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Designing optimal networks for multicommodity transport problem
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Designing and optimizing different flows in networks is a relevant problem in many contexts. While a number
of methods have been proposed in the physics and optimal transport literature for the one-commodity case,
we lack similar results for the multicommodity scenario. In this paper we present a model based on optimal
transport theory for finding optimal multicommodity flow configurations on networks. This model introduces a
dynamics that regulates the edge conductivities to achieve, at infinite times, a minimum of a Lyapunov functional
given by the sum of a convex transport cost and a concave infrastructure cost. We show that the long-time
asymptotics of this dynamics are the solutions of a standard constrained optimization problem that generalizes
the one-commodity framework. Our results provide insights into the nature and properties of optimal network
topologies. In particular, they show that loops can arise as a consequence of distinguishing different flow types,
complementing previous results where loops, in the one-commodity case, were obtained as a consequence of
imposing dynamical rules on the sources and sinks or when enforcing robustness to damage. Finally, we provide
an efficient implementation of our model which converges faster than standard optimization methods based on
gradient descent.
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I. INTRODUCTION

Optimizing networks for the distribution of quantities such
as passengers in a transportation network or data packets in
a communication network is a relevant matter for network
planners. Similar problems arise in natural systems such as
river basins and vascular networks. A variety of models have
been proposed to study these systems within an optimization
framework [1–4]. The standard goal is to find the values of
flow and the network topology that minimize a transportation
cost. A common choice for this cost is the total power dis-
sipation [1,2,5–9], but alternatives can be adopted depending
on the application; see, for instance, Ref. [10]. More recently,
different approaches based on a dynamical adaptation of net-
work properties coupled with conservation laws have been
proposed [5,6]. These models can be reformulated within the
framework of optimal transport theory, following the work in
Refs. [11–17]. Very efficient computational techniques have
been developed for solving such optimal transport-based mod-
els [13–15].

In all these systems there is a unique indistinguishable flow
traveling through the network. However, it may occur that
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flows of different types compete in the network infrastructure;
yet all the physical models mentioned above have been devel-
oped for one type of flow only. One could use these methods
to analyze multicommodity problems either by aggregating
together all flow types or by treating them independently.
In either case, one loses the important information of how
interacting commodities affect the flow, which constitutes the
multicommodity character of these settings. Multicommodity-
specific methods that rely on standard optimization suffer
from high computational costs caused by the simultaneous
assignment of multiple interacting paths to minimize a global
cost function. As a consequence, existing multicommodity
flow algorithms rely on ignoring these interactions, or use
greedy heuristics and approximations that lead to suboptimal
solutions [18]. Approaches based on statistical physics and
message-passing algorithms have improved results [19,20] but
remain computationally costly.

In this paper, we propose a model to design the topol-
ogy of optimal networks where multiple resources are moved
together. This is based on principles of optimal transport
theory similar to those studied in Refs. [16,17]. Assuming
potential-driven flows, this optimal design problem is posed
as that of finding the distribution of multicommodity fluxes
that minimize a global cost functional, or equivalently, as that
of finding the optimal edge conductivities. The cost functional
is the multicommodity extension of the optimal transport Lya-
punov functional proposed in Refs. [14,15]. It is given by
the sum of the convex cost incurred in transporting all the
commodities across the network, summed to a concave cost
proportional to the total flux on the network. This second term
can be interpreted as the cost of building and maintaining the
transport infrastructure and controls traffic congestion on the
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network edges either by distributing fluxes on many edges or
by concentrating them on fewer edges following a principle of
economy of scale.

Additionally, we show that the problem of minimizing the
proposed cost functional is equivalent to a constrained opti-
mization problem that generalizes the one-commodity case.
The optimal distribution of fluxes is used to identify the
optimal network topology by discarding edges where con-
ductivities are small. Within this optimization framework,
numerical experiments supported by analytical evidence lead
to the important result that optimal network topologies may
have loops as a consequence of distinguishing flow types.
Generally, loops are pervasive in both natural and anthropic
networks [7,21–24]. However, in one-commodity settings,
several studies have shown that trees are often optimal [1,2],
while few results show that loops can be obtained by
fluctuating flows or by aiming at increased robustness to
damage [3,5,7]. This implies either changing the type of cost
function or introducing stochasticity in the sources and sinks.
Instead, in our multicommodity model, loops emerge natu-
rally as a consequence of the presence of different flow types.

In order to minimize the highly nonlinear and nonconvex
cost functional mentioned before, we propose a particular
set of dynamical equations for the edge conductivities, gen-
eralizing to a multicommodity scenario those proposed in
Refs. [16,17], and find their stationary solution. We demon-
strate that the cost functional is indeed a Lyapunov functional
(i.e., it is strictly decreasing along the solution trajectories)
for the proposed dynamics. Altogether, our results extend the
theoretical insights of two separate lines of literature, optimal
transport and network dynamics. Two principled algorithms
for solving the multicommodity problem are proposed. They
have similar computational complexity that largely improves
on that of techniques based on gradient descent or Monte
Carlo methods, thus making the model scalable to large data
sets and the only computationally viable optimization alterna-
tive for large problems.

II. MODEL

Consider a graph G made of a set of N nodes V intercon-
nected by a set E of E edges. We want to model transport
through the network of M � 1 commodities, each identified
by a color. The inflow-outflow rate of each commodity is
given by a vector Si ∈ RN such that

∑
v Si

v = 0 for all i =
1, . . . , M to ensure global mass preservation. Let the “colored
flux” Fe = (F 1

e , . . . , F M
e ) be a vector with entries F i

e , which
represent the commodities flux passing through edge e. In
standard one-commodity cases, the flux per unit time could
represent a water or an electrical current and typically is
“colorless”, i.e., Fe is a scalar quantity. In turn, the components
F i

e can be thought of as fluxes of immiscible substances travel-
ing through the same edge. Denote with B the signed network
incidence matrix, with entries Bve = +1,−1 if node v ∈ V
is the starting or ending point of edge e ∈ E , respectively, and
zero otherwise. We require the flux to obey the “colored” local
Kirchhoff’s law:∑

e∈E
Bve F i

e = Si
v, ∀v ∈ V, ∀i = 1, . . . , M, (1)

FIG. 1. Multicommodity problem illustration for M = 3. Left:
topology of the graph; numbers inside nodes correspond to their in-
dices v. Right: an admissible configuration of fluxes. Here, numbers
inside nodes correspond to their mass inflow, and we assume each
commodity to have its mass concentrated in a single vertex; in the
gray node, no mass is entering or exiting, i.e., Si

3 = 0 for every i.
Widths of edges are drawn proportional to F i

e , and in the case where
all F i

e = 0, links are not drawn; arrows denote the direction of the col-
ored fluxes F i

e . Notice how blue mass and orange mass share the same
edges, thus creating possible traffic congestion. The inflow-outflow
rates of each color are S1 = (1, 0, 0, −1) (blue), S2 = (0, 3, 0,−3)
(green), and S3 = (−2, 0, 0, 2) (orange).

where each edge e = (u, v) has length �e > 0. We could as-
sume that the components (colors) of the flux derive from
differences in a colored potential (pressure) defined on nodes
pi

v , and a colored conductivity μi
e:

F i
e = μi

e

�e

(
pi

u − pi
v

)
. (2)

The commodity index i can be any arbitrary attribute of
the mass traveling through the network without impacting
the validity of our model. In fact, the important idea behind
multicommodity optimization is that different types of mass
interact while being transported in a shared infrastructure, and
a suitable cost needs to be minimized. In Fig. 1 we show a
simple example of the model construction.

Up to this point, we have a set of independent one-
commodity flows, one per color i. Taking them separately and
then superimposing each individual flux or conductivity a pos-
teriori would be a naive strategy, neglecting possible complex
interactions. For example, it may be more convenient to gather
multiple flows through one channel with high capacity (the
conductivity μi

e). More generally, the optimal network design
mechanism must take into account all commodities at once.
Deciding how this should be done is an open problem in the
context of optimal transport theory, the approach we take here.

A. Introducing a shared conductivity

Our first model assumption is that all the conductivities
must be equal, namely,

μi
e

!= μ̂e, ∀e ∈ E, ∀i = 1, . . . , M. (3)

The quantity μ̂e plays the role of a colorless conductivity.
Given that the conductivity can be seen as proportional to
the size of an edge, Eq. (3) can be interpreted as allocat-
ing the same edge capacity for the different colors. This is
a reasonable assumption in systems for which there is no
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priority between commodity types or users. In communication
networks such as the Internet, this captures the situation where
all users share the same bandwidth, and no privileged user
exists who has access to more bandwidth, which is often the
case. Notice, however, that the flux F i

e still depends on the
color, because the difference in potential does. This implies
that users can transfer different amounts of data packages,
with potential for traffic congestion when they overload the
network, e.g., when streaming videos. This is one of the many
possible alternatives of coupling between colors. Other more
complex choices could be made, for instance, by introduc-
ing an explicit coupling involving the fluxes or opting for
controlling some global functions of the conductivities, e.g.,
their sum or the magnitude of their fluctuations across colors.
However, we find that our choice, while being analytically
convenient, allows for a rigorous generalization of the one-
commodity case with fixed and fluctuating loads [1–3,5,7] and
leads to rich topological behaviors, as we show below.

B. The dynamics

Having defined how colors move through the network, we
now turn our attention to describing the mechanism to design
the network. Formally, we propose the following dynamics for
the colorless conductivity:

˙̂μe(t ) = μ̂β
e (t )

||�Puv||22
�2

e

− μ̂e(t ), ∀e = (u, v) ∈ E, (4)

where we define �Puv as a vector of pressure differences
with entries �Pi

uv = pi
u − pi

v and ||�Puv||22 = ∑M
i=1(pi

u −
pi

v )2. Note that pi, and thus �Puv , are implicit functions of
μ̂(t ) because of Eqs. (1) and (2).

The parameter β determines the type of optimization as-
sociated with this dynamics. In the standard one-commodity
case, for β < 1 one aims at minimizing traffic congestion
and obtains loopy topologies; for β > 1 the aim is to con-
solidate paths, and optimal networks are trees. The case β =
1 is shortest-path-like. This dynamics describes a feedback
mechanism. If the total flux through an edge is large, its
conductivity increases. If the flux decreases, the conductivity
decreases over time and becomes negligible when no flux
occurs. The system of Eqs. (1)–(4) represents our model for
multicommodity flow optimization.

In the presence of only one commodity, our model is sim-
ilar to the dynamics used to solve the basis pursuit problem
on networks [15] and as a principled mechanism for filtering
networks from redundancies [16]. However, both cases are
limited to one-commodity scenarios. A similar dynamics is
also proposed in Ref. [5], where the authors focus on the
average time evolution of a stochastic model with fluctuating
loads. Analogously to these one-commodity cases, one can
efficiently solve the system in Eqs. (1)–(4) using optimized
numerical methods; however, in our case the complexity in-
creases with the number of colors (see Appendix E 2 for
more details). Our model also bears a close mathematical
relationship to a recent work, where similar ideas have been
studied in a multicommodity setup [17]. Beyond the fact that
this work focuses on the case β = 1 (i.e., shortest-path-like)
and thus on a convex optimization scenario, there is one other
main conceptual difference compared with our model. Notice

that Eq. (4) couples together the various colors by means of
f (�Puv ) = ||�Puv||22, i.e., the 2-norm squared of the pressure
difference. Instead, they consider the 1-norm and 2-norm (not
squared). Analyzing the solutions of the dynamics under dif-
ferent f (�Puv ) is an interesting avenue for future work.

The key insight of optimal transport theory is that Eq. (4)
admits a a Lyapunov functional (a functional decreasing in
time along solution trajectories) having the nice interpretation
of being the transportation cost:

Lβ ({μ̂e}) = 1

2

∑
i,v

pi
v ({μ̂e})Si

v +
∑

e �eμ̂
2−β
e

2(2 − β )
, (5)

where pi
v ({μ̂e}) is a function implicitly defined as the solution

of Eqs. (1) and (2) when imposing Eq. (3). The first term cor-
responds to the energy dissipated during transport, and it can
be interpreted as the operating costs, whereas the second term
is the cost of designing the infrastructure. The equilibrium
point of μ̂e is stationary at the previous Lyapunov functional,
and for β � 1 it acts also as the global minimizer due to its
convexity. For β > 1, while the first term (operating cost) is
convex, the second (infrastructural cost) is not. As a conse-
quence, the transportation cost is not convex; thus in general
the functional will present a rich landscape with several local
minima towards which the dynamics will be attracted.

We formally show that Eq. (5) defines a well-defined
Lyapunov functional for the dynamics of Eq. (4) in
Appendix A 1, following similar arguments as in Ref. [17].
This extends the work of Bonifaci et al. [11], where a similar
functional has been proposed to complete the characterization
of the dynamics regulating slime molds’ evolutionary feed-
back mechanism.

C. Mapping to standard optimization setups

Although not evident, our dynamics is connected with an
optimization problem analogous to previous models for the
one-commodity case [1,2]. Specifically, the stationary solu-
tions of our system minimize the network total transportation
cost J = 1

2

∑
e∈E

�e
μ̂e

||Fe||22 subject to the global constraint of

constant material cost
∑

e∈E �e μ̂2−β
e = K2−β and local Kirch-

hoff’s law on nodes as in Eq. (1) [using Kirchhoff’s law, one
can show that J is equivalent to the first term in Eq. (5); for
more details, see Appendix A 2]. Formally, the optimization
problem is

{μ̂∗
e}, {F ∗

e } = arg min{μ̂e},{Fe}

{
1

2

∑
e∈E

�e

μ̂e
||Fe||22

}
, (6)

such that ∑
e∈E

�e μ̂2−β
e = K2−β, (7)

∑
e∈E

Bve F i
e = Si

v, ∀v ∈ V, ∀i = 1, . . . , M. (8)

This optimization problem is analogous to that in Ref. [2],
except here the flux appears in terms of its 2-norm. As in the
one-commodity case, this leads to an optimal configuration
where the conductivities similarly scale with the fluxes,

μ̂e ∼ ||Fe||2/(3−β )
2 , (9)
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and the proportionality constant can be fully determined an-
alytically (see Appendix B for detailed derivations). Using
Eq. (9), we can rewrite the total transportation cost in terms
of the flux as

J� =
∑
e∈E

�e ||Fe||�2 , (10)

where � = 2 (2 − β )/(3 − β ), which is analogous to the op-
timization problem of Banavar et al. [1], where there was no
conductivity in the setup. Notice that all these results gener-
alize the one-commodity case [1,2] by means of the 2-norm
||Fe||2 of the colored flux. If there were only one color, and
thus ||Fe||22 = F 2

e , our model would reduce exactly to them.
Similar relations can be obtained with a stochastic approach
such as the one proposed in Refs. [3,7,8], but by considering
ensemble averages instead of the 2-norm of the fluxes. In these
works, the authors study a setup where sources’ and sinks’
positions are extracted randomly from a distribution on the
network nodes. They also find loops in nontrivial regimes.
While the mathematical formulations show some similarities,
there are main conceptual differences between these models
and ours. These approaches are stochastic; thus the main
quantities are calculated with ensemble averages, and loops
arise as a consequence of stochastic fluctuations or when
randomly cutting edges in the network. Instead, our problem
is deterministic, and loops arise as a result of an optimization
process while assuming a shared conductivity.

Solving this optimization problem directly by means
of gradient descent is computationally expensive (see
Appendix E 1). Methods relying on Monte Carlo schemes [2]
can also be computationally demanding, and they are valid
only when the optimal topology is known to be a tree. Instead,
we derive update rules which have similar complexity to that
of finding the steady states of our dynamics, and can be
implemented with efficient numerical solvers. They consist in
iterating between updating conductivities and fluxes as

μ̂e = ||Fe||2/(3−β )
2( ∑

e �e ||Fe||2(2−β )/(3−β )
2

)1/(2−β ) K, (11)

F i
e = μ̂e

�e

(
pi

u − pi
v

)
, (12)

complemented with Kirchhoff’s law in Eq. (1), and can be
put within the framework of fixed-point iterations. This gen-
eralizes results obtained adopting a similar approach for the
one-commodity case [2,3]. We make available an open-source
implementation of the two approaches which we summarize
here: finding the steady state of the dynamics by solving the
system of Eqs. (1)–(4) (Dynamics) and extracting the solu-
tion of the optimization problem with the iterative updates of
Eqs. (11) and (12) (Optimization). We provide a pseudocode
for each of these in Algorithms 1 and 2 in Appendix E. They
have similar computational complexity that scales as O(M N2)
and are much faster than techniques based on gradient de-
scent; see Appendix E 1.

III. ANALYSIS OF THE OPTIMAL TOPOLOGIES

A. Optimal topologies may have loops

Now, we address the important question of which net-
work topologies are optimal for the cost in Eq. (10). For
the analogous models in the one-commodity case, there is a
phase transition at β = � = 1 where optimal networks pass
from being trees (1 < β < 2, 0 < � < 1) to containing loops
(0 < β < 1, 1 < � < 4/3) [1,2]; see Ref. [9] for a thorough
investigation of this transition. Remarkably, we obtain that in
the multicommodity case, loopy structures can be optimal also
in the regime where trees were optimal in the previous models,
depending on the values and locations of sources Si

v and on the
edge lengths �e.

The loopy structures in what was previously a treelike
regime arise from the colored Kirchhoff’s law (1), distinguish-
ing different commodities entering and exiting a node. Had
we imposed a similar but colorless constraint

∑
i

∑
e BveF i

e =∑
i Si

v , trees would have been optimal.

B. Phase diagram tree-loops (S fixed)

To illustrate this, we consider the simple triangular loop
G(V = {1, 2, 3}, E = {a, b, c}) represented in Fig. 2, with
M = 2 commodities moving in the network and lengths � =
(�a, �b, �c). For simplicity we focus on the phase diagram in
{�e} by fixing S, but similar reasoning applies when doing
the opposite. We set S1 = (+1,−1, 0), S2 = (−1,+2,−1).
For this simple case, Kirchhoff’s law allows only for three
possible tree topologies Ti, i = 1, 2, 3; these are shown at
the bottom right of Fig. 2. By solving Kirchhoff’s law,

FIG. 2. Toy model where loops are optimal. Here, M = 2;
hence only two colors move though the network. The triangle
network has source vectors S1 = (+1, −1, 0), S2 = (−1,+2, −1),
�a = �b = 1.5, �c = 1. The gray patches denote the net loads of
each node when ignoring the colors. At the bottom we show
one loopy solution on the left and three trees on the right. The
green and blue arrows denote the orientation of the loop defined
in Appendix D and of the edges, respectively. In detail, the loop
has fluxes Fa = (0, −1), Fb = (0, −1), Fc = (−1, 0), the leftmost
tree has Fa = (0, 0), Fb = (0, −2), Fc = (−1, +1) (similarly for the
other two). The green star refers to the topology of the toy model
used in Fig. 3.
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FIG. 3. Phase diagram in �. �crit denotes the minimum value of � above which loops are optimal. The setup is the same as for the toy model
in Fig. 2. Values of �crit are found by solving Eq. (13); �c = 1. The area under the triangular surface with white background is not allowed
as the triangular geometry is not defined there. One can notice that there is an entire region where �crit � 1; inside it, loops are optimal. On
the right-hand side of the figure we show three different topologies, i.e., choices of �a, �b for which optimal solutions can be loopy; these are
associated with the markers drawn on the heat map, and the green star is the configuration of the toy model in Fig. 2. In particular, running our
dynamics on the pink-diamond graph (respectively, the yellow-plus graph) leads to a loopy configuration for � > �crit or to a tree if � < �crit .
Running our dynamics on the blue-cross graph returns always since its �crit is equal to 1. Widths of the edges are proportional to the final
||Fe||2, and edges that are not visible have negligible fluxes; nodes’ dimensions are proportional to their inflowing mass. In the bottom right
portion of the panel we report the values of �crit obtained solving Eq. (13) fixing �a, �b as given by the markers.

we can write all the fluxes as a function of Fa = (F 1
a , F 2

a ).
Then, by choosing two arbitrary values of F 1

a , F 2
a we pro-

pose a loopy solution GL to compare against the trees; this
is the leftmost bottom triangle in Fig. 2. We show that there
are values of 0 < � < 1 for which this loopy solution has
lower transportation cost than any of the trees. One can
compute all the costs using Eq. (10) (see Appendix C for
details) and then find values of {�∗ = (�∗

a, �
∗
b, �

∗
c ), F ∗

a , �∗} for
which

J� (GL; �∗, F ∗
a , �∗) � min{J� (Ti; �

∗, F ∗
a , �∗) : i = 1, 2, 3}

(13)

holds. To find an example solution, one could fix certain val-
ues for these parameters and then numerically solve Eq. (13);
for a few simple cases this can also be done analytically.
We show an example phase diagram obtained by varying �

in Fig. 3, where we plot the values of �crit such that for
� � �crit , the cost J� (GL ) is optimal, i.e., we have a phase
transition between trees to loopy optimal topologies. Notice
that such values of �crit depend on the selected values of
(�, Fa) and that optimal loopy solutions are not guaranteed
to exist for any arbitrary configuration of these values. This
can be numerically investigated using similar reasoning to that
used for the case above. The important point here is that we
could find at least one setting of (�, Fa) for which we have
loopy solutions in the nontrivial regime 0 < � < 1. Similar
arguments can be used to find phase diagrams in S when fixing
� (see Appendix C, Fig. 5).

C. Phase diagram tree-loops (lengths fixed)

To make more clear the consequences of the implicit in-
teraction between different fluxes when imposing a shared
conductivity and the optimization process is run, we show
results on a simple synthetic toy model where we vary the
load of one color while keeping the others fixed.

Specifically, we study the triangle topology of Fig. 2 and
consider two different configurations of S. The first has S1

1 =
−S1

3 = 1 for the yellow commodity, i.e., one unit of mass of
type i = 1 is moving from node 1 to node 3, while the purple
commodity has S2

2 = +2 and S2
3 = S2

1 = −1, i.e., two units of
mass of type i = 2 are injected in node 2 and are equally split
between destination nodes 1 and 3. This corresponds to the
green triangle in the phase diagram of Fig. 4(a). The second
configuration has the same sources and sinks for the yellow
commodity, while the purple mass is doubled, i.e., S2

2 = +4
and S2

3 = S2
1 = −2. This corresponds to the red triangle in

Fig. 4(a). As we can see from Fig. 4(b), both the optimal
network topologies and the fluxes of individual colors differ
in the two configurations. The important point here is that
the fluxes of the yellow commodity change, even though its
forcing S1 does not change between the two configurations.
This is a consequence of having distinct commodities sharing
a common infrastructure: Acting solely on the purple mass
impacts also the path taken by the yellow mass and, conse-
quently, the overall optimal network topology.

Additionally, the way the topology changes between these
two configurations depends on the exponent �. In this simple
scenario, we can have either a tree or a loop at � = 0.6
(� < �crit � 0.77) or � = 0.8 (� > �crit), respectively; see
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(a) (b) (c)

FIG. 4. Interaction between commodities. The figure shows how changing the load of one commodity influences the path taken by others.
(a) We plot the heat map of �crit obtained using Eq. (13), with S1

1 = −S1
3 = +1 and for different configurations of the purple commodity

(i = 2): (i) S2
2 = +2, S2

3 = S2
1 = −1; (ii) S2

2 = +4, S2
3 = S2

1 = −2. The areas under the white surface correspond to regions where node 1 is
a sink, respectively, nodes 2 and 3 are sources, for the purple mass. The green and the red triangular markers denote the configurations we
discuss in Sec. III C and in the rest of the panel. (b) Optimal graphs for the green and the red triangle, fixing � = 0.6 and � = 0.8. The width
of each edge e is proportional to |F i

e | for each color. (c) One-commodity solutions obtained injecting only the yellow or the purple mass in the
triangle network.

Fig. 4(b). In particular, the case of � = 0.8 is a simple ex-
ample of how the routing mechanism is responsible for the
generation of loops in a multicommodity setting. Finally, if
we were to consider two separate unicommodity scenarios and
solve the optimization for the two colors independently, we
would have obtained a different result, as shown in Fig. 4(c).
In this case, the yellow remains the same in the two configu-
rations, while the purple would simply double the amount of
fluxes along edges, but the set of edges being used would stay
the same.

In addition to the numerical analysis presented to study
the generation of loops, in Appendix D we adapt to our
colored case the proof of Proposition 2.1 given by Xia [25],
where it was demonstrated that one-commodity (i.e., color-
less Kirchhoff’s law) optimal transport paths are trees. Here,
we show that for our model, optimal networks may contain
loops.

IV. CONCLUSIONS

Although we have a rigorous theoretical understanding of
the behavior of one-commodity flows in networks, compara-
ble theoretical insights for flows of different types have been
lacking. Here, we propose a model for multicommodity flows
that extends and generalizes various results obtained for the
one-commodity case. It assumes that all the commodities have
the same priority by imposing their conductivities to be equal
and that their dynamics is regulated by the 2-norm squared
of the fluxes. By drawing from theoretical results of optimal
transport theory, the equilibrium solutions of our dynamics are
also stationary points of a cost function that can be interpreted
as the sum of operating and infrastructural costs. As we tune a
parameter β, our dynamics can solve various types of routing
optimization problems. Its numerical implementation is effi-
cient and scalable to large systems.

Remarkably, our model shows how optimal loopy topolo-
gies can arise from simple dynamical rules. We explain how
this emerges as a consequence of the colored Kirchhoff’s law
and how the theoretical proof valid in the one-commodity
case fails when fluxes are vectors. We provide example phase
diagrams on a simple toy model that illustrates how optimal
topologies evolve from being trees to containing loops.

Our model is applicable to all situations where it is relevant
to distinguish flow types and to consider how these interact.
One important example of such an instance is in commu-
nication networks where packets of information need to be
delivered at different destinations.

In our formulation the underlying network topology is
given in terms of sets of nodes and edges. While our model
allows for edge removal (and node removal as a consequence),
it does not provide a mechanism for adding new connections.
In order to allow for this, the natural modification of our
approach would be to consider a continuous formulation as
in Refs. [15,16]. In this case, we would have no underlying
topology to start with, except the presence of source and
sink nodes at given locations in space. This is an interesting
direction for future work.

In addition to solving multicommodity problems, our
model allows us to draw a rigorous mapping between two
different formalisms. In fact, while both the physics and op-
timal transport communities are actively investigating these
systems, we still miss a clear connection between them, even
for the one-commodity case. We make a first attempt to fill this
gap by showing how our dynamics maps to a standard opti-
mization setup while also generalizing to the multicommodity
case. Furthermore, we deploy two numerical methods that
have lower computational complexity compared with others
based on gradient descent.

We expect that our formalism can be further extended
in the future to accommodate more sophisticated interaction
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between commodities or in multilayer networks [26] thus
better representing specific application scenarios. Similarly,
modifying the dependence of the fluxes in driving the
dynamics and investigating possible mappings to suitable op-
timization setups are natural next steps.

We foresee that the insights gained into the structure of
optimal topologies and in combining principles of optimal
transport and physics will open the way to further studies
targeting these systems. To facilitate this, we provide an open-
source implementation of our code [27].
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APPENDIX A: THE LYAPUNOV FUNCTIONAL

1. The Lyapunov functional is well defined

Here, we prove that the functional proposed in Eq. (5) is
a Lyapunov for the dynamics in Eq. (4) for 0 < β < 2. To
do that, we follow the derivations proposed in Ref. [17] for a
similar problem. We need to show that (i) Lβ � 0, (ii) L̇β � 0
and L̇β = 0 if and only if {μ̂e} is a stationary point for the
dynamics. The first condition is trivial. In order to prove the
second one, we first define the quantity

Lvu =
∑

e

Bve(μ̂e/�e)Bue, (A1)

which is the entry (u, v) of the Laplacian of a graph with
adjacency matrix with entries Auv = μ̂uv/�uv . We can thus
rewrite Eqs. (1)–(3) as

∑
e,u

Bve
μ̂e

�e
Bue pi

u = Si
v, ∀v ∈ V, ∀i = 1, . . . , M, (A2)

∑
u

Lvu pi
u = Si

v, ∀v ∈ V, ∀i = 1, . . . , M. (A3)

Now, we claim that for each edge

∂μ̂eLβ = 1

2

[
�eμ̂

1−β
e + ∂μ̂e

(∑
i,u

Si
u pi

u

)]
(A4)

claim= �e

2

(
μ̂1−β

e − ||�Pe||22
�2

e

)
. (A5)

This identity can be obtained differentiating for μ̂e both sides
of Eq. (A3). This yields for all e, v, i the following:∑

u

(∂μ̂e Lvu) pi
u +

∑
u

Lvu
(
∂μ̂e pi

u

) = 0, (A6)

∑
u

Lvu
(
∂μ̂e pi

u

) = −
∑

u

Bve(1/�e)Bue pi
u. (A7)

Multiplying both sides of Eq. (A7) by pi
v , summing over

v, and exploiting again Eq. (A3) on the left-hand side, we

obtain ∑
v,u

pi
vLvu

(
∂μ̂e pi

u

) = −
∑
v,u

pi
vBve(1/�e)Bue pi

u, (A8)

∂μ̂e

(∑
u

Si
u pi

u

)
= −�e

(
�Pi

e

)2

�2
e

, (A9)

with �Pe being an M-dimensional vector of entries �Pi
e =

�Pi
uv = pi

u − pi
v , with e = (u, v). Summing over i gives

∂μ̂e

(∑
i,u

Si
u pi

u

)
= −�e

||�Pe||22
�2

e

; (A10)

notice that the term in parentheses on the left-hand side is
exactly the “operating cost” of Eq. (5). Using Eq. (A10),
the claim in Eq. (A5) immediately follows. It is in force of
Eq. (A5) that we see that the Lie derivative of Lβ is not
positive. Namely,

L̇β =
∑

e

(∂μ̂eLβ ) ˙̂μe (A11)

= −
∑

e

�e

2
μ̂β

e

(
μ̂1−β

e − ||�Pe||22
�2

e

)2

� 0, (A12)

where ˙̂μe has been substituted with the right-hand side of
Eq. (4). Moreover, L̇β = 0 if and only if μ̂e = 0 or μ̂3−β

e =
μ̂2

e ||�Pe||22/�2
e = ||Fe||22. This exact condition can be recov-

ered setting ˙̂μe = 0 in Eq. (4) and exploiting Eq. (2). In
particular, for each e edge we get

μ̂1−β
e =

∑
i

(
pi

u − pi
v

)2

�2
e

=
∑

i

(
�e F i

e

μ̂e

)2 1

�2
e

, (A13)

μ̂3−β
e = ||Fe||22. (A14)

2. Equivalence between the Lyapunov transportation
cost and the dissipated energy

We prove that the transportation cost J = 1
2

∑
e

�e
μ̂e

||Fe||22
is indeed identical to the first term of the Lyapunov functional
of Eq. (5). In fact, combining Eqs. (1)–(3), we can rewrite
Kirchhoff’s law as∑

e,u

Bve
μ̂e

�e
Bue pi

u = Si
v, ∀v ∈ V, ∀i = 1, . . . , M. (A15)

Multiplying both sides of the equation for pi
v and summing

over i and v yields∑
e

�e

μ̂e
||Fe||22 =

∑
i,v

pi
vSi

v, (A16)

which is the equality we wanted to show.

APPENDIX B: MAPPING THE DYNAMICS TO AN
OPTIMIZATION PROBLEM

We show that a constrained optimization problem with a
cost function representing the total dissipated energy over the
whole network has a solution with the same scaling as in
Eq. (9).
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Formally, consider the constrained optimization problem
of Eqs. (6)–(8). This can be turned into an unconstrained
optimization problem by introducing Lagrange multipliers:

Jβ ({μ̂e}, {Fe}) = 1

2

∑
e

�e

μ̂e
||Fe||22

+ λ

2(2 − β )

(∑
e

�eμ̂
2−β
e − K2−β

)

+
∑
v,i

χ i
v

(∑
e

Bve F i
e − Si

v

)
. (B1)

Here, we introduced a multiplicative factor 1/2(2 − β ) for the
Lagrange multiplier λ to ease calculations. Taking the partial
derivatives with respect to μ̂e and setting them to zero (the
optimality condition on the derivative of Jβ with respect to Fe

will be treated later on) yields, for each edge,

λ μ̂3−β
e = ||Fe||22 → μ̂e = 1

λ1/(3−β )
||Fe||2/(3−β )

2 . (B2)

This is the same scaling relationship obtained from the sta-
tionary state of the dynamics in Eq. (9), up to a multiplicative
constant. It is also the natural colored generalization of the
one-commodity case presented in Refs. [1,2,10], where in-
stead of having ||Fe||2 one has the absolute value |Fe|, as Fe

is a scalar quantity there. Imposing the global constraint in
Eq. (7) allows us to determine the value of the multiplier λ:

∑
e

�eμ̂
2−β
e =

∑
e

�e
||Fe||2(2−β )/(3−β )

2

λ(2−β )/(3−β )
= K2−β, (B3)

yielding

λ = 1

K3−β

(∑
e

�e ||Fe||2(2−β )/(3−β )
2

)(3−β )/(2−β )

. (B4)

Substituting back into Eq. (B2), we obtain

μ̂e = ||Fe||2/(3−β )
2(∑

e �e ||Fe||2(2−β )/(3−β )
2

)1/(2−β ) K. (B5)

Setting γ = 2 − β, we get the scaling

μ̂e ∼ (||Fe||22
)1/(1+γ )

, (B6)

which is analogous to that of the one-commodity case in
Eq. (5) of Ref. [2]. The same exact scaling can be recovered
from our dynamics by setting ˙̂μe = 0 as shown in Eqs. (A13)
and (A14).

The total dissipation is obtained by substituting Eq. (B5)
inside Eq. (6), leading to

Jβ = 1

2K

(∑
e

�e ||Fe||2(2−β )/(3−β )
2

)(3−β )/(2−β )

(B7)

= 1

2K

(∑
e

�e ||Fe||2γ /(1+γ )
2

)(1+γ )/γ

. (B8)

This cost is again analogous to that of the one-commodity
case: Eq. (6) of Ref. [2] for γ = 2 − β. Using similar argu-
ments, i.e., noticing that the function x(3−β )/(2−β ) = x(1+γ )/γ

is monotonically increasing for 0 < γ = 2 − β < 2, the orig-
inal minimization problem reduces to that of minimizing with
respect to {Fe} the cost of Eq. (10):

J� ({Fe}) =
∑

e

�e ||Fe||2(2−β )/(3−β )
2 =

∑
e

�e ||Fe||�2 , (B9)

where � = 2(2 − β )/(3 − β ) = 2γ /(1 + γ ), which is analo-
gous to the model of Banavar et al. [1]. Lastly, we can set to
zero also the derivative with respect to F i

e in Eq. (B1):

∂Jβ

∂F i
e

= �e

μ̂e
F i

e + Bue χ i
u + Bve χ i

v (B10)

= �e

μ̂e
F i

e + Bue
(
χ i

u − χ i
v

) != 0, (B11)

→ F i
e = − μ̂e

�e
Bue

(
χ i

u − χ i
v

)
, (B12)

recovering the classical result stating that the pressure p is
(minus) the Lagrange multiplier obtained when we minimize
the dissipated energy Jβ ({μ̂e}, {Fe}) under the Kirchhoff’s law
constraints.

APPENDIX C: PHASE DIAGRAM FOR A TOY MODEL

Here, we discuss in more detail the computations described
in Sec. III B to enforce the claim that networks with loops can
be optimal for 0 < � < 1. The simple triangular loop of Fig. 2
(top) admits three possible tree topologies Ti, i = 1, 2, 3,
drawn at the bottom right of Fig. 2. Exploiting Kirchhoff’s
law, we write the fluxes as a function of Fa = (F 1

a , F 2
a ). Then,

computing all the costs using Eq. (10), we get

J� (T1) = 2� �b + 2�/2 �c, (C1)

J� (T2) = 2� �a + 2�/2 �c, (C2)

J� (T3) = (�a + �b) 2�/2, (C3)

J� (GL ) = [(
F 1

a

)2 + (
F 2

a

)2]�/2
�a

+ [(
F 1

a

)2 + (
F 2

a + 2
)2]�/2

�b

+ [(
F 1

a − 1
)2 + (

F 2
a + 1

)2]�/2
�c. (C4)

Thus we need to find values of {�∗ = (�∗
a, �

∗
b, �

∗
c ), F ∗

a , �∗} for
which Eq. (13) is satisfied. In practice, the lengths are usually
given in input, and thus we set �a = �b = 3

2 �c, �c = 1; we
then propose F ∗

a = (0,−1). Thus

J� (T1) = J� (T2) = 3

2
× 2� + 2�/2, (C5)

J� (T3) = 3 × 2�/2, (C6)

J� (GL ) = 4. (C7)

Analytically from Eqs. (C5)–(C7) or numerically solving
Eq. (13) (fixing F ∗

a as proposed for GL) one can show that
�∗ � 0.83. Notice that such �∗ is not optimal, in the sense
that for other choices of Fa we may find lower values of the
exponent � enabling loopy networks to be optimal; we denote
the minimum of these values as �crit . Numerically solving
Eq. (13) for the toy model just discussed returns �crit � 0.77,
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FIG. 5. Phase diagram in S. This can be numerically found by
fixing {�e} as in Fig. 2, S1

2 = −1 − S1
3, S2

1 = −2 − S2
3 , while varying

S1
3 and S2

3 . The color bar denotes the value of �crit above which opti-
mal solutions can be loopy. The green star denotes the configuration
of S used in Fig. 2.

as shown in Fig. 3 (green star). However, notice that the
key point of this derivation is that we could find at least
one choice of (�, Fa) for which we have loopy solutions in
the nontrivial regime 0 < � < 1. Indeed, at � = �∗ we have
J� (GL; �) = J� (T1) = J� (T2) = J� (T3) = 4.

The same procedure can be used to find the phase di-
agram of Fig. 5; here, the costs {J (G), J (Ti )} have been
computed fixing the lengths as �a = �b = 3

2 �c, �c = 1, and
using (Fa, S1

3, S2
3 ) as independent variables.

APPENDIX D: TRIMMING LOOPS TO OBTAIN TREES

Any configuration of the edge fluxes {Fe} satisfying the
colored Kirchhoff’s law (1) can be associated with a weighted
graph G(V, E,W ) with weights we = ||Fe||2, where V and
E are the set of nodes and edges of the original input net-
work. Denote with T the optimal tree topologies among these
weighted graphs, i.e., loopless topologies with weights mini-
mizing J� as defined in Eq. (10). These trees (not necessarily
unique) can be obtained by taking a weighted graph GL with
a single loop denoted as L, cutting the loop by trimming one
of its edges, and then redistributing the fluxes passing through
the trimmed edge over the remaining links of L. We assign an
arbitrary orientation ê� to the edges of L so that 〈ê�, ê〉 = ±1,
where the direction ê of each link of a graph is uniquely
determined by its incidence matrix. The edge to be cut is
the one with smallest weight over the edges in the loop with
a negative direction with respect to the graph’s orientation.
Its flux is redistributed over the remaining edges, which now
make a tree. Formally, we assign to the edges of T fluxes F ∗

e
such that their entries are(
F i

e

)∗ = F i
e + 〈ê�, ê〉 F i

min, ∀e ∈ E, ∀i = 1, . . . , M, (D1)

where Fmin = (F 1
min, . . . , F M

min) = arg mine{ �e||Fe||�2 : 〈ê�, ê〉
= −1} and Fe are the fluxes of GL. The orientation of L can
be switched in case the set of edges with negative orientation
is empty. In the one-commodity case, as given by Xia [25],
there is a similar trimming, but with scalar weights on the
tree being F ∗

e = Fe + 〈ê�, ê〉 Fmin, where now all the fluxes are

FIG. 6. Sketch of the trimming procedure described in
Appendix D, on the toy model of Fig. 2. The tree obtained in the
colored case is not optimal, while the one obtained in the colorless
case has lower cost but violates Kirchhoff’s law.

numbers. The key effect of having a scalar trimming is that F ∗
e

can become zero as a result of having a negative orientation
〈ê�, ê〉; in other words, the flux Fmin adds negatively to the
fluxes originally present in GL along the edges in the loop
with negative orientation: If Fmin = Fe, then F ∗

e = 0. Here,
instead, in Eq. (D1) we add a vector. While we might have
that for certain components the flux cancels out, the norm
of the whole vector Fe might not be zero, because not all
the components (colors) cancel. This results from imposing
a colored Kirchhoff’s law.

We illustrate this procedure on the triangle network in
Fig. 2. In particular, Fig. 6 shows how this trimming applies
in the colored case (our case) against a colorless case. The
tree obtained in the colored case is not optimal, while the one
obtained in the colorless case has lower cost but is not valid,
as it violates the constraints enforced by Kirchhoff’s law. The
consequence is that now loops can be the optimal solutions
while in the one-commodity case optimal networks were trees.
Specifically, there exists a �crit ∈ (0, 1) [or βcrit ∈ (1, 2)] such
that we have a phase transition between trees and loopy struc-
tures. The value of �crit depends on (S, {�e}).

APPENDIX E: NUMERICAL IMPLEMENTATION

1. Implementation details and gradient descent

We propose two approaches to solve our problem that are
the natural multicommodity generalization of the approaches
used in Refs. [2,3,5]. One is based on finding the steady
state of the conductivities using Eq. (4) (Dynamics), and one
is based on implementing the iterative update of Eqs. (11)
and (12) (Optimization). The implementations of these meth-
ods are summarized in Algorithms 1 and 2.

These pseudocodes outline our methods; however, prac-
titioners can make further arbitrary choices about what
numerical routines to use in the various steps. In our imple-
mentation, we solved M ordinary differential equations as in
Eq. (4) by means of an explicit Euler method; thus at each
step the local truncation error is approximately proportional
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Algorithm 1. Dynamics.

1: Input: G(V, E ) = adjacency list, nodes coordinates; M;

inflows; 0 < β < 2

2: Initialize: (i) S and (ii) {μ̂e} [e.g., sampling as i.i.d. μ̂e ∼ U (0, 1)]

3: while convergence not achieved do

4: solve Kirchhoff’s law as in Eq. (1) → {Pi
v}

5: update conductivities with a finite difference

discretization of Eq. (4): {μ̂t
e} → {μ̂t+1

e }
6: end while

7: Return: fluxes {F i
e } at convergence, computed using

F i
e = μ̂e(pi

u − pi
v )/�e, e = (u, v)

to �t2, with �t being the difference between two consecutive
time steps, which can be arbitrarily set in the input. Solutions
of Kirchhoff’s law have been computed using a sparse direct
solver.

Lastly, we impose the following convergence criteria (con-
vergence is achieved when these conditions are satisfied):

Dynamics: max
e

∣∣μ̂t+1
e − μ̂t

e

∣∣/�t < τdyn, (E1)

Optimization: max
e

∣∣||Fe||t+1
2 − ||Fe||t2

∣∣ < τopt, (E2)

where τdyn, τopt > 0 are parameters arbitrarily set in the in-
put. In our experiments we use τdyn = 10−3, τopt = 10−5.
To test our methods, we developed a momentum-based gra-
dient descent as a baseline algorithm. This consists in the
component-wise iterative update of the fluxes using(

V i
e

)t = η
(
∂Jβ/∂F i

e

)t + δ
(
V i

e

)t−1
, (E3)(

F i
e

)t+1 = (
F i

e

)t + (
V i

e

)t
, (E4)

with η, δ > 0 fixed increment rates and (V i
e )0 = F i

e . We fixed
the convergence criteria analogously to what done for the
other two methods: maxe |||Fe||t+1

2 − ||Fe||t2|/η < τgd , with
τgd > 0 being a parameter that needs to be set in the input.
In our experiments we set it to τgd = 10−2. From a theoret-
ical point of view, the comparison with a standard gradient
descent method was proposed in light of the equivalence of
our dynamics and a mirror-descent approach for the Lyapunov
functional, as proved for β = 1 in Ref. [28]. The dynamics au-
tomatically preserves positiveness of the conductivities {μ̂e},

Algorithm 2. Optimization.

1: Input: G(V, E ) = adjacency list, nodes coordinates; M;

inflows; 0 < β < 2

2: Initialize: (i) S and (ii) {μ̂e} [e.g., sampling as i.i.d. μ̂e ∼ U (0, 1)]

3: while convergence not achieved do

4: solve Kirchhoff’s law as in Eq. (1) → {Pi
v}

5: update fluxes using Eq. (12)

6: compute μ̂e(Fe) using Eq. (11)

7: end while

8: Return: fluxes {F i
e } at convergence

and thus a large time step can be used. In contrast, using
purely gradient descent approaches, the time step size must
be reduced when some entries of the vector {μ̂e} go to zero.
After running our algorithms until convergence, the original
network is trimmed by removing edges with negligible fluxes.
Formally, we remove links for which ||Fe||2 < τ , with τ > 0
arbitrarily fixed. Typically, as we empirically found, the distri-
bution of ||Fe||2 over the edges is divided into two sets having
values differing by several orders of magnitude. It is thus
straightforward to distinguish which edges are to be trimmed,
i.e., those that have negligible values compared with the rest
of the distribution.

2. Computational complexity

Each temporal step executed in our algorithms requires the
approximate solution of M linear systems of dimension N .
This operation has been carried out by means of a sparse
direct solver (UMFPACK) that performs a LU decomposition
for each column of the right-hand side of Eq. (1). The total
computational complexity of this process scales as O(MN2).
To have a better understanding of this, we tested our models
with several synthetic Waxman networks obtained by placing
N nodes uniformly at random in a square domain of size
1. Nodes are connected with probability p = A exp(−d/αL),
where A, α, L are parameters that we fix arbitrarily to A =
1/4, α = 1/4, and L = 1; d is the Euclidean distance between
a pair of nodes. The matrix S is constructed assigning a total
inflowing mass of 104 at random to M nodes and redistributing
on the nodes of the network proportionally to their inflows.

We test the efficiency of our schemes by measuring the
total running time (in seconds) to reach convergence for differ-
ent values of β, M, N . Results are shown in Fig. 7. We notice
that the two algorithms, Dynamics and Optimization, have
similar computational complexity. Their small running-time
differences are negligible and only due to how convergence
is precisely defined, i.e., how the corresponding parameters
τdyn and τopt are set. The running time is shorter for β < 1
(traffic optimization, loopy) than in the opposite scenario of
β > 1 (minimization of infrastructural cost, treelike). The
case β = 1 is more nuanced, as the cost transitions between
two opposite situations. In this case, Optimization fails to
converge for M/N < 1, if convergence is defined in terms of
variations of ||Fe||2 between iteration steps. This is because
the algorithm gets lost in degenerate local minima, configura-
tions with the same cost but different sets of fluxes. This lack
of convergence suggests that, for β = 1, the energy landscape
around these minima is flat, i.e., there are many configurations
with the same cost but non-negligible differences in their
fluxes. The Optimization routine keeps switching between
these different states. In this case, one can simply pick one
of these many possible solutions as an example local opti-
mum. The dynamics does instead converge. This suggests that
Dynamics is biased towards one of these degenerate solu-
tions. For M/N = 1, Optimization converges with the same
running time as Dynamics, suggesting that as we enlarge M,
the landscape becomes less flat. A possible cause is that by
increasing M the system has more constraints to be satisfied
via Kirchhoff’s law, which reduces the number of possible
degenerate solutions. This claim is also supported by the
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FIG. 7. Computational complexity. (a) Running time (in seconds) as a function of system size N . (b) Running time as a function of the
ratio M/N between the number of commodities and system size. GD denotes gradient descent, implemented with Eqs. (E3) and (E4); we only
show it for β = 0.5 as for the other values it fails to converge within a reasonable time. Similarly, for β = 1 and M/N < 1, Optimization fails
to converge, and hence we only report Dynamics.

behavior of Dynamics’ running time, which does not mono-
tonically increase with M/N in this case, as shown in Fig. 7(b).
These behaviors highlight relevant differences between the

two implementations. Finally, we note that the computational
complexity could in principle be further reduced to O(MN )
using multigrid methods [29]; we do not explore this here.
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[7] E. Katifori, G. J. Szöllősi, and M. O. Magnasco, Damage and
Fluctuations Induce Loops in Optimal Transport Networks,
Phys. Rev. Lett. 104, 048704 (2010).

[8] H. Ronellenfitsch and E. Katifori, Phenotypes of Vascular Flow
Networks, Phys. Rev. Lett. 123, 248101 (2019).

[9] F. Kaiser, H. Ronellenfitsch, and D. Witthaut, Discontinu-
ous transition to loop formation in optimal supply networks,
Nat. Commun. 11, 5796 (2020).

[10] J. B. Kirkegaard and K. Sneppen, Optimal Transport Flows for
Distributed Production Networks, Phys. Rev. Lett. 124, 208101
(2020).

[11] V. Bonifaci, K. Mehlhorn, and G. Varma, Physarum can com-
pute shortest paths, J. Theor. Biol. 309, 121 (2012).

[12] F. Santambrogio, Optimal channel networks, landscape func-
tion and branched transport, Interfaces Free Boundaries 9, 149
(2007).

[13] E. Facca, F. Cardin, and M. Putti, Towards a stationary
Monge-Kantorovich dynamics: The Physarum polycephalum
experience, SIAM J. Appl. Math. 78, 651 (2016).

[14] E. Facca, S. Daneri, F. Cardin, and M. Putti, Numerical solution
of Monge-Kantorovich equations via a dynamic formulation,
J. Sci. Comput. 82, 68 (2020).

[15] E. Facca, F. Cardin, and M. Putti, Branching structures emerg-
ing from a continuous optimal transport model, J. Comput.
Phys. 447, 110700 (2021).

[16] D. Baptista, D. Leite, E. Facca, M. Putti, and C. De Bacco, Net-
work extraction by routing optimization, Sci. Rep. 10, 088702
(2020).

[17] V. Bonifaci, E. Facca, F. Folz, A. Karrenbauer, P. Kolev,
K. Mehlhorn, G. Morigi, G. Shahkarami, and Q. Vermande,
Physarum multi-commodity flow dynamics, arXiv:2009.01498.

[18] K. Salimifard and S. Bigharaz, The multicommodity network
flow problem: State of the art classification, applications, and
solution methods, Oper. Res. Int. J. (2020).

[19] C. H. Yeung, D. Saad, and K. Y. M. Wong, From the physics
of interacting polymers to optimizing routes on the London
Underground, Proc. Nat. Acad. Sci. 110, 13717 (2013).

[20] C. H. Yeung and D. Saad, Networking - A statistical physics
perspective, J. Phys. A: Math. Theor. 46, 103001 (2011).

[21] T. Nelson and N. Dengler, Leaf vascular pattern formation,
Plant Cell 9, 1121 (1997).

[22] C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder,
P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld,

043010-11

https://doi.org/10.1103/PhysRevLett.84.4745
https://doi.org/10.1103/PhysRevLett.98.088702
https://doi.org/10.1103/PhysRevLett.104.048703
https://doi.org/10.1103/PhysRevLett.76.3360
https://doi.org/10.1103/PhysRevLett.111.138701
https://doi.org/10.1103/PhysRevLett.117.138301
https://doi.org/10.1103/PhysRevLett.104.048704
https://doi.org/10.1103/PhysRevLett.123.248101
https://doi.org/10.1038/s41467-020-19567-2
https://doi.org/10.1103/PhysRevLett.124.208101
https://doi.org/10.1016/j.jtbi.2012.06.017
https://doi.org/10.4171/IFB/160
https://doi.org/10.1137/16M1098383
https://doi.org/10.1007/s10915-020-01170-8
https://doi.org/10.1016/j.jcp.2021.110700
https://doi.org/10.1038/s41598-020-77064-4
http://arxiv.org/abs/arXiv:2009.01498
https://doi.org/10.1007/s12351-020-00564-8
https://doi.org/10.1073/pnas.1301111110
https://doi.org/10.1088/1751-8113/46/10/103001
https://doi.org/10.1105/tpc.9.7.1121


LONARDI, FACCA, PUTTI, AND DE BACCO PHYSICAL REVIEW RESEARCH 3, 043010 (2021)

Two-photon imaging of cortical surface microvessels reveals
a robust redistribution in blood flow after vascular occlusion,
PLoS Biol. 4, e22 (2006).

[23] A. Nardini, G. Pedà, and N. L. Rocca, Trade-offs between
leaf hydraulic capacity and drought vulnerability: Morpho-
anatomical bases, carbon costs and ecological consequences,
New Phytol. 196, 788 (2012).

[24] J. R. Banavar, A. Maritan, and A. Rinaldo, Size and form in
efficient transportation networks, Nature (London) 399, 130
(1999).

[25] Q. Xia, Optimal paths related to transport problems, Commun.
Contemp. Math. 5, 251 (2003).

[26] A. A. Ibrahim, A. Lonardi, and C. De Bacco, Optimal transport
in multilayer networks for traffic flow optimization, Algorithms
14, 189 (2021).

[27] https://github.com/aleable/McOpt.
[28] V. Bonifaci, A Laplacian approach to �1-norm minimization,

Comput. Optim. Appl., 79, 441 (2021).
[29] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid

Tutorial (SIAM, Philadelphia, 2000).

043010-12

https://doi.org/10.1371/journal.pbio.0040022
https://doi.org/10.1111/j.1469-8137.2012.04294.x
https://doi.org/10.1038/20144
https://doi.org/10.1142/S021919970300094X
https://doi.org/10.3390/a14070189
https://github.com/aleable/McOpt
https://doi.org/10.1007/s10589-021-00270-x

