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Diffusive model to assess 
the release of chemicals 
from a material under intermittent 
release conditions
Diego Frezzato1*, Gianluca Stocco2, Enrico Boscaro2, Marco Ferraro3 & Andrea Tapparo1*

We consider the archetype situation of a chemical species that diffuses in a material and irreversibly 
escapes through the interface. In our setup, the interface switches between two states corresponding 
to ‘release phase’ (absorbing boundary) during which the species is released to the exterior, and 
‘pause phase’ (reflecting boundary) during which the species is not released and its concentration 
profile inside the material partially relaxes back to uniformity. By combining numerical solution of 
the diffusion equation and statistical analysis of the outcomes, we derive upper and lower bounds 
and an empirical approximation for the amount of species released up to a certain time, in which the 
only information about the release-pause alternation schedule is the number of release phases and 
the average duration of a release phase. The methodology is developed thinking especially to dermal 
exposure assessment in the case of a slab-like homogeneous material irreversibly releasing chemicals 
during a number of contacts. However, upon proper extensions, this approach might be useful for 
inspecting other situations that are encountered, for instance, when dealing with leakage of chemicals 
in environmental contexts and regulatory toxicology.

Characterizing the release of chemicals from a material through the interface is a crucial problem in disparate 
situations. Just to mention a few, think to environmental ambits in which the species is released from the mate-
rial into a different phase (e.g., volatile species released in the air from  floors1 or other building  materials2,3, or 
released from buildings into receiving water under wet weather  conditions4), in the risk assessment of near-field 
exposure to consumer  products5 (e.g., release of chemicals from consumer  articles6 and cotton  wipes7 into derm, 
from plastics into drinking  water8, from packaging films into  food9), and in the context of controlled drug release 
from pharmaceutical  devices10,11,12.

Although the leakage is typically continuous, in some cases it might be intermittent with alternation of 
release-pause phases. For instance, chemicals in consumer objects are intermittently released to the derm through 
repeated contacts of limited duration; just think to rings or earrings releasing Nickel while they are worn, to a 
baby that puts a toy in the mouth from time to time, to phthalates released from plastic handles when the tools 
are used, etc. Yet, containers that release chemicals only when they are filled with liquids, or species that might 
pass into the environment from building materials or abandoned waste only under wet weather conditions. In 
all these examples, the release is intermittent and the (partial) redistribution of the species inside the material 
between two consecutive phases might affect, to some extent, the subsequent release rate. An accurate assess-
ment of the amount of the released chemicals should make use of appropriate models, and the outcomes could 
be relevant for the risk assessment in occupational medicine, in REACH Regulation, or in studies of exposure to 
environmental pollutants. Despite the potential relevance of the issue, to our knowledge a systematic quantitative 
analysis is still lacking. Such analysis would be clearly case-dependent, hence to start facing this topic we must 
select a specific relevant situation.

Among the variety of contexts in which the intermittent release from a material into a hosting phase is impor-
tant, here we focus on simple but relevant situations like that of a consumer material, or a tool, which comes into 
contact with the skin. We shall move the first steps in the release assessment by treating the simplest but realistic 
scenario that allows us to make basic modeling and numerical explorations. Specifically, we will assume that 
the release is irreversible and controlled by the diffusion in the material. A crucial target is to evaluate the total 
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quantity mext of species released through the interface up a certain time ttot , given that the system is initially at 
equilibrium. How is mext related with the diffusivity of the species in the bulk material, with the geometrical 
features of material and interface, and especially with the history of the contacts between material and exterior?

To tackle the problem on theoretical grounds, it proves convenient to consider the simplest archetype setup 
of a slab-like homogeneous material with given diffusion coefficient of the chemical species in it, and with uni-
form volumetric concentration at the initial equilibrium. The slab geometry is the simplest and natural setup 
if we refer to macroscopic objects whose exposed surface, from the viewpoint of the diffusion processes, looks 
locally planar. Assuming a constant diffusion coefficient is the most natural choice if the material is meant to 
remain uncontaminated by the external medium during the contact phases and if its homogeneity is preserved 
(a typical example is that of leakage of additives from plastics in the rubbery state, to which these assumptions 
are normally applied). The homogeneous initial load is also the most common situation thinking to such a kind 
of material after a preceding long resting phase. In addition, it is assumed that the chemical species passes irre-
versibly through the interface treated as a perfect absorbing boundary. This means to refer to the situation in 
which the external medium is quickly renewed at the interface so that the external concentration of the species 
can be assumed to be vanishingly small. Based on these assumptions, as stated above our purpose is to work out 
bounds on mext and even a likely approximation getting rid of the details of the release-pause schedule. Facing 
this problem goes much beyond the mere solution of the diffusive model at given schedule. The critical (and 
novel) aspect, in fact, consists in devising a global statistical synthesis of the schedule-dependent outcomes. This 
is precisely the target of the present theoretical-methodological work.

We proceed as follows. In “Theoretical model and approach” Section we present the theoretical model and our 
approach. “Results” Section presents the results; the methodological details and the analysis that support the find-
ings are provided in “Methodological aspects and analysis” Section. First we treat the case of a releasing material 
of infinite thickness (“Infinite thickness” Section), for which we derive lower and upper bounds on mext and, more 
importantly, an empirical approximation. The extension to the finite thickness case is done later (“Finite-thickness 
correction” Section) through the introduction of a correction factor on the upper bound. Section “Remarks and 
perspectives” is devoted to final remarks and perspectives. We must stress that the methodology that we are going 
to illustrate is applicable to any situation that adheres to the physical assumptions of the model.

Theoretical model and approach
Let us consider a planar slab-like material in which the chemical species has a constant diffusion coefficient D. Let 
A be the contact area with the exterior, and b the thickness of the material. Let us also assume that the chemical 
species is initially uniformly distributed in the material with volumetric concentration c0.

We focus here on the case in which the leakage is intermittent, that is, there is a number N of release phases 
(R) separated by pause phases (P) during which the material does not release the species and the interface behaves 
as a reflecting boundary. Figure 1 depicts the operation schedule on the time axis.

Concerning mext at the time ttot , our aim is to provide useful lower and upper bounds and an approximation 
in terms only of the parameters D, A, b, c0 , and of the number N of release phases. In this perspective, the specific 
features of the operation schedule should not enter explicitly. To achieve the target, we need first to simulate 
a large ensemble of instances (each corresponding to a specific schedule) and get the exact values of mext ; the 
subsequent step is to make a global analysis of the outcomes to see if useful indications about mext do emerge at 
fixed values of the few parameters listed above.

Given a specific release-pause schedule, the exact treatment of the problem requires to solve the diffusion 
equation for determining the evolution of the concentration profile inside the material. In fact, as shown below, 
the release rate from a unit-area portion of interface is proportional to the instantaneous slope of the concentra-
tion profile at the interface.

Let us take as x-axis the direction orthogonal to the interface and pointing towards the interior of the material. 
At distance x from the interface, c(x, t) is the concentration of the species at the time t. Let J(x, t) be the mass flux 
density giving the amount of species that, at the time t, crosses (in the direction of the x-axis) the orthogonal 
unit-area section at the location x in the unit of time. The amount of chemical species released from the interface 
up to the time ttot is then given by

For diffusive transport, J(x, t) is expressed by the first Fick’s law

(1)mext = −A

∫ ttot

0
dt J(x = 0, t)

Figure 1.  Scheme of the release-pause phases.
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and the evolution of c(x, t) is ruled by the one-dimensional diffusion equation (second Fick’s law)

Such equation is complemented by the initial condition c(x, 0) = c0 (initial homogeneity at equilibrium) and 
by the specific boundary conditions corresponding to release or pause phases. During the release phases there 
is leakage of the species through the interface, while during the pause phases the interface behaves as a reflecting 
boundary and the concentration partially relaxes back to the flat profile (which would be attained after an infi-
nitely long pause). Mathematically, this corresponds to set c(x = 0, t) = 0 during the release phases (absorbing 
boundary at the interface), and J(x = 0, t) = 0 during the pause phases (reflecting boundary). In addition, for 
a material with infinite thickness one has that lim

x→∞
J(x, t) = 0 (and lim

x→∞
c(x, t) = c0 ) corresponding to the fact 

that the conditions infinitely far from the interface are stationary and unaffected by the leakage of species.
The calculation of mext by means of Eq. (1) first requires the solution of Eq. (3) to compute the mass flux den-

sity from Eq. (2). The specific alternation release-pause makes that mext depends on the given operation schedule. 
In the general case of multiple release-pause phases, the solution of Eq. (3) can be obtained only numerically. 
The method used here is based on the basic finite-difference scheme outlined in “Numerical solution of the dif-
fusion equation” Section.

As said above, the interest here is not in the numerical solution of the problem given a specific schedule; 
rather, our purpose is to work out bounds/approximations on mext getting rid of the schedule details. This calls 
for a global statistical synthesis of the specific schedule-dependent outcomes. The results are presented in the 
next section.

Results
Infinite thickness. In the limit of infinite thickness, the diffusion equation has an analytical solution only 
for a single release phase. Namely, the well-known solution (see for instance ref.13) is c(x, t) = c0 erf (x/

√
4Dt) 

with erf (·) the Error Function defined as erf (u) = (2/
√
π)

∫ u
0 du′e−u′2 for argument u ≥ 0 . In this case, the 

amount of species released up to time ttot is

where

In the general case of multiple release-pause phases, the solution has to be obtained numerically, for instance 
by means of a finite-difference method (see “Methodological aspects and analysis” Section). This is because the 
concentration profile inside the material partially relaxes during the pause phases, hence a history-dependent 
initial condition has to be considered at the beginning of each new release phase. An example is shown in Fig. 2 
for N = 10 , in which the duration of each release and pause phase was randomly generated under the requisite 
that ttot = 3 h; the diffusion coefficient was set equal to D = 10−10m2/s , which is typical of molecular diffusion 
in viscous stagnant liquids or liquid-like phases (e.g., gels). The curve on the top of panel a) shows the evolution 
of mext . The dependence on the details of the operation schedule makes that what one can work out are only 
lower and upper bounds on mext , or, at best, a good estimate.

An a priori lower bound can be established by noting that, at given total release time, mext is surely higher 
than the quantity released if there were a single release phase (Eq. 4). This is because the relaxation during the 
pause phases implies some flattening of the concentration profile with partial return back to the initial condition, 
hence a consequent higher slope at the interface when the release starts again. Thus, one expects that

where we have introduced the average time of a release phase, τ  , defined as

On the opposite side, mext is surely lower than the quantity released when the pause phases are infinitely long, 
so that the initial condition is completely restored when the new release phase begins. In this way, the slope of 
the concentration profile at the interface is always the highest, so yielding the highest leakage rate. Thus, one 
expects that

where the last inequality follows from the application of Jensen’s inequality. For a concave function f(x) (i.e., a 
function with negative second derivative), such inequality states that �f (x)� ≤ f (�x�) where the averages are 
meant to be taken over a generic distribution on the x variable. The inequality is here applied to the concave 

(2)J(x, t) = −D
∂c(x, t)

∂x

(3)
∂c(x, t)

∂t
= −

∂J(x, t)

∂x

(4)For N = 1 : mext = K
√
ttot

(5)K = 2A c0
√

D/π

(6)mext > K
√
N
√
τ

(7)τ =
1

N

N
∑

k=1

τRk

(8)mext < K

N
∑

k=1

√

τRk ≤ K N
√
τ
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function square-root, and the average is the arithmetic mean over the N  phases. Namely, 
N−1

∑

k

√

τRk ≤
√

N−1
∑

k τ
R
k =

√
τ  from which Eq. (8) readily follows. The a priori lower and upper bounds 

given above have been validated by numerical simulations (see below). Note that, for N = 1 , the terms in Eqs. (6) 
and (8) become equal one each other, and equivalent to the exact solution as well. Unfortunately, the upper bound 
in Eq. (8) becomes rapidly more and more loose as N increases.

As detailed in “Methodological aspects and analysis” Section, we also get an empirical approximation of 
mext by combining the numerical solution of the diffusion equation inside the material with a heuristic analysis 

Figure 2.  A sequence of release-pause phases with times randomly generated under the constraint ttot = 3 
h. In this example, N = 10 , D = 10−10m2/s , and the material is supposed of infinite thickness. In panel (a), 
the shadowed blocks represent the release phases and the profile on the top shows the evolution of released 
quantity (here divided by A c0 yielding a quantity expressed in meters). Panels (b and c) show, respectively, the 
concentration profiles at the end of the release and pause phases.
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of the outcomes from a large number of simulated instances. This is our main achievement. The result is (see 
“Methodological aspects and analysis” Section for details):

where f(z) is the empirical function

whose dimensionless argument z is the ratio between the average time of a pause phase and the average time of 
a release phase; in terms of ttot , τ  and N, it reads

With respect to Eq. (4), Eq. (9) may be seen as a adjusting expression for mext giving a plausible estimate when 
N > 1 . The geometrical parameters and the diffusion coefficient still enter only through the factor K, while the 
dependence on the schedule enters through N and the function f(z). The crucial variable related with the essential 
features of the time schedule is z. As the cumulative duration of the pauses tends to a low fraction of ttot , the 
value of z tends to zero; in contrast, for short cumulative duration of the release phases, z takes values more and 
more high. Since 0 ≤ f (z) ≤ 1 , the value of the right-hand side Eq. (9) is always comprised between the two 
bounds Eqs. (6) and (8). The lower bound is approached from above as z → 0 where f (z) → 1 (and, in practice, 
the lower bound reduces to Eq. (4) as if there were a unique release phase since the pauses are extremely short 
and can be neglected). On the contrary, as z → ∞ , f(z) is null and Eq. (9) approaches the highest bound Eq. (8) 
(which, in practice, tends to become vanishingly small as if there were a unique pause phase without release of 
the species). The fact that the diffusion coefficient enters only the multiplicative factor K can be expected on the 
basis of scaling arguments by considering that in the infinite-thickness case, in the absence of any characteristic 
length, a variation of D does simply reflect on a homogeneous scaling of the dynamics. Accordingly, it is not 
surprising that the schedule-dependent adjustment is expressed in terms of a ratio between characteristic times 
of the schedule itself. On the other hand, the dependence exactly on z (ratio between the average time of pause 
and release) and the specific form of f(z) are non-trivial features that derive from the heuristic inspection.

A comment is due about the “ ≃ ” in Eq. (9). Following the inspection in “Methodological aspects and analy-
sis” Section it is seen that Eq. (9) should be an upper bound to mext more stringent than Eq. (8). Such a refined 
bound, however, is not mathematically derived nor strict; rather, its violations are admitted but are found to be 
little as shown below. In practice, Eq. (9) proves to provide a good estimate (much probably a slight overestimate) 
of mext . For finite z values, we directly assessed (see below) the effectiveness of Eq. (9) by generating ensembles 
of instances and looking at (1) the collocation of the exact values of mext with respect to quantity expressed by 
Eq. (9), and (2) the distribution of the relative deviation of mext from such approximation.

Concerning the status of Eq. (9), we stress again that it constitutes an empirical achievement based on an 
heuristic inspection. In this sense, it has to be taken as a “discovery” from numerical experiments conducted in 
unbiased way, and then subjected to a proof of effectiveness. The heuristic inspection fills the gap between exact 
formal mathematical treatment (which, as said above, is hampered by the variety of schedule-dependent initial 
conditions at the beginning of each release phase) and plausible estimate of mext given the essential features of 
the schedule. The price to pay is the loss of direct connection between Eqs. (9) – (11) and the physical features of 
the diffusion/release process. Of course, as for any empirical result, improvements of Eq. (9) (either in terms of 
functional form and/or values of the parameters) could be achieved by accumulating and analyzing a larger set 
of simulations. We also stress the crucial fact that Eq. (9) is strictly applicable only to the case of release under 
diffusion from materials of infinite thickness and planar interfaces, and for initial uniform load of the species; it 
is expected that if any of such assumptions is relaxed, then Eq. (9) needs to be replaced by a different relation to 
be discovered case by case by means of the same heuristic approach. Notably, the numerical parameters entering 
Eq. (10) are intrinsic dimensionless coefficients characteristic of the physical setup but independent of the details 
of the specific case; in this lies the utility of Eq. (9).

As illustrative examples we considered here two cases: (1) D = 10−10 m2/s , N = 10 , ttot = 3 h, and (2) 
D = 10−12 m2/s , N = 20 , ttot = 2 h. While case (1) pertains the release from liquid-like materials (e.g., gels), in 
case (2) the value of D is closer to the typical values in plastic  materials6,8. Just to make an example in the dermal 
exposure context, case (2) could be the leakage of some chemical species from a highlighter handled twenty 
times in the course of 2 h of office work. At fixed total time, 1000 instances have been generated by randomly 
drawing in unbiased way the duration of the release/pause phases. For each generated time-schedule, the exact 
value (under the required accuracy criteria) of mext/A c0 has been computed solving the diffusion equation by 
means of the finite-difference scheme described in “Methodological aspects and analysis” Section. Figure 3 
shows the outcomes. Panels (a) and (c) show the distribution of the released quantity. This gives an indication 
about the spread of the values if the duration of the release and pause phases is generated at random at fixed N 
and ttot . For the same data sets, panels (b) and (d) show the lower bound Eq. (6) (open circles), the upper bound 
Eq. (8) (open squares) and the approximation Eq. (9) (filled circles) versus the exact values; the continuous red 
line has slope one. The figure reveals the closeness of the approximation to the true value. The fact that Eq. (9) 

(9)mext ≃
K N

√
τ

1+
(√

N − 1
)

f (z)

(10)f (z) =











0.2+
0.8

1+ 0.6 z
for 0 ≤ z ≤ 10

0 for z > 10

(11)z =
ttot − Nτ

(N − 1)τ
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mostly gives a slight overestimation (but well below the a priori bound in Eq. (8)) is illustrated in Fig. 4 showing 
the statistical distribution of the percentage relative deviation 100× (mext −mapprox)/mext , where mapprox is 
the value at the right-hand side of Eq. (9). Such a relative deviation serves to quantify both the violation of the 
bound in Eq. (9) (occurrence of positive values) and the closeness of mapprox to the true value. The percentage of 
instances in which mext exceeds mapprox was found to depend on the parameters employed. The percentage was 
of 23% for case (1) and of 2% for case (2). In both cases, however, such violations correspond to values confined 
within 1% above the approximation.

In summary, the true values of mext are highly concentrated around the right-hand side of Eq. (9), meaning 
that such an empirical expression gives a good estimation of mext (generally a slight overestimation) by avoiding 
cumbersome exact calculations which would require the details of the time schedule of the release/pause phases.

Finite-thickness correction. On the basis of the heuristic analysis illustrated in “Finite-thickness analysis” 
Section, we can make an adjustment of the approximation Eq. (9) when the finiteness of the material’s thick-
ness, b, cannot be ignored. Given the release-pause schedule, it is found that the key control parameter is the 
dimensionless quantity

where tRtot is the total release time (hence tRtot = N τ  ). Letting mext,∞ be the amount of species released from the 
material as if it had an infinite thickness, for the true amount mext it is found that

(12)σ =
b

√

2D tRtot

(13)mext ≤ mext,∞ u(σ )

Figure 3.  Panels (a and c) show examples of the distribution of the released quantity mext , for a material of 
infinite thickness, as the release and pause times are randomly generated at fixed N and total time ttot . For the 
same instances of panels (a and c), panels (b and d) show the interrelation between the exact value of mext and 
the lower bound in Eq. (6) (open circles), the upper bound in Eq. (8) (open squares), and the expression in 
Eq. (9) (filled circles). The continuous red line has slope one. Note that the released quantities are divided by 
A c0 , hence have physical dimension of a length (here expressed in meters).
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with the upper-bound function

where 0.8 is the approximation of 
√
2/π  . As commented in “Finite-thickness analysis” Section, a tentative lower 

bound on mext could also be given, but further numerical investigations are required to make sound statements.
Equation (13), in combination with Eq. (9), allows us to provide an upper bound on the released quantity 

taking into account the finiteness of the thickness. Let us introduce the thickness-dependent characteristic time

For tRtot > t∗ , from Eq. (13) with Eq. (9) we get mext ≤ c0 Ab
√
N/[1+ (

√
N − 1)f (z)] where the “ ≤ ” is here 

likely applicable by considering the “ ≃ ” of Eq. (9) combined with the “ ≤ ” of Eq. (13). This inequality is however 
trivial. In fact, c0 Ab corresponds to the total quantity of species that is present in the portion of slab material, 
and 

√
N/[1+ (

√
N − 1)f (z)] ≥ 1 because f(z) is comprised between 0 and 1; thus the inequality states nothing 

but that mext cannot exceed the total amount of species initially present in the material. On the other side, for 
tRtot ≤ t∗ , we get the following inequality (corresponding to Eq. (9)) which is potentially useful:

While Eq. (16) is mathematically always fulfilled, it becomes non-trivial only if tRtot is sufficiently smaller than t∗ . 
Specifically, the right-hand side of Eq. (16) turns out to be smaller than the initial total amount of species in the 
portion of material (and hence the inequality is non-trivial) only if

(14)u(σ ) =
{

σ
√
π/2 for σ ≤ 0.8

1 for σ > 0.8

(15)t∗ =
π b2

4D

(16)mext ≤
2 c0 A

√
Dτ/π N

1+ (
√
N − 1)f (z)

for tRtot ≤ t∗

Figure 4.  Example of distribution of the percentage relative displacement of mext from mapprox for a material of 
infinite thickness. The abscissa values are 100× (mext −mapprox)/mext , where mapprox has been calculated with 
Eq. (9). The conditions are the same of Fig. 3.
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The factor γ (N , τ , ttot) lies between 1/N and 1, hence the condition of Eq. (17) is more stringent than tRtot ≤ t∗ . If 
Eq. (17) results to be violated, Eq. (16) is still valid but useless since we could only state that mext does not exceed 
the total quantity of species initially present in the portion of material. In essence, the specific release-pause 
schedule controls the effectiveness of Eq. (16). A numerical exemplification will be provided in  “Examples” 
Section.

As tRtot decreases, Eq. (16) becomes more and more stringent up to reach its full effectiveness when tRtot is 
enough short that the material would behave, in practice, as if its thickness were infinite. Further inspections are 
however needed to quantitatively characterize the transition to the infinite-thickess-like situation.

As a final remark, we underline that although Eq. (16) is referred to as a formula for the finite-thickness 
correction, the thickness b does not enter explicitly. Rather, b enters indirectly through t∗ , that is, in the specifi-
cation of the range of applicability of Eq. (16). In other words, without providing the value of b, Eq. (16) would 
be meaningless.

Examples. Let us make an example to clarify the application of the results presented in “Finite-thickness 
correction” Section. In particular, we want to highlight how the factor γ (N , τ , ttot) , which depends on the sched-
ule of release-pause phases, determines the effectiveness of the bound in Eq. (16).

Suppose to deal with the release of a species whose diffusion coefficient is D = 10−13 m2/s in a plastic mate-
rial of thickness b = 0.1mm . The characteristic time t∗ is about 22 h. Given the value of t∗ , which is an intrinsic 
parameter, the chemical’s release depends of the specific schedule of release (contact)-pause phases. Let us now 
consider three situations. 

(a) The material is touched N = 10 times with total contact time tRtot = 5 h, and with ttot = 10 h (including 
the pauses between the contacts, see Fig. 1). With such a schedule we get z = 1.11 and f (z) = 0.68 . From 
Eq. (17) we get γ (N , τ , ttot) = 0.61 and t∗ γ (N , τ , ttot) = 13.3 h. In such a case, the condition in Eq. (17) is 
fulfilled and Eq. (16) sets a non-trivial bound: mext ≤ 0.61 c0 Ab.

(b) Consider N = 30 contacts with total contact time tRtot = 15 h and ttot = 30 h. In this case, z = 1.03 , 
f (z) = 0.69 . This gives γ (N , τ , ttot) = 0.56 and t∗ γ (N , τ , ttot) = 12.3 hours. The condition of Eq. (17) is 
violated and Eq. (16) becomes trivial. In fact, we would get mext ≤ 1.106 c0 Ab , which is obvious a priori 
because c0 Ab is the total amount of species initially present in the portion of material under consideration. 
The only sound, but obvious, statement that we can make is that mext is at most equal to c0 Ab.

(c) Suppose to be in the situation of very large number of contacts with short total contact time, say N = 100 
and tRtot = 15 minutes, and with long total pause time giving ttot = 10 hours. With such parameters we have 
z = 39.4 and hence f (z) = 0 according to the clause in Eq. (10). Thus, γ (N , τ , ttot) = 1/N = 10−2 , which 
leads to t∗γ (N , τ , ttot) = 13.3 minutes slightly shorter than tRtot . Since Eq. (17) is violated, what we can state 
is simply that mext cannot exceed c0 Ab . On the other hand, at fixed N and tRtot we find that z goes above 
10 when ttot crosses a value between 2.5 and 3 hours; this is associated with an abrupt change of the factor 
γ (N , τ , ttot) which, in this case, makes that Eq. (16) suddenly turns from a useful bound ( mext ≤ 0.27 c0 Ab 
for ttot = 2.5 hours) to the trivial bound ( mext ≤ c0 Ab for ttot = 3 hours). This example serves to highlight 
that the poor characterization of the tail of the function f(z) for z > 0 may cause the sudden switch from 
a relevant bound to the safe but trivial upper bound. We recall that large values of z are realized for large 
ratios between average duration of the pause phases and average duration of the release phases, as it is in 
the present example.

Remarks and perspectives
In this work we have dealt with the intermittent release of chemical species from materials. We have assumed 
uniform initial load, diffusive transport in the material, and irreversible escape of the chemicals through the 
interface taken as planar. The statistical synthesis of simulated release experiments allowed us to provide a sim-
ple empirical expression to estimate (slightly overestimate) the quantity of chemical species released through 
the interface of a material of infinite thickness. A finite-thickness correction was then implemented. Despite its 
simplicity, the physical setup adopted here constitutes the basis for the tier modeling of dermal  exposure6. Here 
we have added the effect of the release-pause alternation, which is important if the chemicals are released to the 
skin from tools or consumer objects when they are used/touched in discontinuous way, as it normally happens 
in practice. Apart from such application, the methodology and the results are however applicable to any other 
situation which conforms to the assumptions made. The long-term potential applications are manifold, including 
ambits like environmental and regulatory toxicology in which is important to quantify the leakage of chemicals 
from a hosting phase to other phases (air, water, tissues, etc.).

To the best of our knowledge, semi-empirical results like those in Eqs. (9) (infinite thickness) and (16) (finite 
thickness) are a novelty in the field of release of chemicals from planar interfaces under diffusion with initial 
uniform load of the species. We stress again that the novelty does not lie in the diffusive model (an ambit largely 
inspected in past works), but in the idea of extracting likely approximations of the released quantity from the 
analysis of a set of simulated instances keeping fixed the parameters that specify the release-pause schedule. On 
the methodological side, a due further work is to make a detailed inspection about the range of validity of the 
results, improve them, and possibly relax some of the assumptions of the model. In particular, the characteristic 
function f(z) defined in Eq. (10) is currently not well characterized for z > 10 , i.e., in cases when the average 
duration of the pause phases is more than 10 times the average duration of the release phases; in turn, when z is 

(17)tRtot ≤ t∗ γ (N , τ , ttot) , γ (N , τ , ttot) =
[1+ (

√
N − 1)f (z)]2

N
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above 10, the estimate of mext abruptly switches to the safe but large a priori bound. To achieve a better charac-
terization of the tail of f(z) at large z it is required to run a very extended set of simulations like those described 
in “Heuristic construction of Eq. (9)” Section, in order to explore a wider set of parameters compatible with 
values z > 10 . We are also going to carry out experiments with model setups in order to check the effectiveness 
of the approximations presented here by realizing the practical equivalent of the numerical simulations; this will 
be the content of a forthcoming publication.

Several lines of development can be drawn. First, it would be interesting to account for the possibility of 
crossing the interface from both sides, that is to include, among the parameters, also the thermodynamic parti-
tion constant of the chemical species between material and exterior. In addition, also the geometry of the mate-
rial should be taken into account for a realistic description of the chemical’s release in timescales long enough. 
Analytical solutions of the diffusion equation are available for various geometries and uniform initial condition 
(see for instance refs.1,10  and13) but, again, the effect to the release-pause alternation has not been inspected yet. 
Although non-planar geometries might be of little relevance in the dermal exposure context mentioned above, 
their study would be useful for understanding to what extent Eq. (9) is affected by the shape as the dimension of 
the object is ever decreased. In this regard, it would be interesting to consider the spherical geometry for which 
analytical models are  available11,13 and currently applied to the release of chemicals from plastic microparticles 
(see for instance ref.14). An intermittent release would be here hardly conceivable in practice but, as stated, the 
application of the same heuristic analysis made for the planar case could possibly lead to a different empirical 
approximation of mext ; the comparison with Eq. (9) should give an indication about the sensitivity with respect to 
the geometrical features. A further line of extension is to consider non-uniform initial loads of the species inside 
the material. Again, this would lead to different results case by case. In summary, what we have considered here 
is only one setup among many others, in our opinion the most relevant one for an initial inspection.

Still on the methodological side, we claim that an heuristic approach like the one presented here, based on 
the statistical analysis of simulated instances, might provide useful empirical bounds on the chemical release 
even for more complex setups in which the heterogeneity of the material plays a role, the dynamics are no more 
diffusive, and the external medium penetrates in the material changing its properties. Just to mention, in the 
context of controlled drug release from medical devices it is known that the release is in principle affected by 
many processes other than diffusion (e.g., matrix swelling and erosion, osmotic effects, diffusion of water in the 
device, drug dissolution if the drug is dispersed in the matrix, etc.)10,15. Despite the complexity of such systems, 
in many situations the effective release during a single release phase can be described, at least in a limited time 
window to be assessed case by case, by simple power-law relations of the kind mext ∝ tn where n is a character-
istic  exponent16; for instance, n = 1/2 for the release from a slab geometry either in case the species is dissolved 
in the matrix or dispersed forming a separate phase (according to the celebrated Higuchi equation 17,18). What 
emerges from our study is that the release-pause alternation might add a further dimension to the control of 
the chemical release. In this perspective, it would be interesting to apply our kind of heuristic approach, case by 
case, also to such situations.

Methodological aspects and analysis
Numerical solution of the diffusion equation. The numerical solution of Eq. (3) has been obtained by 
employing a finite-difference scheme with non-uniform partition of the x-axis truncated at a given depth L from 
the interface. At L, a reflecting boundary is imposed. If the material is meant to have infinite thickness, L is taken 
large enough to ensure that such a truncation does not introduce artifacts. If the material has a finite thickness 
b, then L = b is applied.

Specifically, in the case of infinite thickness we have employed a thinner homogeneous discretization up to the 
depth Lturn =

√
2Dttot  (corresponding to the root mean squared displacement of a molecule orthogonally to the 

interface in the time ttot ), and then a homogeneous discretization with wider intervals from Lturn to L = γ Lturn 
where γ is a multiplicative factor to be fixed. The number of intervals in the two sectors, and the multiplicative 
factor γ , were enlarged up to reach a prescribed convergence on the numerical outcomes. Specifically, with refer-
ence to the infinite-thickess case we have implemented two criteria to establish if convergence was reached: (1) 
the concentration c(L, t) must remain close to c0 within a certain percentage tolerance ε1 up to the time ttot , and 
(2) the numerical value of J(x = 0, t) must remain close, within a percentage tolerance ε2 , to the value from the 
analytical solution in the case of a unique release phase of duration ttot . In all calculations performed in this work, 
γ = 50 was sufficient to satisfy such requisites. For the generation of the profiles in Fig. 2, a thin discretization 
with N1 = 700 and N2 = 300 was employed to ensure convergence within ε1 = 2 % and ε2 = 1 %. For Figs. 3 and 
4, N1 = 200 and N2 = 100 ensured convergence within ε1 = 2 % and ε2 = 2 %. For the heuristic determination 
of the approximation Eq. (9) (see below), N1 = 100 and N2 = 50 were employed for ε1 = 5 % and ε2 = 2 %. In 
the case of finite thickness, if b ≤ Lturn the computation was carried out with a fixed number N1 of intervals of 
width b/N1 . If b > Lturn , the number of intervals within Lturn was set to N1 , and the number of intervals between 
Lturn and b was set equal to a fixed N2 . In the calculations made for producing Fig. 6 shown later, the employed 
numbers were N1 = 100 and N2 = 100 for panels from (a) to (d), while N1 = 100 and N2 = 200 for panel (e).

On computational grounds, the discretization of Eq. (3) leads to get the evolution law of the column vector 
c̃(t) whose components are c̃n(t) = c(xn, t)

√
�n where xn is the central point of the n-th interval of width �n ; 

the index n runs from 1 to Nint , with Nint the total number of intervals into which the domain from x = 0 to 
x = L is partitioned. The reason for multiplying the concentration by the square root of the interval width is 
that, in such a way, the evolution matrix turns out to be symmetric, hence hermitian. Specifically, we get that 
dc̃(t)/dt = −M̃c̃(t) where the Nint × Nint matrix M̃ can be either M̃R for the relaxation phases, or M̃P for the pause 
phases. Such matrices have a tri-diagonal form with diagonal elements M̃R

11 = αR
1  , M̃P

11 = αP
1  , M̃R

nn = M̃P
nn = αn 

for n = 2, . . . ,Nint  ,  and off-diagonal elements M̃R
n,n+1(= M̃R

n+1,n) = M̃P
n,n+1(= M̃P

n+1,n) = βn for 
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n = 1, . . . ,Nint − 1 ; in these expressions, αn = 2D
[

(�n +�n+1)
−1 + (�n−1 +�n)

−1
]

/�n for 2 ≤ n ≤ Nint − 1 , 
αNint

= 2D(�Nint−1 +�Nint
)−1/�Nint

 , αR
1 = 2D

[

(�1 +�2)
−1 + (�0 +�1)

−1
]

/�1 , αP
1 = 2D(�1 +�2)

−1/�1 , 
and βn = −2D(�n +�n+1)

−1/
√
�n�n+1 . Here, �0 is the width of a fictitious interval at negative x values and 

opposed to the first interval; the choice �0 ≡ �1 was done. The explicit solution for c̃(t) during each release/
pause phase initiating at a time tinit is given by c̃(t) = e−(t−tinit)M̃c̃(tinit) where the starting vector c̃(tinit) is meant 
to be determined by the solution of the previous part of the evolution starting from c̃n(0) =

√
�n c0 at the initial 

equilibrium. Numerically, such a calculation is performed through the decomposition of the exponential matrix 
on the basis of the eigenvectors of the matrix M̃ . Once c̃(t) has been determined in the whole time-window from 
0 to ttot , we can compute dmext(t)/dt = −A J(x = 0, t) ≃ ADc(x1, t)/[(�0 +�1)/2] . The integration on t from 
0 to ttot finally yields the total amount mext released through the interface (note that such time integrations are 
analytical once the evolution kernels e−(t−tinit)M̃ are decomposed on the eigenvectors basis; only the release phases 
do contribute). A FORTRAN code has been written for the calculations.

Heuristic construction of Eq. (9). For a given value of the diffusion coefficient D, of the number of release 
phases N, and of the average release time τ  , we have performed a large number of simulations by drawing at 
random the duration of each release and pause phase and computing mext . With such a setup, the total release 
time tRtot is fixed to Nτ  . In the simulations we opted to use D and times expressed with physical units. This has 
been done in purpose because, for the infinite-thickness case, there is not an intrinsic scaling factor for the time 
variable, hence the use of dimensionless times built with subjectively chosen scaling factors would have intro-
duced unnecessary complications in the specification of the conditions. It is implicit that simulations in which D 
is changed while all other parameters are kept fixed do not add new information (in the infinite-thickness case 
the dynamics are homogeneously slowed down or sped up), but they augment the set of outcomes at disposal for 
the post-production analysis.

The total time ttot has been varied between 1.1 tRtot (corresponding to short total time of pauses) and 50 tRtot 
(long pause time) taking 11 values with homogeneous steps in the logarithmic scale. For each value of ttot , 500 
simulations have been done by randomly drawing the duration of the pauses. What has been noted is that the 
value of the dimensionless quantity K

√
τ N/mext , when plotted against the dimensionless quantity z defined in 

Eq. (11), displays both an upper and a lower bound. An example is shown in Fig. 5a for N = 5 . The upper bound 
is found to be 

√
N  (in accord with Eq. (6)), while the lower bound displays a z-dependence.

In order to investigate on the lower bound, which is ultimately connected with an upper bound on mext , 
we turned to the representation of min{K

√
τ N/mext} against z, where the minimum value is taken from the 

ensemble of 500 simulations for each z. The results are presented in Fig. 5b for several values of D, N and τ  . The 
unexpected outcome is that the data bundles on what looks like a “universal” profile f(z). Based on this evidence, 
it follows that mext ≤ K N

√
τ/[1+ (

√
N − 1)f (z)] . The data were fitted with the simple three-parameter phe-

nomenological equation f (z) = a+ (1− a)/(1+ c zb) able to capture the qualitative features and satisfying 
the constraint f (0) = 1 . By fitting simultaneously the whole data set at disposal (symbols shown in Fig. 5b), we 
obtained a = 0.204 , b = 1.011 , and c = 0.594 as best parameters. The uncertainties on the fitting parameters are 
not given since the adopted form of f(z) is just a trial function not based on a physical modeling. We approxi-
mated the parameters to a = 0.2 , b = 1 and c = 0.6 , as they appear in the final empirical expression Eq. (10). The 
profile of f(z) with such parameters is the red curve in Fig. 5b. The reason for setting f (z) = 0 when z > 10 lies 
in the fact that the data produced by the simulations do not allow a sound extrapolation of the profile beyond 
such a value of z; rather, by setting f(z) to zero one switches to the upper bound in Eq. (8) which is certainly 
valid. The utility of Eq. (9), in terms of its effectiveness in giving an estimate of the released quantity close to the 
true value, and possibly a precautionary overestimation, has been assessed on statistical grounds as illustrated 
in “Results” Section.

Finite-thickness analysis. By denoting with mext,∞ the amount of species released if the material had infi-
nite thickness, and with tRtot = Nτ  the total release time, its has been found an empirical correlation between the 
ratio mext/mext,∞ and the ratio b/

√

2DtRtot  . The results are shown in Fig. 6 for several values of the parameters D, 
N and τ  . Regardless of the specific value of the parameters, in such a representation the patterns display general 
features which allow to express universal bounds on mext/mext,∞ , and hence on mext.

The continuous red line corresponds to the profile in the case N = 1 of single release phase. For given N, the 
circles in each panel correspond to several choices of the total time ttot (including the pause phases, see Fig. 1). 
In the simulations, ttot has been varied taking 11 values between 1.1tRtot and 50tRtot with logarithmic progression; 
the thickness b has been varied from 

√

2DtRtot  to 5
√

2DtRtot  taking 50 points equispaced. For each b, and given 
N, tRtot and ttot , 10 sequences of release-pause phases have been generated at random; hence, each panel shows 
totally 5500 circles. Note that since b is divided by 

√

2DtRtot  , in the scaled representation of Fig. 6 the specific 
value of the diffusion coefficient is immaterial, meaning that the same patterns would be obtained for different 
values of D keeping fixed the other parameters (this has been checked).

The outcomes indicate that the circles are spread between an upper bound, corresponding to the profile for 
N = 1 , and a lower bound which seems to attain a limit profile as N increases (further investigations are however 
needed to inspect such a feature). Remarkably, in all situations the distribution of the circles shrinks to the value 
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1 as the abscissa reaches the value of about 5. This means that, at fixed tRtot , the released quantity mext approaches 
mext,∞ when the thickness b is sufficiently large (in practice, when b is larger than 5

√

2DtRtot  ). Note that the circles 
appear slightly distributed around the value 1 at such large values of the abscissa. This is only a mere numerical 
artifact arising from the finiteness of the discretization and amplified by error accumulation when many release-
pause phases are considered. The demanding computational cost makes that the results in panel e), which have 
been obtained with N1 = 100 and N2 = 200 discretization intervals (see “Numerical solution of the diffusion 
equation” Section), represent the limit currently achievable. A few calculations done with thinner discretization 
( N1 = 200 and N2 = 400 ) have shown that the spread of the circles about the value 1 tends to be suppressed.

Concerning the upper bound, that is the profile for N = 1 , it is found that it displays an initial linear growth 
with slope 

√
π/2 , followed by a rapid flattening to the value 1. This allows us to get a simple upper bound on 

mext/mext,∞ by replacing the true profile by two straight lines with a turning point at the abscissa value of √
2/π ≃ 0.8 . The two lines are displayed as dashed blue lines in Fig. 6e. Such upper delimitation is a loose bound 

but has the merit to provide a simple and safe correction to Eq. (9) (which gives an approximation of mext,∞ ) 
when the thickness is finite. Such a correction is made explicit in “Finite-thickness correction” Section.

The characterization of the lower bound in Fig. 6 is more problematic because of the difficulty of performing 
calculations with very large N. The calculations done here, up to N = 150 , only allow us to glimpse the conver-
gence to a limit lower bound. Taking into account the concavity of the lower boundaries in panels from a) to e), 
a tentative (and loose) lower bound would be the straight line of slope 1/5. A detailed inspection of the behavior 
at large N is however required to make sound statements and get a tight lower bound.

Figure 5.  Heuristic basis of Eq. (9) for diffusion in a material of infinite thickness. Panel (a). Example of the 
spread of the factor K N

√
τ/mext for several ratios between average time of a pause phase and average time 

of a release phase. The plot reveals the existence of a lower bound. Panel (b). Rescaled plot of the lower bound 
obtained from data sets like that in Panel (a); each symbol refers to specific conditions (value of the diffusion 
coefficient D, number N of release phases, average time τ  of a release phase). The red curve is the empirical 
function f(z) in Eq. (10). The inset shows the same data with linear scale on the abscissa.
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