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Abstract

To cope with debris-flow hazards, a common practice is the mapping of threatened

areas through routing models. Considering the primary role of topography in affect-

ing the mobility of gravity-driven flows, its proper representation through digital ele-

vation models (DEMs) is a requirement in routing modelling applications. The

‘quality’ of DEMs mainly depends on the quality, resolution and spatial arrangement

of the topographic measurements (i.e. on the employed survey technology). Never-

theless, no attempt to systematically evaluate the influence of the topographic data

source on the behaviour of routing models has been carried out. To address this, we

initially assess the performances of both terrestrial- (i.e. global navigation satellite

system, GNSS) and airborne-based (i.e. full-waveform LiDAR and structure-from-

motion, SfM digital photogrammetry) survey technologies in characterizing the

topography of a debris-flow channel. Afterwards, we investigate whether the topo-

graphic data source can effectively influence the behaviour of a geographic informa-

tion system (GIS)-based cell routing model. Regarding the assessment of the survey

technologies performances, the ‘standard’ statistic-based approach indicated that

GNSS and full-waveform LiDAR can provide an accurate digital representation of the

gully. However, the analysis of the shapes stressed that the most faithful and finer

reproduction of the topographic singularities is yielded by the photogrammetrically

reconstructed surface due to the extremely high data source resolution. Furthermore,

the pairwise comparison of derived elevation models pointed out that meaningful

discrepancies among tested survey technologies can be detected in morphologically

complex areas because of the inherent limits of the terrestrial-based method. Here,

this research showed how these discrepancies have the potential to affect simulated

flow dynamics, even if not in a meaningful way from a risk planning and management

point of view. Overall, it appears that the topographic data source does not truly rep-

resent a determining factor in modelling applications of channelized debris-flow

routing.
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1 | INTRODUCTION

According to the original definition proposed by Takahashi (1981), in-

channel debris flows can be described as massive sediment transport

phenomena that occur in mountain streams characterized by steep

slopes, wherein the motion of the granular phase is directly induced

by gravity and the ratio between the liquid and solid transport rates is

relatively low.

Among the geomorphic processes occurring in steep headwater

basins, debris flows can be regarded as one of the most hazardous

phenomena due to their magnitude, routing velocity and high occur-

rence rate in a wide spectrum of morphological settings

(e.g. Hurlimann et al., 2006). To cope with this natural hazard, a com-

mon practice is the mapping of the areas historically or potentially

threatened (Ghilardi et al., 2001) by adopting an empirical (e.g. Berti &

Simoni, 2014; Scheidl & Rickenman, 2010) or model-based

(e.g. Armanini et al., 2009; Frank et al., 2015; Gregoretti et al., 2019;

Hussin et al., 2012; Medina et al., 2008) approach. In the latter case,

since the motion of gravity-driven flows is extremely sensitive to

topographic changes (e.g. abrupt slope discontinuities, obstacles or

ravine deviations; Capra et al., 2011; Rickenmann et al., 2006), the

proper representation of the real channel and fan morphology through

digital elevation models (DEMs, also known as digital terrain models

or DTMs) is essential for the reliability of debris-flow routing model-

ling outcomes. In fact, the DEM represents the most important input

in debris flow routing models (e.g. Rickenmann et al., 2006; Sodnik

et al., 2012), and from a mathematical point of view it is simply a func-

tion z = f(px,y) mapping a unique height value (referred to the bare

earth) to each planimetric location px,y (Briese in Vosselman &

Maas, 2010; Pfeifer, 2005).

A DEM is always generated starting from a collected topographic

dataset (e.g. points and lines) by means of deterministic or stochastic

gridding algorithms (Hengl & Reuter, 2009). The topographic data

acquisition method for digital terrain modelling purposes usually

depends on the application (e.g. reach-scale flood modelling), and on

its specific requirements in terms of both data quality and density

(Höhle & Potuckova, 2011). In the past, analytical aerial photogram-

metry along with classic terrestrial-based topographic surveys were

the main measurement methods for collecting topographic informa-

tion on areas featuring different extensions. In the last two decades,

sensor modernization has promoted the development of new and

highly automated remote-sensing technologies, such as airborne- and

terrestrial-based laser scanning (ALS and TLS, respectively), long- and

close-range digital photogrammetry and interferometric synthetic

aperture radar (e.g. Höhle & Potuckova, 2011; Hsieh et al., 2016;

Jaboyedoff et al., 2012; Lillesand et al., 2004; Molina et al., 2014;

Westoby et al., 2012). All these new survey technologies have the

capability to acquire high-resolution topographic data (i.e. metre and

submetre posts-spacing) within a short time and with a high-quality

level. Nevertheless, classic terrestrial-based surveys by means of a

global navigation satellite system (GNSS) or total stations have not

been completely set aside since they ensure a proper trade-off

between quality and cost for scenarios involving small areas without

the need for massive topographic data acquisition (Casas et al., 2006;

Gomarasca, 2009).

Considering the wide range of satellite-, airborne- and

terrestrial-based survey technologies currently available and their

inherent limitations (which result in trade-offs among cost, quality,

resolution, spatial coverage and sampling frequency), the choice of

the proper survey method for a given application is not a trivial

issue. For this reason, recent research efforts have been undertaken

to investigate the main benefits and limitations of the available sur-

vey technologies under different conditions and environments

(e.g. Bangen et al., 2014; Gallay et al., 2013; Molina et al., 2014;

Passalacqua et al., 2015; Tarolli, 2014). In this context, several stud-

ies have also been carried out to explore the effects of topographic

data sources on flood modelling outcomes (e.g. Alho et al., 2009; Ali

et al., 2015; Bakuła et al., 2016; Bhuyian & Kalyanapu, 2018; Casas

et al., 2006; Cook & Merwade, 2009; Reil et al., 2017; Wilson &

Atkinson, 2005; Table S1 in the online Supplementary Material).

However, to date, little work has been performed to assess the per-

formances of different terrestrial- and airborne-based survey tech-

nologies in morphologically complex and steep areas, such as those

where debris flows occur. Furthermore, no attempt to evaluate the

influence of the employed survey method on the behaviour of

debris-flow routing models (i.e. numerical simulation outcomes) has

been made.

To fill these research gaps, in this study we first assess and

compare the performances of different terrestrial- (i.e. GNSS) and

aerial-based (i.e. helicopter-based full-waveform LiDAR and

unmanned aerial vehicle, UAV-based structure-from-motion, SfM

digital photogrammetry) survey technologies widely used in the field

of the numerical modelling of gravity-driven phenomena and suit-

able for characterizing the complex topography of a steep 1 km-

length debris-flow channel reach located in the Venetian Dolomites

(north-eastern Italian Alps). The investigation is performed by com-

bining surface shape analysis, vertical quality assessment, spatially

distributed modelling of vertical uncertainty and probabilistic

differencing of (temporal concurrent) DEMs. Afterwards, we evalu-

ate whether the resultant topographic characterization of the chan-

nel morphology can control the behaviour of a geographic

information system (GIS)-based cell model suitable for simulating

the propagation of stony debris flows by considering both high- and

intermediate-magnitude flow conditions (i.e. 300- and 50-year

return periods, respectively). In detail, we compare the outcomes of

the model runs carried out using the different topographic surfaces

by focusing on those concerning the hazard, which include: solid–

liquid discharge hydrographs; areas inundated during the propaga-

tion; erosional–depositional volumes; and erosional–depositional

depths, maximum flow depths and maximum thicknesses (defined as

the sum of flow and depositional depths). Therefore, this research

may represent a valuable contribution for digital elevation data

users involved in debris-flow hazard assessment and mitigation at a

basin or reach scale.

The paper is organized as follows. After this brief statement of

the problem, the reader is provided with a detailed description of the

study site, the available topographic datasets and the employed rou-

ting model. Then, all the applied procedures, from the interpolation of

the elevation models to the assessment of the influence of the topo-

graphic data source on the outcomes of the employed routing model,

are illustrated. The results and discussion summarize the obtained

research outcomes. Finally, the conclusions complete the paper,

highlighting the practical implications of the proposed research, along

with its inherent limitations.
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2 | MATERIALS

2.1 | Field site

The Rovina di Cancia debris-flow channel (Figure 1) originates in scree

at the base of the Salvella fork (approximately 2450 m a.s.l.), and by

extending downstream on the western slope of Mount Antelao, it

ends within a flat circular depositional basin just upstream of the vil-

lage of Borca di Cadore (approximately 1000 m a.s.l.). Notably, imme-

diately downstream of a human-built depositional area (approximately

1340 m a.s.l.), on the left side, there is the intake of the Bus del Diau

Creek, which mainly provides aliquid contribution to the main

channel.

Rovina di Cancia debris flows usually initiate at approximately

1670 m a.s.l. since the gully bottom in its upper part mostly includes

giant and large boulders hampering the formation of consistent solid–

liquid waves (Bernard et al., 2019).

From a geomorphological point of view, three main sectors can

be distinguished within the catchment. In the upper part, massive rock

cliffs composed of Upper Triassic to Lower Jurassic dolomites and

limestones, underlined by the Raibl Formation, prevail. The medium

part is characterized by screes of poorly sorted and highly permeable

debris, with boulders that can reach diameters of approximately 3–

4 m. Finally, the lower part of the basin is covered by old debris-flow

deposits, also including postglacial sediment material.

Overall, the study area is prone to stony debris flows due to both

the availability of loose and coarse sediments and the impulsive

hydrological regime. In particular, the smaller grain-sized material is

provided by both the failure and the erosion of the channel banks,

whereas gravel, pebbles and cobbles are provided by rockfalls mostly

occurring in the upper part of the basin. The pluviometric regime is

primarily characterized by short-duration and high-intensity rainfall

events, mostly occurring in July and August (Gregoretti & Dalla, 2008;

Simoni et al., 2020).

Different stony debris-flow events have been recorded in recent

decades, probably due to recent changes in the rainfall pattern. The

most significant ones occurred on 2 July 1994, 7 August 1996 and

18 July 2009. The first debris flow flooded the inhabited fan with

approximately 30 000 m3 of debris. The second mobilized approxi-

mately 45 000–60 000 m3 of debris, damaging some houses and cars.

The last mobilized approximately 55 000 m3 of debris, and after filling

the retaining basin, it flooded the inhabited fan, causing two casual-

ties. The most recent, medium- to high-magnitude debris-flow events

occurred on 23 July and 4 August 2015, which mobilized approxi-

mately 30 000 and 25 000 m3 of sediments, respectively (for an in-

depth analysis, see Simoni et al., 2020).

The proposed research focused on the channel reach

encompassed between the initiation area of the Rovina di Cancia

debris flow (approximately 1670 m a.s.l) and the human-built deposi-

tional area located at approximately 1340 m a.s.l. (excluded). Along

this channel section, the Rovina di Cancia debris flow increases in

magnitude (i.e. volumetrically grows) since, due to an average bed

slope of 25�, it is mainly subject to sediment entrainment processes

(Simoni et al., 2020). Therefore, within the study area the modelling of

routing should be as reliable as possible, as it provides most of the

sediment volume that travels downstream, finally threatening the

inhabited areas.

2.2 | Terrestrial-based elevation data

The terrestrial-based survey of the Rovina di Cancia study reach was

carried out by the research group in October–November 2015

through a dual-frequency Topcon HiPer V GNSS base and rover sys-

tem capable of tracking both GPS and GLONASS satellite constella-

tions. The survey was carried out as real-time, kinematic, stop-and-go

relative positioning based on phase solutions (i.e. rtkGNSS survey) by

placing the master station on a known position located within a

F I GU R E 1 Overview of the
study area of Rovina di Cancia.
(a) Natural rock step located at
the end of the debris-flows
triggering area (�1500 m a.s.l.)
and (b) final human-built
deposition basin (�1000 m a.s.l.).
Note: The dotted white line
encompasses the study reach
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maximum distance from the survey area of about 1 km. Furthermore,

only fixed solutions were acquired, and the three-dimensional position

of each sampled point was calculated as the average of measurements

carried out on five epochs. Remarkably, the survey time was chosen

according to the best satellite constellation geometry by considering

the natural obstacles around the survey area. The instrument-reported

planimetric precision was 0.005 � 0.001 m (max. 0.03 m), whereas

the reported vertical precision was 0.008 � 0.002 m (max. 0.05 m).

The average planimetric dilution of the precision value was

2.55 � 0.45 (max. 3.50). Field sampling was carried out according to a

cross-sections, morphologically guided spatial scheme (e.g. Aguilar

et al., 2005; Heritage et al., 2009) to describe the channel morphology

as accurately as possible. In detail, by following this spatial sampling

scheme, higher cross-section and points densities were gathered

corresponding to topographically complex channel areas, with compa-

rable lower densities on gentle morphologies. Therefore, the mean

points sampling distance was 0.65 m (max. 2.73 m, min. 0.06 m,

respectively), whereas the mean cross-sections inter-distance was

3.25 m (max. 9.80 m, min. 0.89 m, respectively). Relevant longitudinal

(i.e. toe and top of the channel banks) and transverse (i.e. minor steps)

topographic breaklines were also acquired during the field survey.

Overall, over 3000 terrestrial-based measurements were collected

within the study reach, for an average points density of 1.38 points

m�2. According to the geodetic–cartographic datum of the aerial-

based datasets, the geographic coordinates of the terrestrial-based

measurements were projected in the coordinate system

WGS84-UTM32, and the orthometric heights were computed by

referring to the local geoid model ITALGEO2005 (nominal conversion

quality �0.035 m at 1σ).

2.3 | Aerial-based elevation data

2.3.1 | Helicopter-based full-waveform LiDAR

For the study site at Rovina di Cancia, the LiDAR data were collected

on 21 October 2015 by Helica s.r.l. on behalf of the Veneto Region. A

full-waveform RIEGL LMS-Q780™ sensor mounted on an I-HBEP

helicopter (Eurocopter AS 350B3) flew at approximately 800 m

a.g.l. with a scan angle of �30� from nadir by ensuring a side overlap

between adjacent flight strips equal to 50%. An onboard GNSS con-

nected via radio waves to five near ground stations (max. distance

50 km) recorded the system carrier position at a frequency of 1 Hz,

whereas an IMU rigidly connected to the inner structure of the scan-

ning mechanism sampled the helicopter attitude at a frequency of

200 Hz. Simultaneous aerial photographs were acquired by means of

a calibrated Phaseone iXA 180 medium-format frame digital camera

with a forward overlap of 65%.

For the study reach, the average raw points density was 20.79

points m�2, while the average ground points density was 3.33 points

m�2. The vertical quality of the laser data was estimated by the ven-

dor through the root mean square error (RMSE) of elevations for

30 ground control points (GCPs) collected within a nearby area. The

(stated) RMSE of the elevation value was 0.018 m, with a (stated)

mean vertical error of �0.007 m.

Since the ‘quality’ of LiDAR-derived DEMs is strongly affected by

classification errors, the delivered datasets were examined before

digital terrain modelling. Notably, the points cloud visual inspection

highlighted many data voids within the ground dataset, mainly due to

misclassified LiDAR points as overground features corresponding to

morphologically complex areas (e.g. bouldered reaches). For this rea-

son, we reclassified the delivered datasets into ground and over-

ground points within the software package LAStools™ (rel. 170 608;

Isenburg, 2017) by integrating manual and automatic segmentation

procedures. This allowed us to achieve an average ground

points density of 4.34 points m�2, which is 30% more than the deliv-

ered ground dataset density. After the reclassification procedure, the

geographic coordinates of the laser-based measurements were projec-

ted in the coordinate system WGS84-UTM32, whereas the ellipsoidal

heights were converted into the corresponding orthometric heights

by referring to the local geoid model ITALGEO2005.

2.3.2 | UAV-based SfM digital photogrammetry

For the Rovina di Cancia channel, the UAV imagery was acquired on

6 August 2015 by a private surveyor on behalf of Belluno Province. In

detail, a quadcopter equipped with a 12 Mpx RICOH GRX A12 digital

camera (equivalent focal length 28 mm) flew at variable heights above

the ground level (on average 80 m above each take-off point), gather-

ing a total of 119 images having a ground sampling distance <0.05 m.

All photographs were acquired with a nadir orientation of the camera

in consecutive single-flight strips by following the stream centreline.

Remarkably, despite the near-vertical channel slopes along several

sections, no additional terrestrial-based imagery acquisitions were

performed.

It is worth noting that the research group was provided only with

the acquired imagery in JPG format, without any extra information

about the data collection workflow. The SfM-derived points cloud

was therefore generated using the Agisoft Photoscan Pro™ software

suite (rel. 1.2.6; http://www.agisoft.com). In detail, after a post-

processing phase aimed to enhance the quality of the delivered UAV

imagery (i.e. local contrast and brightness), the photos were aligned

through a high-quality setting in a single chunk. Due to the absence of

any other additional information (e.g. camera calibration report), the

intrinsic parameters were initialized during the photo’s alignment

through a self-calibration procedure. Then, they were optimized by

means of a bundle adjustment after the filtering of digitally identified

matching features, keeping only tie points with a reprojection error

and a reconstruction uncertainty lower than 1 and 50, respectively.

The dense points cloud was finally obtained through a high-quality

setting with an aggressive filtering mode, to sort out most of the out-

liers. Finally, the SfM-derived points cloud was registered to the coor-

dinate system WGS84-UTM32 through the use of the LiDAR data as

reference dataset, similar to what was reported, for example, by Lato

et al. (2014). In detail, a seven-parameter similarity transformation

was first calibrated by relating homologous ‘natural’ points (e.g. large
boulders) between the RGB-encoded SfM-derived points cloud and

‘true’ orthorectified LiDAR imagery (pixel size 0.10 m) through an iter-

ative approach by looking for a three-dimensional spatial distribution

of the conjugate points as uniform as possible. Due to the potential

presence of ‘residual’ linear errors (e.g. tilts), we then refined the

SfM-derived points cloud scaling and spatial roto-translation via a

modified version of the iterative closest point algorithm (Besl &
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McKay, 1992), which allows for affine transformations (i.e. different

scaling along the three axes). Notably, the affine transformation

matrix was calibrated by focusing only on densely scanned fully three-

dimensional terrain features (e.g. large blocks), located in stable

(i.e. unchanged) and possibly low-sloping areas outside the analysed

channel reach. Overall, this enabled a ‘double’ registration process,

improving the quality of the SfM-derived points cloud (Cucchiaro

et al., 2018) and, simultaneously, the aerial-based datasets co-

registration (mean cloud-to-cloud distance 0.03 m). Finally, the linearly

transformed SfM-derived points cloud was manually segmented into

ground and overground classes to achieve an average ground points

density of approximately 180 points m�2 (points spacing <0.10 m). All

explained points cloud-related operations were performed within the

CloudCompare open-source software package (rel. 2.6.1; http://

www.cloudcompare.org/).

Since inaccuracies in self-calibrating bundle adjustments could

result in systematic errors in the camera orientation estimates as well

as in the derived topographic models (e.g. James et al., 2020), prior to

data interpolation an extensive vertical quality assessment was carried

out on the classified SfM-derived points cloud by using the terrestrial-

based measurements as validation data. As a matter of fact, the nomi-

nal positioning quality for dual-frequency GNSS receivers operating in

real-time kinematic mode with baseline <20 km ranges between 0.02

and 0.05 m, by degrading up to one order of magnitude for both the

LiDAR altimetry and the digital photogrammetry also in open-terrain

conditions (e.g. Cilloccu et al., 2009; Molina et al., 2014).

In detail, the GNSS dataset was randomly split into two indepen-

dent and equal-sized samples of more than 1000 measurements (i.e. a

training and a validation sub-dataset). The training dataset was

employed as reference during the analysis of the vertical ‘errors’,
whereas the validation dataset was used to verify the consistency of

the quality estimates. An automated routine based on a proximal point

algorithm (e.g. Pourali et al., 2014) was then coded to directly compare

the photogrammetric- and terrestrial-derived points coordinates. This

approach was deemed the most appropriate for a reliable comparison

of topographic measurements, since the inaccuracies introduced

through gridding are eliminated (Hodgson & Bresnahan, 2004). Overall,

the validation technique involves a user-specified horizontal search

radius around the GNSS points for comparison with the SfM-derived

points. In order to limit the influence of the channel slope on the com-

puted vertical differences, a horizontal search radius of 0.10 m was

chosen after a calibration procedure. This value also allowed an aver-

age number of SfM-derived points within the search radii equal to six,

ensuring a sufficient sample size for reliable ‘error’ estimates. All SfM-

derived points within that search area were selected, and their ortho-

metric heights were compared to that of the reference GNSS point.

The computed elevation differences were considered as vertical

‘errors’, and they were statistically analysed by using the quality esti-

mators suggested by Höhle and Höhle (2009). The obtained results are

summarized in Table S2 in the online Supplementary Material, along

with the vertical ‘error’ estimates of the LiDAR-derived points cloud

for comparison. It is noteworthy, for both points clouds, that the sys-

tematic component of the vertical error was eliminated through a rigid

translation along the z-axis prior to data interpolation.

It should finally be highlighted that during regular field surveys

conducted before October–November 2015, we detected only minor

changes in the channel morphology compared to August 2015, mainly

related to dry ravels from the channel banks that slowly recharge the

gully bottom with loose debris. Therefore, in this research, we reason-

ably assumed that the available topographic datasets described a

comparable channel morphology.

2.4 | GIS-based cell routing model

The routing modelling of the Rovina di Cancia debris flow was carried

out by means of the GIS-based cell routing model proposed by

Gregoretti et al. (2019). It represents the fully biphase version of the

model proposed by Gregoretti et al. (2016), and notably, it is able to

simulate both the routing and entrainment–depositional process of

solid–liquid mixtures characterized by a grain collision-dominated rhe-

ology (i.e. stony debris flows; Takahashi, 2007).

In summary, the model discretizes the flow domain through the

square cells of a raster-grid DEM and routes the solid–liquid flow

according to kinematic-wave approximation (e.g. Miller, 1984).

Regarding the morphological evolution of the channel bed, the rate of

change of bed elevation is calculated through a combination of

Exner’s equation with a modified version of the empirical one-

dimensional law of Egashira and Ashida (1987) by assuming the bot-

tom slope and flow velocity as controlling factors of the erosional–

depositional process. Notably, both erosion and deposition are com-

puted only along the steepest downslope flow direction. Finally, from

a numerical point of view, the governing equations of the mathemati-

cal model are solved by using the finite difference technique, with an

explicit scheme subject to the Courant–Friedrichs–Lewy stability con-

dition. A complete description of the employed routing model, along

with an illustration of its applicability in real debris-flow events, was

reported by Gregoretti et al. (2019).

It is worth mentioning that this model has satisfactorily

reproduced (in terms of both erosional and depositional patterns and

routing times, if available) three high-magnitude debris flows that

occurred in the Dolomites by using nearly the same values of input

parameters (Gregoretti et al., 2016, 2018, 2019).

3 | METHODS

3.1 | Elevation data interpolation

Prior to digital terrain modelling, the overall co-registration of the pre-

processed points clouds was assessed through cross-profiling

(i.e. extraction of longitudinal and transversal sections) of properly

surveyed fully three-dimensional channel features (e.g. large boulders).

This allowed the exclusion of any relative linear and/or angular mis-

alignment (i.e. shifts, tilts or scale variations) potentially affecting the

research outcomes.

Spatially concurrent DEMs (i.e. orthogonal elevation raster-grids

having the same spatial extent) were then generated within the soft-

ware package ArcGIS™ (rel. 10.6.1; https://www.esri.com/) by first

triangulating the pre-processed topographic datasets according to the

Delaunay criterion and then converting the obtained triangular irregu-

lar networks (TINs) into 1 m-resolution elevation raster-grids through

the natural neighbour algorithm (Sibson, 1981). All elevation models

were generated with a 1 m cell size, since it was deemed to ensure
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the best trade-off among accurate surface representation, data man-

agement efficiency and faithful phenomena reproduction. In fact, for

the study site, a smaller grid size would not be physically plausible

because of the presence at the gully bottom of large sediments (mean

diameter up to 1 m) that can be entrained and transported by debris

flows. Remarkably, the sampled topographic breaklines were set as

constraints during terrestrial-based data triangulation.

The reasons behind the choice of the outlined gridding methodol-

ogy were threefold. First, the triangular network is a vector-based sur-

face model allowing a better characterization of complex topographic

features (e.g. abrupt slope discontinuities) via the inclusion of sampled

topographic breaklines as three-dimensional polylines. Second, in the

planned gridding methodology, the TIN represents an intermediate

model enabling the removal of interpolation artifacts and, through

manual editing operations, the improvement of the elevation model

‘shape reliability’ (here referred to as the degree of maintenance in

the model of the gully shape ‘complexity’). Finally, according to

Boreggio et al. (2018), the triangulation with linear or natural neigh-

bour interpolation, along with the completely regularized spline and

thin-plate spline plus tension basis functions, ensures the best trade-

off between interpolation quality and ‘shape reliability’ in a such of

morphological environment. Remarkably, the natural neighbour algo-

rithm was in this case preferred over the simplest linear rasterization

since it allows a smoother connection among triangle edges by

improving the ‘shape reliability’ of the interpolated surface, mainly in

areas featuring low points density values.

3.2 | Surface shape analysis

Since the surface shape is the major control over fluxes of water and

sediment (e.g. Moore & Grayson, 1991), the performances of each

tested survey technology was initially evaluated by exploring the

‘shape reliability’ of the corresponding DEM (i.e. GNSS-, LiDAR- and

UAV-derived DEMs) via digital terrain analysis, as well as cross-

profiling in morphologically complex areas (e.g. rugged reaches con-

fined by steep channel banks).

Notably, the digital terrain analysis was carried out based on

topographic attributes controlling the routing of gravity-driven flows

and related processes (i.e. sediment entrainment and deposition). In

detail, we focused on: (1) the terrain slope computed in the direction

of steepest descent; (2) terrain roughness (Cavalli & Marchi, 2008);

and (3) profile and tangential terrain curvature (Wilson &

Gallant, 2000). An automated routine implementing TauDEM™ (rel.

5.3.7; Tarboton, 2003), WhiteBox GAT™ (rel. 1.4.0; Lindsay, 2016)

and custom algorithms was coded to compute and analyse all DEMs

derivatives.

3.3 | DEMs vertical quality analysis

Along with the surface shape analysis, the performances of each

tested survey technology were further statistically assessed by char-

acterizing the quality of the derived DEM, under the assumption of a

predominantly vertical error. For this task, the terrestrial-based mea-

surements of both the training and validation sub-datasets were used

as GCPs.

In detail, for each interpolated DEM, the GNSS points elevation

was subtracted from that of the corresponding raster-grid cell centres

(i.e. raster-grid cells containing terrestrial-based measurements). For

each terrain model, ‘elevation residuals’ were thus calculated and

used to characterize its own vertical error within the R open-source

software package (rel. 3.5.0; R Development Core Team, 2008). It

must be noted that these ‘elevation residuals’ were calculated by

comparing each time two points datasets, that is, the GNSS points

and the corresponding raster-grid cell centres, that did not spatially

overlap (points planimetric inter-distance up to 0.71 m). Furthermore,

especially in the case of the LiDAR-derived DEM, the compared

points datasets also had a different support size. In fact, the LiDAR

altimetry collects elevation measurements averaged over the laser

beam footprint (i.e. decimetre scale), whereas the GNSS technology

provides elevation measurements at the rod tip scale (i.e. centimetre

scale). On the other hand, in the case of the GNSS-derived DEM, the

compared points datasets were not independent since the elevation

model was interpolated by the same points used in the quality assess-

ment. As a consequence of the weaknesses of the outlined procedure,

some inherent uncertainties may affect the obtained vertical quality

metrics.

Since the derivation of DEM quality measures has to address the

presence of outliers and error distributions that may not be normal

(Höhle & Höhle, 2009), we followed the approach suggested by Höhle

and Potuckova (2011). Basically, this relies on the use of ‘standard’
(i.e. mean and standard deviation) or robust (i.e. median, normalized

median of absolute deviations, NMAD and sample quantiles of the

absolute error distribution) quality estimators, depending on whether

the vertical error distribution with (or without) outliers is normal. Fur-

thermore, the rule of three times the RMSE was used to set the

outlier threshold, while the error distribution normality was tested

both graphically and statistically by means of the normal Q–Q plot

and the d’Agostino K2 omnibus test, respectively. Notably, the null

hypothesis of the test states that the error distribution does not devi-

ate from the normal distribution as a consequence of either data

skewness or kurtosis, and the test was chosen due to its power in

cases of large samples having kurtosis slightly higher than the normal

distribution.

3.4 | DEMs vertical uncertainty modelling

As recognized by many authors, the vertical error of DEMs is not spa-

tially uniform and varies according to some spatial pattern

(e.g. Erdogan, 2009; Li, 1993; Weng, 2006; Wood, 1996; Wood &

Fisher, 1993; Yang & Hodler, 2000). For instance, we may expect

higher DEM errors over areas having a low sampled points density

and featuring high slope or roughness values (e.g. channel banks) com-

pared to areas having a high sampled points density and a smooth

morphology (e.g. debris deposits). However, the quality analysis car-

ried out only provided spatially uniform error estimates (i.e. a unique

error value for each elevation model) and, as a result, it did not allow a

proper characterization of the inherent vertical error of the interpo-

lated elevation models. Furthermore, the analysis was restricted to

raster-grid cells containing surveyed GNSS points, thus not providing

comprehensive error estimates. Finally, the survey technologies per-

formances were directly compared through probabilistic DEMs
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differencing operations. Therefore, since the detectable signal

(i.e. differences among compared survey methods) was expected to

be of low magnitude, a less conservative and more sophisticated

model of the DEMs error was deemed necessary.

To overcome the explained drawbacks, we modelled the DEMs

vertical error in a spatially distributed way by using the fuzzy infer-

ence system (FIS)-based algorithm proposed by Wheaton et al. (2010).

Overall, it allows readily available variables contributing to the DEMs

vertical error (e.g. terrain slope or roughness and points density) to be

provided as inputs to a FIS, and by relying on a linguistically based rule

system, it is able to output spatially variable estimates of the DEMs

elevation uncertainty (or ‘error’). For a complete dissertation on the

algorithm and its applicability, the reader is referred to

Wheaton (2008) and Wheaton et al. (2010).

In this research, we developed ad hoc FISs for GNSS-, LiDAR-

and UAV-derived DEMs. In detail, for each FIS, we used three input

variables, namely: (1) points density (a surrogate of the topographic

measurement spatial arrangement); (2) Euclidean distance to the

nearest sampled topographic breakline (a surrogate of the error clus-

tering); and (3) terrain slope (a surrogate of the topographic complex-

ity). These spatial indicators of elevation uncertainty were chosen by

previously investigating their relationships with the computed eleva-

tion ‘errors’ by means of a bivariate correlation analysis. As pointed

out by Hensleigh (2014), this represents a key preliminary step since

the real work in developing a FIS consists of recognizing the variables

actually affecting the DEM error and exploring their mutual relation-

ships. Notably, for all FISs, each input variable was classified into three

fuzzy sets (i.e. low, medium and high), whose value ranges were

defined by analysing the sample distribution and corresponding

quantiles.

Once both the input variables and corresponding fuzzy sets were

defined, linguistically-based FIS rule systems relating inputs to output

(i.e. DEMs elevation uncertainty) were set up, and then the value

ranges of the three fuzzy sets (i.e. low, medium and high) of the out-

put variable were calibrated based on the observed DEMs errors.

Finally, for each possible combination of input variables, the

corresponding output fuzzy set was identified.

It is worth highlighting that for each interpolated elevation model,

we parametrized three separate FISs (for a total of nine independent

FISs) in a sort of calibration procedure by changing the fuzzy set value

ranges of both input and output variables (Table 1). Each developed

FIS was then validated by comparing the modelled and observed

DEM errors and their corresponding distributions. The geomorphic

change detection (GCD) ArcGIS™ plugin (rel. 6.1.14; http://gcd.

riverscapes.xyz/) was used to implement all FISs.

3.5 | Survey technologies comparison

In this study, the differences among tested survey technologies were

estimated at the raster-grid cell scale by subtracting the

corresponding DEMs values (e.g. GNSS-derived DEM vs. LiDAR-

derived DEM). As a result, three independent DEM of difference

(DoD) raster-grids (i.e. DoDGNSS�LiDAR, DoDGNSS�UAV and

DoDLiDAR�UAV), showing in a spatially distributed way the magnitude

of the vertical discrepancies between compared survey technologies

were obtained.

As stressed by different authors, in attempting DEMs subtraction

exercises, it is essential to properly account for the inherent uncer-

tainties of the differenced surfaces to distinguish any detectable sig-

nal from the background noise (e.g. Bangen et al., 2014; Lane

et al., 2003; Milan et al., 2011; Passalacqua et al., 2015; Schaffrath

et al., 2015; Wheaton et al., 2010). Most DEMs differencing analyses

rely on the ‘standard’ error propagation (Taylor, 1997) and some form

of thresholding, thus resulting in a definition of a minimum level of

detection (minLoD) above which the calculated vertical differences

between compared surfaces are assumed to be significant. In this con-

text, the most recent and advanced approach consists of a probabilis-

tic thresholding of the DoD raster-grid at any chosen confidence

interval (CI; e.g. 68, 95 or 99%) by using spatially variable DEMs error

T AB L E 1 Parametrizations of calibrated FISs

Parameter Maximum

Range of values for membership functions

Low Medium High

GNSS-derived DEM FIS n.3

Points density (points m�2) 4.00 0.00–3.00 0.00–4.00 2.00–4.00

Euclidean distance to the nearest sampled breakline (m) 25.96 0.00–2.00 0.00–4.00 2.82–25.96

Terrain slope (�) 73.71 0.00–40.70 36.66–48.23 44.19–73.71

DEM elevation uncertainty (m) 0.76 0.00–0.25 0.03–0.33 0.03–0.76

LiDAR-derived DEM FIS n.3

Points density (points m�2) 38.00 0.00–6.00 3.00–9.00 6.00–38.00

Euclidean distance to the nearest sampled breakline (m) 25.96 0.00–2.00 0.00–4.00 2.82–25.96

Terrain slope (�) 73.71 0.00–40.70 36.66–48.23 44.19–73.71

DEM elevation uncertainty (m) 1.13 0.00–0.31 0.03–0.43 0.12–1.13

UAV-derived DEM FIS n.3

Points density (points m�2) 770.00 0.00–188.00 169.00–222.00 204.00–770.00

Euclidean distance to the nearest sampled breakline (m) 25.96 0.00–2.00 0.00–4.00 2.82–25.96

Terrain slope (�) 73.71 0.00–40.70 36.66–48.23 44.19–73.71

DEM elevation uncertainty (m) 1.64 0.00–0.41 0.01–0.70 0.02–1.64
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estimates (e.g. FISs-based DEMs uncertainty estimates). Therefore, a

unique minLoD is calculated on a cell-by-cell basis by multiplying the

propagated DEMs error by a critical Student’s t-value (e.g. 1.96 for a

95% CI), on the assumption that the individual DEMs errors are inde-

pendent and distributed according to a Gaussian function.

In this research, to recognize the magnitude and spatial distribu-

tion of the significant discrepancies among compared survey technol-

ogies, we thresholded the three derived DoD raster-grids at a 95%

probabilistic CI by using the corresponding spatially variable FIS-based

DEMs error estimates. Remarkably, both a 68.3% and a 99% probabi-

listic CI was used further to test the influence of the chosen critical

Student’s t-value on the obtained results.

3.6 | Evaluation of the topographic data source
effect on debris-flow routing modelling

Since an inaccurate model parametrization could hide the topographic

data source effect on routing modelling, we remark that the employed

model parameter values were those that allowed the close reproduc-

tion of three debris-flow events that occurred in the Dolomites,

including the one that affected the study area of Rovina di Cancia in

July 2009 (approximately 55 000 m3 of entrained and transported

sediments). Moreover, a sensitivity analysis carried out by Gregoretti

et al. (2019), relying on the data of the July 2009 debris-flow event,

highlighted that variations in the model parameters values within a

physically plausible range did not lead to significantly different

routing-modelling outcomes. Overall, this should ensure a reliable

analysis of the topographic data source effect on debris-flow routing

modelling.

In all performed model runs, the values of the model parameters

along with the upstream boundary condition (i.e. inlet solid–liquid dis-

charge hydrograph of assigned return period) were kept unchanged,

thus varying only the initial topographic surface where the flow

occurs. Therefore, this exercise allowed the investigation of the inher-

ent impact of the employed survey technology on the routing model

behaviour.

In this research, two event scenarios (i.e. 300- and 50-years

return period) were defined and used in the different model runs, thus

evaluating the influence of the topographic data source in two differ-

ent flow conditions, characteristics of two usual design return periods.

Therefore, a total of six model runs were executed (i.e. three initial

topographic surfaces times two event scenarios).

To assess the topographic data source effect on debris-flow rou-

ting modelling, the model runs outcomes comparison was carried out

by focusing on those concerning the hazard, namely: (1) the

solid–liquid discharge hydrographs corresponding to five control

cross-sections; (2) the areas inundated during propagation; (3) the

erosional–depositional volumes; and (4) the erosional–depositional

depths, maximum flow depths and maximum thicknesses

corresponding to thirty-eight, 2 m-buffered cross-sections evenly dis-

tributed within the computational domain (cross-sections inter-

distance <20 m). With regard to the last analysis, both a 0.50 m and a

1 m buffer were used to assess the impact on the obtained results.

It is worth highlighting that ground reference informations for

both modelled event scenarios were not available. Therefore, the

investigation must be considered a sensitivity study rather than a

quality assessment, answering the following research question: How

may we expect the routing model behaviour to differ if we use as

input bathymetry DEMs generated by gridding topographic datasets

of different source?

4 | RESULTS AND DISCUSSION

4.1 | Surface shape analysis

The results of the ‘shape reliability’ analysis of generated elevation

models globally highlight a change in the shape ‘complexity’ of the

reproduced gully morphology, depending on the topographic data

source (Figure 2 and Figure S1 in the online Supplementary

Material).

For each terrain attribute considered, the comparative analysis

of the corresponding raster-grid box plots (Figure 2) points out

noticeable differences, mainly in terms of value dispersion

(i.e. interquartile range and distribution extremes). In detail, the

GNSS-based DEM derivatives feature the lowest data dispersion

(41.22 � 9.22�, 0.01 � 0.02 m, 0.31 � 4.46�/m and 0.84 � 6.96�/m

for the terrain slope, roughness, profile and tangential curvature,

respectively), thus denoting a poorly detailed and generally smooth

interpolated surface, mostly due to the inherent limits of the sur-

vey technology (i.e. low density and non-uniform spatial arrange-

ment of the sampled points). Conversely, for the same terrain

attributes, the highest raster-grid data dispersion is observed in the

UAV-based DEM derivatives (41.98 � 11.60�, 0.03 � 0.07 m,

0.33 � 7.40�/m, and 0.78 � 13.77�/m, respectively), probably due

to the extremely high topographic data source resolution (up to

500 ground points m�2), allowing the digital modelling of more

‘complex’ shapes (e.g. boulders, near-vertical slopes, loose debris

deposits and scour limits). On the other hand, the aerial-based full-

waveform laser altimetry yielded a digital representation of the

gully surface with in-between shape ‘complexity’ (41.74 � 10.60�,

0.02 � 0.05 m, 0.38 � 6.21�/m and 0.95 � 11.33�/m for the terrain

slope, roughness, profile and tangential curvature, respectively),

likely due to the use of a full-waveform sensor (and related data

post-processing algorithms) ensuring both a density (up to

20 ground points m�2) and a spatial arrangement of the topo-

graphic measurements suitable to adequately resolve the channel

singularities.

The outlined differences in the modelled surfaces ‘complexity’
are also underpinned by the visual assessment of Figure S1 cross-

profiles and 3D views. In fact, it clearly stresses the inability of the ter-

restrial measurements-based DEM to properly reproduce both com-

plex channel bottom forms (e.g. rock step and boulders) and gully

banks, since they were not fittingly surveyed, mostly due to site

accessibility-related safety reasons. On the other hand, mostly due to

the higher density and more uniform spatial distribution of sampled

points, the aerial-based survey technologies yielded a more faithful

and finer representation of the terrain features affecting the gravity-

driven flow dynamics (e.g. channel banks, steps and rugged areas),

thus guaranteeing a higher ‘shape reliability’ of the corresponding ele-

vation models.
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4.2 | DEMs vertical quality analysis

The GNSS-, LiDAR- and UAV-derived DEMs vertical quality metrics,

computed by comparing the terrestrial-based elevations to those of

the corresponding raster-grid cell centres, are summarized in Table 2.

For the GNSS-derived DEM, the values of the ‘standard’ quality esti-

mators (i.e. mean and standard deviation) computed on the

error sample after outlier thresholding do not differ significantly from

those of the robust estimators (i.e. median and NMAD). Conversely,

the outliers have a great influence on the computed mean and stan-

dard deviation values for both LiDAR- and UAV-derived DEMs. In

fact, after outlier thresholding, their values decrease by remaining

greater than the corresponding robust ones. Therefore, in this

research, the median and NMAD were used to characterize the qual-

ity of all interpolated elevation models. Furthermore, the 95% quantile

of the absolute error distribution was employed as a robust estimator

of the maximum (unsigned) vertical error.

Overall, the median of the vertical errors can be regarded as negli-

gible for all gridded surfaces, indicating that the three investigated

survey methods are not biased (i.e. they do not systematically over- or

under-estimate elevation values). The median of the vertical errors for

the LiDAR- and UAV-derived DEMs is only slightly biased towards

under-estimating elevation values (�0.03 and �0.04 m, respectively).

Notably, this vertical bias was eliminated before undertaking the

DEMs differencing exercise by means of a rigid translation in the

z dimension of both surfaces.

By looking at the quality metrics, the error estimates are ‘better’
for the GNSS-derived DEM (NMAD 0.22 m) with respect to both

LiDAR- and UAV-derived DEMs (NMAD 0.29 and 0.41 m, respec-

tively). However, this may depend on the use of terrestrial-based

measurements as reference values in the performed vertical quality

assessment. Overall, the quality estimates are smaller than 0.30 m for

both GNSS- and LiDAR-derived DEMs. Conversely, for the UAV-

derived DEM, the NMAD of the computed elevation errors is

>0.40 m, thus denoting a vertical quality lower than the one obtained

by the research group for SfM-derived DEMs related to debris-flow

channels of the test area of Fiames (Cortina d’Ampezzo, north-eastern

Italian Alps). Therefore, since the low determinability of the camera’s

F I GU R E 2 Box plots of the terrain
slope (a), roughness (b), profile (c) and
tangential curvature (d) DEM-derived
raster-grids

T AB L E 2 Computed standard and robust DEMs quality statistics

GNSS-derived DEM LiDAR-derived DEM UAV-derived DEM

Number of outliers (�) 30.00 50.00 35.00

Mean (m) 0.00 �0.06 �0.09

Standard deviation (m) 0.25 0.38 0.62

Mean after the outliers thresholding (m) 0.00 �0.05 �0.10

Standard deviation after the outliers thresholding (m) 0.24 0.34 0.57

Median (m) 0.00 �0.03 �0.04

NMAD (m) 0.22 0.30 0.41

68.3% quantile of absolute errors (m) 0.23 0.31 0.47

95% quantile of absolute errors (m) 0.52 0.79 1.41
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additional parameters (e.g. radial distorsion parameters) in self-

calibrating bundle adjustments of relatively weak imaging configura-

tions, combined with possible correlations between intrinsic and

extrinsic photogrammetric parameters, could impair the quality of

derived topographic models (e.g. James & Robson, 2012; James

et al., 2020; Wackrow & Chandler, 2008, 2011), we characterized the

radial variation of the vertical error (see Figure S2 in the online Sup-

plementary Material) as well as the magnitude of the doming deforma-

tion of the SfM-derived points cloud, as described by James and

Robson (2014) and James et al. (2020). Overall, from the analysis of

the trend of the scatter plots shown in Figure S2, it is reasonable to

suppose that the followed workflow, as well as the high topographic

gradien and morphological complexity of the study reach (average

slope 25�), combined with the variability in both the flight altitude and

camera pointing directions, allowed us to effectively counteract the

quality issues related to the weak imaging configuration (dome ampli-

tude <0.01 m). However, a closer look at the plots reveals a complex

spatial pattern of the vertical error. On the one hand, as previously

observed by James et al. (2020), this appears to suggest that, although

the magnitude of the SfM-derived points cloud deformation is not

statistically significant (p-value > 0.1), the spatial distribution of the

error is more complex and difficult to compensate, likely due to the

strong topographic relief of the study site. On the other hand, in

agreement with the quality-based classification of DEMs proposed by

Cilloccu et al. (2009), this highlights that only GNSS and full-waveform

laser altimetry technologies were able to provide dense (i.e. high-reso-

lution) and high-quality DEMs of the study area, ideally suitable for

flow-routing modelling applications. However, the ‘shape reliability’
analysis of generated elevation models clearly highlighted the inability

of the terrestrial measurements-based DEM to properly reproduce

the terrain features affecting gravity-driven flow dynamics

(e.g. channel banks, steps and rugged areas; Figure S1), mostly due to

the inherent limits of the survey technology. In contrast, the

photogrammetric-based survey technology proved to ensure a more

faithful and detailed representation of gully morphology, with the

highest observed shape ‘complexity’, likely due to the extremely high

topographic data source resolution (Figures 2 and S1). This evidence

emphasizes the primary role of shape analysis techniques (also in the

F I GU R E 3 Scatter plots of the points density (a, d and g), Euclidean distance to the nearest sampled topographic breakline (b, e and h) and
terrain slope (c, f and i) values against the observed absolute errors of GNSS- (top), LiDAR- (centre) and UAV-derived (bottom) DEMs. For
elucidating global trends, both the median and NMAD of the absolute elevation errors for each decile of the input FISs variables are also depicted
(red circles and corresponding whiskers, respectively). Note: The dotted blue lines represent the marginal means of correlated variables
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simplest form of cross-profiling) when undertaking DEMs-related ana-

lyses, as they effectively compensate for the inherent limits of the

purely statistics-based approach.

4.3 | DEMs vertical uncertainty modelling

In Figure 3 (top and centre), we report the results of the bivariate cor-

relation analysis between the three chosen FIS input variables

(i.e. points density, Euclidean distance to the nearest sampled topo-

graphic breakline and terrain slope) and observed absolute errors of

GNSS- and LiDAR-derived DEMs. As expected, the global trends high-

light a positive correlation between the channel bottom slope and

observed absolute errors and a negative correlation between the

points density and Euclidean distance to the nearest sampled topo-

graphic breakline. First, this indicates that the DEMs error generally

tends to be higher corresponding to both high-gradient areas featur-

ing a low sample points density and at slope discontinuities, in agree-

ment with what has been observed by many previous authors

(e.g. Boreggio et al., 2018; Erdogan, 2009; Heritage et al., 2009;

Milan et al., 2011; Scheidl et al., 2008; Wheaton et al., 2010). Second,

this also indicates that the chosen spatial indicators of elevation

uncertainty are suitable proxies for factors contributing to the DEMs

vertical error, which can in turn be used as input variables in a FISs-

based DEMs error model. Notably, all plots show a points pattern hav-

ing a progressive dispersion (i.e. a megaphone pattern), hence indicat-

ing that low-magnitude elevation uncertainties can also be observed

at both high-gradient areas having a low sample points density and at

slope discontinuities. In fact, although these conditions increase the

potential for higher DEMs uncertainties, accurate DEMs elevation

values are still possible.

In Figure 3 (bottom), we report the results of the bivariate correla-

tion analysis carried out for the UAV-derived DEM. Notably, the

global trends point out a positive correlation for both the

points density and Euclidean distance to the nearest sampled topo-

graphic breakline, in contrast to what was explained previously. Over-

all, this indicates that the UAV-derived DEM errors tend to be higher

corresponding to high-gradient areas located far from the channel

banks (i.e. sampled major topographic discontinuities) and featuring

high points density values. On the one hand, the positive correlation

for the points density may be due to a significant increase in the local

variance (i.e. of the high-frequency component) of the SfM-derived

points cloud (and of the corresponding TIN) with the sample

points density, as a consequence of either a rise of the instrument-

related noise or a more detailed description of the submetre-scale

channel topography (or a combination of them). In the latter case, this

in turn results in more inaccurate error estimates, mostly due to the

extremely local character of the triangulation process in the high

points density condition and the spatial mis-overlap between the

GCPs used and corresponding raster-grid cell centres. On the other

hand, the positive correlation for the Euclidean distance to the nearest

sampled topographic breakline may be related to the ‘natural’
increase in the terrain roughness by moving from the channel banks

to the talweg because of the loose debris deposits, which in turn

yields a significant increase in the local variance of the SfM-derived

points cloud with more inaccurate error estimates. To investigate this

thesis, the SfM-derived points cloud was also gridded by averaging

(1 m support size), thus reducing the influence of: (1) the high-

frequency component; (2) the inherent limits of the error assessment

methodology; and (3) the points density on the interpolation process.

As depicted in Figure S3 in the online Supplementary Material, the

global trends of the average-derived DEM also highlight a positive

correlation for both variables, thus rejecting the postulated hypothe-

ses. As previously pointed out, the presence of a complex spatial

F I GU R E 4 Q–Q plots relating the observed and modelled elevation errors for the LiDAR-derived DEM: (a) FIS n.1, (b) FIS n.2 and (c) FIS n.3.
Note: The continuous grey line depicts the 1:1 relationship, whereas the blue and red dashed lines correspond to a FIS error of �0.10 and
�0.20 m, respectively

F I GU R E 5 Box plots summarizing the modelled FIS n.3-based
elevation uncertainty for each interpolated DEM
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F I GU R E 6 FIS n.3-based elevation uncertainty raster-grids for (a) GNSS-, (b) LiDAR- and (c) UAV-derived DEMs

F I GU R E 7 Unthresholded (a, b and c) and corresponding thresholded (95% CI; d, e and f) DoD raster-grids, calculated using the propagated
FISs-based DEMs elevation uncertainty estimates (Figure 6). Left (a and d): GNSS- and LiDAR-derived DEMs comparison; centre (b and e): GNSS-
and UAV-derived DEMs comparison; and right (c and f): LiDAR- and UAV-derived DEMs comparison
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pattern of vertical errors may explain the conflicting trends observed

in this study. Therefore, to confirm these findings, further investiga-

tions on other SfM-derived datasets related to debris-flow channels

are currently underway in the test area of Fiames.

Notably, the investigation of Figure 3 plots indicates that at the

sampled major topographic discontinuities (i.e. toe and top of the

channel banks), the GNSS-derived DEM features the lowest absolute

error values. Overall, this suggests that despite the recognized global

poor shape ‘reliability’ (see Figure S1), the terrestrial measurements-

based DEM is able to model sharp slope changes more accurately than

the aerial measurements-based DEMs, likely due to the setting of the

sampled topographic breaklines as constraints during the triangulation

process. As a consequence, this allows the gridding algorithm to reli-

ably model sharp edges, even in the case of topographic datasets with

quite low points density. On the other hand, for this kind of morpho-

logical environment, it is also stressing the significance of an interpola-

tion algorithm allowing the inclusion of sampled topographic

breaklines as constraints, even in the case of high points density topo-

graphic datasets (e.g. SfM-derived points clouds). However, it is worth

noting how the comparison of the absolute errors of the LiDAR- and

UAV-derived DEMs at abrupt slope changes indicates that even with-

out the use of sampled breaklines, a higher sample points density

ensures a more reliable sharp edge modelling (with this kind of

gridding methodology).

As an example, the Q–Q plots in Figure 4 summarize the relation-

ship between the observed and modelled LiDAR-derived DEM errors

for its three developed FISs (see Table 1). Overall, for each interpo-

lated DEM, the best agreement is achieved by FIS n.3, with the closest

1:1 relationship between the observed and modelled DEMs errors.

F I GU R E 8 Simulated solid–liquid
discharge hydrographs for 300-years
return period model runs corresponding
to GNSS-, LiDAR- and UAV-derived
DEMs (blue, red and green, respectively)

F I GU R E 9 Characteristic times and peak discharges of simulated
300-years return period solid–liquid discharge hydrographs. Note:
Blue, red and green colours represent the model runs corresponding
to GNSS-, LiDAR- and UAV-derived DEMs, respectively
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Remarkably, a closer look at the plots reveals that all FISs-based

DEMs error models yield a loss of the observed error variance by

under-estimating the largest observed DEMs error values and by

over-estimating the smallest ones. As pointed out by Hensleigh (2014),

this may be due to the inability of the FISs-based DEMs error models

to account for situations where the elevation error can be both of

high and low magnitude at the same time, thus not replicating the

observed megaphone pattern (Figure 3). Furthermore, the DEMs error

is truly a complex function of the points ‘quality’, sampling density,

morphological complexity, gridding methodology and raster-grid spa-

tial resolution. Therefore, it is unlikely that the implemented (three-

input variables) FISs can provide a comprehensive characterization of

the error of interpolated DEMs.

Overall, the FIS n.3-based DEMs elevation uncertainty estimates

are in the range 0.10–0.44, 0.12–0.67 and 0.18–0.93 m for the

GNSS-, LiDAR- and UAV-derived DEMs, respectively. Furthermore, as

shown in Figure 5, the uncertainty estimates are lower (median

0.16 m) and have a smaller variance (standard deviation 0.13 m) in the

case of the GNSS-derived DEM relative to both the LiDAR- and UAV-

derived DEMs (median 0.40 and 0.77 m, standard deviation 0.22 and

0.31 m, respectively). However, it must be stressed that the fuzzy set

value ranges of the FISs output variable (i.e. modelled DEMs elevation

uncertainty) were calibrated based on the elevation errors computed

through the use of terrestrial-based measurements as GCPs. Remark-

ably, of the three interpolated DEMs, the UAV-derived DEM has the

highest modelled inherent uncertainty (Figures 5 and 6).

As shown in Figure 6, the FIS n.3-based elevation uncertainty

estimates are generally higher at the major longitudinal (i.e. toe and

top of the channel banks) and transverse (i.e. massive rock step

located at the end of the triggering reach; Figure 1) topographic dis-

continuities and along the channel banks, especially for the UAV-

derived DEM. Conversely, the lowest-magnitude uncertainty esti-

mates are observed along the channel bottom. Overall, this indicates

that all investigated survey technologies are able to describe the area

mainly affected by the routing of channelized debris flows with a gen-

erally lower inherent noise and comparable higher uncertainty values

F I GU R E 1 0 (a) Terrain profiles before (continuous lines) and after (dashed lines) the modelled 300-years return period event scenario, with a
focus on the massive rock step located about 300 m downstream the inlet section (note: blue, red and green colours represent the model runs
corresponding to GNSS-, LiDAR- and UAV-derived DEMs, respectively). Note: The profiles show the mean terrain elevation of the inundated area
during the propagation, computed corresponding to the depicted 2 m-buffered inner domain cross-sections. Bottom: Simulated erosional–
depositional depths at the end of 300-years return period model runs: (b) GNSS-, (c) LiDAR- and (d) UAV-derived DEMs
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corresponding to morphologically complex transverse and longitudinal

terrain features.

4.4 | Survey technologies comparison

The unthresholded DoD raster-grids, along with the corresponding

probabilistically thresholded models (95% CI) are shown in Figure 7.

For the GNSS- and LiDAR-derived DEMs comparison (Figures 7a

and D), the computed vertical discrepancies range from �4.31 to

6.39 m, with an average (thresholded) vertical difference of �0.07 m.

Therefore, the LiDAR-derived DEM is slightly biased towards over-

estimating the GNSS-derived DEM elevations. The visual assessment

of the unthresholded DoD map (Figure 7a) reveals that most com-

puted elevation discrepancies feature a low magnitude, indicating an

overall fair agreement between the two compared survey technolo-

gies. Furthermore, as shown in the corresponding thresholded DoDs

raster-grid (Figure 7d), most computed vertical differences are not sig-

nificant when probabilistically thresholded at a 95% CI (total volumet-

ric unthresholded and thresholded difference between compared

DEMs of 11709.82 and 7212.26 m3, respectively). Statistically signifi-

cant elevation discrepancies are observed along the channel banks

and corresponding to the massive rock step, where no terrestrial-

based measurements were gathered in the field due to site

accessibility-related safety reasons. Conversely, along the channel

bottom, no meaningful vertical discrepancies are detected. Overall,

this indicates that a low-altitude, helicopter-based, full-waveform

LiDAR survey has the potential to provide a topographic characteriza-

tion of the bathymetry of a debris-flow channel comparable (i.e. not

significantly different) to that of a cross-sections, morphologically

guided terrestrial-based geodetic survey. On the other hand, a GNSS

survey cannot ensure a reliable characterization of complex channel

bottom forms (e.g. rock steps and bouldered reaches; Figure S1) and

longitudinal features (e.g. high-gradient channel banks; Figure S1) if

they are not properly surveyed in the field.

Regarding the GNSS- and UAV-derived DEMs comparison

(Figures 7b and e), the computed vertical discrepancies range from

�4.73 to 6.76 m, with an average (thresholded) vertical difference of

�0.13 m. Therefore, the UAV-derived DEM is biased towards over-

estimating the GNSS-derived DEM elevations to a greater extent than

the LiDAR-derived DEM (total volumetric unthresholded and

thresholded differences 14 708.98 and 7428.52 m3, respectively).

The visual assessment of the corresponding DoD raster-grids indi-

cates that (also for this comparison) the statistically significant eleva-

tion discrepancies are mainly concentrated along the channel banks

and corresponding to the massive rock step due to the remarked

inherent limits of the terrestrial-based survey technology. Conversely,

along the channel bottom, no meaningful vertical discrepancies are

detected overall, except for minor patches mainly related to bouldered

channel reaches and, to a minor extent, the manual removal of

uprooted shrubs within the SfM-derived points cloud. However, it

should be observed that the (cell-scale) DoD raster-grid thresholds are

generally higher than those referred to in the GNSS- and LiDAR-

derived DEMs comparison due to the higher inherent uncertainty of

the UAV-derived DEM (Figures 5 and 6). This may explain the general

absence of significant elevation discrepancies between the two com-

pared survey technologies along the channel bottom, despite the

recognized meaningful differences in the ‘complexity’ of the

reproduced surface (Figures 2 and S1).

Finally, in the case of the LiDAR- and UAV-derived DEMs com-

parison (Figures 7c and f), the computed vertical discrepancies range

from �3.65 to 2.51 m, with an average (thresholded) vertical differ-

ence of �0.15 m. Therefore, the UAV-derived DEM is also biased

towards over-estimating the LiDAR-derived DEM elevations. A visual

assessment of the unthresholded DoD model (Figure 7c) indicates

that the computed elevation discrepancies generally feature a low

magnitude along both the channel bottom and channel banks, hence

indicating a fair agreement also between these two survey technolo-

gies. Some minor patches of high-magnitude discrepancies are espe-

cially observed within the areas affected by manual editing operations

(i.e. uprooted vegetation removal) of the SfM-derived points cloud.

Furthermore, as shown in the corresponding thresholded DoD model

(Figure 7f), most computed vertical discrepancies are not significant

when probabilistically thresholded at a 95% CI (total volumetric

F I G U R E 1 1 Three hundred years return period model run results
in terms of simulated inundated areas and erosional–depositional
volumes at the (a) domain, (b) upstream and (c) downstream the rock
step-scale

BOREGGIO ET AL. 15



unthresholded and thresholded differences 6531.23 and 1979.09 m3,

respectively). Notably, minor patches of significant elevation discrep-

ancies between compared DEMs are recovered corresponding to

abrupt slope discontinuities by thresholding the DoD raster-grid in

Figure 7c at a CI of 68.3%, mainly due to the ability of SfM-based digi-

tal photogrammetry to faithfully model ‘complex’ shapes (e.g. near-

vertical slopes and scour limits; Figures 3 and S1).

4.5 | Evaluation of the topographic data source
effect on debris-flow routing modelling

Figures 8 and 9, along with Figures S4 and S5 in the online Supple-

mentary Material, show the model runs results in terms of solid–liquid

discharge hydrographs simulated at the five depicted control cross-

sections, as well as the corresponding volumes, ‘characteristic times’

F I GU R E 1 2 Three hundred years return period model runs results in terms of (cross-section averaged) erosional depths (a) and (cross-
section summarized) erosional volumes (b) simulated corresponding to thirty-eight, 2-m buffered inner domain cross-sections. Note: Blue, red and
green colours represent the model runs corresponding to GNSS-, LiDAR- and UAV-derived DEMs, respectively

F I GU R E 1 3 Box plots of the flow direction (a), flow direction diversity (i.e. the number of unique flow direction values within a 3 � 3 moving
window (b) and terrain slope (c) DEMs-derived raster-grids. Note: The analysed data refer to the envelope of modelled inundated areas during

propagation
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(i.e. arrival, ending and peak time) and peak discharges, for both the

considered event scenarios.

The comparison among the model run plots corresponding to

GNSS- and LiDAR-derived DEMs indicates that the most noticeable

differences occur in the channel reach encompassing control cross-

sections n.2 and n.3, where the corresponding DoD models show sig-

nificant discrepancies between the two survey technologies

(Figures 7a and d), mainly because of the inability of the terrestrial

measurements-based DEM to properly reproduce complex gully fea-

tures (i.e. rock step and steep gully banks).

These differences are related to an observable change in the sim-

ulated local flow dynamics corresponding to the massive rock step

(Figure 1), approximately 300 m downstream of the model inlet

section (Figure 10). In fact, just upstream of the rock step, the higher

(cross-section averaged) erosional depths are modelled using the

LiDAR-derived DEM as the input topographic surface (Figure 10a),

with the simulated flow bifurcating into two principal flow paths

(Figure 10c). Conversely, downstream of the rock step, higher (cross-

section averaged) erosional depths are observed in the model run

corresponding to the GNSS-derived DEM (Figure 10a), with the simu-

lated flow following upstream a preferential flow line on the right and

then downstream following a preferential flow line on the left

(Figure 10b). Notably, the recognized change in the simulated local

flow dynamics also affects the downstream channel reach

encompassing control cross-sections n.4 and n.5, by determining

minor discrepancies in the model run results even if no significant dif-

ferences in the input topographic surfaces are observed.

This evidence is confirmed by Figures 11 and 12, along with

Figures S6 and S7 in the online Supplementary Material. Regardless of

the magnitude of the simulated event scenario, the plots clearly stress

a change in the model behaviour related to the input topographic sur-

face moving from upstream to downstream of the rock step, mainly in

the extent of the simulated erosional process (which represents the

dominant geomorphic forcing within the study reach). The outlined

model behaviour is strictly linked to the adopted schematization for

the sediment entrainment–depositional process modelling. Indeed, it

is simulated by assuming the channel bottom slope and flow velocity

as controlling factors, both in turn depending on the digital

topography.

On the other hand, the comparative analysis of the model run

plots corresponding to the UAV-derived DEM indicates that notice-

able differences affect almost the entire studied channel reach, mostly

in terms of systematic ‘under-estimation’ of both mixture volume and

peak discharge because of a modelled erosional process featuring an

overall lower magnitude (Figures 8 and S4; Figures 9 and S5;

Figures 10d, 11 and S6; Figures 12 and S7). To explain the recognized

model behaviour, we focused on the value distributions of both the

flow direction (computed as the steepest descent direction) and the

terrain slope (computed along the flow direction) by only referring to

the computational domain area actually affected by the flow

(Figure 13). Indeed, regarding the employed routing model, these ter-

rain attributes represent the main topographic parameters controlling

both the solid–liquid mixture routing and sediment entrainment–

depositional process. Overall, a comparison of Figure 13 plots indi-

cates meaningful discrepancies among generated DEMs both in terms

of modelled flow paths and topographic gradient, with the highest

data variability shown by the UAV-based DEM derivatives likely due

to the extremely high-topographic data source resolution. This evi-

dence may represent the primary reason for the observed stronger

control of the photogrammetrically reconstructed bathymetry on the

simulated global flow dynamics.

A summary of the dispersion (i.e. maximum difference among the

results of model runs of assigned return period) in the simulated mix-

ture volumes and peak discharges for both considered event scenarios

T AB L E 3 Maximum differences in simulated solid–liquid hydrograph volumes and peak discharges for 300-years return period model runs

Mixture volume

Control sec n.1 Control sec n.2 Control sec n.3 Control sec n.4 Control sec n.5

‘Absolute’ differences (m3) 218.62 2574.15 3970.36 3202.45 3659.57

‘Relative’ differences (%) 1.31 11.26 15.33 11.83 13.17

Peak discharge

Control sec n.1 Control sec n.2 Control sec n.3 Control sec n.4 Control sec n.5

‘Absolute’ differences (m3/s) 5.98 18.40 12.54 11.39 15.42

‘Relative’ differences (%) 12.06 24.25 15.36 15.33 20.44

Note: For each control cross-section, the ‘relative’ difference is computed as the percentage ratio between the ‘absolute’ difference and the mean of all

corresponding simulated mixture volume and peak discharge values, respectivel

T AB L E 4 Maximum differences in both the inundated areas during propagation and erosional–depositional volumes simulated at the
computational domain scale for 300-years return period model runs

Inundated area

(m2)

Erosional area

(m2)

Erosional volume

(m3)

Depositional area

(m2)

Depositional volume

(m3)

‘Absolute’ differences 612.00 606.00 4072.13 168.00 793.25

‘Relative’ differences
(%)

6.27 11.85 15.58 3.62 15.73

Note: For each variable, the ‘relative’ difference is computed as the percentage ratio between the ‘absolute’ difference and the mean of all corresponding

simulated values
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is shown in Table 3 and Table S3 in the online Supplementary Mate-

rial. Likewise, the maximum difference in both the inundated areas

during propagation and erosional–depositional volumes modelled at

the computational domain scale is summarized in Table 4 and

Table S4 in the online Supplementary Material.

For both modelled event scenarios, the highest dispersion in the

volumes of the simulated solid–liquid discharge hydrographs is

observed at control cross-section n.3 (i.e. just downstream of the rock

step; Figure 8), with (‘relative’) differences on the order of 15% of the

mean of all corresponding simulated mixture volumes. Conversely, the

best model run agreement (i.e. lowest dispersion in the simulation out-

comes) is observed at control cross-section n.1 (i.e. approximately

100 m downstream of the model inlet section; Figure 8), with a global

spread <5.10% of the mean of all corresponding simulated mixture

volumes. Regarding the simulated hydrograph peak discharges, the

highest dispersion in the 300- and 50-years return period model

run outcomes is observed at control cross-sections n.2 and n.4, with

(‘relative’) values up to 34.51% of the mean of all corresponding simu-

lated peak discharges. In contrast, for both event scenarios, the best

model run agreement is observed at control cross-section n.1, with a

spread >10% of the mean of all corresponding simulated peak dis-

charges. Furthermore, it is observed that the average ‘relative’ disper-
sion (i.e. mean of all computed ‘relative’ differences) in the simulated

mixture hydrograph volumes is 10.58% (�5.42) and 10.77% (�3.61)

for the 300- and 50-years return period model runs, respectively. On

the other hand, the average ‘relative’ dispersion in the simulated

F I G U R E 1 4 Three hundred years return
period model runs results in terms of (cross-
section averaged) maximum flow depths (a) and
thicknesses (b) simulated corresponding to inner
domain cross-sections depicted in Figure 12.
Note: Blue, red and green colours represent the
model runs corresponding to GNSS-, LiDAR- and
UAV-derived DEMs, respectively.

T AB L E 5 Minimum, maximum and average dispersion in
simulated (cross-section averaged) maximum flow depth and
thickness values for 300-years return period model runs

Maximum flow
depth (m)

Maximum
thickness (m)

Min. ‘absolute’
differences

0.06 0.02

Max. ‘absolute’
differences

1.12 1.42

Avg. ‘absolute’
differences

0.43 0.28

Avg. ‘relative’
differences (%)

12.62 16.69

Note: For both variables, the ‘relative’ differences are computed as the

percentage ratio between the ‘absolute’ differences and the mean of all

corresponding simulated (cross-section averaged) maximum values
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hydrographs peak discharges (17.49% [�4.82] and 24.54% [�8.51]

for the 300- and 50-years return period model runs, respectively) is

approximately double, thus highlighting a different influence of the

topographic data source depending on the considered variable,

regardless of the magnitude of the modelled event scenario. It is

worth noting that both the mixture volume computation and wave

peak detection are affected by the shape of the simulated solid–liquid

discharge hydrograph, which in turn is controlled by the model output

time step. In this research, the output time step was set to 10 s, as it

proved to be a suitable value for ensuring a satisfactory smoothing of

the numerical fluctuations while preserving the characteristic ‘impul-

sive’ shape of debris-flow hydrographs (Figures 8 and S4). On the

other hand, it is also noted that the mixture hydrograph peak dis-

charges were simply computed as the maximum of the corresponding

simulated nonzero solid–liquid discharges vector. Therefore, the dis-

persion in the simulated hydrograph peak discharges was computed

by comparing values not referring to the same time step. As a result

of the outlined biases, an inherent uncertainty may affect the com-

puted values.

By examining the data in Tables 4 and S4, regardless of the mag-

nitude of the considered event scenario, the highest dispersion in the

model run outcomes is observed in the simulated erosional volumes,

with (‘relative’) differences up to 18.77% of the mean of all

corresponding simulated volume values. In contrast, regarding the

inundated areas during propagation, the (‘relative’) differences in the

model run results are on the order of 6% of the mean of all

corresponding simulated inundated area values, thus underpinning the

different influence of the topographic data source on routing-

modelling outcomes. However, this research focused on the routing

modelling of a channelized debris flow. In the case of a non-

channelized debris flow, a greater influence of the topographic data

source on the simulated inundated areas may be expected, mainly due

to the lower flow depths and velocities in turn enhancing the effect of

the different shape ’complexity’ of elevation models.

By referring to the flow depth and thickness, the plots in

Figure 14 and Figure S8 in the Supplementary Material show the

(cross-section averaged) maximum values simulated at the thirty-eight

inner domain cross-sections (Figure 12) for the 300- and 50-years

return period model runs, respectively. The corresponding dispersion

values in the model run outcomes are summarized in Table 5 and

Table S5 in the online Supplementary Material.

Overall, at the computational domain scale, the plots analysis indi-

cates that the model runs corresponding to the GNSS-derived DEM

generally yielded lower (cross-section averaged) maximum values for

both hydraulic variables, regardless of the return period of the event

scenario. Interestingly, the plots also stress the absence of a meaning-

ful relationship between the dispersion in the simulated (cross-section

averaged) flow depth and thickness maximum values and

variables magnitude, as confirmed by the scatter plots in Figure 15

and Figure S9 in the online Supplementary Material. In fact, Spe-

arman’s coefficient of the bivariate correlations is globally between

�0.43 and 0.00 (�) with corresponding p-values higher than a test sig-

nificance level equal to at least 0.05 (�), thus denoting a low to negli-

gible statistical relationship.

Regarding the model run outcome differences (Tables 5 and S5),

the dispersion in the simulated (cross-section averaged) maximum

flow depths ranges from 0.06 to 1.12 m (inner domain cross-sections

n.14 and n.38, respectively) and from 0.07 to 1.43 m (inner domain

cross-sections n.24 and n.20, respectively) for the 300- and 50-years

return period model runs, respectively. Likewise, the dispersion in the

modelled (cross-section averaged) maximum thicknesses ranges from

0.02 to 1.42 m (inner domain cross-sections n.34 and n.38, respec-

tively) and from 0.04 to 1.85 m (inner domain cross-sections n.19 and

n.20, respectively) for the 300- and 50-years return period model

runs, respectively. On the other hand, the average dispersion for both

hydraulic variables is on the order of 0.30–0.40 m, regardless of the

magnitude of the modelled event scenario. Therefore, despite the

highlighted sensitivity of the employed routing model to the topo-

graphic data source, from a debris-flow risk planning and management

point of view, these differences can be regarded as negligible overall

for the case study of the Rovina di Cancia gully.

5 | CONCLUSIONS

In the proposed research, we initially assessed and compared the per-

formances of both terrestrial- and aerial-based survey technologies

widely used in the field of the numerical modelling of gravity-driven

phenomena and suitable for characterizing the complex topography of

a steep alpine debris-flow channel reach (i.e. GNSS, helicopter-based

full-waveform LiDAR and UAV-based SfM digital photogrammetry).

To accomplish this task, a combination of surface shape analysis, verti-

cal quality assessment, spatially distributed modelling of vertical

uncertainty and probabilistic differencing of (temporal concurrent)

DEMs was used. Afterwards, we investigated the inherent influence

of the topographic data source on the outcomes of a GIS-based cell

F I GU R E 1 5 Scatter plots relating
the magnitude of simulated (cross-section
averaged) maximum flow depths (a) and
thicknesses (b), and the corresponding
‘relative’ dispersion for each inner
domain cross-section depicted in
Figure 12. Note: The variables’ magnitude
is defined as the mean of 300-years
return period model run results
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model for simulating stony debris flows by considering both high- and

intermediate-magnitude flow conditions. In detail, we compared the

results of the model runs carried out using the different interpolated

topographic surfaces by focusing on those concerning the

hazard, including: solid–liquid discharge hydrographs; areas inundated

during propagation; erosional–depositional volumes; and erosional–

depositional depths, maximum flow depths and maximum thicknesses.

By referring to the performances of tested survey technologies,

both the quality analysis and spatially distributed elevation uncer-

tainty modelling carried out on the derived DEMs indicated that both

the GNSS and helicopter-based full-waveform laser altimetry technol-

ogy can effectively be used to generate dense (i.e. high-resolution)

and high-quality elevation models of debris-flow channels, also featur-

ing low-magnitude uncertainty values corresponding to the channel

bottom. Conversely, despite the absence of a statically significant

doming deformation, the detected complex spatial pattern of the ver-

tical error likely related to the strong topographic relief of the study

site did not allow SfM-based digital photogrammetry to achieve com-

parable statistical performances. Overall, it appears that only the for-

mer survey technologies can actually provide a topographic

characterization of the morphology of a debris-flow channel suitable

for routing-modelling applications. However, the ‘shape reliability’
analysis of generated elevation models clearly stressed the inability of

the terrestrial measurements-based DEM to properly reproduce the

terrain features affecting gravity-driven flow dynamics (e.g. channel

banks, steps and rugged areas), mostly due to the inherent limits of

the survey technology (i.e. safety-related site accessibility issues, low

density and non-uniform spatial arrangement of the measurements).

On the other hand, the tested aerial-based survey technologies

ensured a more faithful and finer representation of the gully shape,

with the highest terrain ‘complexity’ observed in the photo-

grammetrically reconstructed surface, likely due to the extremely high

topographic data source resolution.

Regarding the performed probabilistic differencing of DEMs exer-

cises, this pointed out overall that although the compared survey

techniques provide a comparable (i.e. not significantly different at

95% CI) digital representation of debris-flow channel bathymetry,

meaningful discrepancies can be detected corresponding to morpho-

logically complex terrain features (e.g. at rock steps), mainly due to the

remarked inherent limits of terrestrial-based technology. In this con-

text, this research also showed how, regardless of the magnitude of

the considered flood event scenario, these topographic discrepancies

have the potential to affect the simulated local flow dynamics, with

model sensitivity to the topographic data source observed in most

considered hydraulic and topographic variables (even if to a different

extent). Furthermore, this research also stressed the primary role of

the shape ‘complexity’ of the input bathymetry in controlling the

global behaviour of the employed GIS-based cell routing model,

mainly due to the adopted schematization for sediment entrainment–

depositional process modelling.

Overall, despite the observed model sensitivity to the topo-

graphic data source, for the analysed channel reach, the recognized

differences in the routing-modelling outcomes can be regarded as

negligible from a risk planning and management point of view, thus

suggesting that the topographic data source does not truly represent

a determining factor in modelling applications of channelized debris-

flow routing. However, the extrapolation of this research outcome

must be done with care for at least three reasons. (1) The investiga-

tion was performed by focusing on a channelized debris flow. In the

case of non-channelized debris flows, a different control of the topo-

graphic data source on the simulated flow dynamics may be

expected, mainly due to the lower flow depths and velocities in turn

enhancing the influence of the input elevation model shape ‘com-

plexity’. (2) The investigation was carried out on a confined debris-

flow channel reach, mainly experimenting with entrainment pro-

cesses. Different findings may be obtained by focusing on channel-

ized debris flows involving different geomorphic forcings

(i.e. sediment deposition or mixed sediment entrainment–depositional

processes). (3) The use of either different rheological models or sedi-

ment entrainment–depositional process schematizations may lead to

different research outcomes. Therefore, to improve the knowledge

gained by this research, future investigations must be carried out on

the outlined biases.
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