
Towards a Formal Account of Identity Criteria

Massimiliano Carrara and Silvia Gaio
Department of Philosophy, University of Padova, Italy

Abstract

Identity criteria are used to confer ontological respectability: Only
entities with clearly determined identity criteria are ontologically ac-
ceptable. From a logical point of view, identity criteria should mirror
the identity relation in being reflexive, symmetrical, and transitive.
However, this logical constraint is only rarely met. More precisely, in
some cases, the relation representing the identity condition fails to be
transitive. We consider the proposals given so far to give logical ade-
quacy to inadequate identity conditions. We focus on the most refined
proposal and expand its formal framework by taking into account two
further aspects that we consider essential in the application of identity
criteria to obtain logical adequacy: contexts and granular levels .

Introduction

Consider the following thesis characterizing a strong ontological real-
ism (for an overview on this topic see Devitt [1]):

(SOR) There is a mind-independent world and it is structured: there
are distinct objects, properties, etc.

If an ontological realist adopts (SOR), there is a problem of select-
ing, from among the many entities such as objects, properties, events,
facts, etc., the real entities i.e. those entities existing independently
of our mental states. Hence, with respect to objects of a specific kind,
one can be a realist, if one takes them to be real entities, or an antire-
alist, if one takes them to be mere projections of one’s thoughts.

Adopting a different jargon, we can say that the problem for on-
tological realists is selecting those objects that have ontological re-
spectability. One standard (Quinian) solution in analytic philosophy is
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to argue that identity criteria are required for ontological respectabil-
ity: only entities that have clearly determined identity criteria are
ontologically respectable, i.e. acceptable. Think, for example, of the
case of properties: following Quine [12] , properties would not be onto-
logically acceptable because they do not have any no suitable identity
criterion.

Question: are there general constraints to identity criteria for the
individuation of real substances?

We distinguish between two kinds of constraints: formal constraints
and metaphysical constraints. Metaphysical constraints normally de-
rive from the theses of the general framework adopted, for example ab-
solute identity vs. relative identity or four-dimensionalism vs. three-
dimensionalism. Conversely, formal constraints are specified on the
basis of the logical form of the identity criteria and some properties
induced by it.

In the present work we focus only on formal constraints, or require-
ments on identity criteria; more specifically, we focus on a specific for-
mal constraint: equivalence. The main goal in our paper is to make
some steps towards a formal characterization of identity criteria.

The paper is divided into four sections. In the first section we
present the problem at issue, that is, the logical requirements that
identity criteria are supposed to meet and some, commonly used iden-
tity criteria failing to meet one of those requirements. In the sec-
ond section, we will present Williamson’s and De Clerq and Horsten’s
treatment (in [8] and [10]) of logically inadequate identity criteria. In
the third section, we will try to embody De Clercq and Horsten’s pro-
posal in an enlarged framework that takes into account contexts and
levels of granularity too. In section 4 we then conclude with some
general remarks.

1 Logical adequacy of identity criteria

The credit for introducing the notion of an identity criterion (from
now on, IC) is usually attributed to Frege . In his Foundations of
Arithmetic Frege introduces the idea of IC in a context where he
wonders how we can grasp or formulate the concept of numbers (see
[2], §62):

If we are to use the symbol a to signify an object, we must
have a criterion for deciding in all cases whether b is the
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same as a, even if it is not always in our power to apply
this criterion.

Even if it is not completely clear whether or not Frege thought of
ICs as related only to abstract entities, his considerations about ICs
seem to adapt both for concrete and abstract objects. He suggests
that an IC has the function of providing a general way of answering
the following question, with a and b objects in a given domain:

Fregean Question: How can we know whether a is identical to b?

Consider two famous examples of ICs provided by Frege in [2]:

• IC for directions: if a and b are lines, then the direction of line
a is identical to the direction of line b if and only if a is parallel
to b;

• Hume’s principle: for any concepts F and G, the number of F -
things is equal to the number of G-things if and only if there
is a one-to-one correspondence between the F -things and the
G-things.

In the philosophical literature, the Fregean question has been re-
formulated in the following ways:

Ontological Question (OQ): If a and b are Ks, what is it for the
object a to be identical to b

Epistemic Question (EQ): If a and b are Ks, how can we know
that a is the same as b?

Semantic Question (SQ): If a and b are Ks, when do ‘a’ and ‘b’
refer to the same object?

The difference between an answer to (EQ) and an answer to (OQ) is
not purely formal. When answering (EQ), we think of conditions asso-
ciated with a procedure for deciding the identity questions concerning
objects of some kind K. In answering (OQ), we think of conditions
which are meant to provide an ontological analysis of the identity be-
tween objects of kindK. Finally, an answer to (SQ) concerns sameness
and difference of reference of simple or complex names.

It is worthwhile considering what the logical form of ICs looks like
even if different ways of conceiving the form have been proposed. The
reason is that there are some requirements that ICs must satisfy to
provide acceptable identity conditions, and part of those requirements
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are formal, i.e. given by their logical form. Among various formula-
tions of IC, we consider the following ones:

∀x∀y((x ∈ K ∧ y ∈ K)→ (f(x) = f(y)↔ R(x, y))), (IC*)

and:

∀x∀y((x ∈ K ∧ y ∈ K)→ (x = y ↔ R(x, y))), (IC)

where R constitutes the identity condition for f(x)s or for xs and
is a relation holding between objects belonging to some kind K, and,
in the (IC*) case, f is a function whose domain is K itself and the
range is a set of elements which constitutes a different set, f(K). The
intuitive reading of (IC*) is the following: if x and y are K, then x is
the same f as y if and only if R holds between x and y 1. Sometime,
(IC*) is formulated in the following way (without a reference to K ):

∀x∀y(x′ = y′ ↔ R(x, y)), (IC**)

where ‘x′’ and ‘y′’ are terms representing entities of the kind K
suitably connected with x and y.

For Williamson (IC*), or (IC**), is the logical form of a two-level
identity criterion (see [9], pp. 145-146). Frege’s criterion of identity
for directions is an example of a two-level identity criterion:

∀x∀y(o(x) = o(y)↔ P (x, y)) (O)

where x and y range over lines, o is a letter for “the direction of”
and P for “is parallel to”. In (O) the identity sign is flanked by terms
constructed with a functional letter, and the right-hand side of the
biconditional introduces a relation among entities different from the
entities for which the criterion is formulated. On the contrary, the
Axiom of extensionality for sets:

∀x∀y(x = y ↔ ∀z(z ∈ x↔ z ∈ y)) (A)

is an example of one-level identity criterion. In (A) the identity
sign is flanked by terms for sets, and the right-hand side states a

1Brand has given a different characterization for the logical form of ICs in terms of
second order modal logic:
∃F∀x∀y(if x and y are φs then �(x = y ↔ R(x, y)))
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relation equivalent to identity between sets. In the case of two-level
ICs the conditions of identity concern objects which are not of the
same kind of objects for which the IC is provided. On the contrary,
in the case of one-level ICs the conditions of identity concern objects
which are of the same kind of objects for which the identity criterion
is provided.

Williamson ([9], p. 147) points out that

The idea of a two-level criterion of identity has an obvious
advantage. No formula could be more basic (in any rele-
vant sense) than ‘x = y’, but some might be more basic
than ‘ox = oy’, by removing the symbol ‘o’ and inserting
something more basic than it

In such cases one can speak of a reductivist conception of identity
criteria because identity among objects of a certain kind depends on
relations among more basic objects2.

In the next section of our paper we limit our analysis to the formal
constraints on the relation R in (IC).

1.1 Requirements for R

In this section, some constraints for the relation R are listed and
discussed. The relation R is what the identity condition consists of
or, put otherwise, given an identity statement a = b, R is a relation
that holds between a and b, is other than identity and analyzes what
it is for the referents of a and b to be identical (See Linnebo in [3], p.
206). How should R look to be a good candidate for being the identity
condition of objects of some kind K? To answer this question, we take
into account three contributions: Carrara and Giaretta [4], Brand [5]
and Lombard [6].

Non-vacuousness The identity condition cannot have parts that are
vacuously satisfiable. Consider the following example (see [6], p.
32-33). Let PO be the set of physical objects, S the set of sets,

2It is debatable if there is a real distinction between two-level and one-level ICs. J.
Lowe has suggested that a two-level IC can be recast as one-level. For example (O) can
be so reformulated:
∀x∀y((Direction(x ) ∧ Direction(y)) → (x = y ↔ ∃w∃z(L(w) ∧ L(z) ∧ Of(x,w) ∧

Of(y, z) ∧ P (w, z))))
where ‘Direction’ is ‘to be a direction’, ‘L’ ‘to be a line’, and ‘Of’ ‘to be of’ (Lowe

discusses one-level and two-level identity criteria in [13], [14]).
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R(x, y) the identity condition for PO and R′(x, y) the identity
condition for S:

∀x∀y(((x ∈ PO∨x ∈ S)∧(y ∈ PO∨y ∈ S))→ (x = y ↔ (R(x, y)∨R′(x, y)))).

The condition given above for the identity of x and y is not
associated with a kind of entities in a metaphysically interesting
sense, since the members of the alleged kind do not share an
essence. The identity condition must specify a relation that holds
between elements of a certain kind such that all of them are
alike with respect to the properties associated to that kind. In
such a perspective, the identity condition supplies a property
of properties. Lombard calls this property determinable since it
determines a class of properties, called determinates, having that
property.

Informativeness R should contribute to specify the nature of the
kind K of objects for which R acts as an identity condition. If the
role of an IC is to specifie some non-trivial essential properties for
objects of kind K the form of the relation cannot be tautological,
for instance, it cannot have the following form:

R(x, y) ∨ ¬R(x, y)

Unfortunately, the identity condition does not completely char-
acterize the nature of instances of K: to decide about identity
questions concerning a K we need the concept of K, that is not
provided by the ICs. The above observation is due to Frege. He
argues that in:

“the direction of line a is identical to the direction of
line b” the direction of a plays the part of an object,
and our definition affords us a means of recognising
this object as the same again, in case it should happen
to crop up in some other guise, say as the direction
of b. But this means does not provide for all cases...
That says nothing as to whether the proposition: the
direction of line a is identical to q should be affirmed
or denied, except for the one case where q is given in
the form of the direction of b (see [2], §66).

In Frege’s opinion, the nature of certain objects is entirely clari-
fied only if one can find a way to refer to them such that it would

6



determine the truth-value of any identity sentence concerning the
given objects, without any restriction. What do we need to ob-
tain the universal definiteness of identity questions concerning a
K ? Frege is absolutely clear about this: we need the concept of
K (“What we lack is the concept of direction”(Frege [2], §66)).

Partial exclusivity An identity condition for a kind K of objects
cannot be so general that it can be applied to other kinds of
objects. The example provided by Lombard is the following:
‘If x and y are both non-physical objects, x and y are identical
iff they have the same individual essence’ ([6], p. 36).
Now, the properties falling under the ‘large’ property ‘having an
individual essence’ do not apply only to non-physical objects and
can be part of the identity conditions for many kinds of objects.

Minimality The identity condition for K-objects is required to spec-
ify the smallest number of determinables such that the determi-
nates falling under them turn out to be necessary and sufficient
to ensure identity between two objects of kind K. The deter-
minables specified in the identity condition cannot be superflu-
ous.

Non-circularity The identity condition for K-objects cannot make
use of the concept of K itself, otherwise it is circular. There
has been a long debate about the circularity of the IC for events
proposed by Davidson (see [7]):

If x and y are events, x = y iff x and y have the same causes
and effects.

Since some causes and effects are events, the identity condition
for events involves identity between events: in fact, to determine
whether two events are the same we are required to determine,
first, the identity of events taken as their causes or effects.

Non-tautologicity R cannot be a property that every two objects
of kind K share. Formally:

R ⊂ K ×K

The formula says that the relation R is a proper subset of the
set K ×K, that is, there is some pair of objects that are K such
that the objects of the pair are not in the extension of R.
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K-Maximality R must be maximal with respect to K. In other
words, R is required to be the widest dyadic property that makes
an identity condition true. A dyadic property G is wider than a
property G′ iff for any x and y, if G′(x, y), then G(x, y), but not
vice versa. That means that the ordered pairs of G′ are a subset
of the set of ordered pairs of G. Formally, for all the relations
R′ that are possible candidates for the identity condition Φ:

R′ ⊆ R

Uniqueness R is unique with respect to K. That means, if there are
R1, R2, ...Rn, such that (i) each Ri satisfies IC and (ii) each Rk is
independent of each Rj (that is, every Rk is neither narrower nor
wider than each Rj), then at most one of R1, R2, ...Rn provides
a correct identity criterion for K-objects.

Equivalence R must be an equivalence relation. In the left side of
the biconditional in (IC), there is an identity relation, which is an
equivalence relation. Consequently, the relation R on the right
side of the biconditional must be an equivalence relation, too.
In order to be logically adequate, then, an identity criterion is
required to exhibit an equivalence relation as identity condition.

In this paper we want to focus on identity criteria which fail to meet
the equivalence constraint and show how this problem can be overcome
by logical means.

1.2 Failure of transitivity

As has been observed in the philosophical debate about identity cri-
teria, some relations considered as intuitively good candidates for
R often fail to be transitive. Consider some examples offered by
Williamson [8]:

• Let x, y, z, ... range over color samples and f be the function that
maps color samples to perceived colors. A plausible candidate
for R might be the relation of indistinguishability. It is easy to
verify, though, that such an R is not necessarily transitive: it
might happen that x is indistinguishable from y and y from z,
but x and z can be perceived different in color.

• If f(x) is a physical magnitude, to determine f(x) = f(y) you
measure x and y. If x and y differed by little, the measurement
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operation could give the identity of the physical magnitudes as
a result. If R were defined on the basis of the measurement
operations, it would turn out to be not transitive, since the sum
of many little differences is not itself little.

The examples above show how some relations that are intuitively plau-
sible candidates to be identity conditions do not meet the logical con-
straint of Equivalence that IC demands. However, instead of refusing
this kind of plausible but inadequate identity criteria, it has been sug-
gested to approximate the relation R whenever it is not transitive.
That means that, given a non-transitive R, we can obtain equivalence
relations that approximate R by some operations. Some approaches
have been suggested: two of them are due to (Williamson [8], [9]),
while a third approach is due to (De Clercq and Horsten [10]).

2 Approximations of identity conditions

2.1 Williamson’s approaches

Williamson’s suggestion about the best approximation to a non tran-
sitive relation consists in giving up the requirement for the identity
condition to be both necessary and sufficient. Consider R a non tran-
sitive relation that we take to be the best candidate for being R, for
some kind of objects f(x)s. Consider such an R a constant. Consider
then variables on relations R′, R′′, ... as possible approximations to R.
To determine the best approximation R′ to R Williamson suggests
two constraints that R′ must meet:

Weak constraint : no candidate relation R′′ should approximate R
better than R′.

Strong constraint : R′ should approximate R better than any other
candidate R′′.

Williamson proposes two ways to find an adequate equivalence relation
to substitute a non transitive R: an approach form above and an
approach from below.

The approach from above seeks the smallest equivalence relation
R+ such that R ⊆ R+. That means, some f(x) and f(y) that are not
identical under R turn out to be identical under R+ or, equivalently,
R+ is a super-relation of R. The equivalence classes given by R+ are
numerically more than the equivalence classes given by R. R+ always
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exists and is unique. The identity criterion of this form

∀x∀y(f(x) = f(y)↔ R+(x, y)) (IC+)

provides a sufficient, but not necessary, condition for the identity of
f(x)s.

The approach from below seeks the largest equivalence relation R−

such that R− ⊆ R. That means, R− is a sub-relation of R since not
all the ordered pairs in R are ordered pairs in R−. R− always exists
on the assumption of the Axiom of Choice but it is not unique. To
decide which relation can be preferable over others some constraints
can be put. One of it is what Williamson calls Minimality Constraint.
According to it the relation R− to be preferred is the one with the
minimum number of equivalence classes. The identity criterion of this
form

∀x∀y(f(x) = f(y)↔ R−(x, y)) (IC−)

provides a necessary, but not sufficient, condition for the identity of
f(x)s.

There are cases where a proposed identity condition is necessary
for some kind of entities. For instance, the condition of being percep-
tually indistinguishable is a plausible identity condition for colors. On
the contrary, there are other kinds of entities for which a good iden-
tity criterion is sufficient: certain forms of mental continuity can be
considered as a sufficient condition for personal identity. But this is
not so obviously sufficient. There are not always good reasons to con-
sider a condition as obviously necessary or sufficient for the identity
of some kinds of entities. There is a third option that is worthy to be
considered: to regard the condition as neither necessary nor sufficient
for the identity of the f(x)s.

2.2 De Clercq and Horsten’s approach

De Clercq and Horsten [10] suggest an approach to find approximating
relations that is alternative to the one proposed by Williamson and
is called overlapping approach: the equivalence relation that is sought
partially overlaps R, instead of being a sub- or a super-relation with
respect to R.

The advantages of such an approach are (i) it can be used for
cases where the most plausible identity condition is neither sufficient
not necessary and (ii) it can generate closer approximations than
Williamson’s approach.
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The proposal is based on the assumption that R is not indetermi-
nate: any two objects either stand in the relation R or they do not.
This assumption serves the scope to avoid difficulties that are not nec-
essary to face, but it can be given up in case of a refinement of the
approach.

The authors propose to define an equivalence relation R± that
closely approximates R and achieves that task better that R+ or R−.
For the sake of clarity, consider an example.

Given a function f , let the domain of objects for f be the following:

D = {a, b, c, d, e}

Assume there is a candidate relation R, reflexive and symmetric, for
the identity condition for f(x)s. When R holds between two objects
x and y we denote this as xy (as De Clercq and Horsten do). Put
otherwise, xy means R(x, y) and R(y, x). Let R on D be the following:

R = {ac, ad, bc, bd, cd, de}

R is not an equivalence relation. In fact, it fails to be transitive. For
instance, R holds between a and d and between d and e, but it does
not hold between a and e.
Consider now how R+ looks like in this case. It is unique and it is the
smallest equivalence relation that is a superset of R, that is:

R = {ab, ac, ad, ae, bc, bd, be, cd, ce, de}

On the contrary, R− is not unique. For instance, one of the largest
equivalence relations included in R is the following:

R− = {bc, bd, cd}

To determine whether R+ or R− is the best approximation to
R, first you measure the degree of unfaithfulness of R+ and R− with
respect to R. Such a degree is the number of revisions you make to get
R+, R− from R. A revision is any adding or removing of an ordered
pair to or from R. In the example considered above, R+ is obtained
by adding four ordered pairs to R and R− by removing three ordered
pairs. The degree of unfaithfulness of R+ is 4 and the degree of R− is
3. Thus, R− is closer to R than R+. That means, with R− you stay
closer to your intuitive identity condition R because R− modifies R
less than R+ does.
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Consider now the following equivalence relation:

R± = {ab, ac, ad, bc, bd, cd}

With respect to R, R± adds one ordered pair and takes off another
one. So the degree of unfaithfulness of R± is 2, that is, less than both
R+ and R−. Formally, the degree of unfaithfulness (DOU) is given by
the symmetric difference 4:

(R±, R) = |R4R±| (DOU)

How does R± looks like? It is an overlapping relation with respect to
R and it is a kind of hybrid relation between R+ and R−, since it both
adds and removes one ordered pair. An overlapping relation can be
closer to R than the relations obtained with the approach from below
and from above.

3 Contexts and Levels of Granularity

Let us consider and revise the example about phenomenal colors given
by Williamson. The case of colors is a well-known example of failure
of transitivity and it has been discussed also in other places in the
philosophical literature. Some observations by Hardin [11] on this
issue are remarkable.

Hardin observes that many philosophers endorse a view according
to which the following principle (that I will call NT from now on)
holds:

There exist triples of phenomenal colors x, y and z, such
that x is indiscriminable from y and y is indiscriminable
from z, but x is discriminable from z.

By ‘indiscriminability between colors’ Hardin means ‘perceptual indis-
tinguishability’. By NT the relation of perceptual indistinguishability
fails to be transitive; therefore, the IC for colors based on the relation
of indistinguishability is incoherent: on the left side of the bicondi-
tional there is a necessarily equivalent relation (identity), on the right
side a not necessarily equivalent relation. This problem seems to affect
any semantic account of color terms relying on everyday uses of color
predicates. Hardin argues that phenomenal colors are themselves in-
determinate, that is, there is no sharp color-discrimination threshold;
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since the truth of NT is based on the assumption that there is a dis-
crimination threshold, refusing this assumption implies refusing NT
too.

In non problematic cases, that is, when we have to make judg-
ments on very different colors, we report our observations using coarse-
grained predicates because we do not need to express shade differences.
When we have to deal with borderline cases of colors, we tend to be
more precise in using color predicates. More fine-grained color pred-
icates are used in color science and technology, but in everyday life
people do not use them; that is not just because there are limits of
hue discriminability, but because of “something like the limit of useful
naming of phenomenal hues for the purposes of communicating be-
tween people” ([11], p. 221). Put otherwise, the number of possible
color discriminations is much higher than the number of color terms
normally used. Why? First of all, there is a variability in discrimi-
nation between observers; second, people observe colors under normal
conditions such as changing light, contrast, shadows, and not under
standard conditions, and normal conditions make color comparisons
problematic; third, it is more difficult to compare a color with a men-
tal standard (like the standard of ‘red’ that one could have seen in the
Munsell Chart) than with another color perceived at the same time.

So, color perception is influenced by many factors and the use of
color predicates is somewhat sloppy. Hardin suggests that to answer
a question like “What are the boundaries of red?” we must first

specify, explicitly or tacitly, a context and a level of preci-
sion and [...] realize the margin of error or indeterminacy
which that context and level carry with them. ([11], p.
230.)

In the following analysis, we wish to show that De Clercq and Horsten’s
framework can be improved if you consider the use of ICs in a context
and in a level of precision. Moreover, we agree with Hardin’s belief
that the nature of our purposes imposes limits on the precision of our
utterances: a too large set of color predicates would make our judg-
ments more precise, but would also hinder a profitable communication
among agents.

The IC for phenomenal colors is an example of an IC that has
mostly an epistemic function: we do not know precisely whether two
colors are identical. We only rely on our perception which is falli-
ble. So, we express an IC for colors in a logically inadequate way.
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Williamson and De Clercq and Horsten believe that there are logi-
cally adequate ICs and try to capture them by approximating our
intuitively good, but logically inadequate ICs.

Consider now the following variations of the example of IC for
perceived colors:

1. You see two monochromatic spots, A and B, and you do not de-
tect any difference with respect to their color. Following Williamson,
you claim that they have the same color, because they are per-
ceptually indistinguishable. Now, suppose you add two further
monochromatic spots, C and D, such that they are perceptually
distinguishable. However, A is indistinguishable from C and B
from D. In such a scenario, you can accept to revise your previous
judgement and say that A and B are distinct.

2. You see two color samples A and B from a distant point of view
such that you are not able to distinguish A-color from B-color.
You say that A and B have the same color. Now, you get closer
to them and detect a difference between them. So, you revise
your previous judgement and say that A and B are distinct.

3. You see two monochromatic spots again, A and B. You perceive
them as equally, say, orange. Nevertheless a friend of yours, who
is a painter, tells you that she perceives them actually differ-
ent: B is more yellowish than A. According to her color percep-
tion, which is more refined than yours, there are more differences
among color samples than you detect.

Example 1 shows how our perception of colors can be different,
depending on the range of colors we see at the same moment. Better
said, comparing a color sample with one or more color samples makes
our judgements about colors differ. Thus, a relation R expressed by
a criterion of identity can vary across contexts of judgment. For in-
stance, consider a domain D = {a, b, c, d, e} and a context o, that is a
subset of D: o = {a, b}. Suppose R = {ab} in the context o. Consider
now an enlarged context, o′ containing a and b plus other elements,
c and d: o′ = {a, b, c, d}. In o′ you may have the following R-pairs:
ac, ad, but not ab.

Example 2 and 3 present a different issue than 1. Given the same
context, R varies along different granular levels of observation. When
you are distant from the objects for which you have to make an iden-
tity statement, you are looking at them from a coarse point of view.
Anyway, you make an identity statement. Getting closer to the ele-
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ments of the context, you reach a more fine-grained observational level
and so you can make a different identity statement. The point of view
of the painter can be seen as well as a fine-grained observational level.
In short, you can look at the elements of a context under different
standards of precision, each of them corresponding to a granular level
of observation. The finer the level is, the more differences between the
individuals are detected.

In the following paragraph we try to formalise the notions of con-
texts and granular levels and integrate them with De Clercq and
Horsten’s formal treatment of approximate relations.

3.1 Granular Models

Let L be a formal language through which we can represent English
expressions. L consists of:

• individual constant symbols: a, b, ... (there is a constant symbol
for each element of the domain);

• individual variables: x0, x1, x2, ... (countably many);

• 2-arity predicate symbols P1, P2, ...;

• usual logical connectives with identity, quantifiers.

The set of terms consists of individual constant and individual variable
symbols.
Formulas are defined as follows:

1. If t1, t2 are terms, then P1(t1, t2), P2(t1, t2), ... are formulas;

2. If t1, t2 are terms, then t1 = t2 is a formula;

3. If φ, ψ are formulas, then φ�ψ is a formula, where � is one of
the usual logical connectives;

4. If φ is a formula, then ¬φ is a formula;

5. If φ is a formula, then ∀xiφ, ∃xiφ are formulas.

Let us give now an interpretation to L. Let D be a fixed non empty
domain of objects. We define a context o as a subset of domain D.
So, the set of all contexts O in D is the powerset of D:

Definition 1 O = ℘(D).
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We interpret, then, R as a binary relation, which is reflexive and
symmetric, but not necessarily transitive. Moreover, R is a primitive
relation and pairs the elements that are indistinguishable according to
the identity condition it represents. For instance, in the case of color
samples R gives rise to a set of ordered pairs, each of them consisting
of elements that are indistinguishable with regard to their (perceived)
color. R is then the relation that makes identity statements about the
elements of the domain possible, according to IC.

Let M = 〈D, R〉 be a granular structure. Put otherwise, M is a
structure consisting of the domain D, together with all the contexts
in D, and a binary relation R (a two-arity predicate).

To account for example 1 formulated above, we postulate that R
varies across contexts. Before providing a formal definition, let us
consider a further example. Given a certain domain D, let us isolate
three subsets of it, i.e. three contexts:

• o1 = {a, b}
• o2 = {a, b, c}
• o3 = {a, b, c, d}
Observe that some elements, namely a and b, are in all the con-

texts, while c is in two of them. Consider now a granular structure
M1 = 〈D, R〉 and assume it not be a very fine structure; suppose that
R come out with the following sets - each of them corresponding to
one context:

• RM1
o1 = {ab}

• RM1
o2 = {ab}

• RM1
o3 = {ac, bd}

The relation R in the granular structure M1 holds between a and
b in contexts o1 and o2, but not in context o3. This means that, given
a certain granular structure Mi, R can vary across contexts. Formally:

Definition 2 Given a granular structure Mi and given two contexts
ol and ok, R varies across ol and ok iff there is a non empty intersec-
tion o∗ = ol ∩ ok 6= ∅ such that ∃x ∈ o∗∃y ∈ o∗ : (xy ∈ RMi

ol
∧ xy /∈

RMi
ok

) ∨ (xy ∈ RMi
ok
∧ xy /∈ RMi

ol
).

If in a granular structure Mi the relation R fails to be transitive
with respect to some (if not all) contexts o ⊆ O, then the formal
framework given by De Clercq and Horsten is applied. That means,
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for each R in each context o an equivalence overlapping relation R±

can be defined3. If a relation R is transitive in a context o, then in
that case R± coincides with the given R. In contexts where R is not
transitive, R± denote a relation that differs from R in the fact that it
adds and/or remove some ordered pairs from R, as described by De
Clercq and Horsten.

R does not vary only across contexts. As the examples 2 and 3
above show, R also varies across granular levelsGranularity. While
the notion of context refers to the number of elements considered and
can be extensionally characterized, as proposed, we characterize the
epistemic notion of granular level in an indirect way. Each granular
structure belongs to a certain granular level, which corresponds to
the level of precision of R in ordinating elements in contexts. Put
otherwise, given the same context o ⊆ O, different granular structures
can give different sets of ordered pairs generated by R with resect to
o. If the relation R of a certain granular structure holds among all the
elements of the context considered, no difference is detected among
them (with respect to some property), so all of them are considered
indistinguishable. The granular structure is then considered coarse-
grained. On the contrary, a more fine-grained granular structure shall
have a relation R holding between a less number of elements of o.

Consider a further example. Fix the context o2 = {a, b, c} as above.
The relation R in the granular structure M1 only holds between a
and b. Consider now another granular structure,M2 = {D, R}4. The
relation R in M2 does not hold between any elements in the context
o2, and so neither between a and b. This means that the granular
structure M2 is more fine-grained, since it is able to detect more
differences among elements in contexts.

To determine whether two or more granular structures belong to
different granular levels you apply the following definition:

Definition 3 Given a context oi and two granular structuresMl and
Mk, Ml and Mk belong to different granular levels iff ∃x ∈ oi∃y ∈
oi : (xy ∈ RMl

oi ∧ xy /∈ R
Mk
oi ) ∨ (xy ∈ RMk

oi ∧ xy /∈ R
Ml
oi ).

3If you prefer to maintain Williamson’s approaches, instead of R± you can get R+ or
R−.

4Note that the domain D remains fixed in all the granular structures, and so the set of
contexts O. The relation R also is the same - for example, perceptual indiscriminability
- but its interpretation can differ along the grain size of the structure, as we see in the
example.
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Finally, let us define the relation to be at least as fine as between
granular structures. First, we define the relation, formally: ≤c, be-
tween cardinality of sets:

Definition 4 Given an o ∈ O, for all the pairs xy in M and xy in
M ′, |{xyM ′}| ≤c |{xyM}| iff the number of xyM

′
is less than or equal

to the number of xyM in o.

Then, we define the relation between granular structures with re-
spect to some context o ∈ O:

Definition 5 Given a context o ∈ O, M ′ is at least as fine as than
M iff the number of xyM

′
is less than the number of xyM , that is:

M ′ ≤∗ M iff |{xyM ′}| ≤c |{xyM}|.

Example: let o = {a, b, c, d, e} a given context. Consider two gran-
ular structures, M1 = 〈D, R〉, M2 = 〈D, R〉. According to M1, we
have: Ro = {ab, bc, de}. It is not transitive (a is indistiguishable from
b and b from c, but a is not indistinguishable from c). The best over-
lapping approximations is the following: R± = {ab, bc, ac}. The pair
ac has been added. The degree of unfaithfulness of R± is 1. According
toM2, we have: Ro = {ab, bc, cd, de, ce}. In this case R it is not tran-
sitive either. The best overlapping approximation removes the pairs
ab, bc and it is the following: R± = {cd, de, ce}. According to defini-
tions 4 and 5 and given the context o, M1 is finer than M2 because
its relation R gives a less number of pairs than the relation R in M2.

3.2 Objections and replies

Some objections can be raised against the proposed formal charac-
terization of ICs , as well as some problems in the account are to be
underlined. We try to outline here some objections and problems, and
sketch a reply to them.

• ICs are usually associated with sortal concepts, that is, with
concepts that answer the question “What is x?”. The examples
of non-transitive ICs considered are associated to kinds of objects
like colors and physical magnitudes. It is not clear, though,
whether colors or physical magnitudes are to be considered sortal
concepts. For instance, the adjective ‘red’ does not correspond
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to a sortal concept: we do not individuate an object x saying “x
is a red”.

This first objection seems to attack the notion of IC itself or, bet-
ter said, the thesis that ICs are necessarily associated with sortal
concepts. We accepted the standard thesis according to which
only concepts associated with ICs are sortals. Being associated
with an IC is a necessary condition for concepts to be sortals,
but not a sufficient one. The possibility for some concepts to be
associated with ICs without being sortals is not excluded.

Moreover, what happens if we consider ‘red’ as a substantive
standing for the color red, e.g. “Red suits you”? In this case,
‘red’ can be considered as a sortal noun and, therefore, it would
be easy to accommodate the problem via a revision of the for-
mulation of the IC. We can formulate a one-level IC for colors
as follows: given two perceived colors x and y, x is identical to
y iff x is indistinguishable from y.

• A second objection runs as follows: what changes from context
to context or from granular level to granular level is the extension
of the relation. But we are also dealing with epistemic issues: In
a certain context and granular level we make an identity judg-
ment according to a certain relation R. When the context or the
granular level changes we make a sort of revision of our previous
identity judgment. So, if we want to be faithful to our intu-
itions and account for epistemic issues, an intensional treatment
is more appropriate.

We decided to provide an extensional model following Williamson’s
and De Clercq and Horsten’s approaches. However, this second
objection is very important. An intensional treatment of ICs
would be interesting to be provided especially if you consider
not only the ontological function of ICs, but also the epistemic
one. If the goal is to model how we know and use ICs, we should
think of an intensional formal framework. That is a possible
further development of the account.

• The proposed model for accounting for ICs is not suitable for
an infinite domain. The domain of objects must be finite. The
applicability of the model is then reduced to some specific cases,
while it should be generalized.

As has already mentioned, the model for approximating ICs has
been developed to face logical problems arising from the intu-
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itive use of ICs for everyday problems (color comparisons and
the like). De Clercq and Horsten too are aware of the problem
that their approach is applicable only to finite domains. How-
ever, they attempt to accommodate the problem and suggest
reducing infinite graphs to finite graphs. In a nutshell, it is
worthwhile considering infinite graphs because we deal with re-
lations that are potentially infinite, for instance the relations
underlying the Sorites paradox. However, the transitivity failure
of some relations is here at concern. Such a problem is shown by
finite graphs, so there is nothing bad to represent the problem
and the solution only using finite graphs. Moreover, it is rare
that people in ordinary life make inferences with a great (even
infinite) number of steps. Since we are dealing with ICs as they
are commonly used by people and not by logicians, the infinity
issue does not play a relevant role in the treatment of ICs.

• Consider the following problem: If ICs have the function of an-
swering questions (EQ), (OQ), and (SQ), which of those ques-
tions is answered by an intuitive IC that contains a non-transitive
relation R? Moreover, does an IC with an approximated relation
like R± answer the same question or a different one?

It seems plausible to claim that an IC containing a non-transitive
relation R answers (EQ). Consider the IC for phenomenal col-
ors: as we have seen, we do not know precisely whether two
perceived colors are identical. We only rely on our perception,
which is fallible. Therefore, the IC for colors we express is not
logically adequate, but is sufficient for our pragmatic or epistemic
purposes of color comparison.

Which question does an IC containing an approximated relation
such as R± answer? The relation R± is logically adequate; there-
fore, thank to it we can determine whether or not two items are
actually identical in reality. So, it is plausible to think that an
IC containing an approximating relation answers (OQ).

4 Conclusion

ICs are very often matter of philosophical discussion. However, the
formal requirements that they must meet to be acceptable are rarely
taken into account. In this paper we listed some formal requirements
and focused on some ICs that fail to meet one of them: transitivity.
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Instead of giving up ICs failing to meet the transitivity requirement,
we considered the approaches proposed by Williamson and De Clercq
and Horsten, by means of which transitive approximations to non-
transitive ICs are defined.

Our purpose has been to improve De Clercq and Horsten’s formal
framework. Given a non transitive relation R, standing for an identity
condition for some objects, we suggest fixing a context and a granular
level of observation (a granular structure)Granularity. We allow R
varying across contexts and granular levels. If in a context and ac-
cording to some level R fails to be transitive, you can apply De Clercq
and Horsten’s approach and build the closest approximation to R for
that context and that level.

By the framework developed in this paper, we wish to have been
able to make a short step towards a formal account of identity criteria.

References

[1] Devitt, Michael. 1991. Realism and Truth. Oxford: Basil Black-
well, 2nd edition.

[2] Frege, Gottlob. 1884. Die Grundlagen der Arithmetik: eine
logisch-mathematische Untersuchung über den Begriff der Zahl.
Breslau: Köbner.
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