
Optimal cross-border electricity trading
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Abstract

We show there exists a profitable cross-border trading strategy in the Eu-
ropean Power Exchange since, in all locations of the network, electricity prices
are impacted by cross-border trading. Optimal cross-border trading is derived
via the explicit solution of a non-trivial stochastic control problem in which
prices at different locations are co-integrated and trading affects prices in all
locations. Trading profits of the optimal strategy are robust to interconnector
costs and exchange fees.

Keywords: stochastic optimal control, electricity interconnector, co-integration,
cross-border price impact, electricity network.

1 Introduction

The market coupling initiatives in the European Union seek to integrate the Euro-
pean wholesale electricity markets to increase security of supply and to make the
day-ahead and intraday power markets more efficient.1 At the core of these ini-
tiatives, is to extend the European power network by investing in bi-directional
transmission lines (i.e., interconnectors) to link the electricity grids of pairs of coun-
tries.

In this paper, we develop a model of cross-border intraday trading for an agent
who trades electricity in a collection of pairs of countries that are part of a power
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network. That is, the agent purchases electricity in one location and sells it in
another location and the electricity is transmitted via the interconnector that links
the two locations.

We show that transmission of electricity across borders has a direct effect on the
prices of power in the two locations that import and export the electricity, and may
have an indirect effect on the prices of power in other locations of the network. In
both cases, prices are affected because the transactions alter the demand and supply
of power in the locations of the network. We refer to the direct and indirect effects
on the prices of power as permanent price impact.

In our model, the agent maximises expected revenue from cross-border trading
of power during a finite-time horizon. The optimal trading strategy accounts for the
permanent price impact of the trades and also accounts for the temporary effect of
trades on the cash balance, which we label temporary price impact.2 The latter refers
to the difference between the best price the agent observes at the time she trades and
the price she achieves. In general, when the agent buys (sells) power, the average
execution price she pays (receives) per megawatt (MW) is higher (lower) than the
best quote in the market at the time of the transaction. This temporary price impact
is a result of the limited liquidity at the best quotes in the market. We label the
effect as temporary because we assume that liquidity replenishes immediately after
a trade is executed.

We show that the agent’s optimal cross-border trading strategy for each pair
of interconnected locations consists of the sum of two terms. The first term is a
function of the difference between the prices in two interconnected locations and
the costs due to: temporary price impact of the trades, interconnector costs, and
exchange fees. When the prices in the two locations are different, the agent purchases
power in the location with lower price and sells the power in the other location. The
amount of electricity that can be traded at a profit is capped by: temporary price
impact, interconnector costs, and exchange fees. If there were no trading costs and
the temporary price impacts were zero (i.e., infinite liquidity) the strategy would be
to purchase an infinite amount of power in the location with lower price and sell it
in the location with higher price – however, a transaction of a very large amount
of power is not possible because the two markets cannot bear those volumes at the
marginal prices that are quoted.

The other term of the optimal strategy is a function of the permanent price
impact, direct and indirect, of the agent’s trading activity and of interconnector
costs, and exchange fees. Purchasing (selling) electricity in one location exerts an
upward (a downward) pressure on the prices of power in that location, and possibly
in other locations of the network. The magnitude of the price pressure is proportional
to the quantity of power bought and sold.

We employ data of the power transmitted via the interconnectors between France,
Germany, Switzerland, Austria, Belgium, the Netherlands, and Luxembourg to esti-

2Temporary price impact may also be viewed as the direct transaction costs of trading.
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mate the direct and indirect permanent price impacts that electricity flows of these
European countries in the power network have on the prices of electricity in France,
Germany, and Switzerland. Our results show that there are both direct and indirect
permanent price impacts. For example, for contracts that deliver electricity during
the hour that ends at 2pm, power flows from Switzerland to Germany have a direct
permanent impact on electricity prices in both Switzerland and Germany, and also
have an indirect permanent price impact on the price of power in France. Similarly,
power flows from Switzerland to France have a direct permanent impact on electric-
ity prices in both Switzerland and France, and also have an indirect permanent price
impact on the price of power in Germany. Moreover, the permanent price impacts
are not symmetric. That is, all else being equal, the permanent price impact due to
exporting power from country j into country i is, for most of the contracts we study,
different from the price impact of a transaction to export power from country i into
country j.

We analyse the performance of the strategy for a range of interconnector costs
and exchange fees when the agent trades power between France, Switzerland, and
Germany. If interconnection costs and exchange fees are zero, the yearly profit is
approximately ¤130 million per calendar year and the strategy trades an average
of 295 million MWh. As costs increase, trading activity and profits decrease. For
example, when the costs of employing the interconnector and exchange fees are the
same as the temporary price impact of the trades, the yearly average profit decreases
to ¤57 million and the strategy trades an average of 130 million MWh.

Previous work on interconnectors in the energy market includes that by Cartea
and González-Pedraz (2012). The authors employ a static trading strategy (not
dynamically optimal) to value an interconnector as a strip of options written on the
spread between power prices in two countries and derive no-arbitrage lower bounds
for the value of the interconnector. They cap the profits of the strategy to account for
the liquidity constraints in the power market. However, in our paper, the liquidity
constraints are determined by the temporary price impact, interconnector costs, and
exchange fees and, more importantly, the decisions to trade are dynamically optimal
and account for permanent price impacts.

In regard to the broader value and use of interconnectors in power markets,
the work of McInerney and Bunn (2013) examines the Irish and British electricity
markets and find that auction prices for transmission rights are undervalued against
spread option valuations. The work of Newbery et al. (2016) finds that the potential
value of coupling interconnectors to increase the efficiency of trading day-ahead,
intraday, and balancing services across borders in the EU is approximately ¤3.9
billion per year. Moreover, Kiesel and Kusterman (2016) study the effect of market
coupling on the dynamics and on distribution of electricity prices, and on the value
of power plants, for which they propose a multi-market framework.

Our work is closest to that of Cartea et al. (2019), in which the authors derive
an optimal strategy (robust to model misspecification) to trade electricity contracts
in two locations that are joined by an interconnector, and the contracts are not
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for physical delivery of power. Our approach is different in various ways. First,
we employ electricity flows and transactions data in the European power network
to determine the indirect and direct price impact of trades. Second, in our model,
the agent trades in various locations of the power network (instead of only two
locations) and the contracts are for physical delivery of power. Third, we derive
the optimal cross-border trading strategy in closed-form for a power network with
a finite number of interconnected locations.

Moreover, our paper is related to the literature on ‘pairs trading’ of stocks. The
work of Mudchanatongsuk et al. (2008) models the difference of the log-prices of a
pair of co-integrated stocks and employs stochastic control techniques to derive an
optimal trading strategy. Tourin and Yan (2013) employ a similar co-integration
model and find a closed-form solution for a dynamic trading strategy that takes
positions in a risk-free bond and in two stocks – for extensions to this model see
Leung and Li (2015) and Lei and Xu (2015), where the authors formulate an optimal
entry-exit strategy on a pair of co-integrated assets. Finally, Cartea and Jaimungal
(2016a) and Lintilhac and Tourin (2017) generalise the results in Tourin and Yan
(2013) to include an arbitrary number of assets.

The remainder of the paper is organised as follows. Section 2 discusses the data
we employ. Section 3 presents the econometric analysis to estimate the direct and
indirect effects of cross-border flows on electricity prices. It also presents the model
for electricity prices and the methodology to estimate the parameters of the model.
Section 4 derives the optimal trading strategy for cross-border trading and Section
5 illustrates its empirical performance. Section 6 concludes. We collect some proofs
and other tables in the appendix.

2 Data

Electricity is a commodity that cannot be stored or is too expensive to store. Thus,
market participants trade contracts written on electricity, yet to be produced, for
delivery in the future at a pre-specified time, location, and number of MWs, which
are dispatched over a delivery period specified in the contract. For example, in the
day-ahead market, electricity is traded approximately one day in advance and the
delivery period of these contracts is within the following day. The delivery period
for intraday contracts is in quarters of hours, hours, and blocks of hours that do not
exceed 24 hours. There are also intraday markets where delivery of power is in the
same day the contract is traded, and there are other electricity markets where the
delivery period is in weeks, months, quarters, and years.

Power can be traded as over-the-counter bilateral agreements and on exchanges.
In Europe, one of the largest power exchanges is EPEX SPOT, which covers France,
Germany, Switzerland, the United Kingdom, the Netherlands, Belgium, Austria,
and Luxembourg. The EPEX SPOT operates two intraday markets. One market is
the EPEX SPOT Intraday Continuous, which is an intraday market with continuous
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trading – contracts can be traded up to minutes before physical fulfillment. The
other is an intraday market that consists of a uniform price auction system.

In this paper we employ transaction-by-transaction data for all contracts with
delivery period of hours and blocks of hours traded on EPEX Spot Intraday Con-
tinuous for the period 01/01/2016 to 31/12/2017. These contracts are traded in a
limit order book and our data set consists of 7,306,380 transactions – Table 1 shows
a few transactions for a day in March 2017. For each transaction, the table reports
the hour and day of delivery, time when the transaction was executed, the locations
that export and import the power, volume in MW, and the price in Euros per MWh.

Delivery Time Stamp
Location

Buy
Location

Sell
Volume

MW
Price

¤/MWh

05/03/2017 h 9pm 05/03/2017 10:00:00 am FR AT 12 35.70
05/03/2017 h 9pm 05/03/2017 10:02:00 am FR AT 1 35.70
05/03/2017 h 9pm 05/03/2017 10:04:00 am CH DE 1 39.00
05/03/2017 h 9pm 05/03/2017 10:04:00 am CH AT 1 39.00
05/03/2017 h 9pm 05/03/2017 10:06:00 am CH DE 1 38.80
05/03/2017 h 9pm 05/03/2017 10:08:00 am DE DE 1 38.80
05/03/2017 h 9pm 05/03/2017 10:08:00 am DE AT 19 39.00
05/03/2017 h 9pm 05/03/2017 10:14:00 am DE CH 6 35.90
05/03/2017 h 9pm 05/03/2017 10:35:00 am NL AT 20 38.90
05/03/2017 h 9pm 05/03/2017 10:35:00 am NL DE 25 39.00
05/03/2017 h 9 pm 05/03/2017 11:05:00 am FR DE 5 37.10
05/03/2017 h 9 pm 05/03/2017 11:05:00 am DE DE 6 37.00
05/03/2017 h 9 pm 05/03/2017 11:17:00 am NL FR 1 38.00
05/03/2017 h 9 pm 05/03/2017 11:48:00 am DE DE 18 38.90
05/03/2017 h 9 pm 05/03/2017 12:02:00 pm DE AT 11 38.30
05/03/2017 h 9 pm 05/03/2017 12:02:00 pm DE AT 2 38.20
05/03/2017 h 9 pm 05/03/2017 12:02:00 pm DE AT 10 38.10

Table 1: Each row represents a trade in the intraday spot market and provides information
about (from left to right) the hour and day of delivery, time of execution of the transaction,
location where power is sourced and where it is dispatched, volume in MW, and price in Euros
per MWh.

In Table 1 we highlight a transaction that occurred at 11:05:00am on 5 March
2017 for delivery of 5MW on the same day during hour 9pm (i.e., 5MW will be
delivered between 8pm and 9pm). The electricity will be exported from France and
imported into Germany.

At any one time, the amount of electricity that can be imported from and ex-
ported to the interconnected locations is restricted by the available transfer capacity
(ATC). Table 2 shows the ATC for various countries in the European power network.
The ATC is lower than the nominal transfer capacity (NTC) because one needs to
account for the committed import and export volumes under long term contracts
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(CVLT), and the transmission reliability margin (TRM),3 hence

ATC = NTC− CVLT− TRM .

From To ATC (MW)

France Switzerland 3,200
France Germany 3,000
Germany France 3,050
Germany Switzerland 800
Switzerland France 2,200
Switzerland Germany 4,000

Table 2: ATC for power flows in each direction between two countries. Source: Marex
Spectron Ltd.

We focus on cross-border trades among three countries in the EPEX: France,
Germany, and Switzerland. In Table 3, the rows labeled ‘all hours’ report summary
statistics of cross-border volumes of electricity traded in the intraday market for
power delivered during all hours.4 Observe that France is the country with the
largest imports of power and Germany is the largest exporter of power. Throughout
this paper, we hyphenate the names of pairs of countries to denote transmission
flows: the first country in the pair exports the electricity and the other country in
the pair imports the electricity, e.g., FR-CH denotes exports from France that are
imported into Switzerland.

The rows labeled ‘11am’ in Table 3 present similar descriptive statistics for con-
tracts that deliver electricity on hour 11am (i.e., from 10am to 11am), which is an
on-peak hour.5 For this hour, the trading direction with most cross-border activity
is Germany to Switzerland.6 However, the contracts with the highest mean volume
are for electricity exported from France into Switzerland.

Table 4 shows descriptive statistics of the prices of all ‘internal’ intraday hourly
contracts traded in the three countries. Here, internal contracts refers to transactions
where electricity is produced and dispatched within the same country, i.e., we exclude
exports and imports. Internal transactions represent 78% of the total number of
transactions in our data. For example, in Table 1 the transactions in rows 6, 12,
and 14 are for power produced and dispatched within Germany. The country with

3TRM refers to the amount of transmission transfer capacity that is set aside as a buffer to
ensure the reliability of the system operation because conditions may change.

4For example, we employ the volumes of the transactions in our data set where Location Buy =
FR and Location Sell = CH to compute the statistics in the first row in Table 3 – the other
statistics are computed in a similar way.

5To compute the values in the second row in Table 3 we employ the volumes of the transactions
in our data set where Location Buy = FR and Location Sell = CH and Delivery = 11am. We
follow a similar approach to compute the other values in the ‘11am’ rows of the table.

6Total flows are computed as the product of the mean value of MW and the number of trans-
actions. For example, for DE-CH, hour 11am, the value is computed as 11.05MW× 7, 369.
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Mean Std. Dev. Max Min Skewness Kurtosis # transac.

FR-CH
all hours 15.57 10.26 141 0.10 0.90 8.27 70, 381

11am 16.11 10.74 100 0.10 1.2 9.37 3, 249

CH-FR
all hours 15.41 10.44 240 0.10 1.45 18.90 59, 868

11am 15.95 10.03 75 0.10 0.40 3.99 2, 879

FR-DE
all hours 10.27 9.55 252.5 0.10 1.88 17.76 162, 668

11am 10.74 9.81 161.9 0.10 1.79 16.01 5, 119

DE-FR
all hours 11.14 10.01 400 0.10 3.31 71.54 201, 601

11am 11.39 9.55 91.5 0.10 1.03 5.42 6, 741

CH-DE
all hours 9.93 8.93 148.3 0.10 1.22 7.03 128, 857

11am 10.56 8.78 65 0.10 0.75 3.11 5, 574

DE-CH
all hours 10.20 8.93 265 0.10 1.64 17.16 157, 004

11am 11.05 8.84 75 0.10 0.77 3.61 7, 369

Table 3: Imports and exports of electricity. Descriptive statistics of the cross-border volumes
exchanged between France, Germany, and Switzerland for all cross-border intraday contracts
(rows ‘all’) and for contracts with delivery during a peak (11am) hour (rows ‘11am’). The
values of mean, standard deviation, maximum, and minimum are expressed in MW.

the highest average price is Switzerland and it is also a net importer of power
(i.e., imports more power from France and Germany than it exports to those two
countries). Germany is the country with the largest number of internal transactions,
and with the lowest average price. In addition, the results of the Augmented Dickey-
Fuller (ADF) test on prices show that the unit root hypothesis is rejected, thus
favouring a model in which prices mean revert to a seasonal level. The Jarque-Bera
tests suggest that prices are not normally distributed. The same results, both for
the ADF test and the Jarque-Bera, hold for all single peak and off-peak hours.

Table 5 shows descriptive statistics for internal intraday prices, for delivery on
the 11am hour. On average, depending on interconnector costs and exchange fees
it may be profitable to export electricity for the 11am hourly slot from Germany
to both Switzerland and France. However, note that the price differences are not
statistically significant because the standard deviations are too high.

3 Permanent price impact estimation

In this section, we analyse the effect that all cross-border electricity flows in the
power network have on the price of electricity in France, Germany, and Switzerland.
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France Switzerland Germany

Mean 48.13 49.51 32.78
Std. Dev. 36.57 42.75 17.44
Max 1600.00 1300.00 650.00
Min −37.20 −120.00 −320.00
Skewness 15.03 12.76 1.43
Kurtosis 388.35 266.14 32.38
ADF 0.01% 0.01% 0.01%
Jarque-Bera 0.01% 0.01% 0.01%
# of trans. 187, 785 45, 455 5, 487, 663

Table 4: Internal transactions for all hours. Descriptive statistics of the prices for all internal
intraday contracts traded among France, Germany, and Switzerland. The values for mean,
standard deviation, maximum, and minimum are expressed in ¤/MW. We report the p-values
of the Augmented Dickey-Fuller (ADF) test statistic, which indicate that the null hypothesis
of unit root is rejected in favor of the mean reverting alternative in all cases. We also report the
p-values for the Jarque-Bera test, which reject, in all cases, the null hypothesis of normality.

France Switzerland Germany

Mean 50.31 68.73 35.68
Std. Dev. 22.68 127.06 17.11
Max 350.00 1300.00 300.00
Min 0.00 −2.00 −85.00
Skewness 1.97 6.82 2.11
Kurtosis 11.83 50.82 25.91
ADF 0.01% 0.01% 0.01%
Jarque-Bera 0.01% 0.01% 0.01%
# of trans. 9, 128 2, 213 265, 744

Table 5: Internal transactions for hour 11am. The values for mean, standard deviation,
maximum and minimum are expressed in ¤/MW. We report the p-values of the Augmented
Dickey-Fuller (ADF) test statistic, which indicate that the null hypothesis of unit root is
rejected in favor of the mean reverting alternative in all cases. We also report the p-values for
the Jarque-Bera test, which reject in all cases, the null hypothesis of normality.

We run the following robust ordinary least squares (OLS) regression:

∆PPP t = βββSF VSF
t−1 + βββFS VFS

t−1 + βββGS VGS
t−1 + βββSG VSG

t−1 + βββGF VGF
t−1 + βββFG VFG

t−1

+βββOF VOF
t−1 + βββFO VFO

t−1 + βββOS VOS
t−1 + βββSO VSO

t−1

+βββOG VOG
t−1 + βββGO VGO

t−1 + εεεt ,

(3.1)

with a stepwise algorithm, where

PPP t =
(
P F
t P S

t PG
t

)ᵀ
, ∆PPP t = PPP t −PPP t−1 ,

and the transpose operator is denoted by ᵀ. Here, t denotes time, and the entries
in the price vector PPP t are denoted by P i

t , where i = F, G, S represents the location
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France, Germany, Switzerland, respectively. The volumes of the transactions are
denoted by V ij

t , where i, j ∈ {F, G, S, O} and O denotes other countries (Austria,
Belgium, Luxembourg, and the Netherlands). For example, the variable VSF

t−1 rep-
resents the quantity of power bought in Switzerland and sold in France, traded at
time t−1 (exports and imports for the other locations are denoted in a similar way).
Finally, εεεt is a three-dimensional vector of i.i.d. normally distributed error terms.

We consider power delivered at different hours of the day as different products;
thus, we pool data by hour of delivery and run 24 independent regressions, one for
each hour of the day, as specified in (3.1). Furthermore, we only take into account
the last 10 hours of trading for each contract before the start of delivery because the
rate of trading activity typically increases as the delivery time of power approaches.
We assume that the increments of t are in intervals of 5 minutes to ensure that
there are transactions over that time window. If there are multiple transactions for
a single variable over a 5-minute interval, we consider the price observation P i

t of
the first transaction that occurred in that interval for country i, and compute the
quantity V ij

t as the sum of the ij quantities of all transactions occurred during the
same interval in the ij trade direction. Moreover, price observations that deviate
more than three standard deviations from the mean price of the hourly contract are
considered outliers, so we discard them.7

The parameters for direct and indirect permanent price impact are denoted by
βββSF , . . . ,βββGO in the regression. Note that βββSF , . . . ,βββFG represent the permanent
price impact parameters (direct and indirect) for the imports and exports in the three
countries we study. And the parameters βββOF , . . . ,βββGO represent the permanent
price impact (direct and indirect) that the other countries of the power network
have on the prices of France, Germany, and Switzerland.

We employ a stepwise regression to select the relevant regressors in model (3.1).
The algorithm adds or removes regressors based on their statistical significance, and
compares the explanatory power of incrementally larger and smaller models. In the
first iteration of the algorithm we set the parameters βββOF , . . . ,βββGO to zero. In the
subsequent iterations, the algorithm includes and excludes parameters depending
on a tolerance level of the p-value of the parameter – we set this level at 0.10. For
a detailed explanation see MathWorks (2008).

Table 6 shows the coefficient estimates of the stepwise regression for the contract
that delivers on the hour ending at 2pm (i.e., contracts for power delivered between
1pm and 2pm). The coefficient estimates for all other hourly products are reported
in Appendix A.1.1. The results show that there are direct permanent price impacts
in the price dynamics, i.e., buying (selling) electricity in one location exerts an
upward (downward) pressure on the price of electricity in that location.

For example, let us focus on the innovations in prices for the German market.
The values of the parameter estimates β̂SF , · · · , β̂GO in the third column of Table 6
provide the marginal change in the dependent variable ∆PG

t when there is change in

7On average, we discard 1.12%, 1.51%, and 0.48% of the transactions for France, Germany, and
Switzerland, respectively, for each hourly contract.
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one of the explanatory variables on the right-hand side (holding all other explana-
tory variables fixed). The values of the parameters β̂GS, β̂SG, β̂GF , β̂OG, and β̂GO
show that an increase in the power supply (increase in the demand of power) in
Germany, exerts a downward (upward) pressure on the price of power in Germany.
The estimates β̂SF , β̂FS in the first column and β̂SF , β̂FS, β̂OS in the second column,
represent the direct permanent effects that the volumes, exported from or imported
into France and Switzerland, have on the prices of France and Switzerland, respec-
tively. The estimate β̂SF in Table 6 shows that when the agent buys electricity in
Switzerland to export it to France, she exerts an upward pressure on the price of
power in Switzerland and a downward pressure on the price of power in France.

Our results show that for most hours, the direct permanent price impact is
statistically significant for country i: positive when exporting from country i and
negative when importing into country i, see Appendix A.1.1. The few exceptions are
for off-peak contracts for electricity in Switzerland (Tables 14 and 15), which is the
country with the least number of internal transactions (smaller sample compared
with France and Germany).

The results also show that trading activity between two interconnected locations
can have an indirect permanent price impact on the price of electricity in another
location that is part of the interconnected electricity network. For example, the
parameter β̂FS in the third column of Table 6 is negative and statistically significant,
that is, contracts for power exported from France into Switzerland have a downward
pressure on the price of electricity in Germany.

∆PF
t ∆PS

t ∆PG
t

β̂̂β̂βSF −0.0013∗∗∗ 0.0031∗∗∗ 0

β̂̂β̂βFS 0.0024∗∗∗ −0.0007∗∗∗ −0.0012∗∗

β̂̂β̂βGS 0.0007∗∗∗ 0 0.0025∗∗∗

β̂̂β̂βSG 0 0 −0.0045∗∗∗

β̂̂β̂βGF 0 0 0.0011∗

β̂̂β̂βFG 0 0 0

β̂̂β̂βOF 0 −0.0010∗ 0

β̂̂β̂βFO 0 0 0

β̂̂β̂βOS 0 −0.0028∗∗ 0

β̂̂β̂βSO 0.0020∗∗ 0 0

β̂̂β̂βOG 0 −0.0012∗∗ −0.0019∗

β̂̂β̂βGO 0 0 0.0028∗∗∗

Table 6: OLS robust estimates, with stepwise algorithm, for model (3.1) for contracts with
delivery on the hour ending at 2pm. Dependent variables: ∆PF

t , ∆PS
t , ∆PG

t . Notation:
∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.

10



3.1 Co-integrated electricity prices

The statistical features of the dynamics of electricity prices are different from those
in other asset classes. Electricity prices are characterised by large spikes and quick
reversion to a seasonal level. Here, we denote by Θk(t) the seasonal level of power
prices in country k as follows:

Θk(t) = b1,k sin(2 π t) + b2,k cos(2π t) + b3,k sin(4π t) + b4,k cos(4π t) + b5,k t+ b6,k ,
(3.2)

where we model the annual (period 2 π) and the semi-annual (period 4π) seasonality
with different centers, see Lucia and Schwartz (2002), Seifert and Uhrig-Homburg
(2007), and Pilipovic (1998). Table 7 reports the seasonality parameters, estimated
with OLS, while Figure 1 depicts the results of the estimation for intraday contracts
with delivery on the 3pm hour.

Here, the midprice of electricity is P̃ k
t = P k

t + Θk(t), where P k
t is the de-

seasonalised electricity midprice in country k. From now on, for simplicity, we
also refer to P k

t as the price of electricity.

b1 b2 b3 b4 b5 b6

PF −5.79 16.47 −4.70 5.43 9.02 38.96
(−4.67) (13.32) (−3.91) (4.63) (5.15) (22.27)

PS −5.02 22.43 −1.15 7.84 11.91 37.54
(−2.10) (9.42) (−0.50) (3.47) (3.53) (11.15)

PG −3.45 11.65 −0.86 4.79 8.92 29.02
(−2.93) (9.92) (−0.76) (4.30) (5.36) (17.48)

Table 7: OLS parameter estimates of model (3.2) for electricity delivered at 11am, t-stats in
parenthesis.

In the absence of the agent’s activity to import and export electricity, we assume
that the dynamics of (P k

t )t>0 are given by

dP k
t =

(
θk +

n∑
i=1

δki α
i
t

)
dt+

n∑
i=1

σki dW
i
t + J(ψk, ξk) dΠk

t (λk) . (3.3)

The drift in (3.3) consists of two terms: the idiosyncratic component θk, which
only affects the price in country k, and the common component

∑n
i=1 δki α

i
t, which

is a proxy for all the drivers that cause co-movements in the prices of power in all
locations. Here, the parameters δki are country-specific constants, and

αit =
n∑
j=1

aij P
j
t (3.4)

is the co-integration factor for country i, where aij are constants and n represents the
number of countries in the network, see e.g., Cartea and Jaimungal (2016a). Thus,
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Figure 1: Historical (panel a) and de-seasonalised (panel b) electricity price for contracts
with delivery at 3pm for each country in the sample. The three sub-figures in each panel show
the prices for, from top to bottom, France, Switzerland and Germany. The red solid line in
panel a represents the estimated seasonality function f(t). Prices are expressed in ¤/MW.
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the price of electricity in each country depends on the price of electricity in other
countries of the power network – note that in our analysis we only employ the prices
in three countries (France, Germany, and Switzerland), and it is straightforward to
include more countries.

The last two terms on the right-hand side of (3.3) represent the innovations in the
price of electricity. The diffusive term

∑n
i=1 σkiW

i
t represents shocks to prices in all

countries where (W i
t )t>0 i = 1, · · · , n are standard Brownian motions independent

of each other and σki are the elements of the Cholesky decomposition of the instan-
taneous variance-covariance matrix of electricity prices. The term J(ψk, ξk) dΠk

t (λk)
represents price spikes specific to each country, which arrive as a Poisson process Πk

t

with intensity λk and jump sizes are i.i.d. normally distributed with mean ψk and
standard deviation ξk. The Poisson jumps are all independent of each other and
independent of the Brownian motions.8

In matrix form, the price dynamics for all countries are

dPPP t = (θθθ −ΦΦΦPPP t) dt+ σσσ dWt + J(ψψψ,ξξξ) dΠΠΠt(λλλ) , (3.5)

where ΦΦΦ = −∆∆∆ A and

∆∆∆ =

δ11 · · · δ1n
...

. . .
...

δn1 · · · δnn

 and A =

a11 · · · a1n
...

. . .
...

an1 · · · ann

 .

We employ Maximum Likelihood Estimation (MLE) to estimate the model pa-
rameters in (3.5) and use closing prices from our transaction data – with a slight
abuse of notation, we assume that t = 1 day.

The discretised version of (3.5) is

PPP t+1 = θθθ + (III −ΦΦΦ)PPP t + σσσ εt + (ψψψ + ξξξ εJ t) YYY λ , (3.6)

where III is the identity matrix, (εt)t and (εJ t)t are i.i.d. sequences of standard normal
random variables, also independent of each other, and

YYY λ =


Y λ1

1 0 · · · 0

0 Y λ2
2

. . .
...

...
. . . . . . 0

0 · · · 0 Y λn
n

 ,

8Note that we assume that jumps are independent across countries. This is a simplifying as-
sumption because jumps may be correlated across the countries in the power network. For example,
jumps due to a sudden increase in demand, caused by a cold snap, would affect neighbouring coun-
tries. In principle, we could include this in our model by assuming that the intensities in the jump
processes have a common component and an idiosyncratic component. However, for simplicity,
and to keep the model parsimonious, we assume that the Poisson processes are independent.
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with Y λk
k ∼ Bern(λk) independent of Y λi

i , ∀ k 6= i, k = 1, · · · , n. The multivariate
conditional density function is

f (PPP t+1 | PPP t) =
∑
e∈E

[
n∏
i=1

λei
i

(
1− λ1−ei

i

)]
(2 π)−n/2 det (ΩΩΩ + ξξξe )−1/2

× exp
{
− 1

2
[PPP t+1 −ψψψe + θθθ + (III −ΦΦΦ)PPP t]

ᵀ (3.7)

× (ΩΩΩ + ξξξe)
−1 [PPP t+1 −ψψψe + θθθ + (III −ΦΦΦ)PPP t]

}
,

where ΩΩΩ = σσσσσσᵀ, and det ( · ) represents the determinant of a matrix. Let E =
{0, 1}n, then, ∀ e ∈ E, ξξξe is the n × n diagonal matrix with elements (ξe)ii = ξ2

ii ei
and (ξe)ij = 0 , ∀ i 6= j. Similarly, ψψψe is a vector with n elements (ψe)i = ψi ei.

Table 8 reports the estimates that result from a numerical maximisation of the
log-likelihood function for n = 3. Figure 2 shows simulated in-sample and out-of-
sample paths of the non-deseasonalised price process (P̃ k

t )t>0, for both a peak (3pm)
and an off-peak (3am) hour.

Figure 2: Historical and simulated non-deseasonalised electricity price paths for contracts
with peak delivery at 11am, for France (top panel), Switzerland (middle panel) and Germany
(bottom panel). The blue solid line represents the historical price path, and the red line
represents a single out-of-sample price simulation. The grey area represents the 1st and 99th

percentiles of all in-sample simulations, and the black solid line is their mean. Prices are in
¤/MW.

Table 8 also reports the estimates of the elements of the matrix ΦΦΦ, which show
that the evolution of the price of electricity in France depends on past values of prices
in Switzerland (0.14) more than it does on those of Germany (0.06). And the price
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France Switzerland Germany

ΦΦΦ

France
0.77 −0.06 −0.12

(15.97) (−3.45) (−5.12)

Switzerland
−0.06 0.63 −0.03

(−3.45) (18.55) (−2.05)

Germany
−0.12 −0.03 0.91

(−5.12) (−2.05) (17.92)

σσσ

France
11.79 0 0
(6.14) (-) (-)

Switzerland
6.70 8.00 0

(14.73) (4.54) (-)

Germany
6.94 1.77 9.80

(12.12) (0.98) (6.08)

θθθ
−1.51 −1.10 −0.47

(−1.37) (−1.41) (−0.67)

ψψψ
0.06 −4.24 −9.44

(0.34) (−22.84) (−50.83)

diag(ξ)
70.17 48.08 72.31

(162.81) (111.56) (167.77)

λλλ
0.03 0.04 0.02

(0.43) (0.45) (0.34)

Table 8: Parameter estimates of (3.5) obtained with MLE using daily closing prices of
intraday hourly contracts with delivery at 11am. The t-stats are reported in parentheses.

in Switzerland depends more on past values of prices in France than on the prices
in Germany. Moreover, the estimated coefficients of the elements of σσσ show that
the prices in France and Switzerland also have a high degree of correlation (0.91),
greater than that between France and Germany (0.57) and that between Germany
and Switzerland (0.59).

Finally, the model of price dynamics we employ is not standard in the energy
finance literature. Here we are interested in co-movements in prices of power in
a network of interconnected locations, and more importantly, we include the price
impact of cross-border trading.

There are many models that are designed to capture the stylised facts of price
dynamics. However, we remark that our choice is key in the setup of the agent’s
stochastic control problem because we obtain the optimal cross-border strategy in
closed-form – other models may lead to trading strategies that must be solved numer-
ically. The literature on modelling power prices is vast, see for example Roncoroni
(2002), Cartea and Figueroa (2005), Benth et al. (2007), Weron (2007), Borak and
Weron (2008), Hambly et al. (2009), Kiesel et al. (2009), Cartea et al. (2009), and
Kiesel et al. (2019) – see also Benth et al. (2012) for a critical comparison of the
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first three models.

4 Optimal trading strategy

In this section we propose a model of optimal cross-border trading of electricity.
In Subsection 4.1 we model the impact that electricity flows have on the price of
electricity in n interconnected locations. In Subsection 4.2 we present the agent’s
stochastic optimal control problem and we derive the optimal cross-border trading
strategy.

4.1 Cross-border trading: price impacts

The agent’s speed of trading is denoted by the vector

ννν = (νννt){0≤t≤T} = ((νijt )i,j=1,..., n, i 6=j){0≤t≤T}

of dimension n × (n − 1), where each element in ννν represents cross-border activity
between two locations. The agent’s net position in electricity is always zero because
the electricity bought in one location is immediately sold in another location.

Ideally, the agent would impose an upper and a lower bound on the speed of
trading, so that νij ∈ [Lij, Uij] with Lij = 0 and Uij = ATCij (recall that ATC
denotes the maximum available transfer capacity of the interconnector, see Table 2).
The restriction L = 0, i.e., that the speed cannot be negative, would be important
to model the impact of imports and of exports when the permanent price impact
parameters are different in each trading direction. However, we are not able to find
an explicit solution to the problem if trading speeds are restricted to lie between
finite lower and upper bounds. Therefore, for simplicity, we assume that −Lij =
Uij = ∞ for all pairs i 6= j, which allows us to solve the investor’s cross-border
problem explicitly, i.e., obtain the optimal cross-border trading speed and the value
function in closed-form. In this unrestricted case, we have that νijt = −νjit for all
pairs of locations i 6= j and for all t. Thus, a parsimonious representation of ννν is
ννν = (νij)i,j=1,..., n, i<j ∈ Rn (n−1)/2, or in longhand notation,(

ν12, ν13, . . . , ν1n, ν23, . . . , ν2n, . . . , ν(n−1)n
)ᵀ
. (4.1)

When the speed of trading νij is positive, the agent buys the quantity νij∆t MW
of electricity in country i, and sells the same quantity in country j. Similarly, when
νij is negative, the agent buys the quantity νij∆t MW of electricity in country j
and simultaneously sells the same amount of electricity in country i.

4.1.1 Permanent price impact

The results in Section 3 show that the agent’s imports and exports of electricity
can exert an upward or downward pressure on power prices in the n locations of
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the network. When the vector of trading speeds has n × (n − 1)/2 elements, the
price pressure is the product of the cross-border permanent price impacts parame-
ters βββ1, . . . ,βββn (n−1) and the quantity of electricity the agent trades. Therefore, in
our model we include a permanent price impact function g(νννt) in the drift of the
electricity price dynamics (3.5) and write

dPννν
t = (θθθ −ΦΦΦ Pννν

t + g(νννt)) dt+ σσσ dWt + J(ψψψ,ξξξ) dΠΠΠt(λλλ) . (4.2)

We assume that g(νννt) is a linear function of the speeds of trading, so

g(νννt) = H νH νH νt , (4.3)

where HHH is a n× n (n− 1)/2 matrix of cross-border permanent price impacts.

4.1.2 Temporary price impact

Due to limited liquidity (i.e., limited production capacity) at the best prices available
in the market, orders sent by agents may be executed at worse prices than those
quoted in the exchange by other market participants. For example, when a trader
purchases power in one location, as the volume of the transaction increases, power
becomes more expensive because the marginal cost to produce electricity increases.
Therefore, everything else being equal, the average price received by the order tends
to worsen as the size of the order increases. We assume that this execution price
impact is temporary, i.e., the liquidity in the market is quickly replenished and we
include the temporary price impact in the model as follows. Let the 1× n vector ωωω
denote the temporary price impact parameters with entries ωk ≥ 0, for each location
k ∈ {1, · · · , n}. Then, the agent’s execution price is given by

P̂ k
t = P̃ k

t ± ωk ν
kj
t (4.4)

when buying/selling (+/−) in location k and selling/buying in location j, j 6= k.
Also, note that a transaction between two locations may have an instantaneous

effect on other contracts traded in the power network because production capac-
ity offered in one location was also simultaneously offered in other locations of the
network. For example, when a trader purchases power in France to export it to
Switzerland, the contracts for export/import between France and Germany are af-
fected because French production capacity was concurrently offered in Germany and
Switzerland (and other locations interconnected to the French power network). In
this case, the agent’s execution price is given by9

P̂ k
t = P̃ k

t ±
∑
j

ωk ν
kj
t . (4.5)

Recall that P̃ k
t denotes the midprice at time t before deseasonalisation, i.e.,

P̃ k
t = Pt + Θk(t), with Θ(t) as in (3.2), which is the price the agent observes before

trading.

9Note that (4.4) is a particular case of (4.4).
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4.2 Optimal cross-border trading

The cash process of the agent, denoted by

X(t,PPP t, νννt) = νννᵀBBBᵀ Pννν + νννᵀBBBᵀ ΘΘΘ(t)− νννᵀ ΥΥΥννν , (4.6)

where

BBB =


−1 . . . . . . −1
1 −1 . . . −1

. . . 1
. . . . . . . . . −1

1 1 1

 , ΘΘΘ(t) = (Θi(t))i=1,..., n .

The first two terms on the right-hand side of the process (4.6) represent, in the
absence of trading frictions, the cash from trading in the interconnected locations.

The third term represents trading costs. Here, ΥΥΥ = Υ1Υ1Υ1 +Υ2Υ2Υ2 and the matrices Υ1Υ1Υ1

and Υ2Υ2Υ2 are of dimension n (n−1)/2×n (n−1)/2, where Υ1Υ1Υ1 represents the temporary
price impact parameters, and Υ2Υ2Υ2 is a diagonal matrix that represents the cost of
employing the interconnector and exchange fees, which we assume to be quadratic
in the trading speed.

4.2.1 The value of cross-border trading

The agent’s performance criterion and value function are

Z(t,P;ννν) = E t,P

[∫ T

t

X(u,PPP u, νννu) du

]
and

V (t,P) = sup
ννν∈A

Z(t,P;ννν) , (4.7)

respectively. The set of admissible strategies is

A =

{
ννν process with values in Rn (n−1)/2 :

∫ T

0

νννᵀt νννt dt <∞ , a.s.

}
.

Here, E t,P[ · ] denotes the expectation computed when the process {PPP ννν;t,P
u , u ∈ [t, T ]}

is the solution of (4.2) with initial condition PPP t = P and control ννν.
The dynamic programming principle suggests that (4.7) is the unique solution

to the Hamilton-Jacobi-Bellman (HJB) equation

∂tV (t,P) + sup
ννν

[LνννV (t,P) +X(t,P, ννν)] = 0 . (4.8)
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The infinitesimal generator Lννν acts on the value function as follows:

LνννV (t,P) = (θθθ −ΦΦΦ P + νννᵀHHHᵀ) VP (t,P) + 1
2

Tr [ΩΩΩHHH ]

+
n∑
k=1

λk

∫ +∞

−∞
(∆k(y)V )(t,P)

1√
2 π ξk

e
−(y−ψk)2

2 ξ2
k dy , (4.9)

where VP (t,P) is the vector with elements ∂V/∂Pi , Tr[ · ] denotes the trace operator
and HHH is the Hessian of V , i.e., the matrix with elements HHHi,j = ∂2V/∂Pi ∂Pj . The
operator ∆k(y)V (t,P), due to the jump part of the price process, acts on the value
function as follows (see e.g., Cartea et al. (2015) and Øksendal and Sulem (2007)):

∆k(y)V (t,P) = V (t,P + y 1k)− V (t,P) , ∀ k ∈ {1, · · · , n} ,

where the indicator function 1k is defined as

11 = (1, 0, · · · , 0)ᵀ , 12 = (0, 1, · · · , 0)ᵀ , · · · , 1n = (0, 0, · · · , 1)ᵀ .

Proposition 4.1. Let the value function (4.7) satisfy the HJB (4.8). Then the
optimal speed of trading in feedback form is given by

ννν∗t = 1
2

ΥΥΥ−1 (HHHᵀ VP (t,P) +BBBᵀPPP t + ΘΘΘ(t)) , (4.10)

so that the HJB (4.8) becomes the partial integro-differential equation (PIDE)

0 = ∂tV (t,P) + L000V (t,P)

+1
4

[HHHᵀ VP (t,P) +BBBᵀPPP t + ΘΘΘ(t)]ᵀ ΥΥΥ−1 [HHHᵀ VP (t,P) +BBBᵀPPP t + ΘΘΘ(t)](4.11)

with L000 given by (4.9) with ννν = 000, and recall that ΥΥΥ = Υ1Υ1Υ1 + Υ2Υ2Υ2.

Proof. For a proof see Appendix A.2.1.

To explain the intuition of the optimal speed of trading we re-write (4.10) as
follows:

ννν∗t = 1
2

ΥΥΥ−1 (BBBᵀPPP t + ΘΘΘ(t)) + 1
2

ΥΥΥ−1HHHᵀ VP (t,PPP t) .

The first term on the right-hand side of the equation above represents the optimal
speed of trading for an agent who only looks at the spread in prices to decide how to
trade (recall that PPP is the deseasonalised price) and the costs due to temporary price
impact, interconnector costs, and exchange fees. This strategy is myopic because
it does not incorporate the permanent effect that the agent’s trading activity has
on the prices of electricity in the various locations. We refer to this strategy as the
‘näıve’ trading strategy. Note that the näıve strategy does take into account the
temporary price impact of the trades of the agent.

The second term on the right-hand side of the equation is the adjustment to the
näıve strategy that accounts for the direct and indirect permanent price impacts
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of the agent’s trades on the price of electricity in the various locations, as well as
interconnector costs and exchange fees.

Below we employ the näıve strategy as benchmark when we discuss the perfor-
mance of the optimal cross-border trading strategy and denote it by

νννn
t = 1

2
ΥΥΥ−1 (BBBᵀPPP t + ΘΘΘ(t)) . (4.12)

Next, we propose an ansatz to solve the PIDE (4.11).

Proposition 4.2 (Ansatz). The PIDE (4.11) admits a solution of the form

V (t,P) = A(t) +DDDᵀ(t) P + PᵀEEE(t) P , (4.13)

where A : [0, T ] → R, DDD : [0, T ] → Rn and EEE : [0, T ] → Rn×n are time-dependent
functions that solve the system composed by the Riccati equation

0 = EEE ′(t) +EEEᵀ(t)
(

1
2
HHHΥΥΥ−1BBBᵀ −ΦΦΦ

)
+
(

1
2
HHHΥΥΥ−1BBBᵀ −ΦΦΦ

)ᵀ
EEE(t)

+EEEᵀ(t)HHHΥΥΥ−1HHHᵀEEE(t) + 1
4
BBBΥΥΥ−1BBBᵀ ; (4.14)

the linear equation

0 = DDD′(t) +
(

1
2
HHHΥΥΥ−1BBBᵀ −ΦΦΦ

)ᵀ
DDD(t) +EEEᵀ(t)HHHΥΥΥ−1HHHᵀDDD(t)

+ 2EEE(t)(θθθ + λλλ ◦ψψψ ) +EEEᵀ(t)HHHΥΥΥ−1 ΘΘΘ(t) + 1
2
BBBΥΥΥ−1 ΘΘΘ(t) ; (4.15)

and the integral equation

0 = A′(t) + 1
4

(DDDᵀ(t)HHH + ΘΘΘᵀ(t) ) ΥΥΥ−1 (HHHᵀDDD(t) + ΘΘΘ(t) ) + Tr [ΩΩΩEEE(t) ]

+DDDᵀ(t) (θθθ + λλλ ◦ψψψ ) +ψψψᵀ diag(EEE(t)) (λλλ ◦ψψψ ) + ξξξᵀ diag(EEE(t)) (λλλ ◦ ξξξ ) , (4.16)

with terminal condition

A(T ) = DDD(T ) = EEE(T ) = 0 .

Here,

diag(EEE(t)) =

E11(t) 0 0

0
. . . 0

0 0 Enn(t)

 ,

where the entries E11(t), . . . , Enn(t) are the diagonal elements of the matrix EEE(t),
and the operator ◦ denotes the Hadamard product between two vectors, i.e., λλλ ◦ψψψ =
(λ1 ψ1, . . . , λn ψn).

Thus, the candidate optimal control in (4.10) is given by

ννν∗t = ΥΥΥ−1
(

1
2
HHHᵀDDD(t) +HHHᵀEEE(t)PPP t + 1

2
BBBᵀPPP t + 1

2
ΘΘΘ(t)

)
. (4.17)

Proof. For a proof see Appendix A.2.2.
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4.3 Implementation of the closed-form solution

We saw in Proposition 4.2 that the HJB equation admits an explicit solution up
to the system of three equations (A.7), (A.8), and (A.9). The first step is to solve
the Riccati equation (A.7), which is also the most difficult. To this end, we use the
representation EEE(t) = YYY (t)XXX(t)−1 from Gombani and Runggaldier (2013), where XXX
and YYY satisfy the linear differential equation

∂

∂t

(
XXX
YYY

)
= MMM

(
XXX
YYY

)
, (4.18)

with final condition (
XXX(T )
YYY (T )

)
=

(
III
0

)
, (4.19)

where

MMM =

(
1
2
HHHΥΥΥ−1BBBᵀ −ΦΦΦ HHHΥΥΥ−1HHHᵀ

−1
4
BBBΥΥΥ−1BBBᵀ −1

2
(HHHΥΥΥ−1BBBᵀ −ΦΦΦ)

ᵀ

)
.

It is straightforward to show that the solution to 4.18 is(
XXX(t)
YYY (t)

)
= exp [−(T − t)MMM ]

(
XXX(T )
YYY (T )

)
. (4.20)

The numerical implementation of 4.20 is unstable for high values of the terminal
date T . The spectrum ofMMM is symmetric with respect to the imaginary axis and has
no purely imaginary eigenvalues, see Bini et al. (2012). Particularly, the eigenvalues
of MMM come in pairs with same imaginary parts and real parts with same absolute
values and of opposite sign. Hence, as time evolves, the solution in (4.20) explodes
due to the eigenvalues with positive real part, which causes numerical instabilities
when one computes XXX−1.

Here, we use the solution representation of Vaughan (1969) to circumvent nu-
merical instabilities. Specifically, we write

MMM = WWW CCCWWW−1 , (4.21)

where

CCC =

(
ΛΛΛ 0
0 −ΛΛΛ

)
, (4.22)

and ΛΛΛ is a diagonal matrix where the real part of its n eigenvalues are positive (and
thus cause numerical instabilities), and

WWW =

(
WWW 11 WWW 12

WWW 21 WWW 22

)
(4.23)

is the matrix of eigenvectors, where each WWW ij is a n× n matrix. We define

RRR = − [WWW 22 −EEE(T )WWW 12]−1 [WWW 21 −EEE(T )WWW 11] = −WWW−1
22 WWW 21 , (4.24)
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and
GGG(t) = e−ΛΛΛ (T−t)RRRe−ΛΛΛ (T−t) . (4.25)

Then,

EEE(t) = NNN(t)QQQ(t)−1, where

{
NNN(t) = WWW 21 +WWW 22GGG(t),
QQQ(t) = WWW 11 +WWW 12GGG(t).

(4.26)

This formulation provides a numerically stable solution of EEE(t) because the only
time-varying terms are the negative exponentials in (4.25).

In principle, we could expressDDD(t) with an integral formula, in the spirit of Gom-
bani and Runggaldier (2013). However, we cannot solve this integral representation
explicitly, so we must solve it numerically. The computational cost of the numerical
solution of the integral representation is equivalent to employing a numerical scheme
to solve Equation (A.8), for example

DDD(ti) = DDD(ti+1) + ∆t
[ (

1
2
HHHΥΥΥ−1BBBᵀ −ΦΦΦ

)ᵀ
DDD(ti+1) +EEEᵀ(ti+1)HHHΥΥΥ−1HHHᵀDDD(ti+1)

+ 2EEE(ti+1)(θθθ + λλλ ◦ψψψ ) +EEEᵀ(ti+1)HHHΥΥΥ−1 ΘΘΘ(ti+1) + 1
2
BBBΥΥΥ−1 ΘΘΘ(ti+1)

]
.

(4.27)

Finally,

A(t) =A(T ) +

∫ T

t

1
4

(DDDᵀ(s)HHH + ΘΘΘᵀ(s)) ΥΥΥ−1 (HHHᵀDDD(s) + ΘΘΘ(s)) + Tr [ΩΩΩEEE(s)]

+DDDᵀ(s) (θθθ + λλλ ◦ψψψ) +ψψψᵀ diag(EEE(s)) (λλλ ◦ψψψ) + ξξξᵀ diag(EEE(s)) (λλλ ◦ ξξξ) ds ,
(4.28)

where one can evaluate the integral in (4.28) with a quadrature method or with a
recursive scheme as in (4.27) above.

4.4 Verification

In this section we verify that the solution we obtained above is indeed the value
function (4.7) of the agent and that the optimal speed of trading is an admissible
control. First, we need a technical lemma.

Lemma 4.1. For all ννν ∈ A, for all t ∈ [0, T ] and for all initial conditions P ∈ Rn,
the process PPP ννν;t,P is such that

Et,P
[

sup
t≤u≤T

∥∥PPP ννν;t,P
u

∥∥2
]
<∞ .

Proof. For u ∈ [t, T ], the SDE for the price process (4.2) has the unique solution

PPP ννν;t,P
u = e−(u−t)ΦΦΦPPP t +

∫ u

t

e−(v−t)ΦΦΦ (θθθ +HHH νννv) dv

+

∫ u

t

e−(v−t)ΦΦΦ (σσσ dWt + J(ψψψ,ξξξ) dΠΠΠ(λλλ))

= PPP000;t,P
u +

∫ u

t

e−(v−t) ΦHHH νννv dv .
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Thus,

Et,P
[

sup
t≤u≤T

‖PPP νννu‖2

]
≤ 2Et,P

[
sup
t≤u≤T

‖PPP000
u‖2

]
(4.29)

+2Et,P

[
sup
t≤u≤T

∥∥∥∥∫ u

t

e−(v−t)ΦΦΦHHH νννv dv

∥∥∥∥2
]
. (4.30)

The term on the right-hand side of (4.29) is finite because the process P000;t,P

is solution of (4.2), with the control set to zero, that satisfies the assumptions of
Protter (2003, Theorem V.67). The term in (4.30) obeys the bounds:

Et,P

[
sup
t≤u≤T

∥∥∥∥∫ u

t

e−(v−t)ΦΦΦHHH νννv dv

∥∥∥∥2
]
≤ Et,P

[∫ T

t

‖e−(v−t)ΦΦΦHHH‖2‖νννv‖2 dv

]
≤ sup

t≤v≤T
‖e−(v−t)ΦΦΦHHH‖2 Et,P

[∫ T

t

‖νννv‖2 dv

]
,

which is finite because [t, T ] 3 v → e−(v−t)ΦΦΦHHH is continuous and bounded, and ννν is
admissible.

Theorem 4.1 (Verification Theorem). Assume that for a certain t ∈ [0, T ] the
matrix-valued function t → EEE(t), defined in (4.20), is the unique C0 solution of
(A.7) on [t, T ]. Then, the function V in (4.13), which is a solution of the HJB
(4.8), coincides with the value function (4.7). Moreover, the process ννν∗ defined in
(4.10) is the optimal control for the problem in (4.7).

Proof. The proof is based on the general result in Fleming and Soner (1993, Theorem
III.8.1). We know that V is a classical (i.e., C1,2) solution of the HJB (4.8). Thus,
it follows that V (t,P) ≥ Z(t,PPP ;ννν) ∀ ννν ∈ A, provided that the Dynkyn formula

Et,PPP [V (T,PPP T )] = V (t,P) + Et,PPP
[∫ T

t

LνννV (u,PPP u) du

]
(4.31)

holds. To prove this, first note that the integral on the right-hand side of (4.31) is
well defined. We have that, for a suitable constant c,

|LνννV (u,P)| ≤ c
(
1 + ‖P‖2 + ‖P‖ ‖ννν‖

)
,

because V is bilinear in P. This implies that

Et,P
[∫ T

t

|LνννV (u,PPP u)| du
]
≤ Et,P

[∫ T

t

c
(
1 + ‖PPP u‖2 + ‖PPP u‖ ‖νννu‖

)
du

]
≤ c (T − t) + cEt,P

[∫ T

t

‖Pννν
u‖2 du

]
+cEt,P

[∫ T

t

‖Pννν
u‖2 du

]
Et,P

[∫ T

t

‖νννu‖2 du

]
,
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where the third term is due to the Cauchy-Schwarz inequality. Thus, the sum above
is finite because

Et,P
[∫ T

t

‖PPP νννu‖2 du

]
≤ (T − t)Et,P

[
sup
u∈[t,T ]

‖PPP νννu‖2

]
<∞ , (4.32)

by Lemma 4.1, and because ννν ∈ A.
To prove Dynkyn’s formula, we first apply Itō’s formula to V (t,PPP νννt ) and write

V (T,PPP νννT ) = V (t,P) + I1
T + I2

T +

∫ T

t

LνννV (u,PPP νννu) du , (4.33)

where the processes (I1
u)u∈[t,T ] and (I2

u)u∈[t,T ] are given by

I1
u =

∫ u

t

(DDD(v) + 2EEE(v)PPP ννν
v )ᵀσσσ dWWW v ,

I2
u =

∫ u

t

(DDD(v) + 2EEE(v)PPP ννν
v−)ᵀ J(ψψψ,ξξξ) dΠΠΠ(λλλ) .

By Itō’s isometry, the process I1 is a martingale. In fact,

Et,P
[∫ T

t

‖ (DDD(v) + 2EEE(v)PPP ννν
v )ᵀσσσ‖2 dv

]
≤ ‖σσσ‖2 Et,P

[∫ T

t

(
‖DDD(v)‖2 + 2 ‖EEE(v)PPP ννν

v ‖2
)

dv

]
≤

≤ ‖σσσ‖2 (T − t) sup
v∈[t,T ]

‖DDD(v)‖2 + 2 ‖σσσ‖2 sup
v∈[t,T ]

‖EEE(v)‖2 Et,P
[∫ T

t

‖PPP ννν
v ‖2 dv

]
,

where the sup are finite because DDD and EEE are continuous on [t, T ], and the latter
term is finite by (4.32); thus, I1 is a martingale. For the process I2, we check for all
u ∈ [t, T ] the finiteness of

Et,P

[∥∥∥∥∫ u

t

J(ψψψ,ξξξ) dΠΠΠ(λλλ)

∥∥∥∥2
]

=
n∑
k=1

Et,P

 Πku∑
`=1

Jk`

2
=

n∑
k=1

Et,P

Et,P
 Πku∑

`=1

Jk`

2 ∣∣∣∣∣∣Πk
u

 =
n∑
k=1

Et,P

 Πku∑
`,m=1

Et,P
[
Jk` J

k
m

]
=

n∑
k=1

Et,P
[
Πk
u (ψ2

k + ξ2
k)
]

=
n∑
k=1

λk (u− t) (ψ2
k + ξ2

k) <∞ ,

see Protter (2003, Theorem V.66).
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Next, note that v →
(
DDD(v) + 2EEE(v)PPP ννν

v−
)ᵀ

is predictable because it is left-
continuous, thus (see Protter (2003, Theorem V.66)) there exists a constant m > 0
such that

Et,P

[
sup
u∈[t,T ]

|I2
u|2
]
≤ m

∫ T

t

Et,P
[
‖DDD(u) + 2EEE(u)PPP ννν

u−‖2
]

du ,

where the right-hand side is finite, as shown above for I1. Hence, the process I2 is
a martingale and take the expectation of (4.33) to obtain Dynkyn’s formula (4.31).
Therefore, V (t,P) ≥ Z(t,P;ννν) ∀ ννν ∈ A .

Next we show that the control we found is indeed the optimal control. We have
that ννν∗(t,P) defined in (4.10) is a maximiser of the HJB equation (4.8). Thus, we
only need to check that the control process (ννν∗(t,PPP t))t ∈ A. The control process is
progressively measurable by construction, so we only need to check that it is square
integrable, that is

Et,P
[∫ T

t

‖ννν∗(u,PPP u)‖2 du

]
= 1

4
‖ΥΥΥ‖−2 Et,P

[∫ T

t

‖HHHᵀ (DDD(u) + 2EEE(u)PPP u) +BBBᵀPPP u + ΘΘΘᵀ(u)‖2 du

]
≤ cEt,P

[∫ T

t

(1 + ‖PPP u‖2) du

]
,

because DDD, EEE and f are continuous functions of time u ∈ [t, T ], and c is a constant.

Again, by (4.32), we have that Et,P
[∫ T

t
‖ννν∗(u,PPP u)‖2 du

]
<∞ and (ννν∗(t,PPP t))t ∈ A,

as required.

5 Performance of trading strategy

In this section we illustrate the performance of the cross-border trading strategy for
one year of trading (T = 365 days). We employ the closed-form solution derived
in Proposition 4.2. Thus, the trading speeds are not capped by the capacity of the
interconnectors nor are they restricted to be positive.

In Section 3 we showed that the permanent price impacts are not symmetric
between two locations (e.g., the price impact of exporting power from Germany
into France is different from the price impact of exporting power from France to
Germany). Also, recall that we employed positive speeds of trading in each direction
to obtain the parameters of price impact, while the closed-form solution of the control
model does not restrict speeds to be non-negative. If the trading speed between two
locations can take on positive and negative values, then the permanent price impact
must be the same in both directions. Thus, we re-run the model of prices of Section 3
with the additional restriction that permanent price impacts of exports and imports

25



of electricity are the same in both directions for a pair of countries, see Appendix
A.1.2.

Here, we assume that the agent trades in three interconnected locations: France,
Germany, and Switzerland, and the execution prices received by the agent are as in
(4.4). The speed of trading is the vector

νννt =
(
νSFt νGSt νGFt

)ᵀ
and we employ the discretised version of the price process (4.2) to simulate 1,000
price paths with a time step of 1/50 day – the results discussed here do not change
for smaller time steps. To streamline the discussion, we focus on the performance of
the strategy for the 11am contract, after which we discuss the results of the strategy
for the remaining hours of the day.

For each price path, the agent employs the results in Proposition 4.2 to compute
the quantity of electricity to trade in the various locations and we keep track of
the accumulated cash Xν∗

t for the optimal strategy and the accumulated cash Xνn

t

for the näıve strategy that trades at speed (4.12). As benchmark of performance,
we compare the profit obtained by the optimal trading strategy with the profits
obtained from the näıve strategy.

For the price simulations and cross-border price impact we employ the param-
eters in Tables 7, 8, 12, 14, 16, and assume that the country-specific temporary
price impact parameters are ωk = 0.01 ¤/MW2 are for all countries, see Glas et al.
(2019) for a study of the temporary price impact of orders in the EPEX exchange.
Therefore the value of the diagonal entries in Υ1Υ1Υ1 is 0.02 – each transaction incurs
temporary price impact in the buy location and in the sell location. In the first
instance, we also assume that there are no exchange fess and we assume that inter-
connector cots are zero, thus, these results provide an upper bound for the profits
of the strategy. Below, in Subsection 5.1 we discuss the performance of the strategy
for a range of interconnector costs and exchange fees.

The left panel of Figure 3 shows the mean of the trading speeds when the agent
employs the optimal strategy (4.17) for the 11am hour. Recall that we do not impose
a constraint on the trading speed, which should be capped by the ATC. For these
simulations, the percentage of days where the speed of trading exceeds the ATC for
hour 11am is 0.57% (Switzerland to France), 0.13% (France to Switzerland), 48.74%
(Germany to Switzerland), 0.08% (Switzerland to Germany), 0.59% (Germany to
France), and 0.23% (France to Germany). The right-hand panel of the figure shows
the difference between the average speeds of the optimal and the näıve strategies.
Recall that the näıve speed does not account for the permanent impact that the
imports and exports of electricity have on prices.

Figure 5 shows the cash process for the 11am hourly contract. As expected,
the optimal strategy outperforms the näıve strategy. The dash-blue (dash-red) line
depicts the cash process of the optimal (näıve) strategy. The height of the blue area
shows the difference between the cumulative cash obtained from the optimal and
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the näıve strategies. The bottom figures show the cumulative cash obtained from
each of the three bilateral transmission lines.

For the 24 hours, the outperformance of the optimal strategy over the näıve
strategy ranges between around ¤0 (hour 6am) and ¤6,409,725 (hour 10am) at
the end of one year of trading. Compared with the näıve strategy, the optimal
strategy performs best in contracts with delivery on the hours that end at 10am,
3am, and 8am. In particular, the average gross revenues of the optimal strategy are
approximately 60%, 38%, and 13% (respectively) higher than those obtained with
the näıve strategy. On the other hand, the outperformance of the optimal strategy is
lowest for the hours with deliveries that end at 6am, 10pm, and 12am – the average
gross revenues are 0%, 0.06%, and 0.10% (respectively) higher than those obtained
with the näıve strategy. On average, for the 24 hours, the optimal strategy earns
about 6.05% more than the näıve strategy.

The average gross revenue obtained with the optimal cross-border strategy when
trading the 24 hourly contracts is ¤130,356,091 and the agent trades on average
294,576,615 MW. Thus, the strategy’s average earnings are 0.44¤/MWh – the
näıve strategy’s average earnings are 0.50¤/MWh (i.e., ¤118,903,210 for a total
of 239,071,492 MW). Similarly, Table 9 reports the ¤/MWh earnings for each hour.
Observe that the earnings per hour are higher for peak contracts.

Finally, Table 10 reports the mean cross-border volume per transaction, for each
trading direction. We see that Germany is the country with the highest exports,
followed by France, and Switzerland is the country with the highest imports.

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

0.43 0.37 0.25 0.38 0.44 0.44 0.48 0.38

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

0.60 0.51 0.32 0.42 0.48 0.48 0.48 0.55

17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

0.46 0.57 0.86 0.51 0.41 0.35 0.34 0.34

Table 9: Gross optimal strategy earnings, expressed in ¤/MWh, for each hourly contract.

CH-FR FR-CH DE-CH CH-DE DE-FR FR-DE

40.72 109.21 410.42 59.33 293.44 77.92

Table 10: Mean volume per transaction (in MW) traded with the optimal trading strategy.

5.1 Interconnector costs and exchange fees

In this subsection we show the performance of the optimal strategy when the in-
vestor pays for the use of the interconnector and pays exchange fees. As above,
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Figure 3: Optimal and näıve speeds, ν∗ and νn respectively, (left panel) and difference
between them (right panel), for 11am. Trading horizon T = 365 days.

Figure 5: Cumulative cash for 11am contracts. The blue-dash line in the upper panel
represents the cumulative cash flows from optimal trading strategy, while the red-dash line,
upper panel, is from the näıve trading strategy. The solid yellow, red and blue lines depict
the revenue from trading in contracts between Germany-Switzerland, Germany-France and
France-Switzerland, respectively, with the optimal (left bottom panel) and the näıve strategies
(right bottom panel).

we run 1,000 simulations and compute the terminal average profit for the strategy.
Recall that the costs of using the interconnector and exchange fees are given by
the diagonal entries in the matrix Υ2Υ2Υ2 (see Subsection 4.2). Here we assume that
Υ2Υ2Υ2 = (K−1)Υ1Υ1Υ1 where K is a scalar, and recall that Υ1Υ1Υ1 is the 3×3 diagonal matrix
of temporary impact parameters with all entries equal to 0.02. Table 11 reports
the total profit, total MWh traded, profit per MWh, cost per MWh, and average
percentage of ATC breaches at T = 365 for K ∈ {1, 2, 3, 4, 5, 10, 15, 20}. Observe
that as interconnector costs and as exchange fees increase, the strategy finds fewer
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K 1 2 3 4 5 10 15 20

Profit (106 ¤) 130 57 37 28 22 11 7 5
Volume (106 MWh) 295 120 77 57 45 22 15 11
Profit/MWh 0.443 0.472 0.482 0.485 0.487 0.490 0.491 0.492
Cost/MWh 0.287 0.168 0.153 0.148 0.146 0.142 0.141 0.141

ATC breaches in %
FR-CH 0.267 0.014 0.001 0 0 0 0 0
CH-FR 0.055 0.001 0 0 0 0 0 0
DE-CH 23.749 2.810 0.684 0.260 0.102 0.001 0 0
CH-DE 0.101 0.001 0 0 0 0 0 0
DE-FR 0.441 0.016 0 0 0 0 0 0
FR-DE 0.297 0.012 0 0 0 0 0 0

Table 11: Performace of strategy for one calendar year. Total profit (in million ¤), total
volume traded (in million MWh), profit in ¤/MWh, cost in ¤/MWh, and average percentage
of ATC breaches. The scenario K = 1 corresponds to the case discussed at the beginning of
Section 5. The ATC breaches is computed as the average (over all 24 contracts) of the number
of occurrences when the optimal quantity to trade exceeds the ATC at least once in a day
over the number of simulations times 365.

opportunities to trade and profits decrease. Note that the costs per MWh decrease
as the cost factor K increases because costs (temporary impact, interconnector costs,
and exchange fees) are quadratic in the speed of trading.

6 Conclusions

We developed a cross-border trading strategy for an agent who trades power among
countries that are linked by a power network. Flows of electricity in the European
power network were employed to show the effect of imports and exports of power on
the prices of the interconnected locations. We find that the price effect of flows of
power are direct and indirect. The direct effect results from the import and export
of electricity between the two interconnected locations – flows exert and upward
pressure on the prices of countries that export (import) power. The indirect price
impact results from the knock-on effect that changes in the supply and demand
in two countries has on the supply and demand of power of other countries in the
network.

The optimal trading strategy and the value function of the agent were obtained in
closed-form. We employed transactions data to estimate the model parameters and
used simulations to illustrate the performance of the model. The agent imports and
exports electricity in France, Germany, and Switzerland. In the extreme case where
interconnector costs and exchange fees are zero, we find that the yearly average
profit of the strategy is ¤130 million and the strategy trades an average of 295
million MWh. Clearly, the profits decline when interconnector costs and exchange
fees are introduced. For example, when interconnector costs and exchange fees are
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the same as the costs that stem from the temporary price impact of the trades,
profits decrease to ¤57 million and the strategy trades an average of 130 million
MWh.

There are number of interesting topics for future research, we propose two. First,
perform an exhaustive study of the temporary direct and indirect price impact of
cross border trading. This requires detailed data of all the limit order books of
countries that are part of the power network. Second, explore how extending the
network and employing optimal cross-border trading strategies (which make the
most of the network) affect the price dynamics in all locations of the network, for
example, the price level and the volatility of prices, see e.g., Kiesel and Kusterman
(2016).
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A Appendix

A.1 Econometric analysis results

A.1.1 Estimates of permanent price impacts, see (3.1)

01:00 02:00 03:00 04:00 05:00 06:00

(1) 0 −0.0021∗∗∗ −0.0015∗∗∗ 0 −0.0009∗∗∗ −0.0003∗

(2) 0 0 0 0 0.0006∗∗ 0
(3) 0.0005∗∗ 0.0017∗∗ 0.0005∗ 0.0004∗∗ 0.0011∗∗∗ 0
(4) 0 −0.0012∗∗ 0.0006∗∗ 0 0.0011∗∗∗ 0
(5) 0 0 0 0 0 0
(6) 0 −0.0009∗∗ 0 0.0014∗∗∗ 0 0

07:00 08:00 09:00 10:00 11:00 12:00

(1) −0.0007∗∗ −0.0017∗∗∗ 0 0 −0.0021∗∗∗ 0
(2) 0 0 0 0.0013∗∗ 0.0013∗∗ 0
(3) 0 0.0020∗∗∗ 0 0 0 −0.0014∗∗∗

(4) 0.0020∗∗∗ −0.0015∗∗∗ 0.0038∗∗∗ 0.0013∗∗∗ 0 0.0018∗∗∗

(5) 0 0 0.0024∗∗∗ 0 0 0
(6) −0.0010∗∗ −0.0020∗∗∗ −0.0048∗∗∗ −0.0040∗∗∗ −0.0028∗∗∗ −0.0008∗∗∗

13:00 14:00 15:00 16:00 17:00 18:00

(1) 0 0 −0.0006∗ −0.0007∗∗∗ −0.0008∗∗∗ −0.0004∗

(2) −0.0004∗ 0.0007∗∗∗ 0 0 0 0
(3) 0.0010∗∗ 0 0 0 0 0.0010∗∗∗

(4) 0.0026∗∗∗ 0.0024∗∗∗ 0.0016∗∗∗ 0.0023∗∗∗ 0.0027∗∗∗ 0.0021∗∗∗

(5) −0.0014∗∗∗ 0 0 0 0 −0.0007∗∗

(6) −0.0013∗∗∗ −0.0013∗∗∗ −0.0020∗∗∗ −0.0008∗∗∗ −0.0022∗∗∗ −0.0013∗∗∗

19:00 20:00 21:00 22:00 23:00 24:00

(1) 0 0 −0.0012∗∗∗ 0 0 −0.0007∗∗∗

(2) 0 0 0.0007∗∗ 0.0004∗∗ 0 0
(3) 0.0026∗∗∗ 0.0013∗∗ 0 0.0008∗∗∗ 0.0007∗∗∗ 0.0005∗∗

(4) 0.0083∗∗∗ 0.0034∗∗∗ 0.0027∗∗∗ 0.0010∗∗∗ 0.0007∗∗∗ 0.0005∗∗∗

(5) 0 0 0.0006∗∗ −0.0005∗∗ 0 0
(6) −0.0054∗∗∗ −0.0029∗∗∗ −0.0014∗∗∗ −0.0005∗∗ −0.0011∗∗∗ −0.0019∗∗∗

Table 12: Stepwise OLS robust estimates. Dependent variable: ∆PF
t . Explanatory variables:

VGF
t−1 (1), VGS

t−1 (2), VFG
t−1 (3), VFS

t−1 (4), VSG
t−1 (5), VSF

t−1 (6) . Other notation: ∗∗∗ = p < 0.01,
∗∗ = p < 0.05, ∗ = p < 0.1.
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Table 13: Stepwise OLS robust estimates. Dependent variable: ∆PF
t . Explanatory variables:

VGO
t−1 (7), VOG

t−1 (8), VFO
t−1 (9), VOF

t−1 (10), VSO
t−1 (11), VOS

t−1 (12).

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

(7) 0 0 0.0004∗∗ 0.0002∗ 0 0 0 0.0006∗∗

(8) 0.0005∗ 0 −0.0008∗∗∗ 0 0 0 0 0
(9) 0.0006∗∗ 0 0 0.0007∗∗∗ 0 0 0 0
(10) 0 −0.0013∗∗ 0 0 0 −0.0007∗ 0 0.0018∗∗∗

(11) −0.0014∗∗ −0.0018∗ −0.0019∗∗ −0.0012∗ 0 0 0 0.0031∗

(12) 0 0 −0.0059∗∗∗ 0 0 0 −0.0036∗ 0

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

(7) 0 −0.0017∗∗∗ 0.0007∗ 0 0 0 0 0
(8) 0 0 0 0 0 0 −0.0022∗∗∗ 0
(9) −0.0027∗∗ 0 0 0 0 0 0.0013∗∗ 0
(10) −0.0083∗∗∗ 0.0022∗∗ 0.0017∗ −0.0009∗∗ 0 0 0 −0.0012∗∗

(11) 0 0 0 0.0018∗ 0 0.0020∗ 0 0
(12) 0.0037∗∗∗ −0.0034∗ 0 0 0 0 0 0

17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

(7) 0.0007∗∗∗ 0 0 0 0 0 0 0
(8) 0 0 0 0 0 0.0004∗ 0 −0.0004∗

(9) 0.0014∗∗∗ 0.0019∗∗∗ 0 0 0 0.0007∗∗ 0.0009∗∗∗ 0
(10) 0 −0.0018∗∗∗ −0.0040∗∗∗ 0 −0.0016∗∗∗ −0.0008∗∗∗ 0 0
(11) 0 0 0 0 0 0 0 0
(12) 0 0.0027∗∗ 0 0 0 0 0 −0.0007∗

Notation: ∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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Table 14: Stepwise OLS robust estimates. Dependent variable: ∆PS
t . Explanatory variables:

VGF
t−1 (1), VGS

t−1 (2), VFG
t−1 (3), VFS

t−1 (4), VSG
t−1 (5), VSF

t−1 (6).

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

(1) 0 0 0 0 0 0 −0.0008∗∗∗ 0
(2) 0.0010∗∗∗ 0 −0.0017∗∗∗ 0 0 0 −0.0007∗∗ −0.0012∗∗∗

(3) 0 0 0 0 0 0 0 0.0007∗∗

(4) −0.0006∗∗∗ 0 0 0 −0.0005∗∗ 0 −0.0032∗∗∗ −0.0006∗∗∗

(5) 0 −0.0014∗∗∗ 0 0 0 0 0 0.0026∗∗∗

(6) −0.0010∗∗∗ 0.0004∗∗∗ 0 0.0016∗∗∗ 0.0009∗∗∗ −0.0004∗∗ 0.0013∗∗∗ 0

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

(1) 0 0 0 0 −0.0009∗∗∗ 0 0 0
(2) 0.0009∗∗∗ 0 −0.0008∗ 0 0 0 0.0004∗∗ −0.0005∗∗

(3) 0 0 0.0020∗∗ 0 0 0 0 −0.0009∗∗∗

(4) −0.0024∗∗∗ 0 −0.0019∗∗∗ 0 −0.0009∗∗∗ −0.0007∗∗∗ −0.0007∗∗∗ −0.0004∗∗

(5) −0.0015∗∗∗ −0.0022∗∗ 0 0 0.0011∗ 0 −0.0009∗∗∗ 0.0010∗∗

(6) 0.0019∗∗∗ 0.0013∗ 0.0024∗∗∗ 0.0012∗∗∗ 0.0012∗∗∗ 0.0031∗∗∗ 0.0008∗∗∗ 0.0005∗

17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

(1) 0 −0.0006∗∗ −0.0008∗∗∗ 0 0 0 0 0
(2) −0.0004∗ −0.0008∗∗∗ 0 0 0 −0.0003∗∗ 0 −0.0004∗∗∗

(3) 0.0011∗∗∗ 0 0 0 0 0 −0.0008∗∗∗ 0
(4) −0.0014∗∗∗ −0.0008∗∗ −0.0016∗∗∗ −0.0008∗∗∗ −0.0004∗∗ −0.0004∗∗∗ 0.0004∗∗∗ −0.0006∗∗∗

(5) 0 −0.0007∗ 0.0020∗∗∗ 0 0.0006∗∗∗ 0 −0.0004∗∗ 0
(6) −0.0015∗∗∗ 0.0027∗∗∗ 0.0008∗∗ 0.0006∗∗∗ 0 0 0.0008∗∗∗ 0

Notation: ∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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Table 15: Stepwise OLS robust estimates. Dependent variable: ∆PS
t . Explanatory variables:

VGO
t−1 (7), VOG

t−1 (8), VFO
t−1 (9), VOF

t−1 (10), VSO
t−1 (11), VOS

t−1 (12).

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

(7) 0 0 −0.0001∗ 0 0 0 0 0
(8) −0.0005∗∗ −0.0003∗∗ 0 0 0 0 0 −0.0007∗∗

(9) 0.0014∗∗∗ 0 0 0 0.0003∗ 0 0 0
(10) −0.0006∗ 0 0 0 0 0 0 0.0007∗

(11) −0.0014∗∗∗ 0 0.0016∗∗∗ 0.0006∗ 0 0.0011∗∗ 0 0
(12) 0 0 0 0.0024∗∗∗ 0 0 0 0

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

(7) 0.0003∗∗ 0.0011∗∗ 0 0.0007∗∗ 0.0007∗∗∗ 0 0 0
(8) 0 0.0020∗∗ 0 −0.0015∗∗ −0.0012∗∗ −0.0012∗∗ 0 0
(9) 0 −0.0028∗ 0.0016∗∗ 0 −0.0011∗ 0 −0.0007∗∗∗ 0.0011∗∗∗

(10) 0 0 0 0 0 −0.0010∗ 0 0
(11) 0 0.0070∗∗ 0.0069∗∗∗ 0 −0.0018∗ 0 −0.0011∗ −0.0032∗∗∗

(12) 0.0010∗∗∗ −0.0145∗∗∗ 0 0.0078∗∗∗ 0 −0.0028∗∗ 0 0.0029∗∗∗

17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

(7) 0.0005∗∗∗ 0 0 0 −0.0002∗ 0 0.0002∗∗ 0
(8) 0 0 0 −0.0005∗∗ 0 −0.0003∗∗∗ −0.0004∗∗∗ 0
(9) 0 0.0010∗∗ 0 0 0 0 0 0.0002∗

(10) 0 0 −0.0023∗∗∗ 0 0 0 0 0
(11) 0.0018∗ 0 0 0 0 0 0.0014∗∗∗ 0
(12) 0 0 0 −0.0018∗∗ 0 0.0012∗∗∗ 0 0

Notation: ∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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Table 16: Stepwise OLS robust estimates. Dependent variable: ∆PG
t . Explanatory variables:

VGF
t−1 (1), VGS

t−1 (2), VFG
t−1 (3), VFS

t−1 (4), VSG
t−1 (5), VSF

t−1 (6).

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

(1) 0 −0.0028∗∗∗ 0 0 −0.0014∗∗ 0 0 0.0037∗∗∗

(2) −0.0036∗ 0.0049∗∗∗ −0.0074∗∗ 0 −0.0035∗∗ 0 0 0
(3) 0 −0.0051∗∗∗ 0 0 0 0 0 0
(4) −0.0024∗∗ 0 0.0033∗∗ 0 0 0 −0.0024∗ 0
(5) −0.0041∗∗∗ 0 0 0 0 0 0 −0.0032∗

(6) 0 0 0 0 −0.0031∗ 0 0 0

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

(1) 0 0 0 0 0 0.0011∗ 0.0021∗∗∗ 0
(2) 0.0068∗∗∗ 0.0021∗∗ 0 0.0035∗∗∗ 0.0022∗∗∗ 0.0025∗∗∗ 0 0.0011∗

(3) 0 0 0 0 −0.0050∗∗∗ 0 0 −0.0026∗∗∗

(4) 0 −0.0015∗∗ 0 0 0 −0.0012∗∗ 0 0
(5) 0 −0.0028∗∗ −0.0025∗∗ −0.0033∗∗∗ −0.0044∗∗∗ −0.0045∗∗∗ −0.0049∗∗∗ 0
(6) 0 0 0 0 −0.0014∗∗ 0 0 0

17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

(1) 0 0 0 0 −0.0012∗ 0 0 0
(2) 0 0.0019∗∗∗ 0.0043∗∗∗ 0.0031∗∗∗ 0.0023∗∗∗ 0.0038∗∗∗ 0.0032∗∗∗ 0
(3) −0.0016∗ 0 −0.0016∗ 0 −0.0019∗∗ 0 0 0
(4) 0 0.0016∗ 0 0 0 0 0 0
(5) 0 −0.0039∗∗∗ −0.0027∗∗∗ −0.0027∗∗∗ −0.0032∗∗∗ −0.0023∗∗ −0.0036∗∗∗ −0.0063∗∗∗

(6) 0 0 −0.0017∗∗ −0.0018∗∗ 0 0 −0.0025∗∗∗ 0.0026∗∗

Notation: ∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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Table 17: Stepwise OLS robust estimates. Dependent variable: ∆PG
t . Explanatory variables:

VGO
t−1 (7), VOG

t−1 (8), VFO
t−1 (9), VOF

t−1 (10), VSO
t−1 (11), VOS

t−1 (12).

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

(7) 0 0 0.0028∗∗∗ 0.0024∗∗∗ 0.0020∗∗ 0 0.0033∗∗∗ 0
(8) −0.0031∗∗∗ 0 −0.0046∗∗∗ −0.0027∗∗ −0.0028∗∗ −0.0019∗ 0 0
(9) 0 0 −0.0031∗∗ 0 0.0041∗∗∗ 0 0 0
(10) 0 0 0 −0.0030∗ 0.0025∗ 0 0.0096∗∗∗ 0
(11) 0 −0.0050∗∗ −0.0105∗∗ 0 0 0 0 0
(12) 0 0 0 0 0 0 −0.0144∗∗∗ 0.0124∗∗∗

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

(7) 0.0016∗∗ 0 0.0015∗∗∗ 0.0027∗∗∗ 0.0032∗∗∗ 0.0028∗∗∗ 0.0031∗∗∗ 0.0034∗∗∗

(8) 0 0 −0.0047∗∗∗ −0.0016∗ −0.0020∗ −0.0019∗ −0.0041∗∗∗ −0.0021∗

(9) 0 0 0 0 0 0 0 0
(10) 0 0.0029∗ 0 0 0 0 0 0
(11) 0 0 0 0 0 0 −0.0056∗∗ 0
(12) 0 −0.0091∗∗∗ 0.0079∗∗ 0 0 0 0 0

17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

(7) 0.0020∗∗∗ 0.0029∗∗∗ 0.0044∗∗∗ 0.0037∗∗∗ 0.0022∗∗∗ 0.0020∗∗∗ 0.0017∗∗∗ 0
(8) 0 −0.0022∗ 0 0 −0.0021∗∗ 0 0 −0.0058∗∗∗

(9) 0 0 0 0 0 0 0 0
(10) 0 0.0020∗ 0 0 0 0 0 0.0043∗∗∗

(11) 0 0 0 0 0 0 0 0
(12) 0 0 0 0.0082∗∗∗ 0.0038∗ 0 0 0

Notation: ∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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A.1.2 Symmetric permanent price impacts

We assume that the permanent price impact is symmetric and run the regression

∆PPP t = βββ1

(
VSF
t−1 − VFS

t−1

)
+ βββ2

(
VGS
t−1 − VSG

t−1

)
+ βββ3

(
VGF
t−1 − VFG

t−1

)
+βββ4

(
VFO
t−1 − VOF

t−1

)
+ βββ5

(
VSO
t−1 − VOS

t−1

)
+ βββ6

(
VGO
t−1 − VOG

t−1

)
+ εεεt ,

(A.1)

and report the parameter estimates below.
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Table 18: Stepwise OLS robust estimates. Dependent variable: ∆PF
t . Explanatory variables: VSF

t−1 −
VFS

t−1 (1), VGS
t−1 −VSG

t−1 (2), VGF
t−1 −VFG

t−1 (3), VGO
t−1 −VOG

t−1 (4), VFO
t−1 −VOF

t−1 (5), VSO
t−1 −VOS

t−1 (6).

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

(1) 0 0 −0.0005∗∗ 0 −0.0008∗∗∗ 0 −0.0014∗∗∗ 0
(2) 0 −0.0016∗ 0.0020∗∗∗ −0.0011∗∗ 0 0 0 0
(3) 0.0003∗ 0.0020∗∗∗ 0.0011∗∗∗ 0 0.0010∗∗∗ 0 0 0.0018∗∗∗

(4) 0 0 0.0006∗∗∗ 0 0 0 0 0
(5) 0 0 0 0.0006∗∗∗ −0.0003∗ 0 0 −0.0012∗∗

(6) 0 0 0 0 0 0 0 0

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

(1) −0.0042∗∗∗ −0.0025∗∗∗ −0.0011∗∗∗ −0.0013∗∗∗ −0.0019∗∗∗ −0.0021∗∗∗ −0.0017∗∗∗ −0.0017∗∗∗

(2) −0.0023∗∗ 0 0 0 0 0 0 0
(3) 0 0 0.0011∗∗ 0 0.0004∗ 0 0.0005∗∗ 0.0005∗∗∗

(4) 0 −0.0014∗∗∗ 0 0 0 0 0.0005∗∗ 0
(5) 0.0049∗∗∗ 0 0 0.0007∗ 0 0 0.0008∗ 0
(6) 0 0 0 0 0 0 0 0

17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

(1) −0.0025∗∗∗ −0.0017∗∗∗ −0.0067∗∗∗ −0.0031∗∗∗ −0.0020∗∗∗ −0.0008∗∗∗ −0.0009∗∗∗ −0.0011∗∗∗

(2) 0 0 0 0 0 0 0 0.0008∗∗

(3) 0.0007∗∗∗ 0.0005∗∗∗ 0 0.0010∗∗ 0.0009∗∗∗ 0.0003∗∗∗ 0.0003∗∗ 0.0006∗∗∗

(4) 0.0006∗∗∗ 0 0.0009∗ 0 0 0 0 0
(5) 0.0010∗∗∗ 0.0018∗∗∗ 0.0019∗∗ 0 0 0.0007∗∗∗ 0.0007∗∗∗ 0.0003∗∗

(6) 0 0 0 0 0 0 0 0

Notation: ∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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Table 19: Stepwise OLS robust estimates. Dependent variable: ∆PS
t . Explanatory variables: VSF

t−1 −
VFS

t−1 (1), VGS
t−1 −VSG

t−1 (2), VGF
t−1 −VFG

t−1 (3), VGO
t−1 −VOG

t−1 (4), VFO
t−1 −VOF

t−1 (5), VSO
t−1 −VOS

t−1 (6).

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

(1) 0 0 0 0.0004∗∗∗ 0.0007∗∗∗ 0 0.0021∗∗∗ 0.0004∗∗

(2) −0.0012∗∗∗ 0 0.0012∗∗∗ 0 0 0 0.0020∗∗∗ 0.0011∗

(3) 0 0 0 0 0 0 0.0005∗∗∗ 0
(4) 0 0 0 0 0 0 0 0
(5) 0.0012∗∗∗ 0 0 0 0 0 0 −0.0006∗∗

(6) 0 0 0 0 0 0 0 0

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

(1) 0.0021∗∗∗ 0.0012∗∗ 0.0022∗∗∗ 0.0006∗ 0.0011∗∗∗ 0.0015∗∗∗ 0.0007∗∗∗ 0.0004∗∗∗

(2) −0.0008∗∗ 0.0102∗∗∗ 0.0035∗∗ −0.0029∗∗ −0.0017∗∗ 0.0016∗ 0 −0.0031∗∗∗

(3) 0 0 0 0 0.0006∗ 0 0 0
(4) 0.0002∗ 0 0 0.0010∗∗∗ 0.0007∗∗∗ 0.0005∗∗ 0 0
(5) 0 0 0 0 0 0 −0.0004∗ 0.0006∗∗

(6) 0 0 0 0 0 0 0 0

17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

(1) 0 0.0018∗∗∗ 0.0012∗∗∗ 0.0007∗∗∗ 0 0.0003∗∗∗ 0.0002∗∗ 0.0004∗∗∗

(2) 0 0 0.0015∗ 0.0015∗∗∗ 0 −0.0004∗ 0.0007∗∗ 0
(3) 0.0004∗∗∗ 0.0005∗∗∗ 0.0008∗∗∗ 0 0 0 −0.0004∗∗∗ 0
(4) 0.0005∗∗∗ 0 0 0.0002∗∗ 0 0 0.0003∗∗∗ 0
(5) 0 0 0.0015∗∗∗ 0 0 0 0 0
(6) 0 0 0 0 0 0 0 0

Notation: ∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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Table 20: Stepwise OLS robust estimates. Dependent variable: ∆PG
t . Explanatory variables: VSF

t−1 −
VFS

t−1 (1), VGS
t−1 −VSG

t−1 (2), VGF
t−1 −VFG

t−1 (3), VGO
t−1 −VOG

t−1 (4), VFO
t−1 −VOF

t−1 (5), VSO
t−1 −VOS

t−1 (6).

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

(1) 0.0016∗ 0 0 0 −0.0025∗ 0 0 −0.0015∗

(2) 0 −0.0042∗∗ −0.0080∗∗ −0.0053∗ 0 0 0.0067∗ −0.0063∗

(3) 0 0.0014∗ 0 0 0 0 −0.0015∗∗ −0.0033∗∗∗

(4) 0 0 0.0033∗∗∗ 0.0026∗∗∗ 0.0023∗∗∗ 0.0012∗ 0.0028∗∗∗ 0
(5) 0 0 0 0 0 0 −0.0036∗∗ 0
(6) 0 0 0 0 0 0 0 0

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

(1) 0 0 0 0 0 0 0 0
(2) 0 0 −0.0061∗∗ 0 0 0 −0.0040∗∗ 0
(3) 0 0 0 0 0 −0.0010∗ −0.0017∗∗∗ −0.0010∗∗

(4) 0 0 0.0021∗∗∗ 0.0026∗∗∗ 0.0031∗∗∗ 0.0029∗∗∗ 0.0033∗∗∗ 0.0032∗∗∗

(5) 0 0 0 0 0 0 0 0
(6) 0 0 0 0 0 0 0 0

17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

(1) −0.0009∗ −0.0015∗∗ −0.0013∗∗ 0 0 0 0 0
(2) 0 0 0 −0.0045∗∗ −0.0034∗∗ 0 0 0
(3) −0.0009∗ 0 −0.0011∗∗ 0 0 0 0 0
(4) 0.0017∗∗∗ 0.0029∗∗∗ 0.0038∗∗∗ 0.0031∗∗∗ 0.0023∗∗∗ 0.0013∗∗∗ 0.0017∗∗∗ 0.0012∗∗

(5) 0 0 0 0 0 0 0 −0.0016∗

(6) 0 0 0 0 0 0 0 0

Notation: ∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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A.2 Proofs

A.2.1 Proof of Prop. 4.1

The sup in (4.8) attains a maximum because it is quadratic and negative definite
in ννν as the values of the temporary price impact parameters are positive. It is
straightforward to obtain the first order condition for the vector of controls ννν.

Substitute the feedback control ννν∗ into (4.8) and write

0 = ∂tV (t,P) + LV (t,P)

+
[

1
2

ΥΥΥ−1 (HHHᵀ VP (t,P) +BBBᵀ P) + ΘΘΘ(t) )
]ᵀ

(HHHᵀ VP (t,P) +BBBᵀ P) + ΘΘΘ(t) )

−
[

1
2

ΥΥΥ−1 (HHHᵀ VP (t,P) +BBBᵀ P) + ΘΘΘ(t) )
]ᵀ

ΥΥΥ
[

1
2

ΥΥΥ−1 (HHHᵀ VP (t,P) +BBBᵀ P) + ΘΘΘ(t) )
]
,

with

LV (t,P) = (θθθ −ΦΦΦ P)ᵀ VP (t,P) + 1
2

Tr [ΩΩΩHHH ]

+
n∑
k=1

λk

∫ +∞

−∞
(∆k(y)V )(t,P)

1√
2π ξk

e
−(y−ψk)2

2 ξ2
k dy .

Collect terms in
[

1
2

ΥΥΥ−1 (HHHᵀ VP (t,P) +BBBᵀ P )
]ᵀ

and obtain

0 = ∂tV (t,P) + LV (t,P)

+1
4

[HHHᵀ VP (t,P) +BBBᵀ P + ΘΘΘ(t) ]ᵀ ΥΥΥ−1 [HHHᵀ VP (t,P) +BBBᵀ P + ΘΘΘ(t) ] .

A.2.2 Proof of Prop. 4.2

Differentiate (4.13) and because we assume that the matrix EEE(t) is symmetric, we
have

Vt = A′(t) +DDD′
ᵀ
(t) P +PPP ᵀEEE ′(t) P, VP = 2EEE(t) P, VPP = 2EEE(t) . (A.2)

Insert the expressions for VP and VPP into the PIDE (4.11) and write

A′(t) +DDD′
ᵀ
(t) P + PᵀEEE ′(t) P + L000 V (t,P)

+ 1
4
{HHHᵀ [DDD(t) + 2EEE(t) P ] +BBBᵀ P + ΘΘΘ(t) }ᵀ ΥΥΥ−1

× {HHHᵀ (DDD(t) + 2EEE(t) P ) +BBBᵀ P + ΘΘΘ(t) } = 0 , (A.3)

where L000 is the infinitesimal generator obtained under the null control, given by

L000 V (t,P) = (θθθᵀ −Pᵀ ΦΦΦᵀ) (DDD + 2EEE(t)P) + Tr [ΩΩΩEEE(t) ]

+
n∑
k=1

λk

∫ +∞

−∞
(∆k(y)V )(t,P)

1√
2π ξk

e
−(y−ψk )2

2 ξ2
k dy .

For the jump part we have

V (t,P + y 1i) = A(t) +DDDᵀ(t)P +Di(t) y + PᵀEEE(t)Py 1ᵀ
i EEE(t)P + PᵀEEE(t) y 1i + y2 1ᵀ

i EEE(t) 1i ,
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and

(∆i(y)V )(t,P) = Di(t) y +
n∑
j=1

PjEij(t) y +
n∑
j=1

PjEji(t) y + Eii(t) y
2

= Di(t) y + 2
n∑
j=1

PjEij(t) y + Eii(t) y
2 , (A.4)

where the last step follows because we assume EEE(t) is symmetric. Thus,

n∑
i=1

λi

∫ +∞

−∞
(∆i(y)V )(t,P)

1√
2π ξi

e
−(y−ψi)

2

2ξ2
i dy

=
n∑
i=1

λi

[(
Di(t) + 2

n∑
j=1

Pj Eij(t)

)
ψi + Eii(t)

(
ξ2
i + ψ2

i

)]
, (A.5)

where the last step follows from elementary properties of Gaussian distributions.
Finally, we obtain∫ +∞

−∞
J ∆V (t,P) dy = [DDDᵀ(t) + 2 PᵀEEE(t) ] (λλλ ◦ψψψ ) +ψψψᵀ diag(EEE(t)) (λλλ ◦ψψψ )

+ ξξξᵀ diag(EEE(t)) (λλλ ◦ ξξξ ) . (A.6)

Now, collect quadratic and linear terms of P and constant terms in (A.3) and
write

0 = EEE ′(t) + 1
2
EEEᵀ(t)HHHΥΥΥ−1BBBᵀ + 1

2
BBBΥΥΥ−1HHHᵀEEE(t)− 2ΦΦΦᵀEEE(t) +EEEᵀ(t)HHHΥΥΥ−1HHHᵀEEE(t)

+ 1
4
BBBΥΥΥ−1BBBᵀ

= EEE ′(t) + 1
2
EEEᵀ(t)HHHΥΥΥ−1BBBᵀ +

(
1
2
HHHΥΥΥ−1BBBᵀ

)ᵀ
EEE(t)−ΦΦΦᵀEEE(t)−ΦΦΦᵀEEE(t)

+EEEᵀ(t)HHHΥΥΥ−1HHHᵀEEE(t) + 1
4
BBBΥΥΥ−1BBBᵀ

= EEE ′(t) +EEEᵀ(t)
(

1
2
HHHΥΥΥ−1BBBᵀ −ΦΦΦ

)
+
(

1
2
HHHΥΥΥ−1BBBᵀ −ΦΦΦ

)ᵀ
EEE(t)

+EEEᵀ(t)HHHΥΥΥ−1HHHᵀEEE(t) + 1
4
BBBΥΥΥ−1BBBᵀ ; (A.7)

0 = DDD′(t) +EEEᵀ(t)HHHΥΥΥ−1 (HHHᵀDDD(t) + ΘΘΘ(t) ) + 1
2
BBBΥΥΥ−1 (HHHᵀDDD(t) + ΘΘΘ(t) )

+ 2EEE(t)(θθθ + λλλ ◦ψψψ )−ΦΦΦᵀDDD

= DDD′(t) +
(

1
2
HHHΥΥΥ−1BBBᵀ −ΦΦΦ

)ᵀ
DDD(t) +EEEᵀ(t)HHHΥΥΥ−1HHHᵀDDD(t)

+ 2EEE(t)(θθθ + λλλ ◦ψψψ ) +EEEᵀ(t)HHHΥΥΥ−1 ΘΘΘ(t) + 1
2
BBBΥΥΥ−1 ΘΘΘ(t) ; (A.8)

0 = A′(t) + 1
4

(DDDᵀ(t)HHH + ΘΘΘᵀ(t) ) ΥΥΥ−1 (HHHᵀDDD(t) + ΘΘΘ(t) ) + Tr [ΩΩΩEEE(t) ]

+DDDᵀ(t) (θθθ + λλλ ◦ψψψ ) +ψψψᵀ diag(EEE(t)) (λλλ ◦ψψψ ) + ξξξᵀ diag(EEE(t)) (λλλ ◦ ξξξ ) , (A.9)

with terminal condition

A(T ) = DDD(T ) = EEE(T ) = 0 .
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