics and Evolution at The

Field Museum, Chicago, IL.

Trimming, Assembly, and Taxonomic Assignment

Raw sequences were downloaded from an Illumina

BaseSpace application and quality-trimmed and filtered using

Trimmomatic-0.36 (http://ww.usadellab.org/cm/? page¼trim-

momatic) Properly working, 18 February 2019 access (Bolger

et al. 2014). Bases were trimmed when the average quality of

5-base sliding windows was <20 and bases at the start and

end of reads had a quality <3 and 10, respectively.

Subsequently, all trimmed reads shorter than 36 bp were

filtered out. The same trimming procedure was carried out

for genomes retrieved from NCBI, that is, Arthonia rubro-

cincta (PRJNA256244) and Graphis scripta (PRJNA256475),

and the metagenomes of Leptogium austroamericanum

(PRJNA256476) and Dibaeis baeomyces (PRJNA256246).

Trimmed paired-end reads were assembled using SPAdes or

MetaSPAdes (Nurk et al. 2017), depending on the type of data,

using default parameters. In order to extract lichen-forming

fungal contigs from the respective metagenomic assemblies,

scaffolds of each metagenome were subjected to BLASTX

(Altschul et al. 1990) searches against a custom database com-

prising the protein sets of the NCBI nr database (downloaded

in August 2016), and additionally, four Parmeliaceae genomes

generated from axenic cultures from species of Parmeliaceae

(Cetraria islandica, Parmelina carporrhizans, unpublished; Evernia

prunastri and Pseudevernia furfuracea; Meiser et al. 2017), 150

complete fungal genomes and 20 algal genomes from JGI using

DIAMOND (Buchfink et al. 2015). The results of the DIAMOND

search were then used as input in MEGAN6 (Huson et al. 2016)

for taxonomic assignment (min-support ¼ 1, min-score ¼ 50,

top-hit ¼ 10%, no low complexity filtering). Contigs that were

assigned as Parmeliaceae were extracted and used in the sub-

sequent analysis.

Ortholog Identification and Tree Reconstruction

To infer the phylogenetic placement of the class

Lecaronomycetes within the Pezizomycotina, we selected

53 genomes representing the major groups of this subphylum

(see supplementary table S2, Supplementary Material online).

Orthologs genes were recovered using the CEGMA pipeline

(Parra et al. 2007). Every genome was explored using a data

set containing 458 proteins of Core Eukaryote Genes. The

complete CEGMA genes predicted in each genome were

extracted and aligned using MAFFT L-INS-i (Standley 2013).

A supermatrix was created by concatenating all alignments

using FASconCAT.pl (Kück and Longo 2014). Then, in order

to optimize information content and data saturation we used

MARE (Misof et al. 2013) with iterative steps of gene exclu-

sion, resulting in an optimal subset of 81 genes. Evolutionary

relationships were inferred from this subset using ML analysis

as implemented in IQTree v1.5.5 with standard model selec-

tion (Nguyen et al. 2015). For each analysis, 1,000 bootstrap

replicates were calculated using fast bootstrapping option.

The resulting tree was drawn using FigTree v 1.3.1

(Rambaut 2009).

We followed a similar procedure to infer the phylogenetic

relationships among 39 lichen-forming fungi belonging to the

class Lecanoromycetes. For this purpose, we extended the

orthologs gene set to 3,156 single-copy genes of

Pezizomycotina as implemented in BUSCO v3 (Sim~ao et al.

2015), resulting in a final matrix of 735 genes (see supple-

mentary table S1, Supplementary Material online). All subse-

quent analyses were carried out as outlined earlier. The
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genomes of Endocarpon pusillum (Eurotiomycetes) and

Arthonia rubrocinta (Arthoniomycetes) were used as

outgroup.

Mating-Type Locus Identification

In order to identify the mating-type locus in every genome, we

first selected protein sequences of SLA2 of Xanthoria poly-

carpa (CAI59767.1), APN2 of Xanthoria parietina

(CAI59775.1), Alpha-domain of MAT1-1 of Xanthoria poly-

carpa (CAI59771.1), and HMG-domain of MAT1-2 of

Dufourea flammea (CAI59780.2) from Scherrer et al.

(2005). These proteins and sequence domains were used as

queries in tBLASTn (Altschul et al. 1990) searches against ev-

ery genome assembly. Scaffolds containing more than one

sequence query were retrieved and gene prediction was car-

ried out using MAKER2 (Holt and Yandell 2011). Proteins

derived from gene prediction were annotated comparing

them with KEGG (Kanehisa et al. 2016) and COG databases

(Tatusov 2000). Only scaffolds with complete mating-type

loci, that is, containing complete anchoring genes (SLA2,

APN2) were included in further analyses.

Comparison between Two Different Mating-Type Loci

Two loci of opposite mating type from Umbilicaria pustulata

(Dal Grande et al. 2017; Dal Grande et al. 2018) were aligned

using LASTZ (Harris 2007). Sequence conservation and visual-

ization were carried out using Zpicture (Ovcharenko et al.

2004). Regions with >90% of ECR similarity were retrieved.

We further extracted the intergenic regions between mating-

type genes and the flanking genes of the two loci using

BEDtools (Quinlan and Hall 2010). Intergenic flanking regions

were aligned with nucleotide sequence of the opposite

mating-type locus using MAFFT.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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