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Abstract. The paper summarizes the main core of the last results that we obtained in [4, 8, 17] on the
regularity of the value function for a Bolza problem of a one-dimensional, vectorial problem of the calculus
of variations. We are concerned with a nonautonomous Lagrangian that is possibly highly discontinuous in
the state and velocity variables, nonconvex in the velocity variable and non coercive. The main results are
achieved under the assumption that the Lagrangian is convex on the one-dimensional lines of the velocity
variable and satisfies a local Lipschitz continuity condition w.r.t. the time variable, known in the literature as
Property (S), and strictly related to the validity of the Erdmann–Du-Bois Reymond equation.

Under our assumptions, there exists a minimizing sequence of Lipschitz functions. A first consequence
is that we can exclude the presence of the Lavrentiev phenomenon. Moreover, under a further mild growth
assumption satisfied by the minimal length functional, fully described in the paper, the above sequence may
be taken with the same Lipschitz rank, even when the initial datum and initial value vary on a compact set.
The Lipschitz regularity of the value function follows.
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1. Introduction

The paper summarizes some recent results obtained in [4, 8, 17] on the Bolza problem (Pt ,x ) of
the calculus of variations which consists in minimizing an integral functional

Jt (y) =
∫ T

t
Λ(s, y(s), y ′(s))ds + g (y(T ))

∗Corresponding author.

ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/

https://doi.org/10.5802/crmath.220
mailto:julien.bernis@univ-brest.fr
mailto:piernicola.bettiol@univ-brest.fr
mailto:carlo.mariconda@unipd.it
https://comptes-rendus.academie-sciences.fr/mathematique/


206 Julien Bernis, Piernicola Bettiol and Carlo Mariconda

as y varies among the absolutely continuous functions on [t ,T ] satisfying a given initial condition
y(t ) = x ∈ Rn . Here Λ is a positive, Lebesgue–Borel Lagrangian and g is a positive function,
possibly extended valued. The value function V (t , x) is defined for t ∈ [0,T ] and x ∈Rn , by

V (t , x) = inf(Pt ,x ).

Our results are aimed at the study of the regularity of V . Usually one assumes either the validity
of Tonelli’s existence assumptions or at least the a priori existence of a minimizer for every initial
pair (t , x), associated with a superlinearity condition as in the autonomous case studied by G. Dal
Maso and H. Frankowska in [15]; there the result is obtained via a Lipschitz regularity study of the
(hypothetical) minimizers.

However, several problems in the applications concern Lagrangians that are possibly discon-
tinuous, non convex and even non coercive in the velocity variable y ′. In such a situation the hy-
potheses of the celebrated Tonelli’s existence theorem are far from being satisfied. The system-
atic study of problems with slow growth had a strong impulse after the existence and regularity
results of F. Clarke in [13], who introduced the growth condition (henceforth named of type (H))
including the length functional corresponding toΛ(u) =

√
1+|u|2.

We propose here another approach to the study of the value function, that enlarges the
class of admissible Lagrangians and does not require neither convexity in the velocity variable,
nor coercivity, nor continuity in the state or velocity variables. The existence of a minimizer is
not required for this approach, but merely a minimizing sequence of functions that are equi-
Lipschitz. The result is stated in full generality in [17, Theorem 5.1], in a more general framework
of controlled-linear problems, allowing the Lagrangian to be extended valued. It is inspired by
the work by A. Cellina and A. Ferriero in [11]. One of the aims of the paper is to describe a shorter
self-contained proof of Theorem 12 in the real valued case of the calculus of variations. There are
several improvements and new technical details with respect to [11]:

• We require the convexity of 0 < r 7→Λ(s, y,r u) instead of global convexity ofΛw.r.t. u: the
role of such a radial convexity appeared in [5–7];

• We do not impose continuity of the Lagrangian in the variables (y,u);
• We consider Clarke’s growth condition of type (H), less restrictive than the one (below

called of type (G)) considered in [11] (though both are satisfied in the superlinear case);
• We deal with a non autonomous Lagrangian, under a local Lipschitz condition on s 7→
Λ(s, y,u), which is not merely technical.

The growth condition of type (H) requires a lot of care. Quite surprisingly, this effort brings a new
result, not considered in [11], namely the nonoccurrence of the Lavrentiev phenomenon without
assuming any kind of growth other than the linear one from below: The fact that

inf
{

Jt (y) : y ∈ AC([t ,T ];Rn)
}= inf

{
Jt (y) : y ∈ Lip([t ,T ];Rn)

}
.

is well known in the autonomous case (see [2]), but seems new to the authors in the general case
without assuming any kind of regularity in the state or velocity. The Maximum Principle, often
invoked in similar problems, is not used here due to the lack of Lipschitz continuity properties in
the state variable.

2. Basic setting and notation

Let 0 ≤ t < T and x ∈Rn . We consider the Bolza type problem

min Jt (y) :=
∫ T

t
Λ(s, y(s), y ′(s))ds + g (y(T )) (Pt ,x )
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subject to {
y ∈ AC([t ,T ];Rn), y(t ) = x

y ′(s) ∈U a.e. s ∈ [t ,T ], y(s) ∈S for all s ∈ [t ,T ],
(D)

with the following basic assumptions.

Basic Assumptions and Notation. The following conditions hold.

• The Lagrangian Λ : [0,T ] × Rn × Rn → [0,+∞[, (s, y,u) 7→ Λ(s, y,u) is Lebesgue–Borel
measurable (i.e., measurable with respect to the L ([0,T ])×BRn×Rn measurable sets);

• The LagrangianΛ is bounded on bounded sets;
• The state constraint set S is a nonempty subset of Rn ;
• The velocity set U ⊂Rn is a nonempty cone, i.e. if u ∈U then λu ∈U whenever λ≥ 0;
• (Linear growth from below) There areα> 0 and d ≥ 0 satisfying, for a.e. s ∈ [0,T ] and every

y ∈Rn ,u ∈U ,
Λ(s, y,u) ≥α|u|−d ; (1)

• The cost function g :Rn → [0,+∞[∪{+∞} is a given positive function, not identically equal
to +∞.

If t ∈ [0,T [ and x ∈Rn an admissible trajectory for (Pt ,x ) is a function y ∈ AC([t ,T ];Rn) such that
y ′ ∈ U a.e., y(s) ∈ S for all s ∈ [t ,T ] and Jt (y) < +∞. We assume the existence of an admissible
trajectory for every t ∈ [0,T [ and x ∈ Rn ; this is certainly true, for instance, if S is convex and
U =Rn , or if g is real valued.

A minimizing sequence (y j ) j for (Pt ,x ) is a sequence of admissible trajectories such that

lim
j→+∞

Jt (y j ) = inf(Pt ,x ).

If z ∈Rn we shall denote by Bδ(z) the open ball of center z and radius δ. The norm in L1 is denoted
by ‖·‖1, and the norm in L∞ by ‖·‖∞.

We will denote by | · | both the norm in euclidean spaces and the Lebesgue measure in R; the
precise meaning will be clear from the context.

3. Structure assumptions (A) and (S)

In what follows, we assume the structure Assumption (A) on Λ(s, y,u) with respect to u and the
local Lipschitz condition (S) onΛ(s, y,u) with respect to s.

Structure Assumption (A). For a.e. s ∈ [0,T ] and every y ∈Rn ,u ∈U , the map 0 < r 7→Λ(s, y,r u)
is convex.

The main results involve the following local Lipschitz condition on the Lagrangian Λ with
respect to the time variable.

Condition (S). There are κ, A ≥ 0,γ ∈ L1([0,T ]), ε∗ > 0 satisfying, for a.e. s ∈ [0,T ]

|Λ(s2, y,u)−Λ(s1, y,u)| ≤ (
κΛ(s, y,u)+ A|u|+γ(s)

) |s2 − s1| (2)

whenever s1, s2 ∈ [s −ε∗, s +ε∗]∩ [0,T ], y ∈Rn , u ∈U .

Remark 1. Condition (S) is satisfied if Λ(s, y,u) =Λ(y,u) is autonomous. Indeed in that case (2)
holds with κ= A = 0,γ≡ 0 and ε∗ = T . Condition (S) is satisfied if, for all [0,T ], y ∈Rn , u ∈U , the
map s 7→Λ(s, y,u) is differentiable and

|DsΛ(s, y,u)| ≤β(
Λ(s, y,u)+|u|+1

)
. (3)

We refer to [17, Proposition 3.3] for a proof.

C. R. Mathématique — 2022, 360, 205-218
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4. Growth conditions

We discuss here some weak growth conditions that were considered, starting from [13], for the
basic problem of the calculus of variations. In the smooth setting, the conditions concern the
behavior of the Hamiltonian defined by

∀ (s, y,u,ξ) ∈ [0,T ]×R3n H(s, y,u,ξ) := ξ ·u −Λ(s, y,u)

at ξ = ∇uΛ(s, y,u), as |u| → +∞. In order to fully understand the motivations of the conditions
below (Hδ

B ) and (G), it is important to observe that −H(s, y,u,∇uΛ(s, y,u)) represents the ordinate
of the intersection of the tangent line to the graph of

0 < r 7→ z =Λ(s, y,r u)

at r = 1 with the z axis.
In the nonsmooth setting, under the validity of Condition (A), the quantity Λ(s, y,u) − u ·

∇uΛ(s, y,u) is replaced by

Λ(s, y,u)−Q(s, y,u),

where Q(s, y,u) is a convex subgradient of 0 < r 7→Λ(s, y,r u) at r = 1, i.e., a real valued function
such that

∀ r > 0 Λ(s, y,r u)−Λ(s, y,u) ≥Q(s, y,u)(r −1).

4.1. Some bounds

We begin with a recent result formulated in [17], showing that, under suitable assumptions,
for any given c > 0 and ν > 0, the term L(s, y,u) −Q(s, y,u) is bounded above as |u| ≥ ν and
bounded below as |u| < c, even in the nonsmooth setting. We observe that this property is valid
without assuming any growth conditions, neither convexity nor regularity. Quite surprisingly it
is the key point in the proof of the non occurrence of the Lavrentiev Phenomenon (Claim (1) of
Theorem 12). We refer to [17, Proposition 4.24] for the proof of Proposition 2.

Proposition 2 (Some bounds forΛ−∂rΛ(s, y,r u)r=1). Assume thatΛ satisfies Condition (A). Let
Q(s, y,u) ∈ ∂rΛ(s, y,r u)r=1. For all K ≥ 0,c > 0,ν> 0 we have

inf
s∈[0,T ],|y |≤K
|u|<c,u∈U

{
Λ(s, y,u)−Q(s, y,u)

} ∈R, (4)

sup
s∈[0,T ], |y |≤K
|u|≥ν,u∈U

{Λ(s, y,u)−Q(s, y,u)} <+∞. (5)

4.2. Growth Condition (Hδ
B )

A weak growth condition called (H) was first introduced in [13] under the assumption that Λ is
convex in the velocity variable and, more recently, considered in [6, 7] in a more general non
convex setting. Condition (Hδ

B ) below, introduced in [17], is the natural generalization of the
above (H) for problems of the calculus of variations: B is an upper bound of inf(Pt ,x ), where the
initial time t may vary on an interval [0,δ] and the initial point x varies in a compact set.

Definition 3 (ct (B) and Φ(B)). Let t ∈ [0,T [, B ≥ 0 and assume the linear growth from below (1),
i.e., for a.e. s ∈ [0,T ], for all y ∈Rn ,u ∈U ,

Λ(s, y,u) ≥α|u|−d (α> 0,d ≥ 0).

C. R. Mathématique — 2022, 360, 205-218
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c u

P(u)

n-c-n

 

Figure 1. inf|u|<c
{
Λ(u)−Q(u)

}≥ `1; sup|u|≥ν{Λ(u)−Q(u)} ≤ `2

Let

ct (B) := B +d(T − t )

α (T − t )
.

Moreover, if Condition (S) holds, we define

Φ(B) := κB + A

α
(B +d T )+‖γ‖1, (6)

where we set κ, A,γ equal to 0 if Λ is autonomous.

Remark 4. Notice that, in Definition 3, t ∈ [0,T [ 7→ ct (B) and 0 ≤ B 7→ ct (B) are increasing. In the
autonomous case, since κ, A and γ may be chosen to be equal to 0, we considerΦ(B) := 0.

We refer to [17, Proposition 4.10] for the proof of Proposition 5, a key tool in the proof of the
main result.

Proposition 5 (The roles of Φ(B) and ct (B)). Assume the linear growth from below (1) and the
validity of Condition (S). Let t ∈ [0,T [, x ∈ Rn , y be admissible for (Pt ,x ) with Jt (y) ≤ B for some
B ≥ 0. Then

(1)
∫ T

t
|y ′(s)|ds ≤ B +d(T − t )

α
= (T − t )ct (B).

(2) For every σ> cδ(B) the set {s ∈ [t ,T ] : |u(s)| <σ} is non negligible.

(3)
∫ T

t

{
κΛ(s, y(s), y ′(s))+ A|y ′(s)|+γ(s)

}
ds ≤Φ(B).

Assume that Condition (S) holds and let B be an upper bound of the values of a prescribed
family of admissible trajectories for (Pt ,x ) as t varies in an interval [0,δ]. In light of Proposition 2,
the next Condition (Hδ

B ) imposes for any K ≥ 0 and suitable ν > 0 and c > cδ(B), a specific gap
between the terms in (4).

Growth Condition (Hδ
B). Assume that Λ satisfies Conditions (A) and (S). Let B ≥ 0 and 0 ≤ δ< T .

We say that Λ satisfies (Hδ
B ) if there are a selection Q(s, y,u) of ∂rΛ(s, y,r u)r=1, ν> 0 and c > cδ(B)

satisfying, for all K ≥ 0,

sup
s∈[0,T ],|y |≤K
|u|≥ν,u∈U

{Λ(s, y,u)−Q(s, y,u)}+2Φ(B) < inf
s∈[0,T ], |y |≤K
|u|<c,u∈U

{Λ(s, y,u)−Q(s, y,u)}. (7)

Remark 6. If u 7→Λ(s, y,u) is differentiable, (7) is equivalent to

sup
s∈[0,T ], |y |≤K
|u|≥ν,u∈U

d

dµ

[
Λ

(
s, y,

u

µ

)
µ

]
µ=1

+2Φ(B) < inf
s∈[0,T ], |y |≤K
|u|<c,u∈U

d

dµ

[
Λ

(
s, y,

u

µ

)
µ

]
µ=1

; (8)
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which may be rewritten in terms of the Hamiltonian as

inf
s∈[0,T ], |y |≤K
|u|<c,u∈U

H(s, y,u,∇uΛ(s, y,u)) > sup
s∈[0,T ], |y |≤K
|u|≥ν,u∈U

H(s, y,u,∇uΛ(s, y,u))+2Φ(B). (9)

Remark 7 (Interpretation of Condition (Hδ
B)). Consider for simplicity a Lagrangian Λ(u) of the

variable u. LetΛ(u) <+∞ and let Q(u) ∈ ∂rΛ(u). Notice that

∀ r > 0 Λ(r u) ≥φu(r ) :=Λ(u)+Q(u)(r −1).

The value φu(0) = P (u) :=Λ(u)−Q(u) represents the intersection of the “tangent” line z = φu(r )
to 0 < r 7→Λ(r u) at r = 1 with the z axis.

Condition (Hδ
B ) means that there is a gap of at least 2Φ(B) between the above value of P (u) as

|u| ≥ ν and the value of P (u) as |u| < c, more precisely we have (see Figure 2):

sup
|u|≥ν

P (u)+2Φ(B) < inf
|u|<c

P (u).

c

2F(B)

u

P(u)

n

c (B)d

Figure 2. Condition (Hδ
B ) and the gap of at least 2Φ(B)

4.3. The Growth Condition (G)

In the growth condition (G) it is required that, for each K ≥ 0, the term

sup
s∈[0,T ], |y |≤K
|u|≥ν,u∈U

{Λ(s, y,u)−Q(s, y,u)}

in the left-hand side part of (7) tends to −∞ as ν → +∞. The condition (for Lagrangians that
are convex in the velocity variable) was introduced by Cellina, Treu and Zagatti in [12], while the
version presented here, requiring just radial convexity in the velocity variable, appeared in [18] in
the autonomous case.

Growth Condition (G). We say that Λ satisfies (G) if Λ satisfies Condition (A) and there is a
selection Q(s, y,u) of the convex subgradient ∂rΛ(s, y,r u)r=1 such that, for each K ≥ 0 fixed,

lim
|u|→+∞

u∈U

{Λ(s, y,u)−Q(s, y,u)} =−∞ unif. |y | ≤ K (10)

i.e., if for all M ∈R there exists R > 0 such that,

(s, y,u) ∈ [0,T ]×Rn ×U , |y | ≤ K , |u| > R ⇒Λ(s, y,u)−Q(s, y,u) < M . (11)

C. R. Mathématique — 2022, 360, 205-218
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Remark 8.

(1) Superlinearity implies the validity of Condition (G) (see [7, Proposition 2]);
(2) If u 7→Λ(s, y,u) is differentiable, (10) becomes

lim
|u|→+∞

Λ(s, y,u)−u ·∇uΛ(s, y,u) =−∞ unif. |y | ≤ K . (12)

Example 9. Let

∀ (s, y,u) ∈ [0,1]×R2 Λ(s, y,u) := h(s, y)
(|u|−√

|u|),

where h is Borel and bounded on bounded sets. Then Λ satisfies Condition (G). Indeed, 0 < r 7→
h(s, y)(r |u|−p

r |u|) is convex for all u ∈R and, for all u 6= 0,

Λ(s, y,u)−u
d

du
Λ(s, y,u) =−h(s, y)

p|u|
2

→−∞

as |u|→+∞ uniformly for s ∈ [0,1] and y in bounded sets.

The next Example, that illustrates the importance of Condition (Hδ
B ), is taken from [13, Exam-

ple 4.3].

Example 10. [13, Example 4.3] The function

∀ (s, y,u) ∈ [0,T ]×Rn ×Rn Λ(s, y,u) =Λ(u) :=
√

1+|u|2

satisfies Condition (Hδ
B ) for any choice of δ ≥ 0 and B . Notice that Λ does not satisfy Condi-

tion (G).

Condition (G) implies the validity of Condition (Hδ
B ), no matter what B ≥ 0 and δ≥ 0 are.

Proposition 11. Assume thatΛ satisfies Condition (A). Let

Q(s, y,u) ∈ ∂rΛ(s, y,r u)r=1.

If Λ satisfies Condition (G) and Condition (S) then Λ satisfies Hypothesis (Hδ
B ), independently of

the choice of δ ∈ [0,T [ and B ≥ 0.

Proof. Let δ ∈ [0,T [ and B ≥ 0. Fix any K ≥ 0. Let Q(s, y,u) ∈ ∂rΛ(s, y,r u)r=1 be such that

lim
|u|→+∞

|y |≤K ,u∈U

{
Λ(s, y,u)−Q(s, y,u)

}=−∞ unif. s ∈ [0,T ].

Then

lim
ν→+∞ sup

s∈[0,T ]
|u|≥ν,u∈U

{
Λ(s, y,u)−Q(s, y,u)

}=−∞. (13)

Fix c > cδ(B). Now, (7) of Proposition 2 implies that

inf
s∈[0,T ]

|u|<c,u∈U

{
Λ(s, y,u)−Q(s, y,u)

}>−∞.

It follows from (13) that, for ν big enough,

sup
s∈[0,T ]

|u|≥ν,u∈U

{
Λ(s, y,u)−Q(s, y,u)

}+2Φ(B) < inf
s∈[0,T ]

|u|<c,u∈U

{
Λ(s, y,u)−Q(s, y,u)

}
,

proving the validity of Condition (Hδ
B ). �
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5. Existence of minimizing sequences of Lipschitz functions

When the basic problem (Pt ,x ) admits a minimizer, one important issue is establishing its regu-
larity. Lipschitz continuity is a first step in this direction: several results have been obtained in
the last decades, long time after the pioneer works of Tonelli (see [2, 6, 7, 10, 13–15, 18]). When
Lipschitz minimizers are not expected to exist, an important property to investigate is the occur-
rence of the Lavrentiev phenomenon, i.e., the fact that despite Lipschitz functions are dense in
the absolutely continuous functions, it might happen that

inf
z admissible

z∈AC([t ,T ];Rn )

Jt (z) < inf
z admissible

z∈Lip([t ,T ];Rn )

Jt (z).

This phenomenon was highlighted by Lavrentiev in early 1900’s (cf. [9, 16]) with an example.
In [3] Ball and Mizel exhibited the phenomenon in the case of a polynomial non-autonomous
Lagrangian, both superlinear and convex in the velocity variable (thus satisfying Tonelli’s exis-
tence result). In the autonomous case, Alberti and Serra Cassano proved in [1] that the Lavrentiev
phenomenon does not occur. Adding the requirement that Λ satisfies the growth condition (G),
Cellina and Ferriero proved in [11] that the infimum of (Pt ,x ) may be reached through a sequence
of equi-Lipschitz functions.

Theorem 12 extends the above results; it summarizes the contents of [17, Theorem 5.1] and [17,
Corollaries 5.7 and 5.9] in the special case of the calculus of variations for real valued, non
autonomous Lagrangians.

Theorem 12 (Existence of nice admissible trajectories [17]). Assume that Λ satisfies Condi-
tions (A) and (S). Then

(1) (No Lavrentiev phenomenon) For every t ∈ [0,T [ and x ∈ Rn there is a minimizing
sequence of Lipschitz functions for (Pt ,x ).

(2) (Minimizing sequences of equi-Lipschitz functions) Let 0 ≤ δ < T , δ∗ ≥ 0, x∗ ∈ Rn and
assume that Λ satisfies Condition (Hδ

B ) for every B ≥ 0, δ ∈ [0,T [. Suppose, moreover, one
of the two additional hypotheses:

• S is convex and U =Rn , or
• g is real valued and locally bounded, and (0 ∈U ) or (S =Rn).

Then, for every t ∈ [0,δ] and x ∈ Bδ∗ (x∗), there is a minimizing sequence for (Pt ,x ) of equi-
Lipschitz functions with rank depending only on B ,δ, x∗,δ∗.

The proof of Theorem 12 is postponed to Section 7.

Remark 13. Condition (S) plays a central role here. The celebrated example of Ball and Mizel [3]
shows that if Condition (S) does not hold, then the Lavrentiev phenomenon might occur.

6. Lipschitz continuity of the value function

Recall that the value function V associated with problems (Pt ,x ) is the function defined by

∀ t ∈ [0,T ],∀ x ∈Rn V (t , x) = inf(Pt ,x ).

Since g is not identically +∞ it follows that V (t , x) <+∞ for every (t , x). Typically, the regularity
of the value fuction is obtained by assuming the a priori existence of minimizers for the prob-
lems (Pt ,x ) and superlinearity of the Lagrangian (see [15]). None of these conditions is needed in
the following regularity result for the value function (see [4, 8]).

Theorem 14 (Lipschitz continuity of the value function [4, 8]). Assume thatΛ satisfies Assump-
tions (A) and (S) and satisfies the growth condition (Hδ

B ) for every B ≥ 0, δ ∈ [0,T [ and that the con-
ditions of Claim (2) of Theorem 12 are in force. Then the value function V (t , x) is locally Lipschitz.

C. R. Mathématique — 2022, 360, 205-218
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Sketch of the proof. Let t0 ∈ [0,T [ and 0 < ε < T − t0. The application of Theorem 12 with
δ= t0 +ε,δ∗ = ε shows that there is K ≥ 0 and minimizing sequences for (Pt ,x ) that are Lipschitz
with rank less than K as (t , x) vary in [t0 −ε, t0 +ε]×Bε(x∗).

The arguments of [4, Lemma 6.1] (cf. also [8, Section 5]) or, in the autonomous case, of [15],
allow to conclude. �

7. Proof of Theorem 12

The proof of Theorem 12 adapts and simplifies the proof of [17, Theorem 5.1] to the less technical
case of a real valued Lagrangian of the calculus of variations. Fix an admissible trajectory y for
(Pt ,x ) such that Jt (y) ≤ inf(Pt ,x )+1. For Claim (1) we set B := inf(Pt ,x )+1. Under the assumptions
of Claim (2), where t and x vary, it is easy to show (see [17, Lemma 5.3]) that there is B ≥ 0
such that

∀ t ∈ [0,δ], ∀ x ∈ Bδ∗ (x∗) inf(Pt ,x )+1 ≤ B. (14)

Let {
η= 0 if (Hδ

B ) holds,

η> 0 otherwise.

A crucial point of the proof consists in constructing a Lipschitz function y such that

Jt (y) ≤ Jt (y)+η.

This is built up in several steps. We make use of similar arguments for the proofs of Claims (1)
and (2) of Theorem 12. We will highlight the differences in the final step.

(i). Let α,d be as in (1). Then∫ T

t
|y ′(s)|ds ≤ (T − t )ct (B) ≤ R = R(B) := B +dT

α
.

The claim follows immediately from (1) of Proposition 5.

(ii). There is K := K (B , x∗,δ∗) such that |y(s)| ≤ K for every s ∈ [t ,T ]. Indeed, it follows from Step (i)
that for all s,

|y(s)| ≤ |x|+
∫ s

t
|y ′(τ)|dτ≤ |x∗|+δ∗+R.

(iii). Choice of µ. Let c > cδ(B) and Q(s, y,u) ∈ ∂rΛ(s, y,r u)r=1; if Condition (Hδ
B ) holds we assume

moreover the validity of (7). We fix µ=µ(δ,B) ∈ ]0,1[ in such a way that

cδ(B)

µ
< c. (15)

(iv). Definition of Ω. Define

Ω :=
{

s ∈ [t ,T ] :
|y ′(s)|
µ

< c

}
.

Then

|Ω| ≥
(
1− cδ(B)

µc

)
(T − t ). (16)

Indeed, from Step (i),

(T − t )cδ(B) ≥ (T − t )ct (B) ≥
∫

[t ,T ]\Ω
|y ′(s)|ds ≥ cµ|[t ,T ] \Ω|,

the claim follows.
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(v). Definition of Ξ(ν),Υ. We set P (s, z, v) :=Λ(s, z, v)−Q(s, z, v). For ν> 0 we define

Ξ(ν) := sup
s∈[0,T ],|z|≤K
|v |≥ν,v∈U

P (s, z, v), Υ := inf
s∈[0,T ],|z|≤K
|v |<c,v∈U

P (s, z, v).

From Proposition 2 we know thatΞ(ν) <+∞ andΥ ∈R. We may assume thatΞ(ν) >−∞ for every
ν, otherwise U is bounded and the result follows trivially.

(vi). Choice of ν. If Condition (Hδ
B ) holds let ν= ν(B ,K ) = ν(B ,δ, x∗,δ∗) > 0 be such that

∀ ν≥ ν Ξ(ν)+2Φ(B) <Υ. (17)

If, as in Claim (1), we do not assume Condition (Hδ
B ), we choose ν= ν(B ,K ) = ν(B , x∗,δ∗,η) large

enough in such a way that
R

ν
(2Φ(B)+Ξ(ν)−Υ) ≤ η,

so that, Ξ being decreasing,

∀ ν≥ ν R

ν
(2Φ(B)+Ξ(ν)−Υ) ≤ η. (18)

(vii). For a.e. s ∈Ω and a.e. s̃ ∈ [t ,T ],

Λ

(
s̃, y(s),

y ′(s)

µ

)
µ−Λ(s̃, y(s), y ′(s)) ≤−(1−µ)Υ. (19)

Indeed for s̃ ∈ [t ,T ] and a.e. s ∈Ω,

Λ

(
s̃, y(s),

y ′(s)

µ

)
µ−Λ(s̃, y(s), y ′(s)) =−µ

[
Λ

(
s̃, y(s),

y ′(s)

µ
µ

)
1

µ
−Λ

(
s̃, y(s),

y ′(s)

µ

)]
. (20)

We have

Λ

(
s̃, y(s),

y ′(s)

µ
µ

)
1

µ
−Λ

(
s̃, y(s),

y ′(s)

µ

)
≥ P

(
s̃, y(s),

y ′(s)

µ

)
1−µ
µ

,

and since onΩ, from Step (iv), |y ′(s)|
µ < c, we obtain, U being a cone, that

Λ

(
s̃, y(s),

y ′(s)

µ
µ

)
1

µ
−Λ

(
s̃, y(s),

y ′(s)

µ

)
≥ 1−µ

µ
inf

s̃∈[0,T ],|z|≤K
|v |<c,v∈U

P (s̃, z, v) = 1−µ
µ
Υ, (21)

and thus the conclusion follows from (20).

(viii). For every ν> 0 define

Sν := {s ∈ [t ,T ] : |y ′(s)| > ν}, εν :=
∫

Sν

( |y ′(s)|
ν

−1

)
ds.

Then

|Sν|→ 0, εν ≤ R

ν
→ 0 as ν→+∞

uniformly with respect to t ∈ [0,δ] and x ∈ Bδ∗ (x∗). Indeed, it follows from Step (i) that

ν|Sν| ≤
∫

Sν
|y ′(s)|ds ≤ R.

(ix). Choice of ν and of Σν ⊂ Ω. Taking into account Step (viii), we choose ν = ν(B ,δ, x∗,δ∗) ≥
max{ν,c} in such a way that

(εν ≤)
R

ν
≤ min

{
(1−µ)

(
1− cδ(B)

µc

)
(T −δ),

ε∗
2

}
. (22)

Choose a measurable subset Σν ⊆Ω in such a way that |Σν| = εν
1−µ : this is possible since, from (22)

and Step (iv),
εν

1−µ ≤
(
1− cδ(B)

µc

)
(T −δ) ≤ |Ω|.
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From now on we set Ξ :=Ξ(ν).

(x). The set Sν ∩Ω is negligible. Indeed, if s ∈ Sν then |y ′(s)| > ν, whereas if s ∈ Ω then |y ′(s)| <
µc < c so that Step (ix) implies |y ′(s)| < ν, whence the claim.

(xi). The change of variable ϕ. We introduce the following absolutely continuous change of
variable ϕ : [t ,T ] →R defined by

ϕ(t ) := t , for a.e. τ ∈ [t ,T ] ϕ′(τ) =


|y ′(τ)|
ν

if τ ∈ Sν

µ if τ ∈Σν
1 otherwise.

Notice that ϕ is well defined since Sν ∩Σν, a subset of Sν ∩Ω, is negligible. Clearly ϕ is strictly
increasing and, from Steps (viii) and (ix), the image of ϕ is [t ,T ] and thus ϕ : [t ,T ] → [t ,T ] is
bijective; let us denote by ψ its inverse, which is absolutely continuous and even Lipschitz, since
‖ψ′‖∞ ≤ 1

µ .

(xii). Set y := y ◦ψ. Then y is admissible, y(t ) = y(t ) and y(T ) = y(T ). It follows from [20,
Corollary 5] and [19, Chapter IX, Theorem 5] that y is absolutely continuous and, for a.e. s ∈ [t ,T ],

y ′(s) = y ′(ψ(s))

ϕ′(ψ(s))
.

Since y is defined via a reparametrization of y , we still have that y(s) ∈ S for all s. The fact that
ψ(t ) = t ,ψ(T ) = T yields y(t ) = y(t ) and y(T ) = y(T ). Notice that y ′(s) = 1

ϕ′(ψ(s)) y ′(ψ(s)) ∈ U for
a.e. s ∈ [t ,T ], the set U being a cone.

(xiii). y is Lipschitz; if Condition (Hδ
B ) holds then the Lipschitz rank of y depends just on

B ,δ, x∗,δ∗; otherwise it might depend also on η.
It is convenient to write explicitly the function y ′(s), which is given by

y ′(s) =


ν

y ′(ψ(s))

|y ′(ψ(s))| if ψ(s) ∈ Sν,

y ′(ψ(s))

µ
if ψ(s) ∈Σν,

y ′(ψ(s)) otherwise.

Since |y ′(s)| ≤ ν a.e. out of Sν it turns out from the fact that Σν ⊆Ω and Step ix) that

|y ′(s)| ≤ max{ν,c} ≤ ν.

The dependence of ν on B ,δ, x∗,δ∗ (and, possibly, on η if we do not assume (Hδ
B )) follows from

Step (vi).

(xiv). ‖ϕ(τ)−τ‖∞ ≤ 2εν ≤ ε∗. Indeed, for all τ ∈ [t ,T ] we have

|ϕ(τ)−τ| ≤
∫ τ

t

∣∣ϕ′(s)−1
∣∣ ds

≤
∫

Sν

( |y ′(s)|
ν

−1

)
ds +

∫
Σν

(1−µ)ds

≤ εν+ (1−µ)|Σν| = 2εν ≤ ε∗,

where the last inequality follows from (22) in Step (ix).

(xv). Estimate of Jt (y) in terms of
∫ T

t Λ
(
ϕ(τ), y(τ), y ′(τ)

)
dτ. Since y and y share the same bound-

ary values, we have

Jt (y) =
∫ T

t
Λ(s, y(s), y ′(s))ds + g (y(T )). (23)
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The change of variables s =ϕ(τ) yields∫ T

t
Λ(s, y(s), y ′(s))ds =

∫ T

t
Λ

(
ϕ(τ), y(τ),

y ′(τ))

ϕ′(τ)

)
ϕ′(τ)dτ

= ISν + IΣν + I1,
(24)

where we set

ISν :=
∫

Sν
Λ

(
ϕ(τ), y(τ),ν

y ′(τ)

|y ′(τ)|
) |y ′(τ)|

ν
dτ,

IΣν :=
∫
Σν

Λ

(
ϕ(τ), y(τ),

y ′(τ)

µ

)
µdτ,

I1 :=
∫

[t ,T ]\(Σν∪Sν)
Λ

(
ϕ(τ), y(τ), y ′(τ)

)
dτ.

• Estimate of ISν .

ISν ≤
∫

Sν
Λ

(
ϕ(τ), y(τ), y ′(τ)

)
dτ+Ξεν. (25)

Indeed, for a.e. τ ∈ Sν we have

Λ
(
ϕ(τ), y(τ), y ′(τ)

) ν

|y ′(τ)| −Λ
(
ϕ(τ), y(τ),ν

y ′(τ)

|y ′(τ)|
)
≥ P

(
ϕ(τ), y(τ),ν

y ′(τ)

|y ′(τ)|
)(

ν

|y ′(τ)| −1

)
(26)

which implies

Λ

(
ϕ(τ), y(τ),ν

y ′(τ)

|y ′(τ)|
) |y ′(τ)|

ν
−Λ(

ϕ(τ), y(τ), y ′(τ)
)≤ P

(
ϕ(τ), y(τ),ν

y ′(τ)

|y ′(τ)|
)( |y ′(τ)|

ν
−1

)
. (27)

Since, for a.e. τ ∈ Sν, |y ′(τ)| > ν and
∣∣∣ν y ′(τ)

|y ′(τ)|
∣∣∣= ν, we deduce from the fact that U is a cone that

ν
y ′(τ)
|y ′(τ)| ∈U and thus

For a.e. s ∈ Sν P

(
ϕ(τ), y(τ),ν

y ′(τ)

|y ′(τ)|
)( |y ′(τ)|

ν
−1

)
≤

( |y ′(τ)|
ν

−1

)
Ξ.

Therefore, for a.e. τ ∈ Sν inequality (27) yields

Λ

(
ϕ(τ), y(τ),ν

y ′(τ)

|y ′(τ)|
) |y ′(τ)|

ν
≤Λ(

ϕ(τ), y(τ), y ′(τ)
)+( |y ′(τ)|

ν
−1

)
Ξ,

whence (25).
• Estimate of IΣν . The function ψ being Lipschitz, the set of τ ∈ [t ,T ] such that s̃ = ϕ(τ) satis-

fies (19) is of full measure in [t ,T ]. Since Σν ⊂Ω and |Σν| = εν
1−µ , it is immediate from (19) that

IΣν ≤
∫
Σν

Λ
(
ϕ(τ), y(τ), y ′(τ)

)
dτ−Υεν. (28)

Finally, from (23), (24), (25) and (28) we obtain

Jt (y) ≤
∫ T

t
Λ

(
ϕ(τ), y(τ), y ′(τ)

)
dτ+εν

(
Ξ−Υ)+ g (y(T )). (29)

(xvi). Estimate of
∫ T

t Λ
(
ϕ(τ), y(τ), y ′(τ)

)
dτ:∫ T

t
Λ

(
ϕ(τ), y(τ), y ′(τ)

)
dτ≤

∫ T

t
Λ

(
τ, y(τ), y ′(τ)

)
dτ+2Φ(B)εν. (30)

Indeed, Condition (S) together with Step xiv) imply that, for a.e. τ ∈ [t ,T ],

Λ
(
ϕ(τ), y(τ), y ′(τ)

)≤Λ(
τ, y(τ), y ′(τ)

)+k(τ)|ϕ(τ)−τ|
≤Λ(

τ, y(τ), y ′(τ)
)+2k(τ)εν,

where we set
k(τ) := κΛ(τ, y(τ), y ′(τ))+ A|y ′(τ)|+γ(τ).
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Notice that, from Proposition 5, ∫ T

t
k(τ)dτ≤Φ(B).

Now (30) follows immediately.

(xvii). Final estimate of Jt (y). From (29) and (30) of Steps (xv) and (xvi), we obtain

Jt (y) ≤ Jt (y)+εν (2Φ(B)+Ξ−Υ) . (31)

Two cases may occur.

• If Condition (Hδ
B ) holds true, then the choice of ν in (17) of Step (v) implies that

2Φ(B)+Ξ−Υ< 0.

Thus, from (31) we obtain Jt (y) ≤ Jt (y). Notice here that the inequality is strict if εν > 0,
and this occurs whenever |y ′| > ν on a set of positive measure.

• Otherwise, the choice of ν in (18) of Step (v) implies that

εν(2Φ(B)+Ξ(ν)−Υ) ≤ η.

Thus, from (31), we obtain
Jt (y) ≤ Jt (y)+η.

The conclusion follows. �

Remark 15. The last part of the proof of Theorem 12 shows that if Condition (Hδ
B ) holds then any

absolutely continuous minimizer of Jt is necessarily Lipschitz. The regularity result is a particular
case of the main theorem in [8].

Remark 16 (Explicit Lipschitz ranks). The knowledge of ν and c in Condition (Hδ
B ) correspond-

ingly to the value K provided in Step (ii) of the proof of Theorem 12 allows to give an explicit
bound of the Lipschitz constant in Claim (1) of Theorem 12. Indeed, referring to the proof of the
theorem:

• Step (xiii) shows that ν is a suitable Lipschitz constant for y ;
• From Step ix), one can choose

ν= max

 R

(1−µ)
(
1− cδ(B)

µc

)
(T −δ)

,c,ν,
2R

ε∗

 , (32)

where R = B+dT
α ;

• Accordingly to (15), µ in (32) is any real number such that cδ(B)
c <µ< 1.
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