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Introduction

New UE standards and regulations have been approved.

During the 2011–2017 period
the European manufacturers of induction motors
have to take into account the new regulations.

1 the IEC/EN 60034–30 (2008) defines energy
efficiency classes (IE code, International Efficiency),

2 the IEC/EN 60034–2–1 (2007) establishes
methods to determine efficiency from tests, and
methods to distinguish the loss contributions.
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Introduction

On the basis of the successful US experience,
in 2009 the European Parliament approved the
Minimum Energy Performance Standard (MEPS)
for the electric motors, acknowledging the efficiency
values reported in the IEC/EN 60034–30 standard.

1 The MEPS sets the minimum mandatory efficiency
levels for motors sold in the European market

2 The MEPS defines the agenda for its
implementation.
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Introduction

MEPS: Efficiency Level

Efficiency classes for 4–pole, 50–Hz, three–phase IMs.
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Introduction

European MEPS Agenda
From June 16, 2011

Motors must meet the IE2 efficiency level

From January 1, 2015

Motors with a rated output of 7.5—375 kW must meet
EITHER the IE3 efficiency level
OR the IE2 level if fitted with a variable speed drive.

From January 1, 2017

Motors with a rated output of 0.75—375 kW must meet
EITHER the IE3 efficiency level
OR the IE2 level if fitted with a variable speed drive.
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There are some problems and difficulties

that complicate the panorama

• standards are not yet completely defined,
• there are several differences between standards,
• high financial cost for investments.

(This is critic for small and medium size producers).

In medium period

the increase of axial core length of the machine allows a
proper efficiency improvements.

Such No–Tool–Cost process requires a minimum
economical impact to modify the production process.
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IM design preliminary considerations

With a given lamination geometry,
Nominal Torque and Voltage relationships:

Tr ∝ L · B · J

Vr ∝ L · B · N

Dimensionless ratios are introduced
so as to define the design variations:

β =
B′

B
σ =

J ′

J

λ =
L′

L
ν =

N ′

N
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IM design preliminary considerations

There are some restrictions for these design ratios:
From the torque equation:

λ · β · σ = 1

From the voltage equation:

λ · β · ν = 1

These constrains impose the identity:

σ = ν

and then

λ · ν =
1
β
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A Combined Analytical–FE IM model

is used for a detailed analysis of induction machine.

Equivalent circuit of the three–phase induction machine

Finite element simulations are carried out
so as to compute the lumped parameters

of the traditional equivalent circuit.
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Combined Analytical–FE IM model

Scheme of the combined analytical–FE model
of the three–phase induction machine.
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Combined Analytical–FE IM model

2D simulations

referring to a laminated motor, a two–dimensional FE
analysis is generally satisfactory.

3D parameters

The three–dimensional effects are computed analytically
and included later in the model.

• stator resistance,
• end–winding resistance and inductance,
• rotor ring resistance and inductance,
• skewing.
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Combined Analytical–FE IM model

Advantages

• The computation is rapid,
(few FE simulations are necessary),

• The computation is accurate,
(effects of saturation and eddy currents are
considered in the FE analysis),

• This approach overcomes the limits of the completely
analytical or completely numerical procedures.

• The procedure is easy to be implemented.

• The procedure is suitable for any FE software.
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Combined Analytical–FE IM model

Diagram of the combined analytical–FE procedure
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Magnetizing inductance (No–load analysis)
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Rotor Joule losses (Locked–rotor analysis)

Selecting the rotor bars, the Joule losses are computed.

Pjr =
1

2σAl
Lstk

∫
SAl

J̇z · J̃zdS

It is computed at various frequencies.
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Rotor parameters as a function of the frequency

The equivalent resistance from the Joule losses
The equivalent inductance from the magnetic energy

Req =
Pjr

3I2 Leq =
2
3

Wm

I2

Ll,2D = Lm
Leq(Lm − Leq)− (Req/ωr )2

(Lm − Leq)2 + (Req/ωr )2

Rr ,2D = Req
Lm + Ll,2D

Lm − Leq
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Analytical–FE IM model

1 FE results are associated only to the given
lamination geometry and the winding distribution,

2 Normalized parameters are used:
with unity stack length,
and unity number of turns per slot.

3 This allows the results to be easily extended
to any motor with its actual length
and its actual number of turns
simply rearranging the equivalent circuit.
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Example: Considered machine

Data of the Original Induction Motor

Nominal Power (kW) 11
Nominal Voltage, (V) 400
Pole number – 4
Frequency (Hz) 50
Current (A) 22.5
Power factor (p.u.) 0.84
Efficiency (*) (p.u.) 0.88

(*) the rated efficiency is defined in accordance to
IEC/EN 60034–2 (1996) .
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Example: Efficiency Class for IM Prototype

The IEC/EN 60034–30 (2008) Efficiency Classes
for the 4–pole 50–Hz Induction Motor Prototype

Rated Power IE1 IE2 IE3

Standard High Premium
kW HP efficiency efficiency efficiency

11 15 87.6 % 89.8 % 91.4 %
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Example: Analytical considerations

Preliminary analytical estimation

Resulting dimensionless ratios:

λ = 1.16 increase of axial length
β = 0.96 decrease of flux density
σ = 0.90 decrease of current density
ν = 0.90 decrease of no. of turns

With such a modifications

an increase of 2 % on the efficiency
is estimated for the prototype.
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Experimental validation of the prediction

Results achieved from the analytical–FE model
are compared with the experimental results
referring to two IMs of different lengths.
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Experimental validation of the prediction

Results achieved from the analytical–FE model
are compared with the experimental results
referring to two IMs of different lengths.
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Experimental validation of the prediction

Results achieved from the analytical–FE model
are compared with the experimental results
referring to two IMs of different lengths.
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Experimental validation of the prediction

Results achieved from the analytical–FE model
are compared with the experimental results
referring to two IMs of different lengths.
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Experimental validation of the prediction

Results achieved from the analytical–FE model
are compared with the experimental results
referring to two IMs of different lengths.
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Experimental validation of the prediction

Results achieved from the analytical–FE model
are compared with the experimental results
referring to two IMs of different lengths.
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Efficiency map

Efficiency Map of the motor under analysis.
Lamination geometry is fixed.
Rated power PN=11 kW, rated voltage VN=400 V.
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Optimal Efficiency Trajectory

The optimal efficiency trajectory is found
by connecting the points of maximum efficiency
for a given stack length.
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Optimal efficiency Trajectory

1

Procedure to search the operating point
along the optimal trajectory
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Optimal efficiency Trajectory

1 2

Procedure to search the operating point
along the optimal trajectory
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Optimal efficiency Trajectory

31 2

Procedure to search the operating point
along the optimal trajectory
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Optimal efficiency Trajectory

4

Procedure to search the operating point
along the optimal trajectory
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Along the Optimal Efficiency Trajectory
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Along the Optimal Efficiency Trajectory
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Along the Optimal Efficiency Trajectory
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Along the Optimal Efficiency Trajectory
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Efficiency map of motor with higher diameter

11–kW rated power and 400–V supply voltage

1 The behaviors of electric and magnetic quantities,
2 the behavior of the motor losses

are the same as in the previous case.
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Higher diameter lamination

11–kW rated power and 400–V supply voltage

Comparing the two solutions allows to determine the
convenience of a motor with lower diameter and higher
length, or with higher diameter and lower length.
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Conclusions (1/3)

• Theoretical developments and experimental
validations of a design approach to increase the
induction motor efficiency class are reported.

• The increase of axial core length is investigated as
an effective no–tool–cost solution.

• The proper increase of the motor axial length is
found using a procedure based on a combined
analytical–FE computation.
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Conclusions (2/3)

• A motor prototype has been built and tested to
prove the validity of the proposed design approach.

• The satisfactory agreement is found between
computed and measured motor efficiency, in a large
load torque range.

• This confirms the robustness of the procedure and
allows it to be used in an optimization process.
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Conclusions (3/3)

• The efficiency map is built adopting the stack length
and the number of turns per slot as main variable.

• The optimal efficiency trajectory is defined.

• The behaviour of the design variables (magnetic
and electric loading) is shown along this trajectory.

• Various geometries are compared.

• The proposed design approach is suitable
to “move” standard efficiency motors
in upper efficiency classes.



Introduction

Length Increase

Efficiency
Evaluation

Prototype

Experiments

Efficiency Map
Opt. Eff. Trajectory

Along O.E.T.

Higher diameter

Conclusions

33

Related Papers by the Authors

A. Boglietti, A. Cavagnino, L. Ferraris, M. Lazzari, G.
Luparia,
“No Tooling Cost Process for Induction Motors
Energy Efficiency Improvements”, Transaction on
Industry Applications, Vol.41, No.3, May/June 2005,
pp.808-816.

L. Alberti, N. Bianchi, S. Bolognani, “A Very Rapid
Prediction of IM Performance Combining Analytical
and Finite-Element Analysis”,
IEEE Transactions on Industry Applications, Vol.44,
No.5, September/October 2008, pp.1505-1512.



Introduction

Length Increase

Efficiency
Evaluation

Prototype

Experiments

Efficiency Map
Opt. Eff. Trajectory

Along O.E.T.

Higher diameter

Conclusions

34

Related Papers by the Authors (cont.)

A.Boglietti, A.Cavagnino, M.Lazzari, M.Pastorelli,
“International standards for the Induction Motor
Efficiency Evaluation: A Critical Analysis of the
Stray-Load Loss Determination”, IEEE Trans. on
Industry Applications, Vol.40, No.5,
September/October 2004, pp.1294–1301.

L. Alberti,
“A Modern Analysis Approach of Induction Motor for
Variable Speed Application”, supervisor Prof. N.
Bianchi, University of Padova, 2009,
http://paduaresearch.cab.unipd.it/1685/

L. Alberti, N. Bianchi and S. Bolognani,
“Lamination Design of a Set of Induction Motors”,
Journal of Electrical Engineering: Theory and
Application, issn 1737-9350, pp. 18-23, vol. 1, 2010.



Introduction

Length Increase

Efficiency
Evaluation

Prototype

Experiments

Efficiency Map
Opt. Eff. Trajectory

Along O.E.T.

Higher diameter

Conclusions

35

Related Papers by the Authors (cont.)

A. Boglietti, A. Cavagnino, M. Lazzari, M. Pastorelli,
“International standards for the Induction Motor
Efficiency Evaluation: A Critical Analysis of the
Stay-Load Loss Determination”, IEEE Transaction on
Industry Applications, Vol.4, No.5,
September/October 2004, pp.1294-1301.



Introduction

Length Increase

Efficiency
Evaluation

Prototype

Experiments

Efficiency Map
Opt. Eff. Trajectory

Along O.E.T.

Higher diameter

Conclusions

36

Thank you!
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