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Multicommodity routing 
optimization for engineering 
networks
Alessandro Lonardi1*, Mario Putti2 & Caterina De Bacco1

Optimizing passengers routes is crucial to design efficient transportation networks. Recent results 
show that optimal transport provides an efficient alternative to standard optimization methods. 
However, it is not yet clear if this formalism has empirical validity on engineering networks. We 
address this issue by considering different response functions—quantities determining the interaction 
between passengers—in the dynamics implementing the optimal transport formulation. Particularly, 
we couple passengers’ fluxes by taking their sum or the sum of their squares. The first choice naturally 
reflects edges occupancy in transportation networks, however the second guarantees convergence to 
an optimal configuration of flows. Both modeling choices are applied to the Paris metro. We measure 
the extent of traffic bottlenecks and infrastructure resilience to node removal, showing that the two 
settings are equivalent in the congested transport regime, but different in the branched one. In the 
latter, the two formulations differ on how fluxes are distributed, with one function favoring routes 
consolidation, thus potentially being prone to generate traffic overload. Additionally, we compare our 
method to Dijkstra’s algorithm to show its capacity to efficiently recover shortest-path-like graphs. 
Finally, we observe that optimal transport networks lie in the Pareto front drawn by the energy 
dissipated by passengers, and the cost to build the infrastructure.

Finding optimal flow configurations in transport networks is an important problem in many real-world applica-
tions. While natural systems like river basins1–5, leaf venations6–9, or slime molds10–17 involve transport of one 
type of mass only, e.g. water, this may not be the case in several engineering systems. For instance, routing data 
packets in communication networks, or passengers in urban transportation networks, requires multicommod-
ity approaches where mass of different types interacts in a shared infrastructure, contributing to minimize one 
unique cost.

Despite their practical significance, multicommodity algorithms based on optimization routines are bur-
dened by high computational complexity, caused by the simultaneous assignment of multiple commodities. 
Therefore, practitioners often rely on heuristics and approximations that lead to suboptimal solutions18. Dis-
tributed approaches like message-passing algorithms have demonstrated encouraging results19–24, but remain 
computationally costly in scenarios where there is a large number of origin-destination pairs to be routed, or 
when the network is not sparse.

A promising approach is that of optimal transport theory. Recent studies25,26 have shown that this theoretical 
formalism can be adapted to address multicommodity scenarios, generalizing well-established results for uni-
commodity models27–33. The works of Lonardi et al.25 and Bonifaci et al.26 focus on a theoretical characterization 
of the problem, drawing a formal connection between optimal transport and an equivalent dynamical system 
that is formulated in terms of physical quantities like conductivities and fluxes. While preliminary results on 
multilayer transportation networks34 suggest an empirical validity of this choice, questions remain open about 
its applicability in settings involving the transport of passengers.

In this work, we address this concern by studying the behavior of optimal transport approaches for multicom-
modity routing on urban transportation networks, with an empirical analysis on the Paris metro network. Our 
goal is to evaluate how different cost functions impact the distribution of passenger flows. In detail, we search for 
stationary solutions of a dynamics where edge capacities—conductivities—grow as an increasing function of the 
total amount of passengers traveling on the edges. We investigate numerically the cases where the dependence 
between conductivities and fluxes is either the sum of the passengers traveling on an edge (its 1-norm), or the 
sum of their squares (its 2-norm). The first choice is more intuitive, since counting the total number of users in 
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a network is a natural metric to evaluate its occupancy. However, in the second case it is possible to prove that 
the companion gradient flow used in the numerical solver admits a unique stationary solution25,26.

We design several experiments to investigate the main properties of optimal network configurations in the 
two cases. First, we observe that the 2-norm tends to dilute more substantially passengers on the network, avoid-
ing heavily trafficked routes. Second, we compare our model with Dijkstra’s algorithm35, a popular approach for 
shortest-path minimization. We find that our method is a robust and efficient alternative to reproduce shortest-
path-like networks. Furthermore, we test resilience to infrastructural failures, i.e., node and edge removal. Results 
show that the geographical locations of stations together with their degree, are decisive factors. Finally, we observe 
that optimal networks lie in the Pareto front drawn by two fundamental driving forces: the energy dissipated by 
passengers’ flows and the network infrastructural cost.

Results and discussion
Multicommodity routing on networks.  We design a routing optimization problem on a network 
G(V ,E) , where V and E are the sets of nodes and edges, and each edge has length ℓe > 0 . The edges are given a 
conventional orientation stored in a signed incidence matrix, with elements Bve = {+1,−1, 0} if v is the head, 
the tail, or neither of them for edge e , respectively. We model transportation of M ≥ 1 commodities through the 
network, each identified by an index i . We use them to differentiate passengers entering the network from dif-
ferent stations ( i ∈ V  ), so that multiple users sharing the same path catalyze traffic congestion. Suppose that a 
commodity i has a mass rate Siv flowing into node v and outflows Siu ∀u �= v , with 

∑

v S
i
v = 0 , ∀i ∈ V  , to ensure 

that the system is isolated.
The main quantities of interest are the edge conductivities µe ≥ 0 , which can be thought of as capacities. 

These regulate how passengers flow on the network, as higher conductivity is allocated to edges that are more 
utilized, while low-conductivity edges are those with fewer passengers. Hence, determining the values of µe , 
∀e ∈ E , implies determining the flows of passengers, and therefore of traffic on the network. The distribution of 
conductivities is regulated by the following dynamics and main equations of our model:

Here L is the weighted Laplacian matrix of the network, with entries Lvu :=
∑

e (µe/ℓe)Bue Bve ; piv are pressure 
potentials generated by a commodity i on the nodes; f is a non-negative function of the fluxes Fe , M-dimensional 
vectors with entries Fie := µe(p

i
u − piv)/ℓe , for e = (u, v) . A visualization of the main model’s variables is shown 

in Fig. 1.
Equation (1) is Kirchhoff ’s law, expressing conservation of mass; Eq. (2) regulates the time evolution of con-

ductivities by means of a feedback mechanism where the higher the flux on an edge, the larger its conductivity 
µe . All commodities share one unique infrastructure, so we follow25 and assume that µe is the same for all i. 
This particular modeling choice corresponds to not prioritize any commodity in particular, i.e. having all users 
sharing the metro infrastructure without any hierarchy. However, one could consider imposing a set of rules for 
traffic regulation by explicitly accounting for different µi

e terms.
The growth of µe is governed by the function f, that is typically an increasing and differentiable function of 

some norm of the fluxes25,26. The aim of our work is to investigate how different expressions of f result in dif-
ferent distributions of passengers flows, thus we focus on the following two choices: (i) f (x) = ||x||22 (2-norm), 
and (ii) f (x) = ||x||21 (1-norm). The first captures intuition in contexts as plant biology, where nutrients travel 
independently in conduits which are held together in fibers, contributing to growth of branches. However, it may 
not be the most appropriate one in applications involving transport of passengers, as the 2-norm does not have 
a straightforward interpretation. On the contrary, the latter is arguably a more natural choice, backed up by the 
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Figure 1.   Schematic problem visualization. In brown we draw the edge capacities, green is used to highlight the 
length of one edge. From the central node a positive inflow of two commodities enters (orange and light blue), 
these move towards their destinations—the colored minuses—sharing an edge. Thus, multiple colored fluxes 
generate traffic congestion. In pink we represent the pressure potentials of a third commodity. Differences of 
pressure along an edge trigger F3.
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intuition that edge capacities are controlled by the number of passengers traveling on them (instead of the sum of 
squares). Both norms are taken squared, this is motivated by an analogy between our dynamics and Joule’s law in 
electrical circuits, that we discuss in "Connection with optimal transport" section. We remark that other possible 
choices of f can be used, e.g. the complete spectrum of p-norms, or a tunable sigmoid profile as in13, these can 
be interesting subjects for future work. The effect of f is balanced by a negative linear term in the conductivities, 
determining their exponential decay in time if no mass is moving through an edge. Note that our dynamics is 
highly non-linear in µe , since least-square solutions of Kirchhoff ’s law are of the form piv =

∑

u L
†
vuS

i
u , with † 

denoting the Moore-Penrose inverse. Finally, the role of the free parameter 0 < β < 2 is to capture different 
transportation mechanisms: β > 1 consolidates passengers on fewer edges, following a principle of economy 
of scale; β < 1 enforces passengers to distribute more broadly along the network; β = 1 is shortest-path like.

Connection with optimal transport.  The dynamics introduced in "Multicommodity routing on net-
works" section has a strong connection with optimal transport theory. In fact, in25 it is shown that stationary 
solutions of Eqs. (1) and (2) are also stationary points of the minimization problem:

for a fixed constant K > 0 and where J is the dissipation cost. This is also equivalent to minimizing 
JŴ :=

∑

e ℓef (Fe)
Ŵ , with Ŵ = (2− β)/(3− β) , generalizing Banavar et al.36.

The crucial distinction between the 1-norm and 2-norm dynamics is that the latter admits the Lyapunov 
function

which enables to prove that asymptotics of the dynamics minimize J25 for β ≤ 1 . We remark that for β ≤ 1 the 
Lyapunov admits a unique minimum although possibly multiple minimizers, while for β > 1 the functional has 
several local minima. Noticeably, the first sum in Eq. (6) is equivalent to J = (1/2)

∑

e ℓe||Fe||
2
2/µe (see Methods 

"Lyapunov and dissipation cost equivalence").
The second term in Eq. (6) is W := (

∑

e ℓeµ
γ
e )/2γ with γ = 2− β , interpretable as the cost to build the 

network. With this in mind, the Lyapunov functional becomes the sum of dissipation and infrastructural costs.
As mentioned before theoretical guarantees cannot be recovered for the 1-norm dynamics, where a Lyapunov 

functional is not straightforward to derive. While solving the dynamics may still result in meaningful flows, we 
cannot guarantee that these solutions minimize the cost JŴ , i.e. to have optimal transport.

However, we find empirically that on the metro network of Paris—our case of study—JŴ decreases along 
solution trajectories of the dynamics, with stationary solutions lying in a basin of the cost. This empirical result 
is valid here, but this may not be true for other configurations of the network or initial conditions of the dynam-
ics, hence practitioners should first validate their model (see Methods "Preprocessing", "Validation" for a more 
detailed explanation; a listing of the variables introduced in "Multicommodity routing on networks", "Connection 
with optimal transport" sections can be found enclosed as Supplementary Information).

Results on the Paris metro network.  In this work, we investigate the applicability of the dynamics in 
Eqs. (1) and (2) on the Paris metro. Topology data are taken from37, the network is preprocessed to have a total 
of |V | = 302 nodes and |E| = 359 edges, coherently with the observed metro of Paris (Methods "Preprocess-
ing"). As anticipated, we define commodities as stations where passengers enter. This means that each vector Si 
has only one positive element in v = i (where the passengers of type i enter), while the remaining elements of Si 
contain the outflows of passengers who travel from v . Other choices can also be made based on the application, 
but this will not impact the validity of the model. Lastly, we introduce the parameter 0 ≤ ρ ≤ 1 . This averages 
the passenger inflows as Siv=i(ρ) = Siv=i − ρ(Siv=i − �Si�) , with �·� average over the nodes. When ρ tends to 1 
passengers distribute uniformly on the network, while ρ approaching 0 means passengers enter and exit station 
more heterogeneously, see Methods "Validation".

We test the two response functions f. Optimal fluxes resulting in the two cases can be seen in Fig. 2a, where 
the thickness of each edge is proportional to the fraction of passengers traveling through it. As expected, for 
β < 1 optimal transport networks are loopy, with many densely connected edges having fairly uniform fluxes. 
On the contrary, for β > 1 optimal topologies are more tree-like, with few central arteries where traffic is highly 
concentrated. This applies to both cases.

We notice two distinct behaviors, depending on β . For β < 1 ( β = 0.1 in Fig. 2a), solutions cannot be dis-
tinguished. This is explained by the Lyapunov functionals Lβ being strictly convex in this case, with stationary 
conductivities that are their only minimum. This observation suggests that in the congested transportation 
regime ( 0 < β < 1 ), where one aims at minimizing traffic congestions, using the 2-norm is equivalent to the 

(3)min
F∈R|E|×M

J :=
1

2

∑

e

ℓe

µe
f (Fe)

(4)s.t.
∑

e

ℓeµ
2−β
e = K2−β

(5)
∑

e

BveF
i
e = Siv ∀v ∈ V , ∀i = 1, . . . ,M,

(6)Lβ({µe}) :=
1

2

∑

i,v

pivS
i
v +
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∑

e

ℓeµ
2−β
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more intuitive 1-norm formulation. This is not the case for β > 1 , where the two dynamics favor different local 
minima. These correspond to optimal networks with distinct central arteries where passengers are directed. The 
differences are further accentuated in Fig. 2b, where edges are colored with flux differences in these two cases, 
and where we highlight with markers instances of highly traversed stations. In detail, we can see that two routes 
branch from Charles de Gaulle-Étoile, the upper one passing by Place de Clichy is favored by the 1-norm, and 
the lower one reaching Saint-Lazare is preferred by the 2-norm. As for the connection between Châtelet and 
Gare de Lyon, we observe that the 1-norm tends to favor the shortest path between the two stations, with most 
passengers travelling in a straight line. On the contrary, the path selected by the 2-norm has a deflection.

Stimulated by these qualitative differences, we investigate different metrics for an in-depth quantitative evalu-
ation for the case β = 1.5 . First, analyzing the sorted distributions of the fluxes ||Fe||1 in Fig. 2c, we notice that 
the 1-norm dynamics has a more pronounced fat-tailed distribution with a sharper and higher peak. This means 
that the 1-norm tends to concentrate fluxes on fewer edges. Such effect becomes starker for more homogene-
ous distributions of passengers entering the stations, i.e. setting ρ = 0.5, 1.0 (see Supplementary Figs. 1 and 2).

We quantify this using the Gini coefficient38:

for a quantity x, with x̄ =
∑

e xe/|E| being its mean, and m, n denoting edges. In our analysis we set xe = ||Fe||1 . 
Results are shown in Fig. 3a, where the Gini coefficient is plotted against β for different values of ρ.

As expected, the Gini coefficient increases with β , as users’ paths are more concentrated along fewer edges. 
The values for the two dynamics are similar for β < 1 , for the reasons mentioned above. Instead, for β > 1 , mark-
ers progressively separate as β increases. The 2-norm has always smaller values than their counterparts, further 
demonstrating the tendency of the 2-norm to dilute fluxes on a larger area of the network.

We study the behavior of the fraction of idle edges, i.e. the number of edges with negligible fluxes, divided by 
the total number of edges |E|, see Fig. 3b. This quantity manifests a sudden phase transition at β = 1 , where the 
dynamics switches from an homogeneous distribution of passengers on the entire network infrastructure, to a 
distribution progressively more concentrated on a smaller fraction of edges, as β increases. Finally, the 2-norm 
dynamics returns fewer idle edges than the 1-norm, as paths are less concentrated. Notably, such abrupt phase 
transitions are typical of capacitated models on networks36, and emerging in routing strategies involving a critical 
exponent regulating efficient transportation39.

To summarize, we observe two main findings. First, we noticed that in the regime of β < 1 the 1-norm and 
the 2-norm produce identical optimal networks. This result does not hold for β > 1 , where many local minima 
of Lβ generate different optimal paths. Second, analyzing the fraction of idle edges, the Gini coefficient of the 
fluxes, and their distribution, we found that in the regime of branched transportation ( 1 < β < 2 ), the 2-norm 
tends to limit more traffic congestion, as paths are less consolidated into fewer edges compared to the 1-norm.

(7)Gini coefficient(x) :=
1

2|E|2x̄

∑

m,n
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Figure 2.   Optimal transport networks panel. (a) Optimal transport networks with β = 0.1, 1.0, 1.5 for the 
1-norm and 2-norm. Edge thickness and color are proportional to ||Fe||1 , normalized to sum to 1; node sizes 
are proportional to the number of passengers entering them. All the quantities are averaged over 100 runs of 
the dynamics with µe(0) ∼ U(0, 1) . (b) Network colored using the difference of the fluxes obtained with the 
1-norm and with the 2-norm. Results are displayed for β = 1.5 , and using the data of (a). Widths of edges are 
proportional to the absolute value of the flux difference, so that by matching the color and size information it 
is possible to distinguish differences in networks generated by the two response functions. Marked stations are 
those discussed in "Results on the Paris metro network" section. (c) Sorted flux distribution over the edges for 
β = 1.5 . All quantities have been computed with ρ = 0.0 , i.e. S(ρ = 0.0) = S (see Methods "Preprocessing", 
"Validation"). Similar panels for ρ = 0.5 and ρ = 1.0 can be found in Supplementary Figs. 1 and 2.
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Comparison with Dijkstra algorithm.  As discussed, the main property connecting our 2-norm dynam-
ics with optimal transport is that its stationary solutions are minimizers of the cost JŴ =

∑

e ℓe||Fe||
2Ŵ
2  , with 

Ŵ = (2− β)/(3− β)25. This cost, for β = 1 and M = 1 is equivalent to that of15,16 and has optimal fluxes taking 
the shortest path from their source to their sink. A theoretical generalization of this result to the multicommod-
ity setup is not trivial. In fact, for the 2-norm case the cost reads JŴ =

∑

e ℓe
√

∑

i(F
i
e)
2 , that is not linear in the 

commodities, i.e. searching for its minimizer does not correspond to solving M unicommodity problems, one 
for each i , and then overlapping them. As for the 1-norm, the dissipation cost with β = 1 is JŴ =

∑

e

∑

i ℓe|F
i
e| , 

and therefore its unique global minimum corresponds to that obtained overlapping M shortest paths.
We can numerically compare our methods with a shortest path routine using Dijkstra’s algorithm35. Precisely, 

we iterate over the commodities and assign a flux Fie equal to the fraction of passengers moving from the source 
v to the sink u , to each edge belonging the shortest path between v and u—the latter computed with Dijkstra’s 
algorithm.

We compare the optimal transport networks obtained using our methods with β = 1 (Fig. 4a) with the net-
works returned by Dijkstra’s algorithm (Fig. 4b). The three graphs are visibly similar but not identical. Particularly, 
we focus on the four highlighted areas in Fig. 4b, containing the main branches departing from the central area 
of the city of Paris. We see that the more trafficked routes in the pink South-West region are identical for our 
methods and for Dijkstra’s one. Traffic in the Nort-West blue region seems to be more diluted for our methods, 
with the 2-norm optimal network being slightly more similar to Dijkstra’s. As for the North green region, both 
our algorithms concentrate traffic in a curved branch covering a large portion of the Northside of the city. This 
route is not prioritized in Fig. 4b, as traffic in the green portion is more distributed. Finally, in the South-East 
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ne number of vehicles passing through e as in37. This rescaling has been performed following the intuition that 
metro users moving along the network may travel using the fastest route (that for paths of the same length is the 
one with more frequent trains) to reach their destination; this may not correspond to the geographically shortest 
one. (a) Optimal transport networks for our methods. Quantities are computed over 100 runs of the dynamics 
with random initialization of the conductivities, µe ∼ U(0, 1) . (b) Optimal transport network computed with 
Dijkstra’s algorithm. For all three networks, edge widths and colors are ||Fe||1 , and the size of each node is 
proportional to the number of passengers entering in it. (c) Relative energy difference between our methods and 
Dijkstra’s, taken in absolute value. Errorbars are standard deviations over 100 realizations.
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yellow area, there is only one main route branching from the city center, while its shape is straight for Dijkstra’s, 
our methods favor a slight deflection.

We attribute these differences in the optimal topologies to the high complexity of the energy landscape of JŴ . 
In fact, while Dijkstra’s algorithm computes and overlaps each source-sink shortest path separately, our methods 
treat all the commodities at once. This may lead to convergence in suboptimal points, in particular around β = 1 , 
where the cost transitions from being strictly convex ( β ≤ 1 ) to strongly non-convex ( β > 1 ). While our method 
in this case may not always reach an optimal solution, it has the practical advantage of having a worst-case 
complexity of O(M|V |2)25. In principle, this can be further reduced using a backward Euler scheme combined 
with the inexact Newton-Raphson method for the discretization of Eq. (2), and using a Multigrid solver for the 
solution of Eq. (1) in O(M|V|) steps40. By contrast, Dijkstra’s has a worst-case complexity of O(|E| + |V | log |V |)
41, with the algorithms that needs to be executed M2 (in our application to the Paris metro there are M2 = |V |2 
source-destination pairs) times to solve a multicommodity problem.

Lastly, we test the deviation of the cost of our methods from Dijkstra’s one. In Fig. 4c we plot the relative cost 
difference taken in absolute value, that is �J := |JŴ − JDijkstra|/JDijkstra , with Dijkstra’s network cost calculated 
as JDijkstra =

∑

e ℓe||Fe||1 . This has a sharp drop at β = 1 , where traffic is not favored nor penalized, with the 
cost of our network that is similar to the one of the shortest path returned by Dijkstra’s algorithm. For β < 1 we 
have JŴ > JDijkstra , showing that penalizing traffic congestion has the drawback of producing more expensive 
infrastructures. We observe the opposite behavior for β > 1 , where JŴ < JDijkstra , with congested networks that 
are progressively cheaper as β increases.

Network robustness to failures.  We now showcase a possible relevant application of our model by 
analyzing network’s robustness to structural failures as nodes removal. Network managers interested in find-
ing which stations are crucial for alleviating potential traffic overload can look at the congested transportation 
regime (we set β = 0.1 to favor homogeneous fluxes) and investigate how fluxes resulting from our model dis-
tribute along the network.

In detail, we remove sequentially a total of four stations from the network: Châtelet, Gare du Nord, Saint-
Lazare, and Gare de Lyon. The last three are those with the largest number of inflowing passengers, while 
Châtelet has a central position and a high node degree d = 8 . Once each station was removed, its passengers 
were redirected to its neighboring nodes, and then solutions of the dynamics were found with this setting, as 
depicted in Fig. 5.

In Fig. 5a we display the 1+ 4 networks obtained removing none, and the stations indicated in Fig. 5b. In 
Fig. 5c we plot the Gini coefficients of the optimal transport networks against β . We notice that for β > 1 all the 
points collapse together, regardless of the number of failures. This scenario, however, is of little interest for the 
situation we want to address, being flux aggregation already favored by β > 1 . As for β < 1 , the difference in Gini 
coefficient gets wider the lower the β , with the largest gap at β = 0.1 , we thus investigate this case.

Removing Châtelet from the network causes a considerable jump in the Gini coefficient, thus increasing the 
possibility of traffic jams. In fact, as we see from the second plot in Fig. 5a, all the passengers who were traveling 
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used in the rest of the panel. Similar results for the 2-norm dynamics are in Supplementary Fig. 3.
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on the South-West route branching from the city center are redirected in a way that congests southern arter-
ies of the network. Removing Gare du Nord is not as crucial for traffic rerouting. Indeed, the main difference 
between the second and the third network of Fig. 5a is that passengers who were departing from Gare du Nord 
move to its southern neighboring station, Gare de l’Est, and modify only slightly their path. A large jump in the 
Gini coefficient is visible after removing Saint-Lazare, which seems to be fundamental for connecting the central 
area of Paris to its north side. In the fourth plot in Fig. 5a, we can see that traffic becomes highly congested in 
the northern branch directed from east to west. Gare de Lyon causes a negligible change in the Gini coefficient, 
associated to a modest traffic rerouting in the South-East part of the network.

Pareto front.  To conclude our analysis of the multicommodity routing problem it is possible to verify that 
stationary solutions of Eqs. (1) and (2) lie in the Pareto front (Fig. 6), which can be expressed in closed form as:

with γ = 2− β (see Methods "Pareto front derivation").
The emergence of a Pareto front between J and W is not limited to engineering networks like the ones studied 

here. A similar trade-off has been observed in the widened pipe model for plants of Koçillari42, where minimiza-
tion of hydraulic resistance and of carbon cost compete for natural selection.

Moreover, looking at the inset of Fig. 3 and Fig. 6 we can observe that the Gini coefficient and the fraction 
of idle edges can be interpreted as driving forces responsible for the design of the optimal transport network, 
counterbalancing its cost. In fact, congested transport networks obtained for low values of beta β have a high cost, 
but are more resilient to damage—low Gini and no idle edges—being their infrastructure densely connected. On 
the contrary, setting β large has the effect of producing sparse networks. These infrastructures have the benefit 
of being cheaper, but they are less resistant to node and edge failures, as mentioned in "Network robustness to 
failures" section.

Conclusions
Multicommodity routing is a powerful tool to model optimal network configurations in transportation systems18. 
In this work, we developed a robust and efficient model able to perform this task by finding stationary solutions 
of a dynamical system controlling fluxes and conductivities of edges. Our dynamics extends previous works 
focusing solely on the unicommodity15,27,28,30,43, and on the multicommodity setup25,26,34.

Precisely, we propose two different response functions regulating the growth of conductivities, whose evolu-
tion is dictated by the passengers moving in the metro. We performed a thorough empirical study of the optimal 
transport networks resulting in the two cases. Using metrics like the fraction of idle edges and the Gini coef-
ficient of the fluxes, we found that the two functions behave similarly in the congested transportation regime, 
but differently in the branched transportation one. In this case, the 1-norm dynamics produces flows that are 
more concentrated on fewer edges, potentially leading to traffic overload. We addressed the capability of our 
method to recover shortest path networks by comparing it with Dijkstra’s routine. Such comparison showed that 
our approach is a viable computational alternative to perform this task, achieving accurate results and being, in 
principle, scalable for large networks. Additionally, we performed an experiment to measure network robustness 
to infrastructural failures, revealing that the stations of Châtelet and Saint-Lazare are crucial to ease congestion 
of metro routes. Finally, we showed that solutions of our model lie in the Pareto front drawn by the energy dis-
sipated during transport and the network infrastructural cost.

(8)
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Figure 6.   Pareto front. We plot the dissipation/infrastructure cost ratio vs. β . Different points are averaged over 
100 runs with random initialization of the conductivities, µe(0) ∼ U(0, 1) . Inset: infrastructure cost, W, vs. 
dissipation cost, J. Marker shapes are identical to those of the main plot, colors follow the colorbar over β.



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7474  | https://doi.org/10.1038/s41598-022-11348-9

www.nature.com/scientificreports/

Altogether, our findings extend the current research in multicommodity routing problems using optimal 
transport principles and help to understand the mechanism underlying passenger flows in transportation systems.

Our formalism can be further extended to other possible applications related to the flow of passengers in 
transport networks. An example could be to incorporate time dependences in the passengers’ inflows, modeling 
scenarios where stations are subject to different loads during a day, thus generalizing44. One could also compare 
the extent of traffic jams in multicommodity settings to that of other routing strategies for urban transport dis-
playing notable phase transitions and scaling laws39,45,46.

We would like to remark that our approach is applicable to a variety of practical problems unrelated to trans-
portation systems. A practitioner may then consider response functions for the dynamics alternative to those 
studied in this work. The analysis performed in this work show how such a problem can be addressed and paves 
the way for further research beyond urban transportation networks.

Methods
Lyapunov and dissipation cost equivalence.  Here we show that the first term of the Lyapunov func-
tional in Eq. (6) is identical to the 2-norm dissipation cost J = (1/2)

∑

e ℓe||Fe||
2
2/µe , we follow25. Multiplying 

both sides of Eq. (1) for piv and summing over i and v yields

where we made explicit the network Laplacian entries Lvu :=
∑

e (µe/ℓe)Bue Bve , and we used the definition of 
the fluxes Fie := µe(p

i
u − piv)/ℓe , for e = (u, v) , and ∀i . Equation (10) is the identity we wanted to prove.

Preprocessing.  The original dataset in37 is provided as a multilayer network embedded with different trans-
portation types, thus we performed a preprocessing to extract the metro network. First, we trimmed nodes 
belonging to other layers and then merged redundant stations having the same name by collapsing them 
together. This redundancy was due to the presence of stations with two entrances located in slightly different 
geographical positions; their coordinates displacement was always negligible compared to the physical extension 
of the whole network. The trimmed graph reflects consistently the real topology of the Paris metro. For conveni-
ence, the longitude and the latitude of nodes are rescaled within the range [0, 1].

We did not have access to the exact travel routes data, so we assigned the entries of S based on the “impor-
tance” of each station. In fact the number of users validating their tickets when entering a station, the only data 
at disposal, is easier to track than the number of exiting users together with their entrance station. In practice, 
we assigned N − 1 positive “influence factors” to each station i , one for each node u  = i where the users enter-
ing in i can potentially exit: riu = gu/

∑

w �=i g
w , instead riv=i = 0 , where gv is the amount of users entering the 

metro from v = i . Note that 0 ≤ riv ≤ 1 for all v nodes, and 
∑

v  =i r
i
v = 1 . Thus, we can estimate the number of 

(9)
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Figure 7.   Validation of the dynamics with the 1-norm.  We show the dissipation cost evolution along solution 
trajectories of Eqs. (1) and (2). Results are displayed for different combinations of ρ and β , and are averaged 
over 100 runs with random initializations of µe(0) ∼ U(0, 1) . The curves are normalized in (0, 1). Shaded areas 
denote standard deviations, these are thicker for β > 1 since the cost is concave, with a rich landscape a local 
minima.
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people exiting from a station u  = i by assigning Siu = −riu g
v=i , while Siv=i = gv . The intuition is that a station 

with a high entering volume of passengers, i.e. high gv , should have a large amount of exiting users, thus its 
“influence” value r should be high.

Validation.  We validate Eqs. (1) and (2) with the 1-norm for several combinations of β and of the input loads 
S(ρ) , with 0 ≤ ρ ≤ 1 progressively smoothing the passengers inflows data collected in47. In detail, users entering 
stations are regulated as gv(ρ) = gv − ρ(gv − �g�) where gv are inflows in v as in47, and �·� averages over the 
nodes. Using this procedure, we build S(ρ) following the “influence assignment” described in Methods “Preproc-
essing”. Thus, S(ρ = 0) = S corresponds to the originally extrapolated mass matrix, while Siv=i(ρ = 1) = �g� 
and Siu(ρ = 1) = −�g�/(|V | − 1) for all u  = v = i . Meaning that for ρ = 1 passengers move with uniform rates 
from each—and to—all stations. In Fig. 7 we plot the time-evolution of JŴ , which decreases over time.

Pareto front derivation.  To obtain the Pareto form in closed form as in Eq. (8) it is sufficient to exploit the 
scaling µe ∼ (Fe)

δ , δ = 3− β , valid for stationary solutions of the multicommodity dynamics25. In particular, it 
is immediate to recover Eq. (8) by rewriting J in Eq. (3) as a function of the conductivities µe.

Data availability
All data used for the experiments on the Paris metro network are publicly available37,47.

Code availability
An open-source implementation of the code is accessible at https://​github.​com/​aleab​le/​McOpt.
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