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Adaptive differentiation coincides with
local bioclimatic conditions along an
elevational cline in populations of a
lichen-forming fungus
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Abstract

Background: Many fungal species occur across a variety of habitats. Particularly lichens, fungi forming symbioses
with photosynthetic partners, have evolved remarkable tolerances for environmental extremes. Despite their
ecological importance and ubiquity, little is known about the genetic basis of adaption in lichen populations. Here
we studied patterns of genome-wide differentiation in the lichen-forming fungus Lasallia pustulata along an
altitudinal gradient in the Mediterranean region. We resequenced six populations as pools and identified highly
differentiated genomic regions. We then detected gene-environment correlations while controlling for shared
population history and pooled sequencing bias, and performed ecophysiological experiments to assess fitness
differences of individuals from different environments.

Results: We detected two strongly differentiated genetic clusters linked to Mediterranean and temperate-oceanic
climate, and an admixture zone, which coincided with the transition between the two bioclimates. High altitude
individuals showed ecophysiological adaptations to wetter and more shaded conditions. Highly differentiated
genome regions contained a number of genes associated with stress response, local environmental adaptation, and
sexual reproduction.

Conclusions: Taken together our results provide evidence for a complex interplay between demographic history
and spatially varying selection acting on a number of key biological processes, suggesting a scenario of ecological
speciation.
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Background
Fungi are diverse and ubiquitous, having evolved over
time to occupy a wide range of ecological niches. Some
fungal species are exceptionally proficient at surviving a
broad range of environmental conditions. In nature,
these species can inhabit latitudinal and altitudinal clines
that span considerable temperature ranges [1]. Individuals
from species with broad ecological amplitudes exhibit
local adaptation when divergent selection is strong relative

to the rate of gene flow [2, 3]. Locally adapted individuals
show higher fitness in their focal environment relative to
immigrants. Despite the wealth of studies investigating
genetic structure and dispersal of fungi, the processes that
shape adaptive genetic polymorphism in wild populations
are not well understood.
Environmental factors have been shown to be drivers

of local adaptation in diverse fungi. For example,
temperature differences are responsible for the mainten-
ance of differentially adapted populations of pathogens
[4]. Temperature changes were also shown to be drivers
of adaptation in natural populations of the saprotrophic
fungus Neurospora crassa, resulting in genomic islands
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of differentiation involved in cold-response and circa-
dian rhythm [5]. Differences in climate and soil salinity
correlated with regions of extreme genomic divergence
between coastal and montane populations of an ecto-
mycorrhizal basidiomycete [6]. Furthermore, experi-
mental evidence suggests that salinity and temperature
are drivers of ecological isolation in experimentally de-
rived lineages of baker’s yeast Saccharomyces cerevisiae
[7]. In some cases, ecological divergence can promote
reproductive barriers between populations of differentially
adapted ecotypes [8], as is the case in the filamentous
fungus Neurospora crassa [9]. Overall however, adaptive
genomic polymorphisms have been investigated only in a
small set of fungal species and life styles.
Lichen-forming fungi, which constitute about half of

the described ascomycetes, are a nutritionally specialized
group of fungi that form obligate symbiotic associations
with green algae and bacteria [10]. Lichens are suit-
able to study local adaptation because they can toler-
ate extreme environmental conditions and sustain
growth despite frequent cycles of desiccation and re-
hydration, low nutrient availability, and large fluctua-
tions in temperature (e.g., [11, 12]). The distributional
ranges of many lichens span broad climatic ranges
[13–16]. Furthermore, long-lived, sessile organisms
such as lichens experience strong selection pressures
[17]. This may lead to reduced survival of maladapted
individuals, and create steeper genetic gradients between
differentially selected populations [18]. Environmental
stressors, such as drought and high-light conditions, have
been shown to trigger physiological adjustments in differ-
ent lichens [19–21]. The genetic bases of these adaptive
responses are currently poorly understood. Many species
of lichenized fungi show genetic differentiation among
populations despite ongoing gene flow, even across
thousands of kilometers. This suggests a role of spatially
varying selection in maintaining biogeographic structure
(reviewed in [22]). Interestingly, one study reported gene
pool associations with altitude and interpreted this as
evidence for climate-driven local adaptation [23]. How-
ever, no study so far has specifically addressed adaptive
diversity in geographically close (<20 km), but ecologically
distant lichen populations.
Altitudinal gradients are suited to study local adap-

tation because ecological transitions are typically steep
and occur at relatively short distances, thus limiting
the confounding effect of distinct regional evolutionary
histories [24]. Moreover, altitudinal gradients are also cli-
matic gradients, characterized by decreasing temperature
and atmospheric pressure, increasing relative air humidity,
rainfall, and solar radiation with increasing altitude
[25]. Thus, adaptation along altitudinal gradients can
be explored as a proxy model for genomic responses
to climate change [26–29].

Here we report on the population genomics of a
lichen-forming ascomycete along an altitudinal gradient
in the Mediterranean region. As model, we chose Lasallia
pustulata (Umbilicariaceae), a species with a distribution
from southern Europe to northern Scandinavia, which
forms dense populations on exposed, siliceous rocks [30].
Using genomic data from geographically close populations
along a steep altitudinal gradient in northern Sardinia
(Italy), we analyzed whether genetic clusters were present,
and whether relatedness between clusters was correlated
with signatures of local adaptation. Heat, drought, and
radiation stress constitute determining factors in the
composition of biological communities inhabiting rocky
outcrops and boulders in Mediterranean mountains [31].
Therefore we tested the hypothesis that environmental
factors shape genome-wide population differentiation in
lichenized fungi which occur across different bioclimatic
regions. Specifically, we addressed the following ques-
tions: i) what is the genome-wide population structure
and connectivity between geographically close populations
along an elevation gradient?, ii) what are putative func-
tions of highly differentiated genes between the genetic
clusters?, iii) what are putative functions of the genes
showing strong correlation with local climatic factors?,
and iv) do individuals belonging to different genetic
clusters (and environments) display fitness differences?

Methods
Study organism, study site, and sampling
Lasallia pustulata is a foliose, rock-inhabiting, haploid li-
chen-forming ascomycete. Individuals are attached to
the substrate with a central holdfast. L. pustulata has a
mixed strategy of asexual and sexual cycles. Asexual
reproduction via isidia – macroscopic dispersal units
containing both symbionts that break off the mother
thallus – is the typical (and in most populations only)
way of reproduction. Isidia are considered to be de-
tached from the thallus mainly by raindrops, and dis-
persed over short distances [30]. We collected samples
from six populations along an altitudinal gradient in
the Limbara massif (Sardinia, Italy). The transect ex-
tended from Lake Coghinas (population 1: 176 m a.s.l.)
to Punta Balestrieri (population 6: 1303 m a.s.l.) cover-
ing a linear distance of ~13.5 km. Intermediate popula-
tions were located at 297 m a.s.l. (population 2),
588 m a.s.l. (population 3), 842 m a.s.l. (population 4),
and 1125 m a.s.l. (population 5). The maximal linear dis-
tance between populations was ~9 km (Fig. 1). Populations
were located on horizontal or gently sloping, fully sun-
exposed rock faces in scattered Paleozoic granitic outcrops,
and covered an area of ~50 m2. For each population, we
collected 100 thallus pieces of ~8 mm in diameter. Our
sampling design aimed at capturing the maximal diversity
present at the sites. The minimum distance between
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sampled individuals was 50 cm to maximize the inclusion
of different genets. Samples were collected with sterile
tools and transferred into sterile 2 ml tubes.
The study area encompasses three distinct bioclimates: i)

Mediterranean pluviseasonal oceanic (populations 1–4), ii)
temperate oceanic submediterranean (population 5),
and iii) temperate oceanic (population 6) (Fig. 1) [32].
Temperature data collected between May 28th 2014
and June 2nd 2015 from loggers positioned at the
level of L. pustulata thalli (2 loggers per population)
indicate that localities 1 to 4 have higher summer
temperatures and are less prone to freezing during winter
than populations 5 and 6. Logger data also showed that

temperatures of the rock surfaces to which thalli are
attached frequently exceeded 50 °C in summer. The popu-
lations therefore experienced seasonal temperature fluctu-
ations on the order of >40 °C (see Additional file 1).

DNA extraction and genome resequencing
For each population, we extracted genomic DNA separ-
ately from each individual using a CTAB-based method
[33]. DNA concentration was measured with a Qubit
fluorometer (dsDNA BR, Invitrogen). A pooled sample
was created for each population containing equal
amounts of DNA from each sample (Pool-seq). Library
preparation (200–300 bp insert size), sequencing on an
Illumina HiSeq2000 with 100 bp paired-end chemistry at
~90x coverage per population, as well as tags and
adaptor removal were performed by GenXPro GmbH
(Frankfurt am Main, Germany).

Genome annotation
As reference genome, we used the draft assembly of L.
pustulata available at the European Nucleotide Archive
(http://www.ebi.ac.uk/ena/data/view/GCA_000938525.1).
The draft genome is composed of 3891 scaffolds (average
length of 10Kbp) for a total length of 39.2 Mbp and an
N50 scaffold of size 104.3Kbp. The genome is ~92%
complete according to an assessment with the software
BUSCO 2.0 [34] and a lineage-specific set of Ascomycota
single-copy orthologs.
For gene model prediction we used both ab-initio

based methods and RNA-Seq derived transcript mapping
onto the assembled genome following the method de-
scribed in [35]. For this purpose, total RNA was isolated
from a thallus of L. pustulata collected near Orscholz
(Saarland, Germany; N49.5012, E6.5440) in July 2013
using the method by [36], and purified using the RNeasy
MinElute Clean-up Kit (Qiagen). Paired-end sequencing
was performed using Illumina MiSeq (2x250 bp) by
StarSEQ (Mainz, Germany). RNA-Seq data was quality-
filtered using Trimmomatic [37], with a length cutoff of
200 and a quality cutoff of 20 in a window of 5 bp.
We used Blast2GO [38] to annotate the predicted

protein sequences with gene ontology (GO) terms and
protein names using NCBI's nr database at an E-value
cut-off of 1x10−3, and default weighting parameters. We
also annotated each protein with InterPro domains using
InterProScan [39].

SNP analysis
We filtered out reads shorter than 80 bp, reads with N's,
and reads with average base quality scores less than 26
along with their pairs using FastQFS [40]. Trimmed
paired-end reads of each pool were mapped to the L.
pustulata genome using BWA-MEM [41] and default pa-
rameters. Unambiguously aligned reads with a minimum

Fig. 1 Location of the study site in north-eastern Sardinia (Italy) and
location of six populations of L. pustulata along the elevation cline.
The numbers in the color legend refer to the bioclimatic zones by
[32]: 17 - lower mesomediterranean-upper dry-weak euoceanic,
20 - lower mesomediterranean-lower sub-humid-weak euoceanic,
26 - upper mesomediterranean-lower sub-humid-weak euoceanic,
28 - upper mesomediterranean-upper sub-humid-weak euoceanic,
30 - upper mesomediterranean-lower humid-weak euoceanic,
36 - upper mesotemperate (sub-Mediterranean)-lower humid-weak
euoceanic, 37 - upper mesotemperate (sub-Mediterranean)-lower
humid-weak semi-continental, 40 - lower supratemperate-lower
humid-weak semi-continental, 41 - lower supratemperate-lower
hyperhumid-weak semi-continental. The color gradient represents
the bioclimatic profile of the cline, ranging from Mediterranean
pluviseasonal oceanic (M) (populations 1–4) to temperate
oceanic, submediterranean variant (TOm) (population 5), to tem-
perate oceanic (TO) (population 6) climate
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mapping quality of 20 were extracted with SAMtools
v1.18 [42]. Reads were sorted and duplicates were
marked with Picard using the tools SortSam.jar and
MarkDuplicates.jar. Single nucleotide polymorphisms
were called with SAMtools (mpileup, [43]). Indels
were detected and masked with PoPoolation [44] using
the scripts identify-genomic-indel-regions.pl (−−min-
count 2 −−indel-window 5) and filter-pileup-by-gtf.pl.
The synchronized file was converted into a gene-based
synchronized file using the script create-genewise-
sync.pl in PoPoolation2 [45]. The coverage for each
population was reduced to a uniform coverage of 30
with PoPoolation2 using the sync-file and the script
subsample-synchronized.pl (−−without-replacement).

Population genetics analyses
To characterize genome-wide patterns of variation, we
estimated three population genetic parameters by ac-
counting for pooling: i) π, a measure of polymorphism
in a sample of sequences scaled to their length, ii) Wat-
terson's θ (θW), a measure of the number of segregating
sites, and iii) Tajima's D, a measure of the skew of allele
frequency distribution. All estimates were calculated in
non-overlapping 10-kb windows across the genome
using PoPoolation [44], assuming a minimum count of
two. Differences in genetic diversity among popula-
tions were tested using linear mixed effect models in
R 3.2.2 [46, 47]. For each diversity measure, models
included population as a fixed effect predictor and
incorporated scaffolds as a random effect across pop-
ulations. Pairwise population comparisons were then
obtained from post hoc Tukey contrasts of the respective
model predictors [48].
To identify strongly differentiated alleles, we adopted

an empirical outlier approach. Genetic differentiation
(FST) was calculated with fst-sliding.pl in PoPoolation2.
We only considered SNPs with a minimum count of 4, a
minimum quality of 20, and falling into the upper 0.5%
tail of the FST distribution, corresponding to an FST
threshold of 1.0. Highly differentiated SNPs were further
inspected with Fisher’s exact test [49] to identify signifi-
cant allele frequencies differences between population
pairs using the script fisher-test.pl in PoPoolation2 and
a Bonferroni-corrected p-value of 0.003. In addition,
we estimated average FST across all polymorphic SNPs
for each gene and only considered those falling into the
upper 5% tail of distribution to be truly differentiated.
Based on this analysis, we calculated the percentage of
overlap between SNP-based and gene-based lists. SNPs
were classified as genic and non-genic loci. Genic SNPs
were further classified as exonic, coding, and intronic.
Non-genic SNPs located in the 600 bp 5'-flanking
sequence of each gene were considered putative
promoter SNPs.

To visualize groups of populations with varying de-
grees of similarity to one another, we first obtained a
reduced set of pairwise FST distance matrices based on
sample quantiles (0.975, 0.75, 0.5, 0.25, 0.025) of the full
set of distances across all polymorphic SNPs. The result-
ing set of pairwise (quantile) distances was then jointly
analyzed using a three-way generalization of classical
multidimensional scaling (DISTATIS, [50]). DISTATIS
calculates a compromise distance space from the
weighted average of all cross-product matrices derived
from the set of quantile distance matrices. This com-
promise can then be used to visualize positional rela-
tions among populations 1 – 6 based on their genetic
distances. Moreover, we obtained 95% confidence in-
tervals around each population's compromise position
using bootstrap resampling [51].
To reconstruct the historical relationships among

populations using their current genome-wide allele fre-
quencies, we used TreeMix v1.12 [52]. We created a
maximum likelihood phylogeny of the populations based
on all polymorphic SNPs, using blocks of 500 SNPs to
account for linkage disequilibrium. To test for the pres-
ence of admixture and migration among populations, we
calculated f3 and f4 statistics. These statistics are formal
tests for admixture as they detect correlations in allele
frequencies that are not compatible with population
evolution following a bifurcating tree. To calculate f3
and f4 statistics we used the threepop and fourpop func-
tions in TreeMix on all possible triplets and tetraplets
population groups. To further explore population rela-
tionships, we calculated neighbor joining trees for the
correlation matrix obtained with Bayenv2.0 (see below)
and for the matrix of pairwise FST values calculated across
all polymorphic sites using the package ape in R [46].
To corroborate the hypothesis of admixture, we

estimated gene flow among the three major groups (A:
populations 1 to 4, B: population 5, C: population 6)
across multiple intergenic polymorphic loci using the
coalescent-based method MIGRATE-N 3.2.6 [53]. We
estimated relative effective population size (Ne) accord-
ing to the relation θ =Neμ, assuming identical but un-
known mutation rates (μ) in all populations. Haplotypes
(20 per population) were obtained by parsing the output
files of PoPoolation2 for genomic regions shorter than
90 bp, and containing three or more SNPs. To minimize
the chance that the loci are linked, we retained only one
such region per scaffold. This information was then used
to extract the individual Illumina reads covering this
region from the mapping file for each population. The
reads were aligned and trimmed to the informative
region. The alignments were filtered for a minimum
coverage of 15x, maximum coverage of 100x and mini-
mum length of 20 bp in all populations. This resulted in
a data set of 5880 sequences from 49 loci, covering in
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total 1763 bp. All previously described steps were per-
formed with custom Python scripts (see [54]). Bayesian
estimates of number of migrants (Nm) and θ were
obtained under an unconstrained migration model with
variable θ using MIGRATE-N 3.2.6 [53] for each pair of
genetic clusters separately. We used a uniform prior on
both θ (0.0-0.40) and Nm (0.0-600). A Metropolis-coupled
Monte-Carlo chain with static heating (1.0, 1.5, 3, 1 × 106)
was run for 1.8 × 106 generations, recording every 600th
step after a burn-in period of 6 × 104 generations. Conver-
gence was monitored with Tracer (http://beast.bio.ed.ac.uk/
). All effective sample sizes of the MCMC chain were
larger than 104.

Environmental association analysis
To identify candidate loci for altitude specific adaptation,
we correlated allele frequencies of populations with the
environment using Bayenv2.0 [55]. Bayenv2.0 models
the sampling error of pooled sequencing, and accounts
for the confounding effect of neutral, demographic sig-
nals. To summarize the climate along the cline, we used
elevation and 19 bioclimatic variables from the WorldClim
database [56]. Correlation among these was checked using
the function rcorr in R [46]. Elevation was strongly corre-
lated with all bioclimatic variables. Variation in the biocli-
matic variables and elevation was thus summarized using
PCA, resulting in one composite climate variable explaining
97.6% of the variance, hereafter referred to as env1 (see
Additional file 2). To build the reference covariance matrix
of population allele frequencies, we used a subsample of
10,000 polymorphic SNPs based on 1,000,000 MCMC iter-
ations. To ensure convergence we estimated a second
matrix from another subsample of 10,000 SNPs. We
explored gene-environment correlation by estimating the
statistic Z between allele frequencies of all SNPs and env1
per population for 200,000 iterations. SNPs with the highest
score possible for Z (i.e., Z = 0.5) were considered as show-
ing strong support for a non-zero correlation.

Gene ontology enrichment
Gene Ontology (GO) term enrichment is a technique for
interpreting the functions of a set of genes making use
of the GO system of classification (http://www.geneon-
tology.org/). In this system genes are assigned to prede-
fined bins depending on their functional characteristics
in a species-independent manner. An enrichment ana-
lysis will find which GO terms are over-represented in a
given data set using the annotations for that gene set.
We used the R package topGO [57] to search for an en-
richment of different GO categories. The analysis was
performed for i) the set of genes containing SNPs falling
into the upper 0.5% tail of the SNP-derived FST distribu-
tion, ii) the subset of these that are differentially fixed
between the low altitude (population 1 to 4) and high

altitude (population 6) genetic clusters, and iii) the set of
genes containing the Baynev2.0 top 1% SNPs. All genes
with a GO annotation were used as background. Signifi-
cance for each GO-identifier was computed with Fisher’s
exact test at α = 5%. We used the ‘elim’ method in
topGO to iteratively remove genes mapped to significant
GO terms from more general terms, thus reducing the
rate of false positives. Only GOs with more than three
associated genes were considered. We used the REVIGO
tool [58] to produce summaries of non-redundant GO
terms grouped into functional categories.

Ecophysiology
We performed ecophysiological experiments to assess
differences in physiological traits in the populations.
Measurements were performed on three samples per
population. For this analysis, we randomly selected spec-
imens with a minimum diameter of 6 cm to have
enough material to perform replicate measurements. To
explore the genetic relatedness of the individuals we
genotyped each specimen at six loci, covering a total of
approximately 4.1 Kbp. We selected three of the loci
from genes containing top 0.5% differentiated SNPs, and
three from those with top Bayenv2.0 SNPs. For primers
and genetic characteristics of the loci see Additional file 3.
We investigated the thalli for differences in biomass

and chlorophyll content per surface area. To calculate
the specific thallus area (mm2/mg), we first determined
the thallus size by photographing wetted thalli on scale
paper using a binocular microscope and the AxioVision
software (Carl Zeiss, Jena, Germany). We determined
the dry weights (DW) of these thalli by weighing after
3 days of oven drying at 60 °C. We also measured
thallus chlorophyll content according to [59]. Statis-
tical significance of differences in biomass and chloro-
phyll content between groups was determined using a
Mann–Whitney test.
To characterize the physiological response to different

light conditions, and different thallus water contents, we
conducted CO2 gas exchange measurements using a port-
able mini cuvette system (GFS 3000, Walz Company,
Effeltrich, Germany). We measured the response of net
photosynthesis (NP) and dark respiration (DR) to thallus
water content (WC) for a subsample of six thalli, repre-
senting the two main genetic groups present along the
gradient. We measured complete desiccation cycles (from
water saturated to air dry thalli) at saturating light
(750 μmol photons m−2s−1), ambient CO2, at 17 °C (within
the optimal temperature range for CO2-gas exchange of
this species). We weighed the samples between each
measurement and later extrapolated WC as a percent-
age of DW. We determined DW after 5 days in a
desiccator over silica gel. We considered ninety per-
cent of maximum NP to be a reasonable estimate for
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optimal water saturation. We measured the samples
at 3–15 h intervals for NP and DR. Immediately after
each measurement we removed the samples from the
cuvettes and determined their weight to calculate the
decrease in WC. This process was continued for 97 h
with each sample until CO2 exchange ceased due to
complete drying. Statistical significance of differences in
TWC and maximum NP between groups was determined
using a t-test.

Results
Reference gene set
We identified a total of 8268 genes in the L. pustulata
genome. In total 5747 genes were assigned a GO term.

Genome-wide variation
After adapter and quality trimming, we obtained 179,809,145
paired-end reads (26.6–32.1 million per pool, total of
16.2 GB, average coverage per pool: 89.91x).
To examine sequence variation, we used two estimates

of nucleotide diversity, π and θW. When averaged for all
10-kb windows across the genome, estimates of π were
highest in population 5 (π = 0.006 ± 0.004), and lowest in
population 4 (π = 0.004 ± 0.003). Estimates of θW were
instead highest in population 2 (θW = 0.005 ± 0.003), and
lowest in population 4 (θW = 0.003 ± 0.003). To examine
deviation from neutrality, we calculated Tajima's D in
10-kb windows across the genome. Average D deviated
from neutrality and differed significantly among popula-
tions. D was negative in populations 2 (D = −0.839 ±
0.713) and 6 (D = −0.260 ± 0.322), and positive in all other
populations, being highest in population 5 (D = 1.112 ±
0.54) (Table 1, Additional file 4, Additional file 5).

Patterns of genetic differentiation
Among the six populations we identified 722,401 poly-
morphic SNPs (Table 2). Mean pairwise FST based on all
polymorphic sites was moderate with an average of
0.124, and ranging from 0.044 (Pool1 vs. Pool4) to 0.236
(Pool2 vs. Pool6) (Fig. 2).
A total of 30,571 SNPs located in 2944 genes fell into

the upper 0.5% tail of the distribution. Of these, 4170
SNPs in 595 genes were differentially fixed between the

low (1 to 4) and high-altitude (6) population clusters.
When calculating average FST across all polymorphic
sites within a given gene, 2413 genes fell into the top 5%
tail. Our SNP-based approach detected 72.9% of the
highly differentiated genes.
We found strong genetic structure separating lower

altitude populations (populations 1 to 4) from the other
populations. The multidimensional scaling of the FST
quantile distance SNP matrix illustrated the close gen-
etic affinities of populations 1 to 4, with population 5
occupying an intermediate position between these and
population 6 (Fig. 3a). The tree-based analyses showed a
similar, well-resolved structure (Fig. 3b), with the tree
derived from the Bayenv2.0 correlation matrix showing
longer internal branches (see Additional file 6). Bayenv2.0-
and FST-matrices were highly correlated (Mantel-test,
r = 0.999, P = 0.001; see Additional file 7).
Using the threepop test we found clear evidence of

admixture at the level of population 5. All population
triplets having population 5 as the admixed group dis-
played significantly negative f3 values (see Additional
file 8). This is in accord with the higher nucleotide
diversity and positive Tajima's D values for population
5 (see Additional file 4). We also found support for
migration among populations as 35 out of 45 four-
population tests rejected all possible tree topologies
without migration (|z| > 3, i.e., p < 0.001). We inferred
higher significance for pairs grouping together popu-
lation 5 and 6 with one of the lower altitude popula-
tions, respectively (see Additional file 8), which is also
in accordance with the proposed admixture scenario.
To further describe the migration pattern, we per-

formed estimations of migration rates among the major
genetic groups with MIGRATE-N 3.2.6. Mutation-scaled
effective population sizes varied between groups, ranging
from θ = ~0.054 in group A (pop. 1–4) to θ = ~0.065 in
group B (pop. 5) (see Additional file 9). Migration rates
varied by several orders of magnitude. Results supported
the hypothesis that the genetic diversity of population 5
is the result of admixture from the other two genetic
groups, while gene flow rates between the other groups
are negligible in comparison. This is in line with the FST-
and tree-based analyses.

Table 1 Sampling locations of Lasallia pustulata populations and the mean and standard deviation for three standard population
genetic parameters, π, Watterson's θ (θW), and Tajima's D in nonoverlapping 10-kb windows across the genome of L. pustulata

Population Lat Long Altitude (m) nucleotide diversity π (SE) Watterson's θ (SE) Tajima's D (SE)

1 40.7577 9.0794 176 0.00375 (0.00349) 0.00355 (0.00333) 0.15417 (0.82987)

2 40.7778 9.0546 297 0.00441 (0.00335) 0.00536 (0.00322) −0.83941 (0.71274)

3 40.8503 9.1119 588 0.00368 (0.00337) 0.00358 (0.00332) 0.04974 (0.926)

4 40.8568 9.1340 842 0.00359 (0.00333) 0.00334 (0.00315) 0.19892 (0.96759)

5 40.8573 9.1642 1125 0.00551 (0.00386) 0.00439 (0.00366) 1.11196 (0.53974)

6 40.8524 9.1732 1303 0.004121 (0.00349) 0.00444 (0.00373) −0.26011 (0.32173)

Dal Grande et al. BMC Evolutionary Biology  (2017) 17:93 Page 6 of 14



Candidate loci for local adaptation
To identify candidate loci for altitude specific adaptation,
we correlated allele frequencies with an environmental
variable summarizing altitude and climate using Bayenv2.0.
A total of 2978 SNPs showed the highest score possible for
Z and were located in 616 genes.
At the SNP level, the overlap between the Bayenv2.0-

and FST-based approaches was low (3.02%, 90 SNPs). Of
these, 42 SNPs were located in 39 genes (see Additional
file 10). Genes containing top Bayenv2.0 SNPs matched
216 of the FST-based top 5% differentiated genes.

Functional inference of candidate genes
Gene set enrichment analysis of the 2944 genes contain-
ing top 0.5% SNPs indicated the presence of 62 enriched
biological processes (see Additional file 11a). These
involve many pathways, some of which are centrally

important for stress response, cell growth, carbohydrate
transport, and both asexual and sexual reproduction. For
example among the significantly enriched categories
we found biological processed like response to abiotic
stimulus, growth, gene expression, RNA processing,
translation, fungal-type cell wall polysaccharide biosynthetic
process, catabolic processes, protein N-linked glycosylation,
trehalose biosynthetic process, and developmental process

Table 2 Number of variants for all annotated features of the L. pustulata genome

Feature All SNPS top Z Bayenv2.0 top 0.5% FST top 0.5% FST fixed A-Ca

GENIC 230,032 1171 11,492 1308

exon 3125 22 134 8

CDS 173,785 853 8358 968

intron 53,122 296 3000 332

INTERGENIC 492,369 1807 19,079 2862

promoters 40,460 19 15 7

Total SNPs 722,401 2978 30,571 4170

Genes 7267 616 2944 595
aA (populations 1 to 4), C (population 6)

Fig. 2 Pairwise FST comparisons of populations 1 to 6 across a total
of 722,401 SNPs. Boxes extend from the first to the third quartiles,
with a horizontal line indicating the median. The horizontal line
across the graph indicates the top 0.5 quantile (FST = 1)

Fig. 3 a Compromise configuration of categories between
populations based on the FST quantile distance matrix for 722,401
polymorphic SNPs, with 95% tolerance ellipses. b Tree inferred with
TreeMix for the six population of L. pustulata based on 722,401
polymorphic SNPs. Numbers at the branching points are support
values from bootstrapping based on 1000 runs
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involved in reproduction. GO enrichment of the 595 genes
containing SNPs differentially fixed between the low (1 to
4) and high-altitude (6) genetic groups resulted in 38
enriched biological processes, including sexual and asexual
reproduction, trehalose biosynthesis, growth, response to
oxidative stresses, cell wall and ribosome biogenesis, and
gene expression (see Additional file 11b).
GO enrichment of the top 1% Bayenv2.0 SNPs indi-

cated that 23 biological processes were enriched (Table 3,
see Additional file 12). Among the biological processes
likely involved in adaptation to altitude we found
localization, signal transduction, DNA repair, lipid modi-
fication, histone methylation, catabolic processes, and
cell-wall biogenesis.

Ecophysiology
Multi-locus genotyping grouped the samples into two
genetic groups, one composed of all thalli from popula-
tion 6 (G1), and one composed of thalli from all
remaining sites (G2). Differentiated SNPs in all six
markers were monomorphic between the two groups
(see Additional file 3, Additional file 13). The genetic
separation coincided with differences in anatomy and

physiological responses to thallus water content (WC;
Fig. 4) and high light conditions (see Additional file 14).
First, G1 thalli had higher biomass (p = 0.002), and
higher chlorophyll a + b content per surface area unit
(p = 0.002) (Table 4). Second, G1 thalli needed higher
WC for reaching maximal NP (0.5498 ± 0.104 mm
H2O) compared to G2 thalli (0.175 ± 0.0 mm H2O;
Fig. 4). In addition, G1 thalli reached their maximum
NP rates (>90% of max value) at lower light intensity
(see Additional file 14) (p = 0.003). In relation to sur-
face area unit, G1 thalli fixed almost three times as
much CO2. In relation to thallus dry weight G1 and G2
specimens did not significantly differ in their CO2 fixation
rates (p = 0.65) (see Additional file 14, Additional file 15).

Discussion
Temperature and precipitation drive large-scale distribu-
tion patterns of lichens. It is thus expected that much of
the signal of adaptation among lichen populations
should occur along these gradients [60]. Here we pre-
sented the first genome-based analysis of population dif-
ferentiation associated with an environmental gradient
for a lichen-forming fungus. The studied populations

Table 3 GO enriched categories for top 1% Z Bayenv2.0 environmentally associated SNPs

Term ID Top 1% Bayenv2.0 Z Annotated Significant Top Z Frequency Log10 P

GO:0051179 localization 667 105 66 17.86% −1.48

GO:0007154 cell communication 142 26 15 4.36% −1.46

GO:0007165 signal transduction 126 23 12 3.80% −1.33

GO:0090305 nucleic acid phosphodiester bond hydrolysis 17 7 5 2.51% −2.48

GO:0006820 anion transport 60 14 9 2.20% −1.77

GO:0006281 DNA repair 115 25 18 1.95% −2.34

GO:0043414 macromolecule methylation 17 7 3 1.18% −2.48

GO:0009066 aspartate family amino acid metabolic process 34 10 3 0.86% −2.10

GO:0006553 lysine metabolic process 10 4 1 0.37% −1.53

GO:0030258 lipid modification 16 6 3 0.25% −1.96

GO:0016226 iron-sulfur cluster assembly 11 4 2 0.25% −1.38

GO:0031163 metallo-sulfur cluster assembly 11 4 2 0.25% −1.38

GO:0008213 protein alkylation 6 3 2 0.20% −1.51

GO:0006479 protein methylation 6 3 2 0.20% −1.51

GO:0046834 lipid phosphorylation 6 3 1 0.11% −1.51

GO:0046854 phosphatidylinositol phosphorylation 6 3 1 0.11% −1.51

GO:0006614 SRP-dependent cotranslational protein targeting to membrane 7 4 3 0.10% −2.17

GO:0030259 lipid glycosylation 5 3 2 0.08% −1.77

GO:0016571 histone methylation 5 3 2 0.03% −1.77

GO:0042176 regulation of protein catabolic process 10 4 2 0.02% −1.53

GO:0006273 lagging strand elongation 3 3 1 0.01% −2.68

GO:0008608 attachment of spindle microtubules to kinetochore 4 3 3 0.01% −2.12

GO:0070592 cell wall polysaccharide biosynthetic process 7 3 2 0.00% −1.31

Total unique 983 185 110
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underwent several generations of asexual reproduction,
as only rarely sexual structures (apothecia) were ob-
served in any of the sites. Thus, by applying Pool-seq
resequencing to large population samples, we were able
to track the frequencies of diverged long-lived lineages
in each of the sites, and describe genome-wide popula-
tion divergence in relation to changes in altitude.
Our study revealed significant differentiation and

structure of L. pustulata populations. We found two
genetic clusters along the gradient. One cluster is
predominant at low elevations (up to ~800 m a.s.l.),
while the other is predominant at high elevations
(~1300 m a.s.l.). Our data suggest extensive admixture
of these clusters at ~1100 m a.s.l. Given the high
number of reciprocally fixed SNPs between the clus-
ters and the high levels of clonal propagation in this
fungal species, possible explanations for the observed
pattern include ancient divergence, and a combination
of limited gene flow, long generation times, and
strong environmental filtering. Unfortunately there are
no estimates for sexual or asexual generation times in
L. pustulata from which we could calculate the age of
the split between the clusters. Thus it is currently impos-
sible to formally distinguish between the above scenarios.
Ancient population splits and high genomic divergence
have been reported in non-lichenized fungi. For example,
strong genomic divergence, evidence for ancient population

splits and introgression between subpopulations were in-
ferred for the human pathogens Coccidioides immitis and
C. posadasii [61]. Strong genetic structure was also found
in locally adapted subpopulations of Neurospora crassa [5].
Numerous theoretical and empirical studies suggest that
strong population divergence among continuously
distributed populations may be caused by selection along
environmental gradients promoting adaptation to different
environmental conditions and ultimately impeding gene
flow [62–64]. Interestingly, the genetic clusters of L. pustu-
lata correspond to the major bioclimatic zones covered by
our transect, with their admixture zone coinciding with the
transition between the Mediterranean and the temperate-
oceanic climate. Therefore, environmental filters likely
contribute to the observed genetic structure.
To search for loci putatively involved in environmental

adaptation, we detected allele-climate associations. Heat,
drought, and intense light belong to the selective forces
that cause differentiation among and within plant
species in Mediterranean ecosystems [65]. We thus
expected to find diversifying selection in those loci asso-
ciated with pathways of the fungal environmental stress
response (ESR). The ESR is in fact a common feature in
the response of fungi to different environments, and it is
responsible for initiating gene expression that protects
the cell against stress [66, 67]. In yeasts, the ESR in-
cludes ~900 genes and requires a coordinated effort
from multiple pathways, including signal transduction
molecules, enzymes involved in cellwall biogenesis and
maintenance, genes responsible for regulation of tran-
scription, post-translational modification, and enzymes
with proteolytic or antioxidant activities [68]. We found
representative genes of each of the above pathways in
our set of candidates for altitudinal adaptation. One
example is alpha-ketoglutarate-dependent dioxygenase, a
gene that is involved in the catalysis of taurine. Taurine
is a solute required in osmoregulation, and has been
linked to the survival of the fungus Ochroconis mirabilis
in different habitats [69]. In the same functional category,
we found candidate SNPs in genes such as a flavin-
binding monooxygenase, and in the putative essential sub-
unit of U3-containing 90S preribosome (NOP9), which
has been reported among the 71 essential genes required
for oxidative stress tolerance in Saccharomyces cerevisiae
[70]. Additionally we found the calcium channel subunit
Cch1, which has been reported to be involved in the Ca2+

release in response to exogenous oxidative stress in yeast

Fig. 4 Photosynthetic CO2 gas exchange of L. pustulata highland
(population 6; blue) and lowland population (populations 1 to 5; red)
related to thallus water content (TWC). TWC is expressed as mm
“precipitation”. Polynomic regressions lines are indicated with their r2

value. Circles = net CO2 uptake, triangles = dark respiration

Table 4 Dry weight and chlorophyll a + b content of the different populations (N = 3 for each of the populations)

Population 1 Population 2 Population 3 Population 4 Population 5 Population 6

Dry weight [mg/cm2] 25.99 ± 12.43 22.65 ± 3.10 23.59 ± 0.48 27.54 ± 7.63 30.75 ± 5.24 120.96 ± 58.71

Chlorophyll a + b [μg/cm2] surface area 38.28 ± 23.54 28.72 ± 10.77 19.67 ± 7.86 27.74 ± 6 22.9 ± 0.93 127.33 ± 40.0

Chlorophyll a + b [μg/mg] dry weight 1.42 ± 0.21 1.32 ± 0.612 0.83 ± 0.33 1.02 ± 0.16 0.63 ± 0.12 1.09 ± 0.18
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[71], and a putative flap endonuclease, which is part of the
base-excision repair pathway that removes lesions
resulting from exposure to reactive oxygen species in
yeast [72, 73]. Among the candidates involved in ther-
mal stress response, we found the small heat shock pro-
tein Hsp20, glutamate carboxypeptidase, and a putative
thermotolerance protein. Other candidates for diversi-
fying selection include genes involved in the regulation
of gene transcription, in particular Isw1, a gene that
functions in parallel with the NuA4 and Swr1 com-
plexes to regulate stress-induced gene transcription via
chromatin remodeling in yeast [74]; interestingly, also
Swr1 was detected among the candidates. Furthermore
we found genes putatively involved in cellwall integrity
and filamentous growth pathways (septin [75]), and in
UV-damage response (UV-damage endonuclease [76, 77]).
Several of the top differentiated genes containing en-

vironmentally associated SNPs were also involved in the
ESR [78]. In particular we found genes linked to signal
transduction and cell-wall integrity pathways, such as
the transmembrane cellwall sensor Wsc4, a MAPKKK-
cascade protein kinase, a two-component osmosensing
histidine kinase, and a calcium/calmodulin-dependent
kinase (CAMK). CAMK proteins were reported to be in-
volved in thermotolerance and oxidative stress survival
in Neurospora crassa [79]. The presence of a putative
trehalose-phosphate synthase, and of a number of ribo-
somal proteins genes, RNA helicases, and thioredoxin
among the candidates suggests that many genes involved
in redox homeostasis and also important for cold-shock
response are putative targets of selection [80]. It is there-
fore tempting to speculate that adaptation to different
temperatures, in particular cold-shock, is a driver of
population differentiation in L. pustulata, given a differ-
ence of ~6 °C in the mean annual temperature between
top and bottom of the cline, and frequent winter frost
above 1100 m a.s.l.
The overlap between environmentally associated SNPs

and FST-based outliers was low in our study. As in other
studies of local adaptation [81–83], different approaches
to identify candidate loci yielded different sets of candi-
dates. This is probably due to the effects of population
structure, and the parameters used for the environmen-
tal correlation. The limited overlap between sets of out-
liers indicates that selection along the gradient occurs
mainly at the scale of local populations, and only par-
tially at the evolutionary scale of the ancestral genetic
groups [81]. Another reason for this difference may be
attributed to the presence of environmental drivers that
do not covary with chosen environmental factors, either
biotic (e.g., interactions with photosynthetic partners,
bacteria, or pathogens, and intra- and inter-specific
competition), or abiotic (e.g., cloud cover, wind speed).
In addition, covariance of population structure with the

environment has been shown to make the method cor-
recting for neutral population structure over-conservative
[81]. Thus, candidates identified via methods that do not
adjust for population structure should not be ignored, just
treated carefully as their interpretation is necessarily post
hoc. Future studies of L. pustulata will have to include
more populations and replicate independent clines to fully
disentangle demography from local selection.
Many candidate genes have known roles in stress

response and growth regulation, and it is thus tempting
to hypothesize that variation at these loci might affect
fitness-related traits. Our ecophysiological experiments
showed the presence of genetic lineages with differential
fitness under different environmental conditions along
the cline. The high altitude group seems to be better
adapted to more humid conditions and to lower light in-
tensities than the lowland group. In particular, samples
from this population had thicker thalli and thus more
biomass per area unit. In poikilohydric organisms such
as lichens, an increased fungal biomass may be beneficial
at wetter high-elevation sites and where winds speed up
drying, especially on the exposed rocky outcrops where
the species lives. This is because a higher fungal biomass
may lead to i) higher mechanical stability against mech-
anical damage, ii) prolongation of the wet phase for an
increase of the active period [84], and iii) acceptance of
higher thallus water content [85]. The latter point is sup-
ported by our finding that high-altitude individuals need
more water for maximal net photosynthesis than low-
altitude ones. Moreover, under similar light and humidity
conditions, low-altitude individuals would eventually die
because of respiration rates exceeding carbon fixation
rates. Structural changes towards improved thallus hydra-
tion in relation to improved photosynthetic exploitation
were shown to drive acclimation in populations from
different slopes in Ramalina capitata [86], between
vagrant and attached morphs of Cetraria aculeata [21],
between shaded and exposed populations in the Antarctic
endemic Catillaria corymbosa [87], and between pop-
ulations from different biomes in Psora decipiens [88].
Thallus thickness is a property controlled by the
mycobiont and thus is related to the mycobiont’s re-
sponse capability to environmental conditions [19].
Future genome-wide studies on the photobiont are
required in order to elucidate the relative role of each
symbiont in shaping the lichen’s response to the environ-
ment. Studies on the ecological benefits of phenotypic
plasticity in lichens are still in their infancy, and the
genomic basis of physiologically-relevant traits is far from
being understood. Our results suggest that a surprisingly
high, possibly adaptive, genetic diversity is responsible for
anatomical and physiological differences between eco-
morphs of a morphologically homogeneous lichen species.
Further genomic research and physiological experiments
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based on replicate populations from different geographic
areas, and comparisons with other lichen species will
enable us to test the aforementioned hypothesis.
Adaptation to divergent environments promotes envir-

onmental specialization and reproductive isolation
among fungal populations [5, 9]. In fact, the exclusion of
immigrating individuals due to higher fitness of local
genotypes (i.e., isolation by adaptation) can also lead to
reproductive isolation resulting in little or no effective
gene flow between geographically close populations [89].
This process, known as ecological speciation, interprets
reproductive isolation as a by-product of adaptation to
divergent environments. Our analysis of fixed variation
between the highly differentiated genetic clusters of L.
pustulata showed that several genes involved in sexual
reproduction were significantly enriched, supporting the
hypothesis of reproductive isolation. This is interesting,
because we did not observe morphological evidence for
sexual reproduction, such as presence of apothecia.
Additional indication for reproductive isolation stems
from the observation that genomic divergence between
clusters is not limited to a few genomic areas, but rather
widely dispersed across the genome. It involves many
pathways centrally important for the response to environ-
mental signals and stress, gene expression, growth, and
metabolism. Overall, the high level of genomic divergence,
and the presence of physiological differences between
genetic clusters suggest the existence of L. pustulata
ecotypes adapted to the Mediterranean and temperate-
oceanic bioclimatic zone.

Conclusions
Pool-seq genome resequencing is a cost-effective and
powerful approach to assess allelic diversity in popu-
lations, and to identify genes that are potentially
under selection [90–92]. However, this method also
has limitations, mainly associated with the increased
impact of sequencing errors and resampling of alleles.
To circumvent these issues, we created equimolar
genomic libraries based on high sampling density, se-
quenced each population at high coverage, and used
strict thresholds for sequence quality filtering. Further-
more, we based the calculations of genetic diversity mea-
sures on subsampled data to avoid coverage bias, and used
analysis tools specifically adapted to Pool-seq data. An
intrinsic limitation of pooled sequencing is the loss of link-
age disequilibrium information. The proposed candidates
may not be under selection but may have been detected
because of being linked to the actual targets of selection,
or to other loci that diverged because of different evolu-
tionary processes (e.g., genetic drift). This limitation can
only be overcome by using different sequencing strategies,
such as genome resequencing of individuals.

Our exploratory work into the genomics of adaptation
of a lichen-forming fungus reveals numerous loci and
pathways putatively involved in environmental adapta-
tion, including many loci shown in other fungi to be
linked to temperature and UV-radiation stress response.
Such genes provide excellent targets for further investi-
gations. Future studies based on individual genotyping,
possibly including replicate populations from different
regions, additional physiological analyses including more
samples, and quantitative trait locus mapping experi-
ments of the candidate genes in controlled and field set-
tings will help to elucidate the drivers of local adaptation
in this and other fungal species.
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