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Abstract The objective of this paper is to present a special application
field of optimal control and differential game theories which is of interest to
management scientists. After introducing the Vidale-Wolfe’s and Nerlove-
Arrow’s dynamic models for advertising processes, I will focus on a few
exemplary problems. At a first investigation level, we find some optimal
control problems, then the more interesting and challenging problems in
the framework of game theory. The view of all problems is unified by the
common reference to the same two basic dynamic models.
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1 Introduction

Advertising is a special tool of Marketing, and is an object of study in
Management Science. Most of the literature dealing with advertising has
an empirical, descriptive and qualitative nature, nevertheless there exists a
stream of research in quantitative marketing which has produced interesting
models for both descriptive and optimization purposes.

Here I want to provide some ideas on

– dynamic models of relevant advertising phenomena,
– decision problems of a monopolistic firm which admit optimal control

formulations,
– decision problems of an oligopoly which admit game theory formulations.

I will draw only a sketch of a wide landscape, with the aim of stimulating
curiosity, if not attention, about an application field to which mathematics
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can give important contributions. On the other hand I address the reader to
review papers [38,14,29], and systematic books [10,26] to find a thorough
presentation of models and methods available.

The outline of the paper is as follows. In Section 2 I introduce the Vidale-
Wolfe’s and Nerlove-Arrow’s dynamic models for advertising processes. In
Section 3 some typical optimal control problems are formulated using the
dynamic models of Section 2: they concern a single monopolist firm. Finally,
in Section 4, differential game theory is used to formulate some interesting
and challenging problems which concern the interaction of several firms in
an oligopoly.

2 Dynamic advertising models

Two main models are at the basis of the literature on optimal control appli-
cations to advertising and they have been proposed in a five years interval
around 1960: the first one, dated 1957, is due to Vidale and Wolfe [42],
whereas the second one, dated 1962, is due to Nerlove and Arrow [33]. Both
of them focus on the relationship between advertising and demand for a
product, the former in a direct way, the latter in a mediated way. The two
review articles [38] and [14] present the general context of the optimal con-
trol models in advertising until 1994: there we see how those two models
have become the pivots of the mathematical research on advertising.

2.1 Vidale and Wolfe’s model

Vidale and Wolfe in [42] aim at modelling the sales response to advertising
and try to represent some characteristic behaviors as observed in real data.
They observe two main facts concerning the relation between sales and
advertising. Sales intensity decreases with time if no advertising is done
and, if an adequate advertising effort is done over a time period, then sales
intensity increases, but a saturation effect may emerge. Hence they suggest
that the sale intensity s(t) satisfies the differential equation

ṡ(t) = θu(t)[m− s(t)]− δs(t) , (1)

where u(t) is the advertising intensity, and θ, m, δ > 0 are parameters. This
is a linear differential equation in the state variable s(t), where the term
−δs(t) represents the spontaneous decay of the state. The parameter m
is the saturation threshold, an upper bound to the sales intensity: when
m− s(t) is small and positive, the advertising intensity u(t) must be large
to sustain the sale level.

2.2 Nerlove and Arrow’s model

Nerlove and Arrow assume in [33] that the demand of a product (hence its
sale intensity) depends on a state variable, called goodwill, that represents
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the effects of a firm investment in advertising. The goodwill affects the
demand of the product together with price and other exogenous factors.
Goodwill is therefore seen as a stock of productive capital: it is subject
to depreciation, i.e. spontaneous decay proportional to its value, and, on
the other hand, it is sustained by the investment flow controlled by the
firm. Nerlove and Arrow focus on the most elementary differential equation
which describes an investment phenomenon in a capital stock subject to
depreciation, i.e. the linear equation{

Ġ(t) = u(t)− δG(t) ,
G(0) = α ,

(2)

where G(t) and u(t) are the capital stock (goodwill) and the advertising
investment intensity at time t, δ > 0 is a decay parameter, which represents
the capital depreciation over time, and α is the known value of the capital
at the initial time 0. In fact equation (2) represents the capital dynamics of
the neoclassical aggregate growth model [40, p. 432].

The goodwill variable may assume different meanings, depending on the
particular context: a first example is sales intensity (see [8]), a second one,
provided by [28], is reservation price, a third one, used by [47] in the discrete
time version of the model, is awareness.

3 Optimal control problems

At a first level of analysis, one may assume that a firm acts alone, as a
monopolist, in its environment, the market. The firm decision problems con-
cerning its advertising investments find a convenient framework in optimal
control theory. Let us consider some examples of typical problems, con-
sidering advertising intensity as the unique control variable, for simplicity,
although one can find in the literature several problems in which e.g. price
is also a control variable. To this purpose, let [0, T ] be the programming
interval (with T ∈ (0,+∞]), recalling that in some cases a finite horizon is
well justified by a concrete marketing situation, but quite often an infinite
horizon is considered.

3.1 Optimal advertising and Vidale-Wolfe’s model

The basic optimal control problem represents a firm which wants to maxi-
mize its profit (discounted at rate ρ ≥ 0)

J [u(t)] =
∫ T

0

[πs(t)− C(u(t))] e−ρtdt , (3)

under an initial state condition s(0) = s0, a constraint on the control
u(t) ∈ [0, ū] and, in finite horizon, a terminal state constraint s(t) ∈ [s1

T , s2
T ].

Here, π > 0 is the constant marginal revenue and C(u) ≥ 0 is the cost
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intensity associated with the advertising intensity u, an increasing and con-
vex function, possibly linear or quadratic. Such problems are studied by
Sethi [35] and [36], who reformulates the model in terms of market share
x = s/m ∈ [0, 1], obtaining the motion equation

ẋ(t) = θu(t)[1− x(t)]− δx(t) . (4)

This point of view is particularly interesting in practice, because one may
measure the market share empirically in real markets.

An interesting variant of the Vidale-Wolfe’s model has been proposed
still by Sethi [39]: he replaces the complement market share 1− x(t) factor
in equation (4) by means of its square root and obtains the motion equation

ẋ(t) = θu(t)
√

1− x(t)− δx(t) ; (5)

hence he considers also a stochastic extension of it,

dx(t) =
(
θu(t)

√
1− x(t)− δx(t)

)
dt + σ(x(t))dw(t) , (6)

where σ(x(t))dw(t) is a white noise component. After assuming an infinite
horizon and quadratic advertising costs C(u) = u2, he solves the determinis-
tic problem, as well as the stochastic problem of maximizing the expectation
of the discounted profit.

3.2 Optimal advertising and Nerlove-Arrow’s model

Using the Nerlove-Arrow’s model requires to specify how the demand for
the product depends on the goodwill, or how the revenue depends on it. Let
the function R, increasing and concave, represents the firm profit intensity,
gross of the advertising costs. We assume that a firm aims at controlling
the goodwill evolution in order to maximize its profit (discounted at rate
ρ ≥ 0)

J [u(t)] =
∫ T

0

[R (G(t))− C (u(t))] e−ρtdt + S (G(T )) e−ρT . (7)

The expression R (G(t)) − C (u(t)) represents the net profit rate and the
function S summarizes the effects of the final goodwill G(T ) on the profit
to be obtained at time T or later on. It is consistent to assume that the
salvage function vanishes, S (G(T )) e−ρT = 0, in problems with T = +∞.

The consideration of nonlinear and convex advertising costs is some-
times translated into the assumption that the goodwill productivity term
is nonlinear and concave in the advertising intensity [17], instead of being
linear as in the original Nerlove-Arrow’s equation (2). For instance, we may
find a goodwill motion equation as (see e.g. [5], [28])

Ġ(t) = b
√

u(t)− δG(t) , (8)

where b is a positive parameter, or as (see e.g. [37], [20])

Ġ(t) = b lnu(t)− δG(t) , (u(t) ≥ 1) . (9)
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3.2.1 Infinite horizon Let T = +∞, R (G) = (q − ε1)Gγ/γ − ε2G
2γ/2γ2,

and C (u) = κu2/2, where γ ∈ [1/2, 1), q, ε1, ε2, κ > 0 and ε1 < q. We think
of q as the sale price and Gγ/γ as the demand rate, so that qGγ/γ is the
revenue intensity. Furthermore, ε1y+ε2y

2/2 is the production cost intensity
associated with the production intensity y. The Hamiltonian function is

H (G, u, p, t) = (q − ε1)Gγ/γ − ε2G
2γ/2γ2 − κu2/2 + p (u− δG) , (10)

where p is the adjoint variable, so that Huu < 0 and an optimal control is
unique and must satisfy the condition

κu(t) = p(t) , (11)

provided that it exists. Hence we obtain the differential system{
Ġ(t) = p(t)/κ− δG(t) ,
ṗ(t) = −(q − ε1)Gγ−1(t) + ε2G

2γ−1(t)/γ + (δ + ρ) p(t) ,
(12)

which admits a unique equilibrium point with coordinates (G∗, p∗) such that

p∗ = κδG∗ (13)

and G∗ is the solution of the equation

γ(q − ε1)Gγ−1 = ε2G
2γ−1 + γ (δ + ρ) κδG . (14)

At the equilibrium, the optimal advertising policy u∗ = p∗/κ = δG∗ is
chosen precisely to compensate the goodwill decay.

3.2.2 Finite horizon - Advertising an event Let T < +∞, R (G) = 0,
C (u) = κu2/2 and S (G) = −ν

(
G− Ḡ

)2
/2 (where κ, ν > 0, Ḡ > α),

and ρ = 0. This instance does not account for sales before the final time
T . Here we aim at programming the advertising campaign for an event
(or the introduction of a new product in the market). The function S (G)
describes the payoff obtained by the organizers of an event like a concert or
a theatre performance. For such events the number of available seats is a
crucial parameter. We may think of a goodwill threshold Ḡ such that

– if the final goodwill exceeds it, G(T ) > Ḡ, then the demand is greater
than the available seats, and there are some unsatisfied customers;

– if the final goodwill is less than it, G(T ) < Ḡ, then the demand is less
than the available seats, and some tickets remain unsold.

The quadratic penalty function S (G) is a symmetric representation of two
kinds of loss: in the first case a loss of reputation, in the latter a loss of rev-
enue. A similar problem has been analyzed in [21], although with reference
to a different model with nonlinear dynamics.

Under the previous assumptions, we have a linear quadratic determinis-
tic optimal control problem and we can study it using the standard method
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of the completions of the squares [46]. After defining z(t) = G(t) − Ḡ the
problem becomes

min
∫ T

0

κu(t)2/2 dt + νz(T )2/2 ,

ż(t) = u(t)− δz(t)− δḠ .

(15)

We consider the associated Riccati equations and eventually obtain that a
solution to them requires that there exists a unique feedback optimal control
that can be written as

u∗(t) = −
q(t)

(
G∗(t)− Ḡ

)
+ s(t)

κ
. (16)

If δ = 0, the solution is q(t) = νκ/ (κ + ν (T − t)), and the optimal control
is u∗(t) = −ν

(
G∗(t)− Ḡ

)
/ (κ + ν (T − t)). The function q(t) is strictly

increasing: the weight of the reaction to the deviation of the goodwill from
the target, x∗(t)− Ḡ, is higher and higher as time approaches T .

A variant of this problem has been studied in [3], where the goodwill is
assumed to satisfy a linear stochastic differential equation. There the control
(advertising intensity) enters directly the diffusion term of the motion SDE.
Therefore, some uncertainty is introduced in the advertising effectiveness
and this fact modifies the structure of the optimal solution.

3.2.3 Finite horizon - Sale of a seasonal product A special finite horizon
problem concerns the sale of a seasonal product. Let y(t) represent the
quantity of product sold by time t and let the demand be a linear function
of goodwill

ẏ(t) = G(t) , y(0) = 0 . (17)

Let C (u) = κu2/2, κ > 0, as for the above problem, and let us consider
explicitly the constraint u ≥ 0 on the advertising intensity. Let R (G) = qG
and S (G, y) = −w(y), where q > 0 is the price of the product and w(y) is
a positive, increasing and convex function, representing the production cost
of the quantity y of product. Let us further assume that the discount rate
is ρ = 0, as the sale interval is short for a seasonal product.

The problem Hamiltonian function is

H (G, y, u, p1, p2, t) = qG− κu2/2 + p1 (u− δG) + p2G , (18)

so that Huu < 0 and the unique optimal control must be

u(t) = max{0, p1(t)/κ} , (19)

provided that it exists. As in the infinite horizon case we find that, at
the optimum, marginal advertising cost equals marginal goodwill value,
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κu(t) = p1(t), provided that advertising is active, u(t) > 0. From the adjoint
equations and the trasversality conditions, we obtain that

p1(t) =
q + p2

δ

(
1− eδ(t−T )

)
, (20)

p2(t) = p2 = −w′(y(T )) < 0 . (21)

Therefore, after defining

y0 =
α

δ

(
1− e−δT

)
(22)

as the free sale level, which is the sale quantity attainable without any
advertising effort, we have that

– either q ≤ w′(y0), and then u∗(t) ≡ 0, y∗(T ) ≡ y0;
– or there exists y∗ > y0 such that −p2 = w′(y∗) < q, and then u∗(t) > 0

for all t < T , y∗(T ) = y∗ (u∗(t) is strictly decreasing and u∗(T ) = 0).

Several problems of this kind have been studied (see [12] and [13]), but
with linear advertising costs and, on the other hand, with further constraints
on the advertising intensity (control) u(t): in that case the optimal policies
are bang-bang controls because of the special problem structure.

3.2.4 Heterogeneous markets and segmentation If a consumer population
is heterogeneous, the firm has to determine the part of the consumers which
may have an interest in buying the product, i.e. the target market [27, p.
379]. This is obtained by first dividing the market into distinct segments,
consumer groups which exhibit special needs and behaviors [27, p. 379]
and which require specific products and marketing mix. Then the firm has
to decide to which consumer groups the product should be proposed and
how to reach each segment using the available communication tools, while
considering that different advertising media entail specific costs and different
segments provide different marginal revenues.

The treatment of a segmented market requires a generalization of Nerlove-
Arrow’s model which considers one goodwill component for each segment
of the population. Let A be the (finite) segment set let Ga (t) represent the
stock of goodwill of the product at time t, for the (consumers in the) a
segment, a ∈ A. A possible model, considering the use of one advertising
medium for all segments, is the following

Ġa (t) = γaϕ(u (t)) +
∑

b∈A\{a}

δabGb(t)− δaGa (t) , a ∈ A , (23)

where δa > 0 represents the goodwill depreciation rate for the members of
the consumer group a, δab represents the influence of segment b on segment
a, γaϕ(u (t)) is the effective advertising intensity at time t directed to that
same group, γa > 0, and finally ϕ(u) is an increasing and concave function
of the advertising medium level u.
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In the special case that the influence parameters δab are all 0, equation
(23) reduces to a set of independent ordinary differential equations. Under
such assumptions and the initial state condition Ga (0) = αa ≥ 0, a problem
of optimal advertising for a new product introduction will have the objective
functional

J = −
∫ T

0

C(u(t)) dt +
∑
a∈A

πaGa (T ) , (24)

whose first term represents advertising costs, whereas the second one rep-
resents revenue (see [4]).

A further step in the analysis of different behaviors of a heterogeneous
population is addressed by the age-segmentation, which has been profitably
considered in contexts different from that of advertising, e.g. social analysis
and drug addiction (see [1], [19]). In this case, we are led to consider an
age-distributed goodwill variable which evolves according to a linear partial
differential equation as the following (see [18])

∂tG (t, a) + ∂aG (t, a) = γ(a)u (t)− δ (a) G (t, a) ,
G (0, a) = α (a) ,
G (t, 0) = β (t) ,

(25)

where δ (a) > 0 represents the depreciation rate for the members of age a,
γ (a) ≥ 0 is the age-spectrum of the advertising medium,

∫∞
0

γ (a)da = 1,
α (a) ≥ 0 is the known goodwill level at the initial time for the age a class of
the population and β (t) is the goodwill level at all times for the age 0 class.
Special optimal control tools for the treatment of such models are presented
in [15].

4 Game theory problems

Often an oligopolistic framework which considers several manufacturers in
the market is a better representation of real life situations. In that case
each manufacturer’s profit depends on the decisions of all manufacturers.
The natural models to deal with such situations are provided by the theory
of games and, in the last two decades, a substantial literature on differential
games in marketing has been produced. A comprehensive synthesis is the
book by Jørgensen and Zaccour [26]. Advertising models have an important
part in that matter and address two key issues: “the strategic, intertemporal
interdependencies among the firm and its competitors, and between the firm
and its customers”[26, p. 29].

Among the variety of models which have been proposed we consider here
the market share models, which are derived from the Lanchester model of
combat, the sale response models, which are based on the Vidale-Wolfe’s dy-
namics, and the advertising goodwill models, which are based on the Nerlove-
Arrow’s dynamics.
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4.1 Games of the Lanchester’s type

The first model of competitive advertising decisions is a variation of the
Lanchester model of combat, already used to describe populations evolution
[9, p. 19], and leads to the so-called market share models. As market shares
of firms are observable, such models are particularly interesting for empirical
studies (see e.g. [44] and [45]). In the case of a duopoly, the market shares
x1(t), x2(t) of the two firms are subject to the dynamics

ẋi(t) = γiui(t) (1− xi(t))− γjuj(t)xi(t) , {i, j} = {1, 2} , (26)

where u1(t), u2(t) are the firms advertising intensities and γ1, γ2 > 0. One
observes that the sales rates may be expressed as

si(t) = mxi(t) , i ∈ {1, 2} , (27)

where m > 0 is the market potential, possibly a constant. Hence, as for the
objective functionals of the players (firms), the profits are

Ji [u(t)] =
∫ T

0

[πsi(t)− Ci(ui(t))] e−ρtdt , i ∈ {1, . . . , N} , (28)

where u(t) = (u1(t), u2(t)) and Ci(ui) is the cost intensity of the manufac-
turer i associated with the advertising intensity ui.

The two important solution concepts are the open loop Nash equilib-
rium, where the controls ui(t) depend on time t only, and the Markovian
(or feedback) Nash equilibrium, where the controls ui(t) depend on the in-
formation on the state x(t) = (x1(t), x2(t)) at time t, or equivalently on
s(t) = (s1(t), s2(t)).

In this stream of research we find also some stochastic variant, as in [34].
Moreover, we may see the market share models as a formal generalization
of the sale response models presented in the following section, as suggested
by Little [30].

4.2 Games with Vidale-Wolfe’s dynamics

Let N be the number of firms (players) and let ui(t) and si(t), i ∈ {1, . . . , N},
be the advertising intensity (i.e. the i-th firm strategy) and the sale intensity
of the i-th firm. Consistently with the monopolistic Vidale-Wolfe’s dynamics
(1), it is natural to assume that the system dynamics is

ṡi(t) = θiui(t)

m−
N∑

j=1

sj(t)

− δisi(t) , i ∈ {1, . . . , N} , (29)

where θi,m, δi > 0 and m is the saturation threshold, i.e. the market poten-
tial. The objective functionals representing manufacturers’ profits are again
(28) where u(t) = (u1(t), . . . uN (t)).
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Variants of the dynamics (29) have been introduced to admit a varying
market potential and a concave advertising term, i.e. decreasing marginal
effects of advertising. An example is the Erickson [11] model

ṡi(t) = θi

√
ui(t)

m(t)−
N∑

j=1

sj(t)

− δisi(t) , i ∈ {1, . . . , N} , (30)

with a market potential m(t) given exogenously.

4.3 Games with Nerlove-Arrow’s dynamics

Let N and ui(t), i ∈ {1, . . . , N}, be defined as in Section 4.2. Typically, two
kinds of game formulations, based on the Nerlove-Arrow’s dynamics, have
been considered. A third one has attracted recently some interest, because
of special interpretations, and poses some new analytical challenges.

I) There is one goodwill variable for each player/firm and it is affected by
the advertising strategy of the same firm only.
Let Gi(t), i ∈ {1, . . . , N}, be the goodwill stock of the i-th firm, with
dynamics described by the differential equation{

Ġi (t) = ui (t)− δGi (t) ,
Gi (0) = αi .

(31)

The payoff of the i− th player has the form

Ji [u(t)] =
∫ T

0

[Ri (G(t))− Ci (ui(t))] e−ρtdt + Si (G(T )) e−ρT , (32)

where G(t) and u(t) are the n-dimensional goodwill and advertising
strategy variables.
The first examples are given by [41] and [16], within different oligopoly
contexts. In the former the demand of each one of two firms depends on
the goodwill of both firms. In the latter the market share of each one of
N firms is assumed to be a function of the goodwill of all firms,

xi(t) =
Gi(t)ε∑N

j=1 Gj(t)ε
, (33)

where ε > 0, and the ith firm revenue depends on xi(t).
Other examples of a type I game are given by [7] and [6]: in the latter
a model of advertising competition is discussed in a dynamic duopoly
with diminishing returns to advertising effort. More recently we find [31]
and [32].
The optimal control problems arising from the game formulations can
be tackled using either the Pontryagin Maximum Principle, to obtain
open-loop Nash equilibria, or the Hamilton Jacobi Bellman Equation
approach, to obtain Markovian Nash equilibria.
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II) There is a unique goodwill variable, which is affected by the advertising
efforts (controls) of the different firms

{
Ġ (t) =

∑N
i=1 γiui (t)− δG (t) ,

G (0) = α ,
(34)

with γi > 0, i = 1, . . . N . The payoff of the i − th player has still the
form (32), where G(t) is now a 1-dimensional goodwill variable.
Examples are given by [23], [22], [24] and [25], which consider a sim-
ple distribution channel, where a retailer promotes the manufacturer
product and the latter may possibly spend in advertising to sustain the
retailer campaign. These are instances of the so-called leader-follower
model: a two-player game where one of the players (the manufacturer
- leader) makes his decision before the other player (the retailer - fol-
lower) makes hers. The solution of such games is sought in the form of
a Stackelberg equilibrium [10, p. 111].

III) There is one goodwill variable for each player/firm and it is affected by
the advertising strategy of all the firms, positively or negatively.
Using the type I games notation, let the dynamics be described by{

Ġi (t) = ui (t)−
∑

j 6=i ηijuj (t)− δGi (t) ,

Gi (0) = αi ,
(35)

where ηij ≥ 0 is the interference parameter of player j’s advertising on
player i’s goodwill. In this case the goodwill of some firm may assume
negative values and then the associated product demand may suitably
be represented by a nonsmooth function.

An example is given by [2], which considers a distribution channel, where
a retailer advertises a private label, at the level uh, while selling also a
national brand which is advertised by its manufacturer, at the level uj .
Then the national brand goodwill evolution is determined by the equation

Ġj (t) = uj (t)− ηijuh (t)− δGj (t) , (36)

where ηij > 0 is small. In a different situation, studied in [43], two competing
manufacturers have their goodwill variables determined by equations similar
to (36) and no constraint is present on the sign of the goodwill production
term uj (t)− ηuh (t). Then one firm may have a negative goodwill at some
times and with the assumption that the demand function is

Dj(Gj) = βj max{0, Gj} , (37)

the manufacturers problems are nonsmooth optimal control problems.
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