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Abstract

We consider a queueing system, which is constituted by a set of M/M/1 (sub–)systems,
sharing the same scarce resources, but otherwise running independently. We analyse the
nonlinear programming problem of minimizing the expectation of the maximum line length
among the subsystems, with the service rates as the decision variables. Furthermore, we
introduce three different nonlinear programming problems, which have natural interpreta-
tions with reference to the same queueing system and whose optimal solutions are useful
to solve the original problem.
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1 Introduction

We consider a system constituted by several facilities which purvey different kinds
of service (or the same service at different locations) to different customers streams.
An example is offered by a health service system which operates through different
service units which are distributed in a definite region. The demand of service at
the different service units is known and we consider the problem of choosing the
different service capacities in order to purvey an overall good quality service while
satisfying some resource constraints.

This is a typical problem of optimal design of a queueing system as classified
in [1] and in particular a static problem, because we are interested in choosing
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constant service rates of the different facilities which are optimal in some sense in
equilibrium.

A natural performance indicator of the multiservice system is the maximum
line length, i.e. the maximum among the numbers of customers found in all the
facilities (either in queue or being served). Therefore we are led to formulate the
problem of minimizing the expectation of the maximum line length (the MLL
problem), assuming that the different services/facilities require different amounts
of the same economic resources, which are available to the complex system in finite
quantities.

It is rather intuitive that the different problem of minimizing the maximum
among the expectations of the line lengths is strictly related to the MLL prob-
lem. In fact the latter problem has been studied in [8], where it has been named
the LLP problem, and has optimal solutions which are easy to compute by an
exact algorithm. On the contrary, the search for an optimal solution to the MLL
problem presents some computational difficulties.

A third problem, that of minimizing the sum of the expectations of the line
lengths (the SELL problem), or, equivalently, the problem of minimizing the
average expected line length among the different facilities, is related to the MLL
problem and has a unique optimal solution which can be computed easily. The
relation between the MLL and SELL problems is still intuitive and it is also
suggested by an approximation of the objective function of the MLL problem.

Finally, a fourth problem, that of maximizing the idle system probability, (the
ISP problem), is related to the MLL problem. This is less intuitive and is sug-
gested, like in the case of the SELL problem, by an approximation of the objective
function of the MLL problem. Also the ISP problem has a unique optimal solu-
tion which is easy to compute numerically.

In the next Section we give a formal definition of the multiservice system and
in Section 3 we introduce and discuss the Maximum Line Length problem. In
Section 4 we consider the three problems LLP , SELL and ISP , which are related
with MLL in different ways. In Section 5 we suggest using Rosen’s gradient
projection method in order to solve numerically the linearly constrained MLL
problem. Finally, In Section 6 we present and discuss some results concerning
numerical experiments on a few significant instances of the problem and evaluate
the optimal solutions of the problems LLP , SELL and ISP as approximations of
optimal solutions of the MLL problem.

2 The m–service system

Let us consider m independent facilities which operate in a unique system and offer
m different kinds of service tom independent streams of customers. The ith facility
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and its customers stream constitute an M/M/1 queueing system with arrival rate
λi > 0 and service rate µi ≥ 0. Let λ = (λ1, λ2, . . . , λm)′ and µ = (µ1, µ2, . . . , µm)′;
λ is considered an exogenous parameter, whereas µ is a design parameter. Let
Ni = Ni(µi) be the state of the ith facility, defined as the line length, i.e. the
number of customers at that facility, whether being served or waiting for service.
We know that, if µ > λ (i.e. if µi > λi, 1 ≤ i ≤ m), then the state variables
N1, N2, . . . , Nm have an equilibrium distribution.

We assume that the services offered by the m different utilities require different
amounts of several scarce resources. Let there exist r ≥ 1 goods (resources) and let
a quantity bj of the jth resource be available per time unit. Running the service
system at the vector rate µ requires a quantity gj(µ) of the jth resource, 1 ≤ j ≤ r.
Thus we have to consider a budget constraint g(µ) ≤ b, where g = (g1, g2, . . . , gr)′,
b ∈ Rr and g(µ) satisfies the following conditions:

• i) g(λ) < b;

• ii) g is continuous;

• iii) for each j ∈ {1, 2, . . . , r}, gj is a monotonically non–decreasing function
and

(µ1 ≤ µ2, µ1 6= µ2) ⇒ (g(µ1) ≤ g(µ2), g(µ1) 6= g(µ2));

• iv) g exceeds b with respect to every component of µ, in the sense that for
all i ∈ {1, 2, . . . ,m}, there exists j ∈ {1, 2, . . . , r} such that

lim
µi→+∞

gj(µ) > bj , for all µn ≥ λn, n 6= i.

3 The Maximum Line Length problem

We want to address the problem of minimizing the expectation of the maximum
line length in the multiservice system. The motivation for it is that long queues
may offer a poor image of the overall service system to possible customers. More-
over long queues may constitute an additional cost to the service system.

For all µ ∈ Rm, µ > λ , let us define the random variable

Mµ = max
i
Ni(µi), (3.1)

i.e. the maximum among the line lengths of the m subsystems, and let us consider
the problem

MLL : minimize f(µ) = E(Mµ),
subject to g(µ) ≤ b, (3.2)

µ > λ,
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where λ and b are exogenous parameters, with λ > 0 and g(λ) < b. We notice that
the feasible set of MLL is a nonempty and bounded set. For any fixed µ > λ, the
distribution function of Mµ is given by

F (x) = Pr{Mµ ≤ x} =
∏m

i=1 Pr{Ni ≤ x}

=
∏m

i=1

(
1− λx+1

i

µx+1
i

)
, x = 0, 1, . . . (3.3)

Hence, from a known characteristic of the expectation of positive random vari-
ables (see [2], pp.265–266), we obtain that

f(µ) =
∞∑

n=0

[
1−

m∏
i=1

(
1− λn+1

i

µn+1
i

)]
. (3.4)

After observing that the function µ−n−1
i is strictly decreasing and strictly convex,

for all n ≥ 0, we obtain from formula (3.4) that the expectation E(Mµ) = f(µ)
is a strictly decreasing and strictly convex function of µi, for all i ∈ {1, . . . ,m}.
Nevertheless, we are not able to prove that f(µ) is convex, nor that it is not
convex. A different representation of f(µ), as a finite sum which we call the
subset enumeration form, is the following:

f(µ) =
∑

∅6=J⊆{1,2,...,m}

(−1)|J|+1
∏

j∈J λj

(
∏

j∈J µj −
∏

j∈J λj)
. (3.5)

We verify the formula (3.5) in the Appendix. From (3.5) it is clear that f(µ) is a
continuously differentiable function of µ in the feasible set and its partial derivative
with respect to µt, t = 1, 2, . . . ,m, is

∂f(µ)
∂µt

=
∑

{t}⊆J⊆{1,2,...,m}

(−1)|J|µ−1
t

∏
j∈J λjµj

(
∏

j∈J µj −
∏

j∈J λj)2
. (3.6)

As f(µ) is a continuous and monotonic function, we have that problem MLL
admits an optimal solution µ̃, at which some component of the generalized budget
constraint is active: gj(µ̃) = bj for some j.

In fact, from (3.4) we obtain the following inequalities:

f(µ) ≥
∞∑

n=0

λn+1
i

µn+1
i

=
λi

(µi − λi)
, for all i ∈ {1, 2, . . . ,m}. (3.7)

Now, let us choose a feasible solution µ of MLL: from the inequalities (3.7) it
follows that there exists η > 0, such that

f(µ) > f(µ), for all µ > λ such that min
j

(µj − λj) < η. (3.8)
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A suitable choice for η is, e.g.:

η = min
j
λj

/
f(µ). (3.9)

Therefore, we may replace the strict inequality µ > λ, in the statement of the
constraints of problem MLL, with the inequality

µ ≥ λ+ ηe, (3.10)

where e = (1, 1, . . . , 1). The resulting restricted feasible set is a compact set. More-
over, for each feasible solution µ which does not satisfy (3.10) there exists a feasible
solution µ′ which satisfies it and is better than µ: µ′ ≥ λ+ ηe and f(µ′) < f(µ).
We observe that the continuity of the objective function and the compactness of
the restricted feasible set guarantee the existence of an optimal solution to prob-
lem MLL. Finally, an optimal solution cannot be an internal point of the feasible
set in view of the strict monotonicity of the objective function.

In the case that g is continuously differentiable and that an optimal solution µ̃
satisfies the constraint qualification conditions (see [5], p.177), µ̃ must satisfy the
Kuhn–Tucker conditions:

∇f(µ) + u∇g(µ) = 0,
g(µ) ≤ b, u(g(µ)− b) = 0, (3.11)

µ > λ, u ≥ 0.

In view of the form (3.5) of f(µ), we may also consider the MLL problem as
a special (multi–ratio) fractional programming problem (see [7]). Nevertheless,
it seems that no standard fractional programming method can be used to solve
MLL.

4 Different problems related with MLL

The analysis of the features of the MLL problem in the previous Section suggests
using the subset enumeration form (3.5) of the objective function and the corre-
sponding form (3.6) of its derivatives in order to search for candidate solutions for
optimality, using the Kuhn–Tucker conditions (3.11). Of course this is a reasonable
suggestion only if m is small, because the numbers of terms in the formulas (3.5)
and (3.6) are exponential functions of m. Therefore it is important in practice to
find either significant approximations of the MLL problem, or approximate meth-
ods to solve MLL. Here we present some approximations of the MLL problem
and, in the next Section, we will discuss their role in the initialization of numerical
methods to solve the MLL problem. On the other hand, approximate methods to
solve MLL are discussed in [6].
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4.1 Maximizing the idle system probability

Using the first term in the series of positive terms (3.4), to approximate f(µ),
transforms problem MLL into the problem of minimizing a special lower bound
of f(µ). Moreover, after noticing that

1−
m∏

i=1

(
1− λi

µi

)
= 1−

m∏
i=1

Pr{Ni = 0} = 1− Pr{idle system}, (4.1)

we have that the latter (approximate) problem is equivalent to the problem of
maximizing the “idle system” probability:

ISP : maximize
∏m

i=1

(
1− λi

µi

)
,

subject to g(µ) ≤ b, (4.2)
µ > λ.

Now, the ISP objective function Pr{idle system} is a strictly increasing and
strictly concave function of µi, for all i ∈ {1, . . . ,m}. A reasoning similar and
symmetric to that used for the MLL problem allows us to state that ISP has an
optimal solution which is on the boundary of the feasible set. Moreover, taking
the logarithm of Pr{idle system} we obtain the following problem:

LISP : maximize φ(µ) =
∑m

i=1 ln
(
1− λi

µi

)
,

subject to g(µ) ≤ b, (4.3)
µ > λ.

Problem LISP is equivalent to ISP and, furthermore, it has a concave objective
function. Therefore, if the components of g(µ) are convex functions, problem ISP ,
like LISP , has a unique optimal solution.

4.2 Minimizing the sum of expected line lengths

In this Section we consider using the terms associated with the singleton sets of
components of µ in the finite representation (3.5) of f(µ), in order to approximate
the objective function of MLL. We obtain the following approximation of f(µ):

ψ(µ) =
∑m

i=1
λi

(µi−λi)
=

∑m
i=1 Li(µi)

(4.4)
=

∑m
i=1 E(Ni(µi)).

The function ψ(µ) is the sum of the expected line lengths of the m subsystems,
which constitute the m–service system. Using the approximation ψ(µ) of the ob-
jective function f(µ) transforms the MLL problem into the problem of minimizing
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the sum of expected line lengths:

SELL : minimize ψ(µ) =
∑m

i=1 Li(µi),
subject to g(µ) ≤ b, (4.5)

µ > λ,

We notice that ψ(µ) is a strictly decreasing and strictly convex function. Moreover,
a reasoning similar to that used for theMLL problem allows us to state that SELL
has an optimal solution, which is on the boundary of the feasible set. Furthermore,
if the components of g(µ) are convex functions, then the optimal solution is unique.

It is interesting to notice that SELL is equivalent to the problem of minimizing
the average expected line length of the multiservice system,

1
m

m∑
i=1

E(Ni(µi)) =
1
m
ψ(µ), (4.6)

and that the function ψ(µ)/m is a lower bound of f(µ), because of the inequalities
(3.7). Therefore, also the SELL problem, like ISP , is equivalent to a problem of
minimizing a special lower bound of f(µ).

4.3 The line length problem

A last problem related with MLL is that of minimizing the maximum among the
expected line lengths of the m utilities, subject to the same constraints of MLL.
This problem, named LLP , is a special case of a family of problems which have
been studied and solved in [8] and is formulated as follows:

LLP : minimize maxi Li(µi),
subject to g(µ) ≤ b, (4.7)

µ > λ.

The optimal value of the objective function of LLP is the maximum, z∗, among
the solutions of the equations

gj((1 + 1/z)λ) = bj , 1 ≤ j ≤ r, (4.8)

and an optimal solution is the vector µ∗ = (1 + 1/z∗)λ.

We know, from the Jensen’s inequality (see [3], p.153), that

f(µ) = E(Mµ) ≥ max
i

E(Ni(µi)) = max
i
Li(µi), (4.9)

because max{x1, x2, . . . , xm} is a convex function of (x1, x2, . . . , xm). Therefore,
also LLP , like ISP and SELL, is equivalent to a problem of minimizing a special
lower bound of f(µ).
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5 Numerical solution for the linearly constrained MLL prob-
lem

Here we consider the special and important case in which the constraint function
is linear, i.e. g(µ) = Aµ, where A is an r ×m matrix. This is the natural case
to consider as a first approach to the general problem. On the other hand, linear
constraints are typical of many resourse allocation models, which in the case of
linear objectives give rise to linear programming problems which are so important
in practice. The general assumptions of Section 2 on the constraint function g
imply that

• i′) Aλ < b;

• iii′) A ≥ 0 and for each i ∈ {1, 2, . . . ,m} there exists j ∈ {1, 2, . . . , r}, such
that aji > 0.

In this case the constraint qualification conditions hold ([5], p.177) and the
Kuhn–Tucker conditions (3.11) are necessary for any optimal solution µ̃. In par-
ticular, the first equation in (3.11) reads

−∇f(µ) = uA. (5.1)

It is rather natural to consider the Rosen’s gradient projection method (see [4],
p.330, or [5], p.197) in order to determine the optimal solutions of the problem
MLL numerically. Assuming to know a feasible point, the method requires to
project the negative gradient of the objective function on the “working surface”
in order to define the direction of movement. Then a best movement is made
in that direction and a new iteration takes place until a solution to the Kuhn–
Tucker conditions is found. In the case of linear constraints the computation of
the projection of the negative gradient on the boundary of the feasible set is simple.
The method requires, at each iteration, the computation of the gradient ∇f(µ) of
the objective function and the minimization of f(µ) on a special line segment.

5.1 Initialization of numerical solution algorithms

A first question to answer in order to implement Rosen’s algorithm is how to choose
the initial feasible solution µ0. It may help the convergence of the algorithm that
the initial feasible point µ0 has some characteristics of the optimal solutions and
a condition that can be easily imposed on µ0 is that it belongs to the boundary
of the feasible set. In fact, any such point can be obtained by choosing a positive
vector (direction) d ∈ Rm, d > 0, and then setting

µ0 = λ+ t0d, (5.2)
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where
t0 = max{t > 0 | A(λ+ td) ≤ b}. (5.3)

We still remain with a wide range of choices, depending on the direction d > 0,
which may affect the convergence of the algorithm.

It would be convenient to find a µ0 which is near to the unknown optimal
solution and a reasonable answer to this aspiration is offered by the optimal so-
lutions of the problems ISP (LISP ), SELL and LLP , that we have considered
in Section 4. In fact, for the last of these problems, LLP , we know an explicit
optimal solution, whereas for the first two, LISP and SELL, we know that they
have unique optimal solutions and that such solutions are easier to find (using e.g.
Rosen’s algorithm) than that of problem MLL. This is clear because of the strict
convexity (concavity) of the objective functions and because of the computational
simplicity of such functions and their gradients.

6 Numerical results

We report here on the results of some computational experiments in order to
illustrate the above considerations on the relations existing among the optimal
solutions to the problems MLL, ISP (LISP ), SELL and LLP .

We have implemented Rosen’s algorithm on a personal computer to solve prob-
lem MLL with linear constraints. We intend to evaluate the optimal solutions of
ISP (LISP ), SELL and LLP as approximations of the optimal solution of MLL
and also compare them and randomly chosen points on the boundary of the feasible
set as initial solutions while using Rosen’s algorithm.

In order to evaluate the objective function f(µ) and its derivatives we use the
finite sum forms (3.5) and (3.6) and we observe that they require the computation
of 2m−1 and 2m−1 terms respectively. Therefore the computational time increases
rapidly with m and we have seen that m = 10 is a limit size in order to run
the algorithm in a reasonable time. This observation poses the question of the
existence of a good numerical treatment of the function f(µ) and of its derivatives
so that instances of the MLL problem with a size m > 10 can be solved. The
question is the object of discussion in [6].

In each of the instances of the MLL problem which follow we have run Rosen’s
algorithm using different choices of the initial solution and in the tables we show
the value f(µ0) of the objective function at the initial solution, the approximate
optimal value f∗ which is obtained by the algorithm (which stops after finding two
consecutive values of the objective function f(µ) that differ by less than 10−4),
the percentage relative error, 100[f(µ0) − f∗]/f∗, which is incurred when using
the initial solution µ0 as an approximation of an optimal solution, and, finally,
the number of iterations of the algorithm which were necessary to obtain the



10

approximate optimal solution.

As initial solutions we have used:

• 10 points on the boundary, using formulas (5.2) and (5.3) with randomly
chosen directions d: in this case the numbers in the table are average values;

• a point on the boundary, using formulas (5.2) and (5.3) with the special
direction d = e = (1, 1, . . . , 1);

• the optimal solutions of the problems ISP (LISP ), SELL and LLP , which
we denote by µLLP , µSELL and µISP .

Example 1.1

The number of service units is m = 10, the vector of demand intensities,
i.e. the arrival rates vector, is λ = (10, 2, 5, 4, 2, 8, 10, 10, 5, 2), the constraint
coefficients matrix and the resource bounds are

A =
(

1 1 3 1 2 1 1 3 1 1
2 2 3 2 5 1 2 1 2 3

)
, b =

(
250
110

)
.

Results are summarised in the following table.

Table 1: results of Example 1.1

µ0 λ+ t0d λ+ t0e µLLP µSELL µISP

averages

f(µ0) 9.7911 2.5416 2.3672 2.1999 2.2682
f∗ appr. 2.1670 2.1669 2.1670 2.1669 2.1669
% err. 352. 17.3 9.2 1.5 4.7
n. iter. 14.6 6 6 5 6

Example 1.2

m = 10, λ = (20, 2, 10, 5, 4, 30, 10, 20, 10, 40), matrix A and vector b as in
Example 1.1.

Table 2: results of Example 1.2

µ0 λ+ t0d λ+ t0e µLLP µSELL µISP

averages

f(µ0) 100.7682 26.6913 18.9199 17.9418 22.3592
f∗ appr. 17.2077 17.2077 17.2077 17.2077 17.2077
% err. 486. 55.1 10. 4.3 30.
n. iter. 27.0 18 21 20 21
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Example 2

m = 10, λ = (1, 2, 1, 1, 1, 8, 8, 8, 6, 6),

A =


3 4 1 5 0 10 10 10 9 9
0 1 0 0 1 5 6 10 10 10
1 2 1 1 1 5 5 5 8 8
1 0 1 0 0 2 2 2 1 1
0 0 2 1 0 5 4 6 10 8
1 1 1 1 0 6 7 8 9 10

 , b =


600
400
350
150
350
400

 .

Table 3: results of Example 2

µ0 λ+ t0d λ+ t0e µLLP µSELL µISP

averages

f(µ0) 10.2450 7.1768 8.7065 6.9335 7.0928
f∗ appr. 6.9244 6.8907 6.8755 6.9335 6.9884
% err. 48. 4.2 26.6 0.0 1.5
n. iter. 13.5 6 7 1 7

Example 3.1

m = 10, λ = (5, 1, 2, 4, 1, 5, 5, 4, 3, 2), the constraint coefficients matrix
A = (aij) has 11 rows with

• aij = 0, i 6= j, 1 ≤ i ≤ 10;

• (a11, a22, . . . , a10 10) = (1, 1, 3, 1, 2, 1, 1, 3, 1, 1);

• (a11 1, a11 2, . . . , a11 10) = (1, 1, 3, 1, 2, 1, 1, 3, 1, 1);

the resource bounds vector is b = (25, 3, 20, 10, 5, 40, 15, 45, 15, 50, 155).

Table 4: results of Example 3.1

µ0 λ+ t0d λ+ t0e µLLP µSELL µISP

averages

f(µ0) 47.9251 8.0187 2.6965 2.0394 2.0454
f∗ appr. 2.0391 2.0352 2.0352 2.0350 2.0349
% err. 2250. 294. 32.5 0.2 0.5
n. iter. 11.7 7 6 2 4
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Example 3.2

m = 10, λ = (20, 1, 1, 4, 1, 30, 10, 5, 10, 40), matrix A and vector b as in
Example 3.1.

Table 5: results of Example 3.2

µ0 λ+ t0d λ+ t0e µLLP µSELL µISP

averages

f(µ0) 68.4536 43.8396 20.7013 19.2873 25.1359
f∗ appr. 18.5643 18.3292 18.3292 18.3292 18.3295
% err. 269. 139. 12.9 5.2 37.1
n. iter. 152.1 136 135 107 63

Example 4.1

m = 10, λ = (10, 2, 5, 4, 2, 8, 10, 10, 5, 2), matrix A and vector b are consti-
tuted of the first 10 rows (elements) of those of Example 3.1. In this case we know
the optimal solution, µ∗ = (25, 3, 20/3, 10, 5/2, 40, 15, 15, 15, 50), and then the
exact optimal value of the objective function is f∗ = 6.834754.

Table 6: results of Example 4.1

µ0 λ+ t0d λ+ t0e µLLP µSELL µISP

averages

f(µ0) 306.8759 42.1986 12.6259 6.8349 6.8349
f∗ appr. 6.8353 6.8353 6.8355 6.8349 6.8349
% err. 4390. 517. 84.7 0.0 0.0
n. iter. 9.7 9 8 1 1

Example 4.2

m = 10, λ = (5, 1, 2, 4, 1, 5, 5, 4, 3, 2), matrix A and vector b as in Example
4.1. The optimal solution is the same as that of Example 4.1 and then the exact
optimal value of the objective function is f∗ = 1.908701.

Table 7: results of Example 4.2

µ0 λ+ t0d λ+ t0e µLLP µSELL µISP

averages

f(µ0) 73.3925 8.0187 2.6965 1.9087 1.9087
f∗ appr. 1.9122 1.9130 1.9130 1.9087 1.9087
% err. 3738. 319. 40.1 0.0 0.0
n. iter. 10.6 9 8 1 1
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From the above results we first observe that in all the instances considered
the algorithm converges essentially to the same value of the objective function, no
matter what initial solution has been used. This suggests that the MLL problem
has a unique optimal solution.

It is clear that a randomly chosen point on the boundary of the feasible set is
a poor initial solution in general and that the point λ+ t0e is a better choice. The
latter has the good feature of maximizing the distance between µ and λ, under
the condition that µi − λi = µj − λj for all i, j ∈ {1, 2, . . . , m}.

The optimal solution µLLP of the line length problem, which is as easy to
compute as λ+ t0e, results better than λ+ t0e in all respects.

Finally, the optimal solutions µSELL and µISP to the problems of minimizing
the sum of expected line lengths and of maximizing the idle system probability,
respectively, appear to be the best choices as initial solutions of the Rosen’s algo-
rithm. The computational effort required to determine either µSELL or µISP is
a little greater than that required by µLLP , but, on the other hand, µSELL and
µISP appear to be very good approximations of the optimal solution to the MLL
problem.

7 Conclusion

The analysis of the maximum line length (MLL) problem and of its relations with
the ISP , SELL and LLP problems has shown the essential similarities of such
different optimization problems for a multiservice system. Those similarities have
some interesting consequences also from a computational viewpoint. This aspect
is now being explored in [6], in order to propose an efficient algorithm for the
solution of the MLL problem.

The results which have been obtained here concern the simplest case of a
multiservice system, which is constituted by independent M/M/1 service units. A
similar analysis for multiservice systems constituted by more general service units
would be more interesting for the possible practical applications. On the other
hand, it is clear that the consequent higher analytical complexity would render
the MLL problem impossible to study directly in general. Then an interesting
question is that of finding classes of service units to which the present analysis
can be applied. More generally, one could try to understand to what extent the
results for the multi–M/M/1 service system can give information on the behaviour
of more general multiservice systems.

A different limitation of the present study and of that of [6] is that the numerical
analysis has only been applied to problems with linear constraints. On one hand,
this is the obvious and necessary starting point of such analysis, because of its
simplicity and of its reasonable interpretation. On the other hand, more general
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constraints should be considered in the case that specific nonlinear cost (resource
requirement) functions were suggested by special applications.

Appendix The subset enumeration form of f(µ)

Here we verify the formula (3.5) which provides a finite sum representation of f(µ).

After setting ρi = λi/µi, i = 1, 2, . . . , m, we have from (3.4) that

f(µ) =
∞∑

n=0

[
1−

m∏
i=1

(
1− ρn+1

i

)]
=

∞∑
n=0

[ ∑
∅6=J⊆{1,2,...,m}

(−1)|J|+1
∏
j∈J

ρn+1
j

]

=
∑

∅6=J⊆{1,2,...,m}

(−1)|J|+1
∞∑

n=0

( ∏
j∈J

ρj

)n+1

=
∑

∅6=J⊆{1,2,...,m}

(−1)|J|+1
∏

j∈J ρj

1−
∏

j∈J ρj
,

which is equivalent to formula (3.5).
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