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Abstract

The last few years have witnessed the rise of Deep Neural Networks. Since the
introduction of AlexNet in 2012, the community of researchers and industries employing
Deep Learning has exploded. This surge in attention led to the development of State of
The Art algorithms in many di↵erent fields such as Computer Vision, Natural Language
Processing and Time Series modeling. The empirical success of Deep Learning posed
new methodological challenges for academia and allowed industry to deploy world-wide
large scale web services unthinkable ten years ago.

Despite such incontrovertible success, Deep Learning does not come free of issues:
model design is highly costly, model interpretability is not easy, deployment often re-
quires very specialized experts and, not least, any Deep Neural Network requires a large
amount of data for training. Moreover, from a theoretical standpoint many important
guarantees on optimization convergence and generalization are still lacking.

In this thesis we address trainability and generalization of Deep Neural Network
models: we analyze the optimization trajectories and the generalization of typical over-
parametrized models; moreover, we design a specialized inductive bias and regulariza-
tion scheme to foster interpretability and generalization of Deep Neural Networks.

The starting point in our analysis is a recently proposed tool: the Neural Tangent
Kernel for over-parametrized models. Building on this fundamental result, we investi-
gate the number of optimization steps that a pre-trained Deep Neural Network needs
to converge to a given value of the loss function (Training Time). Moreover, we exploit
the Neural Tangent Kernel theory to solve the problem of choosing the best pre-trained
Deep Neural Network within a “model zoo” when only the target dataset is known and
without training any model (Model Selection).

Our analysis started to unblock the adoption of real-world Computer Vision AutoML
systems: Users fine-tune models selected from a large “model zoo” testing hundreds of
combinations of di↵erent architectures, pre-training sets and hyper-parameters, but are
reluctant to do so without an estimate of the expected training cost. Our results are
a step towards better understanding of transfer learning through a novel study on the
interplay between generalization and highly over-parametrized Deep Neural Networks.

We then build a specialized Deep architecture equipped with a strong inductive bias
and explicit regularization, that are designed both to constrain the representational
power of our architecture and to allow Bayesian automatic complexity selection. Then,
we show our novel method can be successfully applied both for non-linear System
Identification and for Anomaly Detection of large scale Time Series.
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Sommario

Negli ultimi anni abbiamo assistito all’ascesa delle Reti Neurali Profonde. A par-
tire dall’introduzione di AlexNet, nel 2012, la comunità di ricercatori e industrie che
sfruttano l’Apprendimento Profondo è cresciuta a dismisura. Tale aumento di visibilità
ha portato all’avanzamento dello stato dell’arte in diversi campi: visione artificiale,
elaborazione del linguaggio naturale e modellazione di serie temporali. Il successo
dell’apprendimento profondo ha posto nuove sfide metodologiche per l’accademia e al
tempo stesso ha reso possibile all’industria il dispiego di servizi web su larga scala
impensabili pochi anni fa.

Nonostante tale indiscutibile successo, l’apprendimento automatico non è privo di
limiti: sviluppare nuovi modelli è costoso, la loro interpretabilità è scarsa, il loro impiego
richiede esperti altamente specializzati e, non per ultimo, ogni rete neurale profonda
richiede un grande quantitativo di dati per essere allenata. In più, in letteratura man-
cano ancora risultati teorici fondamentali a garantire la convergenza dell’ottimizzazione
e la generalizzazione dei modelli profondi.

In questa tesi studiamo l’addestrabilità e la capacità di generalizzazione delle reti
neurali profonde: in particolare, analizziamo le traiettorie di ottimizzazione e di gen-
eralizzazione di modelli sovra parametrizzati; in più, proponiamo un bias induttivo
specializzato e una regolarizzazione che favoriscono sia l’interpretabilità che la gener-
alizzazione delle reti neurali profonde. Il punto di partenza della nostra analisi è un
risultato recentemente proposto in letteratura: il “Neural Tangent Kernel” per modelli
sovra parametrizzati.

Basandoci su questo strumento, studiamo il numero di passi di ottimizzazione nec-
essari ad una rete neurale profonda pre-allenata per convergere ad un dato valore della
funzione di costo (Tempo di Allenamento). In più, sfruttando la teoria sul “Neural
Tangent Kernel”, risolviamo il problema di scegliere il miglior modello pre-allenato
all’interno di un “model zoo” quando solamente i dati su cui allenare la rete neurale
sono noti e senza ottimizzare alcun modello.

La nostra analisi è spinta dalla necessità di sbloccare l’adozione di sistemi per la
visione artificiale su larga scala. In questi sistemi gli utenti allenano modelli selezio-
nandoli all’interno di un “model zoo” ottenuto combinando svariate architetture pre-
allenate ed iper-parametri, ma sono riluttanti a farlo senza una stima del costo. I
nostri risultati, basati su una nuova analisi dell’interazione tra generalizzazione e sovra-
parametrizzazione, sono un passo avanti nello studio della capacità di adattamento delle
reti neurali profonde.

Sfruttando questi risultati proponiamo quindi una nuova architettura profonda basata
su un forte bias induttivo e regolarizzazione esplicita, entrambi sono pensati ed us-
ati per limitare la capacità espressiva dell’architettura e permettono di applicare tec-
niche Bayesiane di selezione automatica della complessità. Per concludere, applichi-
amo con successo il nostro metodo per l’identificazione di sistemi non-lineari e per
l’individuazione di anomalie su serie temporali di grandi dimensioni.
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Introduction

Almost a decade has passed since the introduction of AlexNet, the first Convolutional
Deep Neural Network (DNN) which received attention of the general public by achiev-
ing groundbreaking results on the ImageNet competition. Since then, the community
of researchers and industries employing Deep Learning (DL) has exploded. This surge
in attention led to the development of State Of The Art (SOTA) algorithms in many
di↵erent applications and fields: Computer Vision has been revolutionized by Convolu-
tional DNNs [Krizhevsky et al., 2012, He et al., 2016], Natural Language Processing by
Transformers [Devlin et al., 2019, Vaswani et al., 2017] and Time Series modeling by
Recurrent DNNs/Long Short Term Memory (LSTM) networks/Gated Recurrent Units
(GRU) networks [Goodfellow et al., 2016, Hochreiter and Schmidhuber, 1997, Chung
et al., 2014].

Despite such incontrovertible success, Deep Learning does not come free of issues:
designing DL models is highly costly, interpreting DNNs is not easy, deploying SOTA
DL models often requires very specialized experts and, not least, any DNN requires
a large amount of data for training. Moreover, from a theoretical standpoint many
important guarantees on optimization convergence and generalization are still lacking.

E↵orts spent to analyze and better understand the empirical success of DNNs fol-
lowed mainly two lines of work: representation learning [He et al., 2016, Achille and
Soatto, 2017, Zhang et al., 2017] and optimization [Li et al., 2018, Achille et al.,
2019, Chaudhari and Soatto, 2018, Li et al., 2020].

Typically, DNNs are designed so that no hand crafted set of features is imposed,
rather, features are learnt automatically from data. So that, studying Deep Learning
generalization capabilities, in turn, corresponds to the study of hidden representations
built within DNN models [Achille and Soatto, 2017, Zhang et al., 2017]. In general,
one is interested in extracting a su�cient representation of available data which is
also minimal to solve the given task. These opposing requirements guarantee DNNs’
predictions to be less sensitive from detrimental nuisance factors and therefore better
generalize to “unseen” data [Achille and Soatto, 2017, Achille et al., 2019].

On the other hand, theories of generalization of DNNs which focus on optimization
usually consider DNNs as black-box models for which the optimal set of parameters
(weights) is found according to some optimality criteria. The existance of the opti-
mal set of weights, under the simplifying assumption of shallow Neural Networks, has
been proved in [Cybenko, 1989, Hornik et al., 1989]. Nonetheless, no results on the
learnability of the best set of parameters of shallow networks is known. So that, even
if an optimal set of parameters is known to exist, there is no guarantee that it can
be found by means of standard optimization methods performed on finite samples of
data. Despite this daunting observation which seems to jeopardize Neural Networks
learning, recent years have been a clear proof of the gap between theory and practice:
vastly over-parametrized models do generalize well even if statistical learning theories
[Vapnik, 1998] (bias-variance trade-o↵) would predict severe overfitting. Recent results
suggest this is mainly due to non-trivial interaction between the loss landscape of over-
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parametrized models and optimization schemes, such as Stochastic Gradient Descent
(SGD) [Chaudhari and Soatto, 2018, Goodfellow et al., 2016, Kingma and Ba, 2014],
that are used to find the best set of weights [Achille and Soatto, 2017, Zhang et al.,
2017]: e.g. from [He et al., 2016, Li et al., 2018, Jacot et al., 2018] we know that the
more a DNN model is over-parametrized the smoother its loss landscape is. Hence over-
parametrization makes optimization “easier”: over-parametrized DNNs models su↵er
less from typical first-order optimization pitfalls.

As a further layer of complexity, prior knowledge has proven to be fundamental
in Deep Learning: specialized architectures (endowed with a strong inductive bias)
outperform general purpose fully-connected DNNs. For example, many of the most
remarkable successes in recent years in Computer Vision have been achieved by means
of specialized architectures such as Convolutional Neural Networks [Krizhevsky et al.,
2012, He et al., 2016] or Transformers [Dosovitskiy et al., 2021]. A similar observation
holds for Time Series prediction [Bai et al., 2018, Oreshkin et al., 2019, Zancato et al.,
2020] and Natural Language Processing [Vaswani et al., 2017]. So that it is clear
that building highly specialized architectures is key to obtain state of the art results
when applying Deep Learning in practice. Together with the choice of good inductive
biases for a given target domain the design of suitable regularization schemes proved
to be essential for DNNs generalization too. Regularization can be considered either
explicitly, by adding suitable penalty terms on a standard training loss [Bansal et al.,
2018, Golatkar et al., 2019], or implicitly, by the choice of optimization algorithm (e.g.
SGD [Chaudhari and Soatto, 2018, Achille and Soatto, 2017]).

All the elements described so far have proven to be essential in enabling the huge
success experienced by Deep Learning based models in recent years. Overall, the aim
of this thesis is two-fold:

• Analyze the optimization trajectories and the generalization in the typical over-
parametrized regime;

• Design a specialized inductive bias and regularization scheme which foster inter-
pretability and generalization.

Outline of the Thesis

The goal of the thesis is to provide answers to the following open questions: what is the
connection between learning dynamics and generalization of over-parametrized DNNs?
How does modern deep learning theory compares with standard practice? Can we
exploit domain prior knowledge and explicit regularization to improve DNNs learning
and interpretablity?

In particular, the thesis is divided into three main parts. Part I describes both
the general setup of learning with DNNs (Chapter 1) and the theory of learning in the
over-parametrized regime (Chapter 2). Part II analyzes the learning dynamics of DNNs
models under typical large scale learning problems. The theory we develop in Chapter 3
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and Chapter 4 does not depend on a particular application domain (e.g. image process-
ing or time series analysis). On the other hand Part III exploits domain knowledge and
prior information to design DNN model structures and explicit regularization schemes
(Chapter 5, Chapter 6 and Chapter 7).

In Chapter 3 we tackle the problem of predicting the number of optimization steps
that a pre-trained deep network needs to converge to a given value of the loss function.
To do so, we leverage the fact that the training dynamics of a deep network during fine-
tuning are well approximated by the Neural Tangent Kernel (NTK) dynamics [Jacot
et al., 2018, Lee et al., 2019, Arora et al., 2019b]. This allows us to approximate the
training loss and accuracy at any point during training by solving a low-dimensional
Stochastic Di↵erential Equation (SDE) in function space. Using this result, we are able
to predict the time it takes for Stochastic Gradient Descent to fine-tune a model to a
given loss without having to perform any training.

The results in this chapter do not address a particular task, or a particular dataset,
but rather address the technical issue of how to predict convergence time and hence
compute resources. Nonetheless the driving force of the material developed in Chapter 3
started to unblock the adoption of real-world Computer Vision AutoML systems: Users
fine-tune models selected from a large model zoo testing hundreds of combinations of
di↵erent architectures, pre-training sets and hyper-parameters, but are reluctant to do
so without visibility of the expected rough order of magnitude cost of the training. As
such, we expect our method benefits individual researchers with limited computational
resources, by allowing them to optimize for maximum impact by estimating the time
and therefore the cost of optimizing DNN models.

In our experiments, we are able to predict training time of ResNets applied to image
classification tasks within a 20% error margin on a variety of datasets and hyper-
parameters, at a 30 to 45-fold reduction in cost compared to actual training. We also
discuss how to further reduce the computational and memory cost of our method, and
in particular we show that by exploiting the spectral properties of the gradients’ matrix
it is possible to predict training time on a large dataset while processing only a subset
of the samples.

This chapter is based on the results presented on [Zancato et al., 2020]:

Zancato, L., Achille A., Ravichandran A., Bhotika R. and Soatto, S. Pre-
dicting Training Time Without Training, in Advances in Neural Information Processing
Systems 2020.

In Chapter 4 we consider an image classification task and address the problem of
choosing the best pre-trained DNN within a collection of DNN models (“model zoo”)
when only the target dataset is known and without training any model.

In particular, fine-tuning from a collection of models pre-trained on di↵erent image
domains is emerging as a technique to improve test accuracy in the low-data regime.
However, model selection, i.e. how to pre-select the right model to fine-tune from
a model zoo without performing any training, remains an open topic. The results
in Chapter 4 directly help towards better understanding of transfer learning through
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a novel study on the interplay between generalization and highly over-parametrized
DNNs. We use a linearized framework (based on NTK theory) to approximate fine-
tuning, and introduce two new baselines for model selection – Label-Gradient and
Label-Feature Correlation. Since all model selection algorithms in the literature have
been tested on di↵erent use-cases and never compared directly, we introduce a new
comprehensive benchmark for model selection comprising of many target tasks and a
model zoo of single and multi-domain models. Our benchmark highlights accuracy
gain with model zoo compared to fine-tuning Imagenet models. We show our model
selection baseline can select optimal models to fine-tune in few selections and has the
highest ranking correlation to fine-tuning accuracy compared to existing algorithms.

This chapter is based on the results presented on [Deshpande et al., 2021]:

Deshpande A., Achille A., Ravichandran A., Hao L., Zancato L., Fowlkes
C., Bhotika R., Soatto S. and Perona P. A linearized framework and a new
benchmark for model selection for fine-tuning, ArXiv CoRR, vol. abs/2102.00084, 202,
2021.

In Chapter 5 we consider the task of incorporating inductive bias in general DNN
architectures. Di↵erently from previous chapters the results we present in this chapter
are restricted to time series and do not straightforwardly generalize to images.

In particular, we foster generalization of temporal DNNs, fully-connected or Tem-
poral Convolutional Networks (TCN), by constraining their representational power by
means of a proper inductive bias (on the architecture) and an explicit regularization
scheme (on the loss function). Our inductive bias hinges on the Fading Memory prop-
erty of certain class of dynamical systems and allows for automatic complexity selection
based solely on available data, in this way the number of hyper-parameters that must
be chosen by the user is reduced. Our automatic complexity selection criterion is based
on the empirical Bayes procedure (Type II Maximum Likelihood) so that the usual
trade-o↵ between model fitting and model complexity is automatically solved.

In Chapter 6 we extend the results of Chapter 5 to a classic non-linear system iden-
tification problem. Exploiting the highly parallelizable DNN framework (based on
stochastic optimization) we successfully apply our method to large scale datasets where
typical SOTA methods for non-linear system identification cannot be applied without
approximations.

This chapter is based on the results presented on [Zancato and Chiuso, 2021]:

Zancato L. and Chiuso A. A novel Deep Neural Network architecture for non-
linear system identification, 19th IFAC Symposium on System Identification SYSID
2021.

In Chapter 7 we present STRIC, a residual-style architecture for interpretable fore-
casting and anomaly detection in multivariate time series. Our architecture is composed
of stacked residual blocks designed to separate components of the signal such as trend,
seasonality and linear dynamics. These are followed by a Temporal Convolutional Net-
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work (TCN) that can freely model the remaining components and can aggregate global
statistics from di↵erent time series as context for the local predictions of each time
series. The architecture can be trained end-to-end and automatically adapts to the
time scale of the time series. Then, we use an anomaly detection system based on
the classic CUMSUM algorithm and a variational approximation of the f -divergence
to detect both isolated point anomalies and change-points in statistics of the signals.

Anomaly detection in time series is crucial for reliable and fair machine learning
systems. Nowadays, complex machine learning methods are deployed on many sys-
tems that make critical data driven decisions in a broad class of domains such as:
factory manufacturing, autonomous driving, surveillance, inventory management, etc.
We specifically design STRIC to be interpretable and robust, so that it can be “safely”
applied outside of the context in which it is trained. Moreover, we expose interpretable
parameters to the user so that it is possible to calibrate our method depending on the
desired operating point.

STRIC outperforms both state-of-the-art robust statistical and Deep Learning based
methods on typical time series benchmarks. To further illustrate the general applica-
bility of STRIC, we show that it can be successfully employed on complex data such as
text embeddings of newspaper articles.

This chapter is based on the results presented on [Zancato et al., 2022]:

Zancato L., Achille A., Paolini G., Chiuso A. and Soatto S. STRIC: Stacked
Residuals of Interpretable Components for Time Series Anomaly Detection., ArXiv
(under review)

Chapter 8 summarizes the main contributions of the thesis and describes interesting
avenues for future research.
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1
Deep Learning Methods

The goal of Machine Learning (ML) is to build algorithms that can “learn” from

data. From here on, the term learning will be referred to the process of converting

experience into expertise. Despite their intuitive meaning, how should we interpret

experience and expertise in the ML parlance?

The Cambridge dictionary defines experience as follows: “knowledge or skill you get

from doing, seeing, or feeling something”, clearly this definition does not easily apply

to an algorithm (computer program). What does it mean for an algorithm to see or

to feel something? The simplest way to rephrase this “human-based” definition into

ML parlance is referring to experience as the information that a human being or an

algorithm can gather interacting with his/her or its own environment. In this sense

every person acquires information interacting with the world around him/her as well as

a computer program acquires information (in the form of data) from its own accessible

world.

How should an algorithm convert data into expertise? Defining expertise can be even

more puzzling from a ML perspective than defining experience. Expertise is intimately

connected with generalization which in turn is related to the ability of abstract over

experience to extract semantic knowledge. The problem of testing whether a program

is capable of semantic reasoning (behaviour) has been faced since Alan Turing pro-

posed his famous test in 1950. In this chapter we shall describe the statistical learning

framework typically used to describe ML in general and in particular Deep Learning.

We shall describe both the process of converting experience into expertise (so called

model training) and the generalization index used to assess algorithm’s expertise (so

called model assessment). Moreover we shall describe typical DNNs architectures and

optimization algorithms used in practice.

9



1. Deep Learning Methods

1.1 Machine Learning vs Optimization

In this section we shall describe the main ingredients of a Machine Learning problem.

We shall consider a generic learner and describe what its experience is and how to

exploit such experience to choose the best learner among a family of learners. The best

learner is chosen according to a performance index designed to foster its generalization.

1.1.1 Learning ingredients

The learning model. Throughout the thesis we shall consider the learner as a generic

algorithm/model which is thought as a function mapping from an input space to an

output space. We denote a model with f 2 F where F is the model class (hypothesis

set). In general the model class might contain either parametric models (e.g. DNNs) or

non-parametric ones (e.g. kernel models). Let the input space be I (e.g. images, text

documents, ...) and the output space be O (e.g. labels), so that we can write the model

as the following map: f : I ! O, x 7! f(x).

The data generation model. We assume all data are generated by some prob-

ability distribution P defined over the input I and output O spaces. In particular, we

shall consider (x, y) ⇠ P, where x 2 I is the input of the learner f while y 2 O is the

target value associated to the input x.

The experience. We call the data used to learn the model f training data, and

denote this set with D := {(xi, yi)}Ni=1
where (xi, yi) 2 I ⇥ O for i 2 [N ]. We denote

the set containing only the input training data as X := {xi}Ni=1
and the set containing

only the output training data as Y := {yi}Ni=1
.

The measure of success. To measure the approximation capability of a given

learner f it is customary to introduce a loss function. The loss function is designed to

measure the di↵erence between target data y and the learner’s prediction ŷ: l : O⇥O !
R+, y ⇥ ŷ 7! l(y, ŷ), where R+ is the set of non-negative real numbers. Depending on

the task to be solved (e.g. classification or regression) the choice of the loss function

is di↵erent. For classification problems (e.g. image/text multiclass classification) the

Cross-Entropy loss is used, while for regression problems the squared loss is typically

chosen.

1.1.2 Training vs Generalization

Once the loss function is chosen, the overall measure of goodness (generalization er-

ror/loss) of a model f is obtained by averaging its performance over the data generating
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1.1. Machine Learning vs Optimization

distribution P:

LP(f) := E(x,y)⇠P [l(y, f(x))] (1.1)

unfortunately we do not have access to this quantity since we do not know P. Nonethe-

less we can observe a finite number of samples drawn from P, so that in practice the

following average measure of performance (training error/loss) is used:

LD(f) :=
1

N

NX

i=1

l(yi, f(xi)) (1.2)

when clear from the context we shall refer to the training error using the shorthand no-

tation L(f). Note that the training error is an empirical estimator of the generalization

error.

Ideally, one should look for the optimal learner by minimizing its generalization error

Eq. (1.1):

f⇤ := arg min
f2F

LP(f) (1.3)

Since the generalization error is typically not known, it is customary to find a good

model by solving the so-called Empirical Risk Minimization (ERM) which is defined

as:

fERM := arg min
f2F

LD(f) (1.4)

Under suitable normalization, it holds that LD(f)
p! LP(f) 8f as N ! 1 [Van der

Vaart, 2000], despite the convergence of the training error to generalization error we

are not guarantee that fERM

p! f⇤ 8x 2 I. Such convergence is more delicate to be

proved, nonetheless some results exist, we refer the interested reader to [Van der Vaart,

2000] for further details.

In practice, one has only access to a finite (limited) number of data so that, in

general, no convergence of the solution of ERM to the optimal learner f⇤ is expected.

Hence, solving the ERM does not necessarily minimize the generalization error, the

gap between generalization and training error is known as generalization gap. A model

learnt by ERM with high generalization gap is said to overfit the training data: the

overfitting phenomenon occurs when a model describes well the observed data D but its

prediction capability on other data from P is poor. Overfitting is typically associated

with complex model structures which can easily capture spurious fluctuations (due to

“noise”) of the training data. The standard argument in the choice of the optimal

complexity follows the bias-variance trade-o↵: a large model class F has low bias and
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1. Deep Learning Methods

high variance, while a relatively rigid model class has high bias and low variance. The

bias should be considered as the extent to which the average prediction, computed over

all possible datasets of a given size extracted from P, di↵ers from the optimal regression

function f⇤. On the other hand, the variance measures the extent to which the ERM

solutions for individual datasets vary around their average.

In practice, solving the bias-variance trade-o↵ entails non trivial di�culties. Many

successful approaches exploit either prior knowledge to design a suitable model class

(Chapter 5) or techniques specifically built to perform model selection (Chapter 4).

In the following sections we shall briefly describe the model class of Deep Neural

Networks, in particular we shall specify two model classes: fully-connected DNNs and

convolutional DNNs. The first is a general purpose model class while the second one

is built with a strong inductive bias towards input data that lie in a grid-like topology.

We shall describe in great detail other inductive biases and their respective architecture

design choices in Chapter 5. We shall devote Chapter 4 and Section 2.3.6 to the model

selection problem.

1.2 DNN architectures

In this section we shall describe widely adopted DNNs architectures: fully connected

and convolutional Neural Networks. These two simple types of DNNs are the basic

building blocks of more specialized architectures which we shall consider in Chapter 5.

1.2.1 Fully connected Neural Networks

Fully connected Neural Networks are general purpose Neural Networks and are consid-

ered to be the corner stone of Deep Learning. Typically, deep fully connected networks

are represented by the composition of many non-linear layers connected in a chain.

Each stage in the chain is called hidden layer while the last layer is called output layer,

the number of hidden layers defines the depth of the deep fully connected network. The

outputs of each hidden layer are to be considered as hidden representations of the input

data and are typically learnt at training time (during optimization). The dimensions

of the hidden representations determine the width of the hidden layers (which need not

to be uniform across the network).

We shall denote the output of a generic DNN with fw(x) 2 RC where x 2 Rd is a

datum. Let g(0)(x) := x 2 Rd and d0 = d, we define an L-hidden-layer fully-connected
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1.2. DNN architectures

neural network as:

f (h)(x) = W (h)g(h�1)(x) 2 Rdh , g(h)(x) = �(f (h)(x)) 2 Rdh , h = 1, ..., L (1.5)

where W (h) 2 Rdh⇥dh�1 is the weight matrix of the h-th layer, � : R! R is a coordinate-

wise activation function. The last layer of the neural network is fw(x) = f (L+1)(x) =

W (L+1)g(L)(x), where W (L+1) 2 RC⇥dL and we stack all the parameters of the DNN in

a single vector w =
�
vec(W (1))T , ..., vec(W (L+1))T

�T
.

From the user’s perspective the hyper-parameters of the fully connected DNN are:

the activation functions � (e.g. ReLU, logistic sigmoid, hyperbolic tangent), the num-

ber of hidden layers L and dimension of each hidden layer dh (the number of hidden

units/neurons).

Remark 1.1 (Non-linear hidden features). Typically the user has not control over the

hidden representations of the network: g(h)(x). These are automatically learnt by the

network during optimization. Therefore prior knowledge should be encoded in the

design of the architecture rather than in features design (see Chapter 5).

1.2.2 Universal approximation property and depth

We now consider the approximation/representation capabilities of fully connected Neu-

ral Networks. We are interested in answering the following: what class of functions can

be approximated using a general fully connected Neural Network?

At first, one might think the structure of a fully connected Neural Network should

be di↵erent depending on the kind of function to be learnt. Interestingly, this is not

true. Authors of [Cybenko, 1989, Hornik et al., 1989] proved that fully connected

single hidden layer Neural Networks possess the universal approximation property: any

fully connected Neural Network with a linear output layer and at least one hidden layer

with any “sigmoid” activation function can approximate any Borel measurable function

with any desired nonzero amount of error on compact sets, provided enough neurons

are used. A similar result holds true if ReLU activations are used [Goodfellow et al.,

2016].

The universal approximation theorem guarantees that no matter how complicated

the optimal regression function (the goal of learning) is, a su�ciently large Neural

Network is enough to approximate the unknown function with any desired amount of

precision. Despite such a reassuring result, learning a Neural Network from data can

fail for di↵erent reasons: the optimization algorithm used while training might not be

able to find the correct value of the parameters to represent the regression function (e.g.
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1. Deep Learning Methods

first order optimization methods can be trapped in local minima of the cost function)

or the training algorithm might overfit the training data.

Moreover the complexity (measured by the number of neurons) of the Neural Net-

works required for approximating a given regression function might be humongously

large and not obtainable in practice. In these circumstances deeper Neural Networks

are preferred to shallow ones since deeper models can reduce the number of neurons

required to represent the unknown function [Montufar et al., 2014] (see Chapter 5).

1.2.3 Convolutional Networks

Convolutional Neural Networks (CNNs), are specialized types of Neural Networks to

process data with a known grid-like topology. Some prototypical examples of data

on grids are time series (1-D grid, index by time) and images (2-D grid, indexed by

width and height). In the following we shall be interested only on regular grids, i.e.

equally spaced grids, which in the previous examples simply mean: time series sampled

at regular time instants and regular images with squared pixels. The main operation

implemented on CNNs are convolutions: a “specialized” kind of linear operation. While

fully-connected DNNs are characterized by multiplication with dense matrices, CNNs

are characterized by the application of linear convolutions (which can be characterized

by Toepliz matrices).

Discrete convolutions

We now briefly introduce the notation used to describe discrete convolutions which are

the basic building blocks of CNNs.

Definition 1.1 (Discrete convolution). Given two discrete (infinite) sequences x(t) 2 R
and !(t) 2 R we denote the convolution between the sequence x and ! with (x⇤!)(t) 2
R and define it as:

g(t) := (x ⇤ !)(t) :=
1X

i=�1

!(i)x(t� i) (1.6)

Remark 1.2. Note the convolution is a linear operator and can be trivially applied to

finite sequences by simply considering a fine sum.

Typically, the convolved signals have very specific meanings, if we consider the signal

x(t) as the input to the convolutional filter then !(t) is called kernel (and it characterizes

the linear convolutional filter), moreover the output signal g(t), in ML parlance, is called

feature.
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1.3. Gradient Descent and Gradient Flow

Definition 1.2 (2-D convolution). Given two two-dimensional images (represented as

matrices) I 2 Rw⇥h and K 2 Rw⇥h, we denote the 2-D convolution between the image

I and K with (I ⇤K)(i, j) 2 Rw⇥h and define it as:

G(i, j) := (I ⇤K)(i, j) :=
X

m,n

I(i�m, j � n)K(m, n)

One of the most important property of discrete convolutions is that they can be

represented by Toepliz matrices for 1-D convolutions and doubly block circulant ma-

trices for 2-D convolutions. This makes them extremely computational and memory

e�cient, in fact, a matrix product can be easily parallelized with GPUs and storing a

N ⇥N Toepliz matrix only costs O(N). Moreover, typically one wants the kernel to be

local so that the number of non-zero coe�cient of convolutional filters is much smaller

than N , in turn this implies a sparse matrix representation which highly reduces both

computational and memory costs.

Remark 1.3 (Any fully-connected NN can represent convolutions). Any fully-connected

Neural Network can represent convolutions since it is built with dense matrices which

admit Toepliz matrices or doubly block circulant matrices as special cases. Despite

this, the cost of storing a dense matrix in memory is O(N2) and there is no general

way to improve GPU computations for dense matrices (for which the structure is not

known a priori).

Despite their computational advantages, convolutions are grounded on three impor-

tant ideas: sparse interactions, parameter sharing and equivariant representations. We

refer to Section 5.1.1 for a more in depth discussion on these important properties which

are known to greatly help DNNs optimization.

1.3 Gradient Descent and Gradient Flow

In this section we introduce standard Gradient Descent (GD) and Gradient Flow (GF)

algorithms. Typically we solve the ERM using iterative first order optimization algo-

rithms so that GD (or its variant SGD) is the standard optimization algorithm used

in practice. Nonetheless GF is a stepping stone toward understanding discrete algo-

rithms and has been thoroughly studied by many authors [Du et al., 2018a, Du et al.,

2019b, Allen-Zhu et al., 2019a, Nitanda and Suzuki, 2020, Chen et al., 2020]. Note that

GF approximates GD as we take smaller discretization steps (equivalently reduce the

step sizes).
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1. Deep Learning Methods

Gradient Descent

The gradient descent algorithm belongs to the family of optimization algorithms called

iterative algorithms. It is typically applied to solve the ERM problem in Eq. (1.4)

when the loss function is di↵erentiable w.r.t. to the parameters of the model fw 2 F .

The main idea underlying GD is to generate a relaxation sequence {L(wk)}1k=0
, i.e. a

sequence for which it holds:

L(wk+1)  L(wk) k = 0, 1, ...

Since L(w) � 0 8w and L(w0) <1 the relaxation sequence converges (not necessarily

to a global minimum if the problem is not convex). The standard way to build such

a sequence is by applying updates on the current parameters following the steepest

descent direction: the negative gradient rwL(wk).

So that the update equation of GD optimization algorithm is:

wk+1 = wk � ⌘rwL(wk) (1.7)

where ⌘ 2 R+ is known as the learning rate (or step size). Hence, given an initial

parameter w0 (initial condition) by applying Eq. (1.7) we are guaranteed to converge

to a local minimizer of the ERM problem (provided the step size is chosen su�ciently

small).

Gradient Flow

It is possible to approximate Eq. (1.7) by an Ordinary Di↵erential Equation (ODE) if we

consider the step size infinitesimal. In particular if we denote with dt the discretization

step of the GD algorithm we have the following:

w(t + dt) = w(t)� ⌘dtrwL(w(t))! ẇ(t) = �⌘rwL(w(t)) dt! 0

where we decouple the infinitesimally small learning rate as the product of two contri-

butions: dt which is infinitesimally small and ⌘ which can be interpreted as the rate at

which the infinitesimal step size goes to zero.

Remark 1.4 (Step-size interpretation). The meaning of ⌘ in the two update equations

is di↵erent. For GD it represents the magnitude of the step taken in the direction of the

negative gradient, while for GF ⌘ parametrizes the time evolution of the optimization

trajectories (typically it is assumed to be 1).
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1.4. Stochastic Gradient Descent

1.4 Stochastic Gradient Descent

Once inductive bias and regularization (i.e. complexity criterion) are fixed, learning

a DNN boils down to solving Eq. (1.4). In this section we briefly describe the most

widely employed optimization algorithm when optimizing DNNs: Stochastic Gradient

Descent.

To begin with, SGD is a first order optimization algorithm so that it only requires

gradient computations to solve the ERM problem. The main di↵erence w.r.t. to classical

first order optimization schemes, such as GD, is that SGD only requires an unbiased

estimate of the gradients. The standard way to compute an unbiased estimator of the

training loss is by approximating it with random mini-batches whose size B is much

smaller than the number of training data N . Let B = {xji}Bi=1
be a set of size B indices,

where the indices {ji}Bi=1
are extracted randomly from [N ]. The unbiased estimate of

the full gradient is:

rwLD(w) :=
1

N

NX

i=1

rwl(yi, fw(xi)) ⇡
1

B

BX

i=1

rwl(yji , fw(xji)) =: rwLB(w)

whererwLD(w) is the full gradient on the training data andrwLB(w) is the mini-batch

stochastic gradient.

Remark 1.5 (Computational Complexity). The cost of computing the complete gradient

or the stochastic one is linear w.r.t. the number of data used. Hence when N is large,

we can choose B small to reduce the computational complexity: computations over a

batch can be parallelized and easily stored in modern hardware (GPUs). Nonetheless as

we reduce the number of data in the mini-batch the variance of the stochastic gradient

increases (i.e. the informativity of the stochastic gradient in optimizing the training

loss decreases).

Remark 1.6 (Other Stochastic Optimization methods). Other stochastic optimization

methods used in practice are: Adagrad [Duchi et al., 2011], RMSProp [Tieleman et al.,

2012] and Adam [Kingma and Ba, 2014]. All of which are variations of the SGD update

rule.

Remark 1.7 (SGD convergence). To ensure convergence of the SGD algorithm it is

often required some kind of learning rate schedule. Typical results on SGD convergence

require the learning rates to satisfy the following:
P

1

k=1
⌘k = 1 and

P
1

k=1
⌘2
k

< 1,

where ⌘k is the learning rate at the k-th iteration [Bottou, 1998].
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1. Deep Learning Methods

1.4.1 Optimization Challenges

In this section we report some well-known optimization challenges in DNNs training.

Ill-conditioning

The learning trajectory induced by a first order method is highly sensitive to local

curvature. If the Hessian at current iteration is ill-conditioned (i.e. it has both high

and low curvature directions) it might happen that the convergence speed of gradient

based algorithms decreases. Intuitively, this phenomenon can be described as follows: at

each gradient update GD (or SGD) bounces back and forth in high curvature directions

while making slow progress in low curvature directions. Notably, along the directions

with high curvature the learning dynamics could become unstable if the step size is not

chosen “su�ciently” small (depending on the condition number of the Hessian).

Local Minima

Every local minimum that is not a global one might badly a↵ect the learning dynamics.

These minima might trap first order optimization methods within a basin of attraction

whose loss is higher than the optimal one. It is still an open question whether these

minima are present in over-parametrized real world DNNs. Nonetheless it is widely

believed that for a su�ciently large DNN most of the local minima have low value of

the loss function. Hence, even if the training algorithm is trapped within a non-optimal

basin of attraction its training loss is not too far from the optimal one [Goodfellow et al.,

2016, Li et al., 2018, Keskar et al., 2016a].

Moreover SGD is known to have a reduced sensitivity to local minima w.r.t. GD.

In fact, thanks to the gradient approximation used in SGD (which introduces “noise”

during optimization) it is known that SGD could escape local minima.

Plateaus and Saddle points

Gradients near a saddle point can become very small, therefore an initialization or

a learning trajectory near a saddle point might require a lot of iterations to escape

from it (along the directions of negative eigenvalues). Interestingly, the noisy update

of SGD allows the learning trajectories to increase the probability of avoiding saddle

points (similar argument used for local minima). So that the e↵ects of saddles is only

to increase the training time (i.e. number of iterations required to solve ERM).

As the number of saddle points in the loss landscape of DNNs increases, it is more

likely for optimization trajectories to slow down so that the training time increases.
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Unfortunately, no result in known to count or measure the proximity of saddle points

for DNNs: proliferation of saddle points in the loss landscape of DNNs is an active area

of research [Kawaguchi, 2016, Goodfellow et al., 2016].

1.5 Batch normalization

We now synthesize Batch Normalization (BN) [Io↵e and Szegedy, 2015]: a common tech-

nique used to improve learning of DNNs. The training of general deep fully-connected

or convolutional Neural Networks is complicated by the fact that the distribution of

each layer’s inputs changes during optimization. Usually, this phenomenon (called in-

ternal covariate shift) decreases convergence speed since smaller learning rates are used

(see Section 1.4) and increases the sensitivity w.r.t. parameters initialization.

The main idea of Batch Normalization is to normalize each layer (activations) of

a DNN model for each mini-batch during training, in this way the internal covariate

shift is reduced and the aforementioned problems are attenuated. Moreover, BN has a

beneficial e↵ect on the gradients propagation through the network [Io↵e and Szegedy,

2015] since it reduces the dependence of gradients on the scale of the parameters or of

their initial values.

For the sake of simplicity we now consider the activations of a fully-connected DNNs

g(h)(x) (see Eq. (1.5) and note that BN can be applied also to CNNs).

Consider a mini-batch B = {xji}Bi=1
of size B, where the indices {ji}Bi=1

are randomly

chosen from [N ]. BN normalizes the activations of each hidden layer by applying the

following equations:

µ(h)

B
:=

1

B

BX

i=1

g(h)(xji)

�2
(h)

B :=
1

B

BX

i=1

⇣
g(h)(xji)� µ(h)

B

⌘
2

ḡ(h)(xji) :=�
g(h)(xji)� µ(h)

Bq
�2(h)

B
+ ✏

+ � 8ji 2 {ji}Bi=1

where the division is performed component-wise, ḡ(h)(xji) 2 Rdh is the output of the BN

layer and � and � are parameters to be learnt during optimization [Io↵e and Szegedy,

2015].

Note BN normalizes each component of the h-th activation layer independently.
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2
Neural Tangent Kernel

Learning dynamics of DNNs is widely believed to be one of the most important fac-

tors influencing DNNs generalization, which at the time of writing has not been fully

understood yet. Many conundrum permeate empirical successes of DNNs. A typical

example which collides with decades of Learning theory successes [Vapnik, 1998, Fried-

man et al., 2001] is synthesized in [Zhang et al., 2017]: SOTA over-parametrized DNNs

possess strong generalization performance while having enough complexity to fit ran-

dom labeling of the training data. These findings have been empirically demonstrated

to hold also when explicit regularization is added and even when true data is replaced

by random noise. In such cases standard Learning Theory results would not predict

good generalization due to data overfitting. The direct connection with the learning

dynamics is the empirical observation that the random lables/random data regimes are

characterized by a slower convergence w.r.t. the “clean” data regime. Following this

observation many authors developed theories and algorithms to directly analyze the

highly-complex dynamics of Deep Learning [Jacot et al., 2018, Li et al., 2018, Golatkar

et al., 2019, Achille et al., 2019, Arora et al., 2019a, Zancato et al., 2020, Deshpande

et al., 2021]. In this chapter we shall present one of these theories: the theory of Neural

Tangent Kernel (NTK) of DNNs. By studying the NTK it is possible to analyze the

learning dynamics of over-parametrized DNNs (i.e. the number of Network parameters

larger than the number of data) and develop algorithms well suited to make predic-

tions on the convergence speed and generalization of the trained models [Zancato et al.,

2020, Deshpande et al., 2021].

The main idea in the NTK literature is to map the learning dynamics of Neural

Networks into function space and exploit an infinite width limit (in the number of

parameters) to convexify the learning problem [Jacot et al., 2018, Lee et al., 2019, Arora
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et al., 2019a, Nitanda and Suzuki, 2020].

We define the NTK for scalar output Neural Networks trained under the squared loss

in Section 2.1. Then, in Section 2.2 we describe its main properties: the convergence

to a finite limit and the stability w.r.t. the GD or GF dynamics as the width of the

DNN goes to infinity. In Section 2.3 we show that the gradient flow dynamics in the

infinite width limit of a Neural Network is equivalent to that of a kernel regression under

gradient flow. We then exploit linearized DNNs (Section 2.4) to study the trainability

and generalization of infinitely wide DNNs in Section 2.5 (which we shall expand further

in Chapter 3 and Chapter 4). We conclude this chapter by extending the results of

Section 2.1 and Section 2.4 to vector valued output Neural Networks trained with the

Cross-Entropy loss (Section 2.6) and SGD (Section 2.7).

2.1 Neural Tangent Kernel definition

To make the notation easier, in this section we shall consider the output of a DNN to

be a scalar, everything still hold when the output is vector-valued which is the main

case of interest for DNN models applied in practice (Section 2.6 and Chapter 3).

In the following we shall consider a DNN model with scalar output: fw(x) 2 R, where

w 2 RD and x 2 Rd is the input datum. As defined in Chapter 1, we shall denote with

D := {(xi, yi)}Ni=1
the training dataset where (xi, yi) 2 Rd ⇥ R, with X := {xi}Ni=1

the set of input data and with Y := {yi}Ni=1
the set of target labels. We shall now

introduce the theory of NTK in the case of squared loss, since the most interesting

quantities describing the learning dynamics can be written explicitly. Despite this

simplifying assumption it is possible to analyze the learning dynamics under di↵erent

loss functions, e.g. the Cross-Entropy loss (Section 2.6).

Consider a Neural Network model optimized for a regression task by minimizing

the squared loss over the training data: L(w) := 1

2

P
N

i=1
(fw(xi) � yi)2. Then it is

straightforward to prove the following proposition, which establishes the optimization

dynamics in function space (i.e. on the DNN’s outputs) is characterized by the training

residuals and the matrix of inner products of gradients.

Proposition 2.1 (Neural Tangent Kernel Dynamics [Arora et al., 2019b]). Consider

minimizing the squared loss L(w) by gradient flow:

dw(t)

dt
= �⌘rwL(w(t)) (2.1)

Now let fw(t)(X ) := (fw(t)(xi))i2[N ] 2 RN be the vector of stacked outputs of the Neu-
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2.1. Neural Tangent Kernel definition

ral Network with parameters w(t) and let y := (yi)i2[N ] be the vector containing the

stacked target outputs. With this definition we can write L(w(t)) = 1

2

��fw(t)(X )� y
��2
2
.

Moreover, the evolution over time (i.e. during optimization) of fw(t)(X ) is described by:

dfw(t)(X )

dt
= �⌘⇥(t)(fw(t)(X )� y) (2.2)

where ⇥(t) 2 RN⇥N is a positive semi-definite matrix defined as:

(⇥(t))i,j :=

⌧
@fw(t)(xi)

@w
,
@fw(t)(xj)

@w

�

Proof. The parameters w evolve according to the following di↵erential equation [Arora

et al., 2019b, Du et al., 2018a]:

dw(t)

dt
= �⌘rwL(w(t)) = �⌘

NX

j=1

(fw(t)(xj)� yj)
@fw(t)(xj)

@w

We can then express the evolution of the network output on the i-th datum as:

dfw(t)(xi)

dt
=

⌧
@fw(t)(xi)

@w(t)
,
@w(t)

@t

�
= �⌘

NX

j=1

(fw(t)(xj)� yj)

⌧
@fw(t)(xi)

@w
,
@fw(t)(xj)

@w

�

Since fw(t)(X ) = (fw(t)(xi))i2[n] 2 RN is the vector containing the network’s stacked

outputs at each time instant t we get Eq. (2.2).

⌅

Remark 2.1 (Gradient Flow). The analysis of gradient flow is a stepping stone towards

understanding discrete algorithms, and has been thoroughly studied by many authors

[Du et al., 2018a, Du et al., 2019b, Allen-Zhu et al., 2019a, Nitanda and Suzuki, 2020,

Chen et al., 2020]. See the connection between Gradient Flow and Gradient Descent

in Section 1.3).

Proposition 2.1 characterizes the evolution in function space of any function fw(t) (in

particular any Neural Network) under gradient flow dynamics. We now follow [Arora

et al., 2019b] and define a Deep Network architecture whose width is allowed to go to

infinity, while fixing the training data as above. As the width of the Neural Network

increases, it can be shown that the matrix ⇥(t) remains constant along optimization

trajectory (i.e. ⇥(t) = ⇥(0)). Moreover, under random initialization of w, the random

matrix ⇥(0) converges in probability to a deterministic matrix ⇥⇤ as the width of the
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2. Neural Tangent Kernel

DNN goes to infinity. So that the gradient flow is described by the following ODE:

dfw(t)(X )

dt
= �⌘⇥⇤(fw(t)(X )� y) (2.3)

The limit object ⇥⇤ is called Neural Tangent Kernel since it can be equivalently defined

by the following kernel evaluated on training data:

kNTK(x, x0) = Ew⇠W

⌧
@fw(x)

@w
,
@fw(x0)

@w

�
(2.4)

where W is the initial weights distribution.

2.2 Properties of the Neural Tangent Kernel

In this section we shall study the behaviour of the finite width NTK ⇥(t) (empirical

NTK ) at initialization and during optimization for fully connected Neural Networks.

We prove that as the width of the DNN goes to infinity the kernel matrix remains

constant. To prevent degeneracies as the width of a DNN increases, we shall introduce

a layer-wise normalization which is commonly known as NTK parametrization [Jacot

et al., 2018, Arora et al., 2019a, Arora et al., 2019b, Allen-Zhu et al., 2019a, Nitanda

and Suzuki, 2020]. We conclude the section by extending these results to infinitely wide

Convolutional Neural Networks [Garriga-Alonso et al., 2018, Arora et al., 2019b].

2.2.1 Infinite width limit of fully-connected Neural Networks

Let g(0)(x) := x 2 Rd and d0 = d, we define a scalar output L-hidden-layer fully-

connected neural network parametrized according to the NTK parametrization as:

f (h)(x) = W (h)g(h�1)(x) 2 Rdh , g(h)(x) =

r
c�
dh
�(f (h)(x)) 2 Rdh , h = 1, ..., L

(2.5)

where W (h) 2 Rdh⇥dh�1 is the weight matrix in the h-th layer, � : R! R is a coordinate-

wise activation function, and c� = (Ez⇠N (0,1)[�(z)2])�1. The last layer of the neural

network is fw(x) = f (L+1)(x) = W (L+1)g(L)(x), where W (L+1) 2 R1⇥dL and w =�
vec(W (1))T , ..., vec(W (L+1))T

�T
represents all the parameters of the DNN.

By random initialization we usually mean that all the weights are initialized to be

i.i.d. N (0, 1) random variables, and by infinite width we mean di ! 1 8i 2 [L]. The

scaling factor after the activation function
p

c�/dh ensures that the norm of the input

g(h)(x) for each layer h 2 [L] is approximately preserved at initialization [Arora et al.,
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2.2. Properties of the Neural Tangent Kernel

2019b].

Infinite width limit: It is not hard to prove that a fully-connected randomly

initialized Neural Network converges to a Gaussian Process as its width goes to infinity.

We refer to [Lee et al., 2017] for the proof, we recall here that the proof hinges on

an application of the Central Limit Theorem applied layer-wise. In particular each

coordinate of the pre-activation vectors f (h)(x) 2 Rdh 8h 2 [L] tends to a zero mean

Gaussian Processes (independent w.r.t. any other coordinate) with covariance ⌃(h�1) :

Rd ⇥ Rd ! R. It is straightforward to show each covariance matrix can be recursively

defined as:

⌃(0)(x, x0) = xTx0, (2.6)

⇤(h)(x, x0) =

 
⌃(h�1)(x, x) ⌃(h�1)(x, x0)

⌃(h�1)(x0, x) ⌃(h�1)(x0, x0)

!
2 R2⇥2, (2.7)

⌃(h)(x, x0) = c�E
(u,v)⇠N (0,⇤(h))[�(u)�(v)]. (2.8)

We can now define the Neural Tangent Kernel matrix for a randomly initialized

and infinitely wide fully connected Neural Network (⇥(L)(x, x0)) as in [Arora et al.,

2019b, Lee et al., 2017]. It is su�cient to apply Eqs. (2.6) to (2.8) to the NTK definition

Eq. (2.4) to prove the following [Arora et al., 2019b]:

⇥(L)(x, x0) =
L+1X

h=1

⇣
⌃(h�1)(x, x0)

L+1Y

h0

⌃̇(h
0
)(x, x0)

⌘
(2.9)

where ⌃̇(h)(x, x0) = c�E
(u,v)⇠N (0,⇤(h))[�̇(u)�̇(v)] and we let ⌃̇(L+1)(x, x0) = 1.

Remark 2.2. Eq. (2.9) holds for any activation function �.

2.2.2 Convergence of Empirical Neural Tangent Kernel

The natural question now is: does the finite width tangent kernel (for random ini-

tialization) converge to the infinite width NTK as the width of the DNN grows (i.e.

⇥(0)! ⇥(L) as dh !1 8h)?

Di↵erent results which guarantee such a convergence are known in literature [Jacot

et al., 2018, Arora et al., 2019b], [Arora et al., 2019b] assumes the activation functions

are ReLU activations (one of the most widely used activations in Deep Learning prac-

tice), while [Jacot et al., 2018] only assumes the activation function � is a Lipschitz

nonlinearity. The proof in [Jacot et al., 2018] requires a sequential limit of the hidden

widths so that one at the time d1, ..., dL are taken to infinity. We now report the result
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2. Neural Tangent Kernel

given in [Arora et al., 2019b] which guarantees a non-asymptotic bound on the di↵er-

ence of the finite width kernel w.r.t. the infinite width one and only requires minh2[L] dh
to be su�ciently large (which is a strictly weaker condition than the one assumed in

[Jacot et al., 2018]).

Theorem 2.1 (Convergence to the NTK at initialization [Arora et al., 2019b]). Fix

✏ > 0 and � 2 (0, 1). Suppose �(z) = max(0, z) (ReLU activation function) and

minh2[L] dh � ⌦
⇣
L
6

✏4
log(L/�)

⌘
. Then for any inputs x, x0 2 Rd such that kxk  1,

kx0k  1, with probability at least 1� � we have:

����

⌧
@fw(x)

@w
,
@fw(x0)

@w

�
�⇥(L)(x, x0)

����  (L + 1)✏ (2.10)

Remark 2.3 (Random initialization is essential). The assumption on random initializa-

tion of the network weights is necessary to prove the convergence under the infinite

width limit. This guarantees the NTK matrix at initialization ⇥(0) converges to the

limiting matrix ⇥⇤ which we called ⇥(L) for a L layer fully-connected Neural Network.

2.2.3 Stability of Empirical Neural Tangent Kernel

In this section we show the second remarkable property of the empirical NTK matrix:

⇥(t)! ⇥(0) 8t as the minimum width increases. We shall call this property: stability

of NTK under gradient flow. The following theorems are taken from [Lee et al., 2019].

We begin by stating the working assumptions:

Assumption 2.1. The widths of the hidden layers are identical d1 = ... = dL (the proof

naturally extends to the setting with di↵erent widths and n := min{d1, ..., dL}!1.

Assumption 2.2. The analytic NTK ⇥⇤ is full-rank, i.e. 0 < �min  �max <1 where

�min := min(⇤(⇥⇤)) and max(⇤(⇥⇤)) := �max.

Assumption 2.3. The training set D is contained in some compact set and x 6= x0

8x, x0 2 X .

Assumption 2.4. The activation function � satisfies |�(0)|  1, k�k
1
 1 and

sup
x 6=x0

|�0(x)� �0(x0)|/|x� x0| <1

Remark 2.4 (Kernel positivity). Assumption 2.2 holds when X ✓ {x 2 Rd : kxk
2

= 1}
and �(x) grows non-polynomially for large x [Jacot et al., 2018].
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2.2. Properties of the Neural Tangent Kernel

Proposition 2.2 (Local Lipschitzness of the Jacobian [Lee et al., 2019]). There is a

constant kJ > 0 such that for every c > 0, with high probability over random initializa-

tion the following holds 8w, w̃ 2 B(w0, c) := {w : kw � w0k2 < c}:

krwfw(X )�rwfw̃(X )k
F
 kJ kw � w̃k

2
(2.11)

krwfw(X )k
F
 kJ (2.12)

where rwfw(X ) :=
⇣
@fw(x1)

@w

��@fw(x2)

@w

�� . . .
��@fw(xN )

@w

⌘
T

2 RN⇥D is the Neural Network

Jacobian evaluated on the dataset X and parameter w.

Remark 2.5 (Extension to other parametrizations). Proposition 2.2 does not require the

NTK parametrization (normalization) and can be extended to other parametrizations

as well: it is su�cient to consider B
⇣
w0,

c
p
n

⌘
and multiply 1

p
n

on the left side of

Eq. (2.11) and Eq. (2.12).

As implied by Eq. (2.9) fw(0)(x) converges to a zero mean Gaussian process as the

width increases. Under the assumption of bounded inputs it is possible to guarantee

with arbitrarily high probability that the prediction error at initialization
��fw(0)(x)� y

��
2

is bounded.

Proposition 2.3 (Bounded input bounded errors). For �0 > 0 and kyk
2

< 1, there

exists a positive constant 0 < r0 < 1 and n0 2 N (both possibly depending on �0,

the number of data N and the asymptotic covariance of the limiting Gaussian Process

Eq. (2.9)). Such that 8n � n0, with probability at least (1��0) over random initialization

it holds:
��fw(0)(x)� y

��
2

< r0.

Theorem 2.2 (Gradient Flow, NTK parametrization [Lee et al., 2019]). Under as-

sumptions 2.1 to 2.4, for �0 > 0, there exists r0 > 0, n̄ 2 N and kJ > 1, such that for

every n � n̄, the following holds with probability at least (1 � �0) over random initial-

ization when applying gradient flow with learning rate ⌘ (i.e. dw

dt
= �⌘rwL(w(t))):

��fw(t)(X )� y
��
2
 exp�

⌘�min
3 t r0 (2.13)

kw(t)� w(0)k
2
 3kJr0

�min

⇣
1� exp�

⌘�min
3 t

⌘
(2.14)

We are now ready to prove the final result of this section:

Theorem 2.3 (Stability of NTK under gradient flow [Lee et al., 2019]). Under assump-

tions 2.1 to 2.4, for �0 > 0, there exists r0 > 0, n̄ 2 N and kJ > 1, such that for every
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2. Neural Tangent Kernel

n � n̄, the following holds with probability at least (1 � �0) over random initialization

when applying gradient flow with learning rate ⌘ (i.e. dw

dt
= �⌘rwL(w(t))):

sup
t

k⇥(0)�⇥(t)k
F
 6k3

J
r0

�min

1p
n

(2.15)

Remark 2.6 (Extensions to other parametrizations). It is possible to extend both The-

orem 2.2 and Theorem 2.3 to other architectures as long as: Proposition 2.2 holds (i.e.

the Jacobian is locally Lipschitz), the empirical NTK converges in probability and the

limit is positive definite.

2.2.4 Convolutional Neural Networks

The results we presented so far can be extended to convolutional Neural Networks too.

In particular, [Arora et al., 2019b, Garriga-Alonso et al., 2018] provide a closed form

expression of a kernel obtained from convolutional Neural Networks at random initial-

ization as the number of convolutional filters tends to infinity (this result is analogous

to the one reported in Section 2.2.1). It is worth to point it out that the closed form

applies to vanilla CNNs and CNNs with global average pooling while it is not applicable

to more complex architectures (e.g. where batch normalization is used). In particular it

is worth noting the closed form computations required to compute the Neural Tangent

Kernel for this class of architectures can be performed e�ciently by means of dynamic

programming. With this e�cient implementation it has been possible to apply the

convolutional NTK to large datasets such as CIFAR-10 [Arora et al., 2019b] achiev-

ing classification accuracy within 6-7% of that of the corresponding CNN architecture

(SOTA result of a kernel based method on CIFAR10).

2.3 Connection with Kernel methods

The goal of this section is to show the gradient flow dynamics in the infinite width

limit Eq. (2.3) is equivalent to that of a kernel regression under gradient flow. This

establishes a direct connection between Neural Networks training and the class of kernel

methods defined by the Neural Tangent Kernel. We shall proceed introducing regres-

sion over a Reproducing Kernel Hilbert Spaces (Section 2.3.1) and prove its equivalence

with Gaussian Process Regression (Section 2.3.2). Then we will proceed by showing

that both these approaches are equivalent to linear models in a function space defined

implicitly by their characterizing kernel (Section 2.3.4). Then, we conclude by con-

necting kernel regression under gradient flow to the training dynamics of infinite DNNs

under the NTK regime (Section 2.3.5).
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2.3. Connection with Kernel methods

2.3.1 Kernel methods and RKHS

The theory of Reproducing Kernel Hilbert Spaces (RKHS) [Aronszajn, 1950] provides a

flexible and general framework to solve function estimation problems. Di↵erently from

parametric models such as DNNs, kernel methods find the optimal function through an

infinite dimensional optimization problem whose searching space (a space of functions)

is implicitly defined by the kernel which characterizes the RKHS [Scholkopf and Smola,

2001]. Typically these methods are known to posses favourable numerical properties

and are some of the most utilized methods to solve ill-posedness of inverse problems

[Tikhonov and Arsenin, 1977].

A typical regression problem with squared loss in a RKHS can be framed as follows:

given a finite dataset D = {(xi, yi)}Ni=1
⇢ Rd ⇥ R of samples generated from an un-

known distribution, the optimal regression function ĝ is estimated solving the following

regularized infinite dimensional problem:

ĝ := arg min
g2H

NX

i=1

(yi � g(xi))
2 + � kgk2

H
(2.16)

where H is the RKHS in which we look for the optimal regression function, k·k
H

is

the associated RKHS norm and � is the regularization parameter which regulates the

relative weight of the fit (reconstruction loss) and penalty (RKHS norm) terms.

To highlight the connection with the Neural Tangent Kernel we point out that any

RKHS is associated with a positive semi-definite kernel k : Rd ⇥Rd ! R, called repro-

ducing kernel [Aronszajn, 1950]. This kernel completely characterizes the RKHS and

therefore any function in H can be characterized through such k [Scholkopf and Smola,

2001, Aronszajn, 1950].

A remarkable result which is fundamental in practice is the so called representer

theorem [Wahba, 1990, Scholkopf and Smola, 2001] which allows us to express the opti-

mal solution of Eq. (2.16) as a linear combination of a finite number of basis functions

(kernel sections). Interestingly the number of basis functions is given by the number

of data N so that we can express ĝ as:

ĝ(x) =
NX

i=1

↵̂ikxi(x) = k(x, X )↵̂ (2.17)

where ↵i are the recombination coe�cients and kxi(x) : Rd ! R is the kernel section

evaluated on the input location xi: a function from the input space to the output one

parametrized by the input location xi. Most importantly any kernel section is simply
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2. Neural Tangent Kernel

the kernel evaluated (on xi) on one of its entries. To make the notation more compact

we define ↵̂ 2 RN as the concatenation of ↵̂i and we define k(x, X ) 2 R1⇥N as the row

vector defined as (k(x, X ))1,i := k(x, xi) with i 2 [N ].

The representer theorem allows us to express the infinite dimensional problem in

Eq. (2.16) as a finite dimensional one (whose dimension is the number of available

data N). The optimal solution is found by solving the following convex optimization

problem:

↵̂ : = arg min
↵2RN

NX

i=1

 
yi �

NX

i=1

↵̂ikxi(x)

!2

+ �
NX

i,j

↵i↵j

⌦
kxi(·), kxj (·)

↵
H

= arg min
↵2RN

ky �K(X , X )↵k2
2
+ �↵TK(X , X )↵ (2.18)

where K(X , X ) 2 RN⇥N is the kernel matrix evaluated on all pairs of data from the

dataset X . This is a quadratic convex optimization problem whose optimal solution

can be computed in closed form as follows:

↵̂ = (K(X , X ) + �IN )�1y (2.19)

which always exists since K(X , X ) + �IN is full rank (sum of a positive semi definite

matrix and a positive definite).

Remark 2.7 (On the solution of a RKHS problem). Note Eq. (2.18) might be solved

with any optimization algorithm, for example we can apply gradient descent (or gradi-

ent flow) on the loss function Eq. (2.16) so that we avoid computing the inverse. This

perspective proves to be extremely valuable in practice since the cost in computing ex-

plicitly Eq. (2.19) scales as O(N3). It is easy to prove that gradient descent or gradient

flow provide a solution which converges to Eq. (2.19) as the number of iterations goes

to infinity (so long as the learning rate is chosen su�ciently small to avoid numerical

instability).

Remark 2.8 (How to choose initialization?). When using gradient descent or gradient

flow to solve Eq. (2.18) an initial condition for ↵ is necessary. Typically this is initialized

as the zero vector. This implies the initial residuals are obtained by comparing the

target labels y with the null function (Eq. (2.17) with null recombination coe�cients).

Finally, we can express the optimal function ĝ on a generic input location (not
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2.3. Connection with Kernel methods

necessarily contained in the training dataset X ) as:

ĝ(x) = k(x, X )↵̂ = k(x, X )(K(X , X ) + �IN )�1y (2.20)

2.3.2 RKHS and Gaussian Processes

The connection between RKHS and Gaussian Processes (GP) [Wahba, 1990, Rasmussen

and Williams, 2006, Scholkopf and Smola, 2001] allows to think at a regularized function

estimation in RKHS as an optimization problem over a space of functions in which a

prior is considered. The optimal solution of Gaussian Process Regression (GPR) is

defined as the optimal trade-o↵ between performance (i.e. the likelihood) and model

complexity (i.e. prior).

In this section we shall see that the MAP solution to a GP problem is the regression

function obtained by solving Eq. (2.16) in a suitable RKHS [Wahba, 1990, Rasmussen

and Williams, 2006]. One of the main advantages of GP w.r.t. RKHS is that it allows

to consider both uncertainty of the optimal predictor and model selection (known as

kernel selection).

The main idea is that a Gaussian Process can be used to describe a distribution over

functions.

Definition 2.1 (Gaussian Process). A Gaussian process is a collection of random

variables, any finite number of which have a joint Gaussian distribution.

A Gaussian process f(x) is completely specified by its mean function and covariance

function. We call m(x) : Rd ! R the GP mean function and kGP(x, x0) : Rd ⇥ Rd ! R
its covariance function and define them as:

m(x) :=E[f(x)]

kGP(x) :=E[(f(x)�m(x))(f(x0)�m(x0))]

Note we assume the GP models a scalar function over the input domain, it is not

di�cult to extend GPs to multivariate functions of the input domain (e.g. by considering

independent stacked GPs for each dimension). We will write a Gaussian Process as:

f(x) ⇠ GP(m(x), kGP(x, x0))

to simplify notation it is common to assume the mean function to be identically zero:

this is by no means necessary so that the main results we shall show still hold when

the mean function is not zero.
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2. Neural Tangent Kernel

Typically we are not interested in drawing samples from the prior GP, we rather want

to incorporate the knowledge that training data (observations of the GP) provide. The

goal is to approximate f(x⇤) 2 R given observations of f on some input locations

{f(xi)}i with i 2 [N ]. We shall denote f(X ) := (f(xi))i 2 RN as the vector containing

the stacked observations of the GP f . The joint distribution of f(X ) and f(x⇤), which

is Gaussian by definition, is:

"
f(X )

f(x⇤)

#
⇠ N

 "
0N

0

#
,

"
KGP(X , X ), KGP(X , x⇤)

KGP(x⇤, X ), kGP(x⇤, x⇤)

#!

where (KGP(X , X ))i,j := kGP(xi, xj) is a N⇥N matrix and (KGP(X , x⇤))i := kGP(xi, x⇤)

is a N -dim column vector.

It is now trivial to predict f(x⇤) given data f(X ) by applying standard results of con-

ditioned Gaussian random variables [Rasmussen and Williams, 2006, Friedman et al.,

2001]:

f(x⇤) | f(X ) ⇠ N
⇣
KGP(x⇤, X )KGP(X , X )�1f(X ),

KGP(x⇤, x⇤)�KGP(x⇤, X )KGP(X , X )�1KGP(X , x⇤)
⌘

The closed form of the posterior distribution given training data f(X ) (which is again

Gaussian) allows us to directly compute the posterior mean and covariance (which does

not depend on the measured data f(X )) for each test input location. Note the MAP

estimator of f(x⇤) is the posterior mean (since the posterior is Gaussian) and is given

by KGP(x⇤, X )KGP(X , X )�1f(X ). This expression is almost identical to Eq. (2.20)

(identical if � = 0). The full equivalence of the MAP predictor of GPR and the RKHS

predictor ĝ can be obtained by assuming the actual measurements of the unknown

function f(xi) are corrupted by i.i.d. Gaussian noise ✏i ⇠ N (0,�2): y = f(X ) + e,

where (e)i = ✏i with i 2 [N ]. This preserves Gaussianity of the joint distribution of y

and f(x⇤). So that the MAP estimator can be written as:

fMAP(x⇤) = E[f(x⇤) | y] = KGP(x⇤, X )(KGP(X , X ) + �2IN )�1y (2.21)

Remark 2.9 (Linear predictor and kernel sections). Eq. (2.21) shows the MAP predictor

is a linear combination of observations y. Moreover, dropping the dependency on the

test datum x⇤ it is clear the optimal predictor can be represented as linear combination

of kernel sections as already shown with the representer theorem for RKHS problems

Eq. (2.17): fMAP(·) =
P

N

i=1
↵ikGP(xi, ·).
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2.3. Connection with Kernel methods

We now follow a di↵erent route to e↵ectively show that computing the MAP predictor

with GP is actually solving the same RKHS optimization problem in Eq. (2.16). As

already observed, both y and f are jointly GPs (i.e. their evaluation on a finite number

of points is a joint Gaussian distribution). Hence, by applying Bayes rule on a finite

collection of data, it holds: p(f | y) = p(y|f)p(f)

p(y)
, where p(f | y) is the posterior density

of the unknown function f evaluated on the training input locations, p(y | f) is the

likelihood function, p(f) is the prior over the space of functions and p(y) is the so-called

marginal likelihood. The maximum a posteriori estimate of f on the finite sample X
is obtained by maximizing p(f | y). To ease computations it is standard practice to

consider the log-posterior log p(f | y) which does not alter the optimal solution due to

monotonicity of the logarithm. Therefore, the MAP estimator for GPs with Gaussian

likelihood can be obtained as:

fMAP(X ) := arg max
f2RN

log p(y | f) + log p(f)

= arg min
f2RN

ky � f(X )k2
2
+ �2fTKGP(X , X )�1f (2.22)

Which is a finite dimensional convex optimization problem whose optimal solution is

fMAP(X ) = KGP(X , X )(KGP(X , X ) + �2IN )�1y. Note this is equivalent to Eq. (2.16)

if considering both �2 = � and the GP covariance kGP identical to the RKHS kernel k.

Either � or � are not known a priori, and are typically estimated by means of Cross

Validation or similar techniques for which the optimal trade-o↵ between the fitting

(likelihood) and the complexity (hyper-parameters prior) is optimized.

Once again, the optimal solution MAP solution is a linear combination of kernel

sections (centered on the data {xi} with i 2 [N ]) weighted by some data dependent

optimal parameters: (KGP(X , X ) + �2IN )�1y.

2.3.3 Hyper-parameters optimization

Up to now we considered hyper-parameters as fixed values, though, in practice this

is never the case and one needs to estimate them from data too. Changing hyper-

parameters means changing kernel and therefore changing the RKHS over which the

optimal estimator is built. In this section we shall consider the GP covariance function

dependent on some hyper-parameters jointly denoted as  and we shall describe some

prototypical methods used to find optimal hyper-parameters in practice. As standard

practice in Bayesian methods we consider  as random vector whose prior distribution
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2. Neural Tangent Kernel

is given by: p(). The standard Bayesian predictor of f given the data y is given by:

p(f | y) =

Z
p(f | y,)p( | y)d (2.23)

Note the posterior of the regression functions (w.r.t. the observed data y) is a weighted

average of p(f | y,) (the posterior of f w.r.t. data with fixed hyper-parameters).

We can further express p(f | y,) by applying once again Bayes rule:

p(f | y,) =
p(y | f,)p(f | )

p(y | ) (2.24)

where p(y | f,) is the likelihood function and p(f | ) is the prior density once the

kernel (covariance) hyper-parameters are fixed. The normalizing constant p(y | ) is

known as marginal likelihood and does not depend on the unknown function (i.e. f is

marginalized out).

In general solving Eq. (2.23) (Full Bayes) is intractable, since usually the posterior

on the hyper-parameters does not allow closed form integrals. So that Monte-Carlo

approximations are often required: p(f | y) ⇡ 1

nMC

P
nMC
i=1

p(f | y,i) =: p̂(f | y),

where i are fixed kernel-hyperparameters sampled according to the posterior p( | y).

Since in general it might not be trivial to sample from such distribution, Markov Chain

Monte Carlo techniques might be necessary [Rasmussen and Williams, 2006]. If samples

from the posterior p(f | y) are required, they can be obtained as samples from its

approximation p̂(f | y); on the other hand, whenever the MAP estimator is required it

is su�cient to maximize p̂(f | y).

Empirical Bayes

Since approximating the posterior over the hyper-parameters might not be trivial, a

possible solution is to approximate it with a delta distribution and then optimize the

marginal likelihood to find the delta center (call it ⇤). Under this assumption Eq. (2.23)

becomes: p(f | y) = p(f | y,⇤) so that the Full Bayesian posterior is simply the

posterior obtained with a specific set of hyper-parameters.

Now the question is: how to choose the optimal delta center ⇤? And which optimal-

ity criterion should be used? We start with this observation: when a non-informative

hyper-parameters prior is chosen (i.e. p() = constant), it holds:

p( | y) =
p(y | )p()

p(y)
/ p(y | )
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2.3. Connection with Kernel methods

Hence, we can choose the best hyper-parameter ⇤ to be the MAP estimate:

⇤ = arg max


p(y | )

This approximation is known as Type II maximum likelihood (ML-II) or evidence pro-

cedure [Rasmussen and Williams, 2006] and p(y | ) is also called Type II likelihood.

Note that approximating the posterior p( | y) with a single hyper-parameter ⇤ might

lead to overfitting, especially if many hyper-parameters are present [Rasmussen and

Williams, 2006].

It is now worth to have a closer look at the marginal likelihood:

p(y | ) =

Z
p(y | f,)p(f | )df (2.25)

This equation is the main di↵erence between Bayesian schemes of inference from other

schemes based on optimization: this is due to the integration over the unknown f . In

particular it is a property of the marginal likelihood that it automatically implements a

trade-o↵ between model fit (likelihood) and model complexity (prior) [Rasmussen and

Williams, 2006].

Unfortunately, once again, integral in Eq. (2.25) is not always solvable in closed form

solution, nonetheless it can be solved in closed form on some interesting scenarios, such

as for Gaussian Processes:

log p(y | ) = �1

2
yTK�1

X ,
y � 1

2
log det(KX ,)�

n

2
log 2⇡ (2.26)

where KX , := KGP(X , X ) + �2IN is the covariance function of the data (we are

assuming � is not part of the kernel hyper-parameters, nonetheless it is possible to

consider it as an hyper-parameter too). The interpretation of the explicit form of the

log marginal likelihood is readily available: yTK�1

X ,
y is the data fit term, log det(KX ,)

on the other hand is a complexity measure of the functions described by kGP.

Remark 2.10 (Marginal likelihood for GPs is not convex). Note that the dependency

on the hyper-parameters  of the (log) marginal likelihood is non-convex in general

(multiple non-connected stationary points might exist).

Remark 2.11 (GPs and RKHS main di↵erences). Despite RKHS optimization can be

connected to GP [Rasmussen and Williams, 2006] here are some of its remarkable

shortcomings:

• RKHS does not characterize uncertainty in the predictions, nor does it handle
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well multimodality in the posterior

• RKHS approximates the first level of Bayesian inference (i.e. function approxi-

mation ĝ) while it does not usually extend to the next level: hyper-parameters

optimization. This is straightforward for GP (closed form solutions exist for Gaus-

sian Likelihoods) and is usually solved by means of the marginal (log) likelihood.

In particular marginal (log) likelihood is used a model selection criterion (e.g. it

used to select the optimal parameters of the covariance function, we shall explore

in more details kernel selection methods in Section 2.3.6).

2.3.4 Kernel methods as linear models

We now show how kernel methods can be interpreted as linear models in a (potentially

infinite) feature space, these features are implicitly defined by the kernel choice k and

the user does not need to explicitly work with them [Scholkopf and Smola, 2001] (in the

Machine Learning literature this is known as kernel trick). In particular any solution to

a RKHS optimization problem Eq. (2.16) does not explicitly compute any feature since

its solution only requires kernel pairwise evaluation on data. The main idea is that any

valid kernel function k can be written as k(x, x0) = h�(x),�(x0)i
`2

where h·, ·i
`2

is the

standard `2 inner product for sequences, while the map � : Rd ! Rp is called feature

map and in general might not be finite dimensional (i.e. p =1). We shall denote with

�i(x) the i-th component of the feature vector, which is a map Rd ! R. It can be

shown that features induced by the kernel k are orthonormal functions w.r.t. the inner

product defined in H (i.e. h�i(x),�j(x)i
H

= �i,j) and orthogonal w.r.t. the standard

inner product in L2 (i.e. h�i(x),�j(x)i
L2 = 0 if i 6= j).

It is straightforward to substitute each kernel evaluation on the optimal representa-

tion given by the representer theorem Eq. (2.17):

ĝ(x) =
NX

i=1

↵̂i h�(xi),�(x)i
`2

=

*
NX

i=1

↵̂i�(xi),�(x)

+

`2

= hc,�(x)i
`2

which, for di↵erent input locations x, is a linear function with fixed feature recombina-

tion coe�cients c 2 Rp. Hence it is possible to rewrite the RKHS norm of any function

in the RKHS in terms of the feature recombination coe�cients c as:

kgk2
H

=

*
pX

i=1

ci�i(x),
pX

j=1

cj�j(x)

+

H

=
pX

i,j=1

cicj h�i(x),�j(x)i
H

= kck2
`2

(2.27)

where we use the linearity of inner products and the orthonormality property of features
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w.r.t. inner product in H.

So that equation Eq. (2.18) can be written as:

ĉ = arg min
c2Rp

NX

i=1

(yi � hc,�(xi)i`2)
2 + � kck2

`2
= arg min

c2Rp
ky � �(X )ck2

2
+ �cT c (2.28)

where �(X ) := (�(x1) | �(x2) | ... | �(xN ))T 2 RN⇥p is the matrix containing the

feature vectors of xi in each row and the inner product in `2 is represented as the inner

product for finite sequences (i.e. h�(xi), ci`2 = �(xi)T c and cT c = kck2
`2

), this notation

allows to describe both finite and infinite dimensional feature space cases.

When the feature dimension is finite, the optimal set of coe�cients is given by:

ĉ = (�(X )T�(X ) + �Ip)
�1�(X )T y (2.29)

Remark 2.12 (On the solution of a RKHS problem in feature space). As mentioned in

Remark 2.7, the optimal solution can be found without computing the matrix inverse

(p⇥ p) by exploiting gradient descent or gradient flow on the loss Eq. (2.28).

To conclude, the optimal prediciton function can be computed as:

ĝ(x) = h�(x), ĉi
`2

= �(x)T (�(X )T�(X ) + �Ip)
�1�(X )T y (2.30)

Remark 2.13 (Equivalent optimal solutions). Eq. (2.20) and Eq. (2.30) are indeed equiv-

alent, to see this (when p is finite) it is su�cient to apply the matrix inversion lemma

[Rasmussen and Williams, 2006].

Remark 2.14 (From kernel to features). In general there is no explicit formula to com-

pute the feature vector given a kernel k. Nonetheless Mercer’s theorem [Rasmussen

and Williams, 2006] (Theorem 4.2), which holds when the kernel is continuous on a

compact metric space (i.e. it is a bounded operator), guarantees the following spectral

decomposition: k(x, x0) =
P

p

i=1
�iei(x)ei(x0) where p = 1, �i 2 R are the eigenvalues

associated with the kernel k and ei(x) are orthonormal eigenfunctions w.r.t. the L2

norm (these function are not orthonormal in the w.r.t. inner product induced by the

kernel k (i.e. h·, ·i
H

). Note that Mercer’s theorem gives us the following feature map for

the kernel k:  : Rd ! Rp where  : x 7! (
p
�iei(x))i with i 2 [p]. With this definition

it holds: k(x, x0) =
P

p

i=1
�iei(x)ei(x0) = h (x), (x0)i

`2
which guarantees  is a valid

feature vector. Unfortunately this constructive argument does not allow, in general, to

built feature explicitly since the functional form of ei(·) as a function of the kernel k

might not be available.
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2.3.5 Kernel regression under gradient flow

We are now ready to prove the equivalence between a fully-trained su�ciently wide

neural network and a kernel regression problem on a RKHS with kernel kNTK .

To make the notation easier we shall denote with fNTK the optimal function obtained

by solving the kernel regression problem in Eq. (2.16) using kernel kNTK and � = 0,

whose evaluation on any input location is given by:

fNTK(x) = kNTK(x, X )(H⇤)�1y (2.31)

The inverse (H⇤)�1 is guaranteed to exist by assumption 2.2, see also Remark 2.4.

As in [Arora et al., 2019b] we define fNN(t)
(x) := "fw(t)(x) where " > 0 is a small

perturbation that is used to make the output of the DNN at initialization arbitrarily

small, this is necessary to establish the equivalence between neural network and kernel

regression (Remark 2.8 and Remark 2.28). Note however such a scale factor does not

play any role on trained Network (since the scale of the output is optimized during

training by changing w). We define the optimal infinitely wide DNN at the end of

training as: f⇤

NN
(x) := limt!1 fNN(t)

(x).

Theorem 2.4 (Equivalence between trained net and kernel regression [Arora et al.,

2019b]). Suppose �(z) = max(0, z), 1/ = poly(1, /✏, log(n/�)) and di = n 8i 2 [L]

with n � poly(1/, L, 1/�min, N, log(1/�)). Then for any x 2 Rd with kxk
2

= 1, with

probability at least 1� �0 over the random initialization, we have:

|f⇤

NN(x)� fNTK(x)|  ✏

Remark 2.15. One of the most important consequences of Theorem 2.4 is that the

Neural Network predictor is essentially a kernel predictor. Therefore to study the

properties (such as generalization) of over-parametrized DNNs it is su�cient to study

the corresponding NTK.

Remark 2.16. As noted in [Arora et al., 2019b], while Theorem 2.4 provides guarantees

only for a single point x, it is possible to extend its validity to exponentially many (but

finite) number of points by simply considering an union bound.

2.3.6 Kernel Selection Criteria

For kernel based methods such as RKHS and GPs, kernel selection and optimization

is often considered as a model selection problem. Commonly used measures for model
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selection are: cross validation (CV) [Friedman et al., 2001], marginal likelihood [Ras-

mussen and Williams, 2006], kernel alignment [Cristianini et al., 2002, Cortes et al.,

2012] and centered kernel alignment [Wang et al., 2012, Cortes et al., 2012]. Each one

of these algorithms is characterized by its own strengths and limitations. For exam-

ple cross validation is known to require high computational costs while being general

enough to be applicable to a broad set of learning problems [Wahba, 1990, Friedman

et al., 2001]. Marginal likelihood is an automatic algorithm to trade-o↵ model complex-

ity and fit but can be e�ciently applied only in the Bayesian setting (Section 2.3.3).

Kernel alignment is independent of the actual learning machine used but it is known

to su↵er from data imbalance. In the following we shall describe each kernel selection

algorithm in detail.

Cross Validation

Cross validation is one of the simplest and most popular model (kernel) selection criteria

for estimating the generalization error of a given predictor obtained according to the

Empirical Risk Minimization paradigm. The main idea is to estimate out of sample

prediction error by means of data that are not used during the ERM procedure. If the

available data are plenty, then one can simply split them into two groups: training and

validation. By training the model on the first set and then estimating the prediction

error on the validation set, one is guaranteed to get an unbiased estimator of the

generalization error of the trained model. In practice the number of available data is

never enough to guarantee good statistical approximation on both datasets, so that K-

fold cross-validation is usually employed to overcome such limitation [Friedman et al.,

2001]. The main idea is to split the available data into K-folds. Then a model can be

trained on all the folds but the i-th one. Then the i-th fold is used to estimate the

generalization error of the predictor. Repeating the procedure for K times, so that

each fold is used as validation dataset, an estimate of the generalization error of the

predictor is obtained by averaging over these K estimates.

The choice of the optimal K is non trivial in general and trades-o↵ computational

complexity and accuracy of the generalization prediction. In particular, choosing K =

N the CV is approximately unbiased for the true expected error but the resulting

variance might be high since the optimized models possess almost the same training

data. On the other hand when K is small the datasets used to build each model are not

much overlapped but the bias in the final estimate might be high (this depends on the

sensitivity of the optimal predictor to the dataset size). The case K = N is also known

as leave-one-out cross-validation and for certain model classes (linear models under the
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squared loss) the computational complexity can be highly decreased.

Marginal Likelihood

For an in-depth description of the Marginal Likelihood we refer to Section 2.3.3. Here

we simply point out that the marginal likelihood criterion can be e�ciently applied to

problems in which the marginal likelihood Eq. (2.25) can be expressed in closed form.

Assuming a Gaussian likelihood and a GP prior on the regression function it is possible

to write the marginal likelihood explicitly Eq. (2.26). One of the most remarkable

properties of this equation is the presence of a fitting term (the quadratic form) and of

a complexity term (the log det). The first measures how well the variance of the data can

be approximated by the kernel, while the second measures how complex the hypothesis

space is (it is a measure of volume in the space of functions induced by a particular

kernel choice). The marginal likelihood directly depends on the available data so that

no kernel machine needs to be optimized on a given set of kernel parameters. Note

however that both the inverse and the determinant of the N ⇥N kernel matrix KX ,

are required, both of which have computational complexity scaling as O(N3) (which is

a similar time complexity to the one required to solve the GP Eq. (2.21)) [Rasmussen

and Williams, 2006].

Kernel Alignment

The third type of kernel selection algorithm we present is: Kernel Alignment (KA). It

has been first introduced by [Cristianini et al., 2002] in the case of binary classification.

However it can be extended to other learning cases [Wang et al., 2012, Cristianini et al.,

2002], such that multi-class classification, unbalanced class classification and regression.

Definition 2.2 (Kernel Alignment). Let k1 and k2 be two kernel functions defined

over Rd ⇥ Rd and denote with P the data distribution. If k1 and k2 are such that

0 < Ex,x0 [k2

i
] < +1 for i = 1, 2. Then, the alignment between k1 and k2 is defined by:

⇢(k1, k2) =
Ex,x0 [k1(x, x0)k2(x, x0)]q

Ex,x0 [k2

1
(x, x0)]Ex,x0 [k2

2
(x, x0)]

(2.32)

where Ex,x0 is the expected value with samples x, x0 ⇠ P ⇥ P.

We now introduce its natural empirical estimate.

Definition 2.3 (Empirical Kernel Alignment). Let K1 2 RN⇥N and K2 2 RN⇥N be

two kernel matrices such that kKikF 6= 0 for i = 1, 2. Then, the alignment between K1
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2.3. Connection with Kernel methods

and K2 is defined by:

⇢̂(K1, K2) =
hK1, K2iF
kK1kF kK2kF

(2.33)

where Ki 2 RN⇥N is the kernel matrix evaluated on all the data {xi} with i 2 [N ] and

h·, ·i
F

is the Frobenius inner product of two matrices.

Remark 2.17 (Empirical KA as similarity score). If the kernel matrices K1 and K2

are considered as bidimensional vectors, the empirical kernel alignment can be seen

as a similarity score based on the cosine of their angle. Therefore KA is bounded

between -1 and 1. Moreover, since Ki are positive semi-definite Gram matrices, KA is

lower-bounded by 0.

The natural way to apply this measure of alignment to a classification problem is

by defining the following two kernels: the first one measures similarity between input

locations kx(x, x0) and the second measures similarity between target labels ky(y, y0).

For both kernels many definitions exist, for example when dealing with a classification

problem one might consider ky(y, y0) = 1 if y = y0 and 0 otherwise. In this case it is

possible to write the following expression for the empirical kernel: Ky = Y Y T where

Y 2 RN⇥C is a matrix whose rows are the target labels of dimension C for each datum.

In this case it is possible to rewrite the Empirical KA in the following form:

⇢̂(Kx, Ky) =

⌦
Kx, Y Y T

↵
F

kKxkF kKykF
=

Tr Y TKxY

kKxkF kKykF
(2.34)

It is well known that this definition of Kernel Alignment possesses favorable proper-

ties [Cristianini et al., 2002, Wang et al., 2012]. Computational e�ciency, the compu-

tational cost to evaluate Eq. (2.34) scales as O(N2). Concentration, the probability of

the empirical estimate ⇢̂(K1, K2) Eq. (2.33) deviating from its mean ⇢(k1, k2) Eq. (2.32)

can be bounded as an exponentially decaying function, so that the empirical estimator

is stable w.r.t. di↵erent split of the data. Generalization, KA positively correlates with

generalization, high alignment values imply there exists a separation of the data with

low bound on the generalization error. It is therefore expected that maximizing KA on

training set foster generalization performance.

We now focus on kernel selection for a family of kernel functions defined by some

hyper-parameters , nonetheless the following approach does not require parametrized

kernels and can be applied in general to compare kernels belonging to di↵erent families.

Let k be a kernel function parametrized by the hyper-parameters , (K)i,j :=

(k(xi, xj)) for all i, j 2 [N ] and Ky = Y Y T . The following optimization can be
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2. Neural Tangent Kernel

used for kernel selection on a given dataset:

⇤ = arg max


⇢̂(K, Ky) = arg max


Tr Y TK, Y

kKxkF
(2.35)

Remark 2.18 (Connection with Marginal Likelihood). Eq. (2.35) is analogous to the

Marginal Likelihood formula Eq. (2.26). In particular note Eq. (2.35) can be decoupled

into two separate terms: a term depending on the target labels Tr Y TKY and a

complexity term kKkF . The first term measures the correlation between similarity

in feature space (measured by K) and target similarity (measured by Ky). So that

it is large if features are good to separate input data (good fitting) and low if not

(i.e. no correlation between features similarity and target labels means poorly designed

features). Overall, the optimal kernel needs to face a trade-o↵ between data fit and

kernel complexity, so that the kernels with high correlation with target labels (low

fitting loss) and small complexity are the optimal ones.

Centered Kernel Alignment

We not briefly discuss Centered Kernel Alignment (CKA) which has been proposed

in [Cortes et al., 2012] as an improved version of Kernel Alignment, this new align-

ment measure is considered to better correlate with generalization and improves Kernel

Alignment predictions on unbalanced classification tasks.

The main idea in [Cortes et al., 2012] is to compute the Kernel Alignment measure

on a centered feature space.

Definition 2.4 (Centered Kernel Function [Cortes et al., 2012]). Let k be a kernel

function defined over Rd ⇥ Rd ! R and call its induced feature map � : Rd ! Rp.

The feature map � is centered by subtracting from it its expectation Ex[�], where Ex

denotes the expected value of � when its input x is sampled according to the data

distribution P. The centered kernel kc associated to the kernel k is defined as:

kc(x, x0) = (�(x)� Ex[�])T (�(x0)� Ex[�]) (2.36)

Remark 2.19 (Connection with uncentered kernel). From Eq. (2.36) it is clear the

following equivalent way of writing kc:

kc(x, x0) = k(x, x0)� Ex[k(x, x0)]� Ex0 [k(x, x0)] + Ex,x0 [k(x, x0)]

This shows the definition does not depend on the choice of the feature mapping asso-
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2.3. Connection with Kernel methods

ciated to k and that centering the feature map implies centering the kernel function

Ex,x0 [kc(x, x0)] = 0. Moreover, since kc is defined as an inner product, it is a positive

semidefinite kernel.

As done for KA it is possible to define the Empirical Centered Kernel Alignment as:

Definition 2.5 (Centered Kernel Matrix [Cortes et al., 2012]). The kernel matrix

Kc 2 RN⇥N associated to the centered kernel kc on a given set of samples {xi} with

i 2 [N ] is defined as the kernel matrix obtained using features centered with their

empirical expectation: �(xi)��̄ where �̄ := 1

N

P
N

i=1
�(xi). Therefore the corresponding

kernel matrix Kc is defined as:

(Kc)i,j = Ki,j �
1

N

NX

i=1

Ki,j �
1

N

NX

j=1

Ki,j +
1

N2
Ki,j

Remark 2.20. By letting � := (�(x1), ...,�(xN ))T and �̄ = (�̄, ..., �̄)T the following

more compact form holds:

Kc = (�� �̄)(�� �̄)T

This shows that the kernel matrix Kc is positive semi-definite and that the empirical

kernel matrix is centered: 1

N2

P
N

i,j=1
(Kc)i,j = 0.

Remark 2.21 (Relation with Uncentered kernel matrix). The following expression de-

scribes the relationship between the centered and uncentered kernel matrices:

Kc =


IN �

T

N

�
K


IN �

T

N

�

where is the vector of ones of the proper size.

It is now straightforward to extend the definitions used for Kernel Alignment to the

Centered case.

Definition 2.6 (Centered Kernel Alignment). Let k1 and k2 be two kernel functions

defined over Rd ⇥ Rd such that 0 < Ex,x0 [k2

i
] < +1 for i = 1, 2. Then, the centered

alignment between k1 and k2 is defined by:

⇢c(k1, k2) =
Ex,x0 [kc1(x, x0)kc2(x, x0)]q

Ex,x0 [kc
2

1(x, x0)]Ex,x0 [kc
2

2(x, x0)]
(2.37)
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Definition 2.7 (Centered Empirical Kernel Alignment). Let K1 2 RN⇥N and K2 2
RN⇥N be two kernel matrices such that kKikF 6= 0 for i = 1, 2. Then, the centered

alignment between K1 and K2 is defined by:

⇢̂c(K1, K2) =
hKc1, Kc2iF
kKc1kF kKc2kF

(2.38)

where Kci 2 RN⇥N is the kernel matrix evaluated on all the data {xi} with i 2 [N ]

and h·, ·i
F

is the Frobenius inner product of two matrices.

Remark 2.22 (Properties of KA transfer to CKA). As for KA, also CKA is lower

bounded by 0 and upper bounded by 1 and its empirical estimate concentrates around

its expected value [Cortes et al., 2012]. Moreover we can connect CKA to the marginal

likelihood for Gaussian Processes as done for KA in Remark 2.18.

As pointed out by [Cortes et al., 2012] the centered definition of Kernel Alignment

does not seem to di↵er much from the definition of Kernel Alignment. Nonetheless the

di↵erence between the two is more than a technicality, without the centering it can be

shown that the definition of alignment does not correlate well with generalization. To

see this we refer to [Cortes et al., 2012] in which a toy example, which can be solved in

closed form, is analyzed.

Remark 2.23 (Feature centering or kernel centering?). The centered notion of alignment

introduced so far is defined by centering the features, a natural question is: can one

center the kernels directly? Despite sounding natural, centering the kernel values, as

opposed to centering feature values, is not directly relevant to linear prediction in feature

space. As already observed, centering features values does imply centering kernel values

while the vice-versa is not true.

Remark 2.24 (KA and CKA in practice). Both KA and CKA are independent of the

actual learning machine used, moreover they only require information of the complete

training data and can be computed e�ciently. These properties make them especially

useful in practice [Deshpande et al., 2021, Cristianini et al., 2002, Wang et al., 2012].

2.4 Deep Neural Networks as linear models

We are now ready to show a very important connection between Deep Neural Networks,

their first order Taylor approximation and the Neural Tangent Kernel. To begin with,

recall that as the width of vanilla fully connected and convolutional Neural Networks

increases we have proved that the optimal DNN found following gradient flow dynamics
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2.4. Deep Neural Networks as linear models

under the squared loss converges to the optimal solution of a kernel regression whose

fixed kernel Theorem 2.3 is the NTK. Moreover, we proved that for any kernel regression

problem the kernel function induces a set of features which might be in principle infinite

and that the optimal kernel predictor is a linear model in this feature space. A natural

question now is: can we describe an infinitely wide DNN using a linear model? If so,

what are the features induced by the NTK?

2.4.1 NTK features

In general there is no closed form result to explicitly define the features induced by

⇥⇤, nonetheless we can find finite sized features which approximate the unknown

ones. By definition we have that the finite width neural tangent kernel is defined

as
D
@fw(x)

@w
, @fw(x

0
)

@w

E

`2
, we therefore know that @fw(x)

@w
is a proper feature vector for the

finite width kernel. We now observe that the finite width neural tangent kernel con-

verges to the infinite width one ⇥⇤ as the width increases Theorem 2.1, therefore the

gradient vector at initialization is a good (asymptotic) approximation of the features

induced by the infinite width NTK.

Remark 2.25 (Finite width approximation). In practice due to the finite size of the

DNNs the convergence of ⇥(0) ! ⇥⇤ and the stability of NTK (i.e. ⇥(t) ! ⇥(0) as

the width of the DNN increases 8t) are not guaranteed and therefore the gradients at

initialization are not guaranteed to be good enough to describe the learning trajectory

of a general finite size DNN. The finite sample e↵ects we just described have been

one of the main reasons for the large research e↵ort that machine learning researches

have devoted to the study of the Neural Tangent Kernel [Jacot et al., 2018, Arora

et al., 2019b, Arora et al., 2019a, Lee et al., 2017, Lee et al., 2019, Garriga-Alonso

et al., 2018, Allen-Zhu et al., 2019b, Allen-Zhu et al., 2019a, Mu et al., 2020, Du et al.,

2018a, Du et al., 2018b, Goldblum et al., 2019, Zancato et al., 2020, Deshpande et al.,

2021].

2.4.2 First order Taylor expansion of DNNs

We now explicitly show how to use a first order Taylor expansion of a DNN to build a

linear model whose learning trajectory approximates the infinite width (or the equiv-

alent kernel regression) one. In this section we mainly show results from [Lee et al.,

2019].

To improve readability we shall use the following notation ft := fw(t). Consider a
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2. Neural Tangent Kernel

first order Taylor expansion of the output of a Network ft with input x:

f lin

t (x) = f0(x) +
@fw(t)(x)

@w

����
w=w(0)

✓t (2.39)

where ✓t := wt � w0 is the change in the parameters from their initial values. The

linearized DNN is composed by two terms, the first one does not change during training

while the second captures the output change w.r.t. the initial value during training.

Similarly to Proposition 2.1 we can express how the prediction outputs and param-

eters of the linearized model change during training with Gradient Flow (or Gradient

Descent). In particular for Gradient Flow it holds:

d✓t
dt

= �⌘r✓L(✓(t)) = �⌘
NX

j=1

(f lin

t (xj)� yj)
@f lin

t (xj)

@✓

= �⌘r✓f
lin

t (X )Tr
f
lin
t (X )

L(✓(t)) (2.40)

where r✓f lin
t (X ) :=

⇣
@f

lin
t (x1)

@✓

���@f
lin
t (x1)

@✓

���...
���@f

lin
t (xN )

@✓

⌘
T

2 RN⇥D is the matrix containing

on each row the gradient of the network output on the i-th sample whiler
f
lin
t (X )

L(✓(t)) =
⇣

@L(✓(t))

@f
lin
t (xi)

⌘

i

for i 2 [N ].

Remark 2.26 (Extension to multi dimensional output). Previous formulation can be

extended to Networks whose output is a vector (e.g. representing the number of classes

C in a classification problem) by simply considering r✓f lin
t (X ) 2 RCN⇥D (Section 2.6).

It is trivial to verify the following: r✓f lin
t (X ) = rwf0(X ) where the last quantity

is obtained from gradients of the non-linear model w.r.t. its parameters evaluated at

initialization. Following the same derivation in Proposition 2.1 we can write how the

output of the linear network evolves during the Gradient Flow dynamics:

df lin
t (x)

dt
= �⌘⇥lin

t (x, X )r
f
lin
t (X )

L(✓(t)) = �⌘⇥0(x, X )r
f
lin
t (X )

L(✓(t)) (2.41)

Note ⇥lin
t (x, X ) := r✓f lin

t (x)r✓f lin
t (X )T = rwf0(x)rwf0(X )T = ⇥0(x, X ) which is

the Neural Tangent Kernel computed from the gradients of the non-linear model at

initialization.

Remark 2.27 (NTK parametrization). The definition of the NTK matrix as the inner

product of gradients implicitly assumes the gradients are normalized by the number of

parameters Eq. (2.5) so that as the width increases the NTK matrix remains bounded.
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2.4. Deep Neural Networks as linear models

When computing the empirical NTK for architecture whose gradients are not implicitly

normalized by the number of parameters it is fundamental to normalize the gradients

or the empirical NTK by diving it with the number of parameters.

Since ⇥0 stays constant during training, the dynamics of gradient flow are often quite

simple. In particular, given a quadratic loss L(✓(t)) = 1

2

P
N

i=1
(f lin

t (xi) � yi)2 we have

the following ODEs:

d✓t
dt

= �⌘rwf0(X )T (f lin

t (X )� y) (2.42)

df lin
t (x)

dt
= �⌘⇥0(x, X )(f lin

t (X )� y) (2.43)

Proposition 2.4 (Explicit dynamics of linearization). The solutions of previous ODEs

(Eq. (2.42) and Eq. (2.43)) can be written in closed form as:

✓t = �rwf0(X )T⇥�1

0
(IN � e�⌘⇥0t)(f0(X )� y) (2.44)

f lin
t (X ) = (IN � e�⌘⇥0t)y + e�⌘⇥0tf0(X ) (2.45)

Moreover the evolution of the network prediction on a test point x is given by:

f lin
t (x) = f0(x)�⇥0(x, X )⇥�1

0
(I � e�⌘⇥0t)(f0(X )� y) (2.46)

Remark 2.28 (Non-null network initialization). Note Eq. (2.46) coincides with the NTK

regression prediction in Eq. (2.31) when the output of the network at initialization is

negligible.

2.4.3 Infinite width neural networks are linearized networks

As described in Remark 2.25 the dynamics of a finite width Neural Network is in-

tractable in general, since the empirical NTK is not constant along the optimization

path. However, for the mean squared loss, [Lee et al., 2019] proves that the gradi-

ent descent (and gradient flow) dynamics of the original neural network falls into its

linearized dynamics regime as long as the learning rate is small enough.

Proposition 2.5 (Infinite width DNNs are linear models [Lee et al., 2019]). Under

assumptions 2.1 to 2.4 and gradient flow dynamics on the squared loss with learning

rate ⌘ (i.e. dw

dt
= �⌘rwL(w(t))). For every x 2 Rd with kxk

2
 1, for �0 > 0 arbitrarily

small, there exist r0 > 0 and n̄ 2 N such that for every n � n̄ where n := min{d1, ..., dL},
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with probability at least (1� �0) over random initialization we have:

sup
t

���f lin
t (X )� fw(t)(X )

���
2

. r2
0p
n

, sup
t

���f lin
t (x)� fw(t)(x)

���
2

. r2
0p
n

(2.47)

where . is used to hide dependence on uninteresting constants.

Remark 2.29 (Discrepancy bounds as a function of t). Previous bounds hold uniformly

in t so that they are not applicable when finer bounds, as a function of t, are required.

The following can be used to bound the discrepancy of the non-linear DNN and its

linearization for any t. This has been derived in [Lee et al., 2019] (see Eq. S118) and is

used to prove Proposition 2.5:

���f lin

t (X )� fw(t)(X )
���
2

 (⌘�tte
⌘(��min+�t)t)

���f lin

0 (X )
���
2

(2.48)

where �t := sup0st k⇥s �⇥0kF 
r0p
n
.

Remark 2.30. Previous theorem holds beyond the NTK parametrization provided gra-

dients are normalized by their number of parameters.

2.5 Trainability and generalization of infinitely wide Neural Networks

The main goal of this section is to study the convergence trajectory of infinitely wide

Networks and their relation with the simple dynamics of their linearization around

initialization.

The global convergence of the gradient descent for NTK has been recently demon-

strated for over-parametrized DNNs by di↵erent authors [Du et al., 2019b, Allen-Zhu

et al., 2019b, Du et al., 2018a, Allen-Zhu et al., 2018]. In these works the strictly

positivity of the NTK matrix at initialization (which remains constant during training)

plays a crucial role in providing convergence guarantees. In particular the positivity of

the NTK matrix leads to a fast (exponential) decay of the training loss to zero which

in turns, allows to localize the entire training dynamics around initialization. However,

the assumption on the positivity of the NTK eigenvalues might not hold in practice [Su

and Yang, 2019, Nitanda and Suzuki, 2020] and, as the number of examples increases

the NTK spectrum descreases to zero. It is well known that the decay rate of integral

operators (in this case the NTK) is directly connected with the complexity of the hy-

pothesis space of functions induced by it: the faster the convergence of the eigenvalues

to zero the lower the complexity of the induced features. This highlights the intuitive

idea that larger model classes (characterized by a slow decay to zero of the eigenvalues
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2.5. Trainability and generalization of infinitely wide Neural Networks

of the NTK matrix) are more likely to be faster learners. Unfortunately, similar claims

might not be straightforward for generalization [Hardt et al., 2015] since a larger search

space (faster learners) might be associated to over-fitting.

2.5.1 Training trajectories of over-parametrized DNNs

To begin with, we write the evolution of the squared loss of the linearized model:

L(✓(t)) =
���y � f lin

t (X )
���
2

2

= (y � f0(X ))T e�2⌘⇥0t(y � f0(X )) = k�y0k2e�2⌘⇥0t (2.49)

where we simply used the closed form solution for the outputs of the linear model in

Eq. (2.45) and defined �y0 := y � f0(X ). Note that a randomly initialized Network

converges to a zero mean Gaussian Process with finite variance so that in the infinite

width limit �y0 is likely to be “close” to y (more precisely we can only claim that with

high probability over the random initialization �y0 is bounded Proposition 2.3). What

if the Network is pre-trained? In this case no convergence theorems exists, nonetheless

linearization around initialization can still be applied to study the dynamics of pre-

trained Neural Networks. In particular, the better the pre-training the closer �y0 to

0. No theoretical result exists to prove the empirical tangent kernel of a pre-trained

model converges to the Neural Tangent Kernel ⇥⇤ as its width increases. Nonetheless,

under the assumption the pre-training dataset is close in some sense to the target X ,

we argue pre-trained models are more likely not to change much during optimization so

that a first order Taylor expansion at initialization is likely to well approximate their

non-linear dynamics even for finite width DNNs [Deshpande et al., 2021, Zancato et al.,

2020, Achille et al., 2021].

With Eq. (2.49) it is rather easy to study the evolution of the squared loss along the

gradient flow for the linearized model, but how close is the loss of the linearized model

to that of the non-linear one? We provide an answer to this question with the following

proposition (which is a direct consequence of Proposition 2.5).

Proposition 2.6. Under the same assumptions of Proposition 2.5. The following holds

with probability at least (1� �0) over random initialization:

���
��y � fw(t)(X )

��
2
�
���y � f lin

t (X )
���
2

��� . r2
0p
n

(2.50)

Proof. By the triangle’s inequality we have:

��y � fw(t)(X )
��
2

���y � f lin

t (X )
���
2

+
���f lin

t (X )� fw(t)(X )
���
2
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and therefore using the result in Proposition 2.5 which holds for any time t we conclude.

⌅

The assumption on gradient flow can be relaxed and a similar result can be shown

for gradient descent dynamics under suitable small learning rate. The gradient descent

dynamics has been analyzed in [Arora et al., 2019a] in the case of a randomly initialized

two layer Neural Network. So that the extension of Proposition 2.6 to gradient descent

is a generalization of the results in [Arora et al., 2019a]. In particular, the main insights

on the convergence rates provided in [Arora et al., 2019a] are still valid on a deeper

architecture for which it holds Eq. (2.50).

As a straightforward consequence of Eq. (2.50) it is possible to prove Proposition 3.2

[Zancato et al., 2020] which provides us a simple tool to conduct a fine-grained analysis

on the training dynamics: it distinguishes between di↵erent types of prediction errors

at initialization and training labels. Note that this result applies both to randomly ini-

tialized models and pre-trained ones provided linearized approximation is good enough.

Such a decomposition allows us to answer some very important questions:

• Why do true labels give faster convergence rate than random labels for gradient

descent? [Arora et al., 2019a, Zhang et al., 2017]

• How to choose the best pre-trained model for a given task? [Deshpande et al.,

2021]

2.5.2 Generalization properties of over-parametrized DNNs

In this section we study the generalization ability of infinite width Neural Networks

trained by gradient descent. Most of the material here is taken from [Arora et al.,

2019a], in which the generalization ability of a two layer ReLU activated Neural Network

is analyzed by means of Rademacher complexity bounds. Their main result Theorem 2.5

is based on a fine-grained analysis of the mobility of Neural Network’s parameters during

optimization. The generalization bound proposed in [Arora et al., 2019a] depends on

a data-dependent complexity measure which, notably, is independent of the number of

hidden units in the network. Interestingly, such a bound is not vacuous for real world

datasets such as MNIST and CIFAR [Arora et al., 2019a].

The main requirement for Theorem 2.5 is a non-degeneracy assumption on the data

distribution, which is equivalent to a positive definitness constraint on the spectrum

of the Empirical NTK matrix. As discussed in Section 2.2.3 and Section 2.5.1 this

assumption guarantees convergence to zero training loss [Du et al., 2018a, Du et al.,

2019b, Allen-Zhu et al., 2019a, Allen-Zhu et al., 2018].
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Definition 2.8. A distribution P over Rd ⇥ R is (�min, �, N)-non-degenerate, if for N

i.i.d. samples {xi, yi}i with i 2 [N ] from P, with probability at least 1 � � we have

min ⇤(H⇤) � �min > 0.

Theorem 2.5 (Generalization bound for two layer NN [Arora et al., 2019a]). Fix a

failure probability � 2 (0, 1). Suppose the dataset D is composed of N i.i.d. samples

from a (�min, �/3, N)-non-degenerate distribution P. Moreover assume  = O
⇣
�min�

N

⌘

and m � �2poly(N,��1

min, �
�1). Consider any loss function l : R⇥R! [0, 1] that is 1-

Lipschitz in the first argument such that l(y, y) = 0. Then with probability at least 1� �
over the random initialization and the training samples, a two-layer Neural Network

fa,w(k)
, with ReLU activations, trained by gradient descent for k � ⌦

⇣
1

⌘�min
log N

�

⌘

iterations has population loss LP(fa,w(k)
) = E(x,y)⇠P [l(fa,w(k)

(x), y)] bounded as:

LP(fa,w(k)
) 

r
2yT (H⇤)�1y

n
+ O

0

BB@

vuut log
⇣

N

�min�

⌘

n

1

CCA

The main idea of the proof is to bound the distance of the trained Neural Network’s

parameters w.r.t. the ones at initialization. This hinges on the proximity of the non-

linear dynamics of the Neural Network to the linear dynamics of its infinite width limit

(which is characterized by H⇤). This observation implies the class of two-layer Neural

Networks implemented are those whose weights are close to initialization. So that, in

this special case, it is possible to exploit a bound on the Rademacher complexity which

characterizes generalization.

In Theorem 2.5 there are three sources of possible failures: failure of satisfying

min ⇤(H⇤) � �0, failure of random initialization and failure in the data sampling.

Most notably, the dominating term which bounds generalization can be interpreted as

a complexity measure of data (w.r.t. to the architecture). In particular, we can estimate

an upper bound on generalization before even training the network by only looking at

the sampled training data and the Empirical NTK.

Remark 2.31 (Connection with Model Selection). Theorem 2.5 has important conse-

quences even if its assumptions are rather limiting in practice: being able to estimate

an index of generalization even before training allows one to perform model selection

without incurring in any training cost. Moreover, the subtle dependency architecture-

dataset is taken into account since H⇤ contains both information about architecture

and input locations while y directly models the target labels. Di↵erent questions such

as how to perturb labels (without changing input data) to ruin or improve generaliza-
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2. Neural Tangent Kernel

tion can be analyzed by looking at
q

2yT (H⇤)�1y

n
. In [Deshpande et al., 2021] a model

selection criterion which employs a similar complexity criterion has been proposed to

solve the hard task of choosing the best Neural Network from a plethora of models to

solve a given dataset Chapter 4.

The last important question in this section is: how general is the previous result?

Does it hold for a broader class of neural networks (larger than the two layer ReLU acti-

vated Neural Networks studied in [Arora et al., 2019a])? From a theoretical standpoint

no such result can be found in literature, we believe this is due to the specific technique

used in Theorem 2.5 to prove the Empirical Rademacher complexity bound which is

not easily generalizable to more complex networks. Nonetheless, some empirical re-

sults show complex over-parametrized non-linear convolutional Neural Networks can

be analyzed with an approximation that provides good empirical results on real-world

datasets [Deshpande et al., 2021, Zancato et al., 2020].

2.6 Training dynamics under the NTK approximation on other losses

Up to now we described the training dynamics of DNNs under the squared loss since

most of the involved computations can be carried out explicitly. We now show how

to extend the NTK to the Cross-Entropy loss, which is typically used to solve multi-

class classification tasks. To do so we shall follow [Lee et al., 2019, Zancato et al.,

2020, Deshpande et al., 2021] and exploit the gradient descent dynamics of the DNN

linearization described in Section 2.4.2.

In a general C-classes classification problem the output of a model is assumed to be

of dimension C, so that in this section we shall consider fw(t)(x) 2 RC . The per-sample

expression of the Cross-Entropy loss is given by:

l(f(xi), yi) = �
CX

j=1

yi,j log softmax(f(xi))j

where yi 2 RC is the label vector associated to the i-th datum and the softmax is

defined as:

softmax(f)j :=
exp fjP
C

l=1
exp fl

The evolution of a general non-linear model under gradient flow [Lee et al., 2019]
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2.7. Stochastic Gradient Descent and NTK regime

both on the training dataset and on a general input location x is given by:

dfw(t)(X )

dt
= �⌘⇥t(X , X )rfw(t)(X )L(w(t)) = �⌘⇥t(X , X )(softmax(fw(t)(X ))� y)

dfw(t)(x)

dt
= �⌘⇥t(x, X )rfw(t)(X )L(w(t)) = �⌘⇥t(x, X )(softmax(fw(t)(X ))� y)

Where the NTK matrix is now a RCN⇥CN matrix since for each datum the model out-

puts C scalars, rfw(t)(X )L(w(t)) :=

✓
@L(w(t))

@fw(t)(x1)

T

����...
����

@L(w(t))

@fw(t)(xN )

T

◆
T

2 RCN is obtained

by stacking:
⇣

@L(w(t))

@fw(t)(xi)

⌘

j

:= @L(w(t))

@(fw(t)(xi))j
= softmax(f(xi))j � yi,j . This notation as-

sumes y 2 RCN is obtained by stacking target labels for each datum and similarly for

softmax(fw(t)(X )) 2 RCN where the softmax is applied for each datum separately.

Remark 2.32 (The dynamics with CE loss has not closed form solutions). Previous

equations can be applied to a general non-linear network fw(t), the main di↵erence

with the equations derived for the squared loss is that no closed form solution exists.

Moreover, substituting in previous equations a general non-linear network fw(t) with

its linearized version f lin
t only changes the NTK matrix ⇥t so that it becomes constant

⇥0. Nonetheless, closed form solution is possible even for the linearized model, hence

numerical integration methods are required [Lee et al., 2019, Deshpande et al., 2021].

2.7 Stochastic Gradient Descent and NTK regime

Up to now we studied the training dynamics of gradient descent or gradient flow for

training DNNs and showed that for heavily over-parametrized models the non-linear

dynamics can be closely approximated by the one of a linear model (or kernel method).

From the linearization around initialization it is possible to gather insights on the most

important factors influencing the learning dynamics (Section 2.5.1) and generalization

(Section 2.5.2). Nonetheless, in practice DNNs models are trained using a Stochastic

Gradient Descent so that a theory able to couple both over-parametrization and SGD is

required. As described in Section 1.4, SGD has been primarily introduced to overcome

practical limitations (e.g. memory requirements due to large scale models and datasets)

but it gathered popularity thanks to its high performance measured on many di↵erent

applications and domains. Currently no conclusive and exhaustive theory of SGD for

over-parametrized DNNs exists, nonetheless some remarkable results have been recently

obtained: [Chen et al., 2020, Nitanda and Suzuki, 2020]. Both works analyze the

convergence of some variants of SGD for over-parametrized two-layer Neural Networks

for regression problems. The first [Chen et al., 2020] provides a generalized Neural

53



2. Neural Tangent Kernel

Tangent Kernel analysis and shows that noisy gradients with weight decay still exhibit a

“kernel-like” behaviour. [Nitanda and Suzuki, 2020] instead, provides some guarantees

on the minimax optimal convergence rate of averaged SGD under the NTK regime.
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3
Training Time Prediction

Say you are a researcher with many more ideas than available time and compute

resources to test them. You are pondering to launch thousands of experiments but, as

the deadline approaches, you wonder whether they will finish in time, and before your

computational budget is exhausted. Could you predict the time it takes for a network

to converge, before even starting to train it?

In [Zancato et al., 2020] we look to e�ciently estimate the number of training steps

a Deep Neural Network needs to converge to a given value of the loss function, without

actually having to train the network. This problem has received little attention thus

far, possibly due to the fact that the initial training dynamics of a randomly initialized

DNN are highly non-trivial to characterize and analyze. However, in most practical

applications, it is common to not start from scratch, but from a pre-trained model

(fine-tuning). This may simplify the analysis, since the final solution obtained by fine-

tuning is typically not too far from the initial solution obtained after pre-training. In

fact, it is known that the dynamics of overparametrized DNNs [Du et al., 2019a, Zou

et al., 2018, Allen-Zhu et al., 2019b] during fine-tuning tend to be more predictable and

close to convex [Mu et al., 2020]. Our main contribution in [Zancato et al., 2020] is to

introduce the problem of predicting training time in realistic use cases, in particular

how training time depends on the hyper-parameters and, most importantly, on the

interaction between target task and pre-training (which, to the best of our knowledge,

is new).

We therefore characterize the training dynamics of a pre-trained network and provide

a computationally e�cient procedure to estimate the expected profile of the loss curve

over time.

We use a linearized version of the DNN model around pre-trained weights to study
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3. Training Time Prediction

its actual dynamics. In [Lee et al., 2019] a similar technique is used to describe the

learning trajectories of randomly initialized wide neural networks. Such an approach is

inspired by the Neural Tangent Kernel for infinitely wide networks [Jacot et al., 2018]

(Chapter 2). While we note that NTK theory may not correctly predict the dynamics

of real (finite size) randomly initialized networks [Goldblum et al., 2019], we show that

our linearized approach can be extended to fine-tuning of real networks in a similar vein

to [Mu et al., 2020]. In order to predict fine-tuning Training Time without training

we introduce a Stochastic Di↵erential Equation (similar to [Hayou et al., 2019]) to

approximate the behavior of SGD: we do so for a linearized DNN and in function space

rather than in weight space. That is, rather than trying to predict the evolution of

the weights of the network (a D-dimensional vector), we aim to predict the evolution

of the outputs of the network on the training set (a N ⇥ C-dimensional vector, where

N is the size of the dataset and C the number of network’s outputs). This drastically

reduces the dimensionality of the problem for over-parametrized networks (that is, when

NC ⌧ D).

A possible limiting factor of our approach is that the memory requirement to predict

the dynamics scales as O(DC2N2). This would rapidly become infeasible for datasets

of moderate size and for real architectures (D is in the order of millions). To mitigate

this, we show that we can use random projections to restrict to a much smaller D0-

dimensional subspace with only minimal loss in prediction accuracy. We also show how

to estimate Training Time using a small subset of N0 samples, which reduces the total

complexity to O(D0 C2N2

0
). We do this by exploiting the spectral properties of the

Gram matrix of the gradients. Under mild assumptions the same tools can be used to

estimate Training Time on a larger dataset without actually seeing the data.

The method we propose in this chapter does not depend on a particular application

domain (say image processing or time series analysis) or loss function (e.g. squared

loss or cross-entropy loss) and can be applied so long as feedforward DNNs are used.

Nonetheless, the driving force of the material developed in this chapter started to

unblock the adoption of real-world Computer Vision AutoML systems for classification,

therefore our empirical validation has only been conducted on this application domain.

To summarize, the main contributions of this chapter are:

1. We present both a qualitative and quantitative analysis of the fine-tuning Train-

ing Time as a function of the Gram-Matrix ⇥ of the gradients at initialization

(empirical NTK matrix).

2. We show how to reduce the cost of estimating the matrix ⇥ using random projec-

tions of the gradients, which makes the method e�cient for common architectures
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and datasets.

3. We introduce a method to estimate how much longer a network will need to train

if we increase the size of the dataset without actually having to see the data

(under the hypothesis that new data is sampled from the same distribution).

4. We test the accuracy of our predictions on o↵-the-shelf state-of-the-art models

trained on real datasets. We are able to predict the correct training time within

a 20% error with 95% confidence over several di↵erent datasets and hyperparam-

eters at only a small fraction of the time it would require to actually run the

training (30-45x faster in our experiments).

3.1 Bibliographical Notes

Predicting the training time of a state-of-the-art deep architecture on large scale datasets

is a relatively understudied topic. In this direction, Justus et al. [Justus et al., 2018]

try to estimate the wall-clock time required for a forward and backward pass on given

hardware. We focus instead on a complementary aspect: estimating the number of fine-

tuning steps necessary for the loss to converge below a given threshold. Once this has

been estimated we can combine it with the average time for the forward and backward

pass to get a final estimate of the wall clock time to fine-tune a DNN model without

training it.

Hence, we are interested in predicting the learning dynamics of a pre-trained DNN

trained with either Gradient Descent or Stochastic Gradient Descent.

In order to predict the learning dynamics many works are based on learning curve

prediction (see [Klein et al., 2017] and references therein). These methods mainly focus

on predicting the e↵ect of di↵erent hyper-parameters for fixed task and architectures.

Di↵erently, we provide qualitative interpretation and quantitative prediction of the

convergence speed of a DNN as a function of optimization hyper-parameters, network

pre-training and target task.

Other results are known to describe training dynamics under a variety of assumptions

(e.g. [Keskar et al., 2016b, Smith and Le, 2018, Saxe et al., 2013, Brutzkus et al.,

2017]), we are mainly interested on recent developments which describe the optimization

dynamics of a DNN using a linearization approach. Several works [Jacot et al., 2018,

Lee et al., 2017, Du et al., 2018a] suggest that in the over-parametrized regime wide

DNNs behave similar to linear models, and in particular they are fully characterized

by the Gram-Matrix of the gradients, also known as empirical Neural Tangent Kernel

(Section 2.4).
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Under these assumptions, [Jacot et al., 2018, Arora et al., 2019a] derive a simple

connection between training time and spectral decomposition of the NTK matrix. How-

ever, their results are limited to Gradient Descend dynamics and to simple architectures

which are not directly applicable to real scenarios. In particular, their arguments hinge

on the assumption of using a randomly initialized very wide two-layer or infinitely wide

neural network [Arora et al., 2019a, Du et al., 2018b, Li and Yuan, 2017]. We take

this direction a step further, providing a unified framework which allows us to describe

training time for both SGD and GD on common architectures.

Again, we rely on a linear approximation of the model, but while the practical valid-

ity of such linear approximation for randomly initialized state-of-the-art architectures

(such as ResNets) is still discussed [Goldblum et al., 2019], we follow Mu et al. [Mu

et al., 2020] and argue that the fine-tuning dynamics of over-parametrized DNNs can

be closely described by a linearization. We expect such an approximation to hold true

since the network does not move much in parameters space during fine-tuning and

over-parametrization leads to smooth and regular loss function around the pre-trained

weights [Du et al., 2019a, Zou et al., 2018, Allen-Zhu et al., 2019b, Li et al., 2020].

Under this premise, to tackle both GD and SGD in an unified framework we build

on [Hayou et al., 2019] modelling linearized training using a Stochastic Di↵erential

Equation in function space. We show we can use linearization to study the fine-tuning

dynamics as suggested by [Mu et al., 2020] and provide accurate estimates on Training

Time.

3.2 Training Time Definitions

We start this chapter by proposing three possible definitions of Training Time (TT),

we shall mainly be concerned on TT for DNNs nonetheless all definitions hold for any

model optimized by iterative optimization schemes. We shall assume the DNNs are

trained up to convergence and denote the training loss at each time instant t as: L(t).

Definition 3.1 (Absolute Training Time). Given the training loss of a DNN model

L(t) and a threshold value ✏ we define the absolute training time of the DNN model

as the smallest time index t⇤ for which the training loss is consistently lower than the

threshold:

t⇤ := inf{t : L(s) < ✏, 8s � t}

If the set {t : L(s) < ✏, 8s � t} is empty we define t⇤ :=1.

Previous definition of Training Time is based on the absolute value of the training
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3.2. Training Time Definitions

(a) Training with Gradient Descent. (b) Training with SGD.

Figure 3.1: Training time prediction (# iterations) for several fine-tuning
tasks. Scatter plots of the predicted time vs the actual training time when fine-
tuning a ResNet-18 pre-trained on ImageNet on several tasks. Each task is obtained
by randomly sampling a subset of five classes with 150 images (when possible) each
from one popular dataset with di↵erent hyperparameters (batch size, learning rate).
The closer the scatter plots to the bisector the better the TT estimate. Our prediction
is (a) within 13% of the real training time 95% of the times when using GD and (b)
within 20% of the real training time when using SGD.

loss, so that if the threshold is too small the Training Time might be infinite. In practice,

it is not possible to know a priori which value of ✏ leads to infinite TT values. To solve

this limitation we propose the following definition, which is always well defined for

typical learning trajectories (for which the loss converges to a single value or a bounded

stationary distribution).

Definition 3.2 (Relative Training Time). Given the training loss of a DNN model

L(t) and a threshold value ✏ we define the relative training time of the DNN model as

the smallest time index t⇤ for which the training loss is consistently within an ✏-ball

around its asymptotic value:

t⇤ := inf{t : |L(s)� L(1)| < ✏, 8s � t}

If the set {t : |L(s)� L(1)| < ✏, 8s � t} is empty we define t⇤ :=1.

Remark 3.1. If stochastic optimization schemes are used, the limit loss might not be

well defined, nonetheless it is customary to consider the asymptotic loss as a bounded

stationary distribution (within a set B) [Mandt et al., 2017]. Under such circumstances

we use the following hitting time-like definition t⇤ := inf{t : L(t) 2 B}. This defi-

nition is harder to be used in practice since it requires knowledge of B that cannot

be easily characterized. A straightforward relaxation is obtained by replacing B with
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3. Training Time Prediction

B̂ := {|L(t) � E[L(1)]| < ✏}. Where E[L(1)] can be approximated by a running

average of training loss values.

Remark 3.2 (Equivalence of the definitions of TT). If limt!1 L(t) = 0 then Defini-

tion 3.1 and Definition 3.2 are equivalent.

Definition 3.3. Given the training loss of a DNN model L(t), a threshold value ✏ and

a time length T , we define the early stopping training time of a DNN model as the

smallest time index t⇤ for which the training loss does not decreases by a factor ✏ over

the last T iterations:

t⇤ := inf{t : L(t)� ✏  L(s), 8s 2 [t, t + T ]}

In the following we shall only consider Definition 3.2 as the definition of Training

Time, so that by Training Time we mean the number of optimization steps – of either

Gradient Descent or Stochastic Gradient Descent – needed to bring the training loss

within an ✏ ball around an asymptotic value.

Remark 3.3 (Applicability of our TT estimator). Our Training Time estimator can be

used on any of the above definitions of Training Time.

3.3 Predicting Training Time

In this section we look at how to e�ciently approximate the training time of a DNN

without actual training, to do so we use a linearized approximation of the DNN. Such

an approximation can be computed without any fine-tuning and mimics the actual

learning dynamics of the non-linear DNN. Therefore from the loss trajectory of the

linearized model we can get an estimate of the actual Training Time of the non-linear

model (see Section 3.5 for the complete algorithm).

We start by introducing our main tool. Let fw(x) denote the output of the network,

where w denotes the weights of the network and x 2 Rd denotes its input (e.g. an

image). Let w0 be the weight configuration after pre-training. We assume that when

fine-tuning a pre-trained network the solution remains close to pre-trained weights w0

[Mu et al., 2020, Du et al., 2019a, Zou et al., 2018, Allen-Zhu et al., 2019b]. Under

this assumption – which we discuss further in Section 3.6.4 – we can approximate the

network with its Taylor expansion around w0 [Lee et al., 2019]. Let wt be the fine-tuned

weights at time t. Using big-O notation and ft := fwt , we have:

ft(x) = f0(x) +rwf0(x)|w=w0(wt � w0) + O(kwt � w0k2)
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We now want to use this approximation to characterize the training dynamics of the

network during fine-tuning to estimate TT. In such theoretical analyses [Jacot et al.,

2018, Lee et al., 2019, Arora et al., 2019a] it is common to assume that the network is

trained with Gradient Descent rather than Stochastic Gradient Descent, and in the limit

of a small learning rate. In this limit, the dynamics are approximated by the gradient

flow di↵erential equation ẇt = �⌘rwtL [Jacot et al., 2018, Lee et al., 2019] where ⌘ de-

notes the learning rate and L(w) denotes the loss function L(w) = 1

2

P
N

i=1
`(yi, fw(xi)),

where ` is the per-sample loss function (e.g. Cross-Entropy). This approach however

has two main drawbacks. First, it does not properly approximate Stochastic Gradient

Descent, as it ignores the e↵ect of the gradient noise on the dynamics, which a↵ects

both training time and generalization. Second, the di↵erential equation involves the

weights of the model, which live in a very high dimensional space thus making finding

numerical solutions to the equation not tractable.

To address both problems, building on top of [Hayou et al., 2019] in Section A.5.1

we prove the following result.

Proposition 3.1 (Neural Tangent Kernel learning as a SDE). In the limit of small

learning rate ⌘, the output on the training set of a linearized network f lin
t trained with

SGD evolves according to the following Stochastic Di↵erential Equation:

df lin
t (X ) = �⌘⇥r

f
lin
t (X )

Lt dt
| {z }
deterministic part

+
⌘p
|B|
rwf lin

0 (X )⌃
1
2 (f lin

t (X ))dn

| {z }
stochastic part

, (3.1)

where X is the set of training images, |B| the batch-size and dn is a D-dimensional

Brownian motion. We have defined the Gram gradients matrix ⇥ [Jacot et al., 2018,

Shawe-Taylor et al., 2005] (i.e., the empirical Neural Tangent Kernel matrix) and the

covariance matrix ⌃ of the gradients as follows:

⇥ = rwf0(X )rwf0(X )T (3.2)

⌃(f lin
t (X )) = E

⇥
(Jirf

lin
t (xi)

L)⌦ (Jirf
lin
t (xi)

L)
⇤
� E

⇥
Jirf

lin
t (xi)

L
⇤
⌦ E

⇥
Jirf

lin
t (xi)

L
⇤

(3.3)

where Ji := rwf0(xi). Note both ⇥ and ⌃ only require gradients w.r.t. parameters

computed at initialization.

The first term of Eq. (3.1) is an ordinary di↵erential equation describing the deter-

ministic part of the optimization, while the second stochastic term accounts for the

noise. In Figure 3.2 (left) we show the qualitative di↵erent behaviour of the solution
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Figure 3.2: (Left) ODE vs. SDE. ODE approximation may not be well suited to
describe the actual non-linear SGD dynamics (high learning rates regime). (Right)
Fine-tuning with the same ELR have similar curves. We fine-tune an ImageNet
pre-trained network on MIT-67 with di↵erent combinations of learning rates and mo-
mentum coe�cients. We note that as long as the e↵ective learning rate is the same,
the loss curves are also similar.

to the deterministic part of Eq. (3.1) and the complete SDE Eq. (3.1). While several

related results are known in the literature for the dynamics of the network in weight

space [Chaudhari and Soatto, 2017], note that Eq. (3.1) completely characterizes the

training dynamics of the linearized model by looking at the evolution of the output

f lin
t (X ) of the model on the training samples – a N ⇥ C-dimensional vector – rather

than looking at the evolution of the weights wt – a D-dimensional vector. When the

number of data points is much smaller than the number of weights (which are in the

order of millions for ResNets), this can result in a drastic dimensionality reduction,

which allows easier estimation of the solution to Eq. (3.1). Solving Eq. (3.1) still comes

with some challenges, particularly in computing ⇥ e�ciently on large datasets and ar-

chitectures. We tackle these in Section 3.4. Before that, we take a look at how di↵erent

hyper-parameters and di↵erent pre-trainings a↵ect the training time of a DNN on a

given task.

3.3.1 E↵ect of hyper-parameters

E↵ective learning rate. From Proposition 3.1 it is possible to gauge how hyper-

parameters will a↵ect the optimization process of the linearized model and, by proxy,

of the original model it approximates. One thing that should be noted is that Propo-

sition 3.1 assumes the network is trained with momentum m = 0. Using a non-zero

momentum leads to a second order di↵erential equation in weight space, that is not

captured by Proposition 3.1. We can however, introduce heuristics to handle the e↵ect
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of momentum: [Smith and Le, 2018] note that the momentum acts on the stochastic

part scaling it by a factor
p

1/(1�m). Meanwhile, under the assumptions we used

in Proposition 3.1 (small learning rate), we can show (see Appendix A.4) the main ef-

fect of momentum on the deterministic part is to re-scale the learning rates by a factor

1/(1�m). Given these results, we define the e↵ective learning rate (ELR) ⌘̂ = ⌘/(1�m)

and claim that, in first approximation, we can simulate the e↵ect of momentum by us-

ing ⌘̂ instead of ⌘ in Eq. (3.1). In particular, models with di↵erent learning rates and

momentum coe�cients will have similar (up to noise) dynamics (and hence training

time) as long as the e↵ective learning rate ⌘̂ remains the same. In Figure 3.2 we show

empirically that indeed same e↵ective learning rate implies similar loss curve. That

similar e↵ective learning rate gives similar test performance has also been observed in

[Li et al., 2020, Smith and Le, 2018].

Batch size. The batch size appears only in the stochastic part of the equation, its

main e↵ect is to decrease the scale of the SDE noise term. In particular, when the

batch size goes to infinity |B| ! 1 we recover the deterministic gradient flow also

studied by [Lee et al., 2019]. Note that we need the batch size |B| to go to infinity,

rather than being as large as the dataset since we assumed random batch sampling

with replacement. If we assume extraction without replacement the stochasticity is

annihilated as soon as |B| = N (see [Chaudhari and Soatto, 2017] for a more in depth

discussion).

3.3.2 E↵ect of pre-training

We now use the SDE in Eq. (3.1) to analyze how the combination of di↵erent pre-

trainings of the model – that is, di↵erent w0’s – and di↵erent tasks a↵ect the training

time. In particular, we show that a necessary condition for fast convergence is that

the gradients after pre-training cluster well with respect to the labels. We conduct this

analysis for a binary classification task with yi = ±1, but the extension is straight-

forward for multi-class classification, under the simplifying assumptions that we are

operating in the limit of large batch size (GD) so that only the deterministic part of

Eq. (3.1) remains. Note the infinite batch size assumption is used only here to derive

Eq. (3.4), we make no such assumption in Eq. (3.1), which is what we use for the actual

training time prediction.

Under these assumptions, Eq. (3.1) can be solved analytically and the loss of the

linearized model at time t can be written in closed form as (see Section A.5.2):

Lt = (y � f0(X ))T e�2⌘⇥t(y � f0(X )) (3.4)
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(a) Features and Gradients clustering. (b) Trajectory clustering.

Figure 3.3: Are gradients good descriptors to cluster data by semantics and
training time? In these figures we use t-SNE [van der Maaten and Hinton, 2008]
to visualize high dimensional vectors (e.g. gradients and features). (a) Features vs
Gradients clustering. (Right) t-SNE plot of the first five principal components of
the gradients of each sample in a subset of CIFAR-10 with 3 classes. Colors correspond
to the sample class. We observe that the first 5 principal components are enough to
separate the data by class. By Proposition 3.2 this implies faster training time. (Left)
In the same setting as before, t-SNE plot of the features using the first 5 components
of PCA. We observe that gradients separate the classes better than the features. (b)
t-SNE on predicted trajectories. We consider a subset of 4 classes extracted from
CIFAR-10 and test whether gradients are good descriptors of both semantics and train-
ing time. To do so, we use gradients to predict linearized trajectories of the output
of a DNN and then we cluster the trajectories using t-SNE. In (left) we color each
point by class and in (right) by training time (i.e. time to converge of the prediction
residual of each datum to zero). We observe that: clusters split trajectories according
both to labels (left) and training time (right). Interestingly inside each class there
are clusters of points that may converge at di↵erent speed.

66



3.4. E�cient numerical estimation of Training Time

where Lt is the squared loss on the binary classification and y = (y1, ..., yN )T 2 RN .

The following characterization can be obtained with an eigen-decomposition of the

matrix ⇥ (see Section A.5.2 for the proof).

Proposition 3.2 (Loss decomposition). Let S = rwfw(X )Trwfw(X ) be the second

moment matrix of the gradients and let S = U⇤2UT be the uncentered PCA of the gra-

dients, where ⇤ = diag(�2
1
, . . . ,�2n, 0, . . . , 0) is a D⇥D diagonal matrix, n  min(N, D)

is the rank of S and �2
i
are the eigenvalues of S sorted in descending order. Then we

have:

Lt =
nX

k=1

e�2⌘�
2
kt(�y · vk)

2, (3.5)

where �kvk = (rwf0(xi) · uk)Ni=1
is the N -dimensional vector containing the value of

the k-th principal component of gradients rwf0(xi) and �y := y � f0(X ).

Training speed and gradient clustering. We can give the following intuitive

interpretation: consider the gradient vector rwf0(xi) as a representation of the sample

xi. If the first principal components of rwf0(xi) are su�cient to separate the classes

(i.e. cluster them), then convergence is faster (see Figure 3.3). Conversely, if we need

to use the higher components (associated to small �k) to separate the data, then con-

vergence will be exponentially slower. Authors of [Arora et al., 2019a] also use the

eigen-decomposition of ⇥ to explain the slower convergence observed for a randomly

initialized two-layer network trained with random labels. This is straightforward since

the projection of a random vector will be uniform on all eigenvectors, rather than con-

centrated on the first few, leading to slower convergence. However, we note that the

exponential dynamics predicted by [Arora et al., 2019a] do not hold for more general

networks trained from scratch [Zhang et al., 2017] (see Section 3.6.4).

3.4 E�cient numerical estimation of Training Time

In Proposition 3.2 we have shown a closed form solution to the SDE in Eq. (3.1) in

the limit of large batch size, and for the MSE loss. Unfortunately, in general Eq. (3.1)

does not have a closed form expression when using the cross-entropy loss [Lee et al.,

2019]. A numerical solution is however possible, enabled by the fact that we describe

the network training in function space, which is much smaller than weight space for

over-parametrized models. The main computational cost is to create the matrix ⇥ in

Eq. (3.1) – which has cost O(DC2N2) – and to compute the noise in the stochastic

term. Here we show how to reduce the cost of ⇥ to O(D0C2N2) for D0 ⌧ D using
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Figure 3.4: Left Actual fine-tuning of a DNN with GD compared to the numerical
solution of Eq. (3.1) and the solution using an approximated ⇥. The approximated ⇥
can faithfully describe fine-tuning dynamics while being twice as fast to compute and
100 times smaller to be stored. Center Relative di↵erence in Frobenius norm of the
real and approximated ⇥ as the dataset size varies (red), and their computational time
(blue). Right: Eigen-spectrum of ⇥ computed on subsets of MIT-67 of increasing size.
Note the convergence to a common power law (i.e. a line in log-log scale).

a random projection approximation. Then, we propose a fast approximation for the

stochastic part. Finally, we describe how to reduce the cost in N by using only a subset

N 0 < N of samples to predict training time.

3.4.1 Random projection

To keep the notation uncluttered, here we assume w.l.o.g. C = 1. In this case the

matrix ⇥ contains N2 pairwise dot-products of the gradients (a D-dimensional vector)

for each of the N training samples (see Eq. (3.2)). Since D can be very large (in the

order of millions) storing and multiplying all gradients can be expensive as N grows.

Hence, we look at a dimensionality reduction technique. The optimal dimensionality

reduction that preserves the dot-product is obtained by projecting on the first principal

components of SVD, which however are themselves expensive to obtain. A simpler

technique is to project the gradients on a set of D0 standard Gaussian random vectors:

it is known that such random projections preserve (in expectation) pairwise product

[Bingham and Mannila, 2001, Achlioptas, 2003] between vectors, and hence allow us

to reconstruct the Gram matrix while storing only D0-dimensional vector, with D0 ⌧
D. We further increase computational e�ciency using multinomial random vectors {-

1,0,+1} as proposed in [Achlioptas, 2003] which further reduce the computational cost

by avoiding floating point multiplications. In Figure 3.4 we show that the entries of

⇥ and its spectrum are well approximated using this method, while the computational

time becomes much smaller.
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3.5. Training Time prediciton Algorithm

3.4.2 Computing the noise

The noise covariance matrix ⌃(f lin
t (X )) is a D ⇥ D-matrix that changes over time.

Both computing it at each step and storing it is prohibitive. Estimating ⌃ correctly

is important to describe the dynamics of SGD [Chaudhari and Soatto, 2018], however

we claim that a simple approximation may su�ce to describe the simpler dynamic in

function space. We approximate rwf lin

0
(X )⌃1/2 approximating ⌃ with its diagonal (so

that the we only need to store a D-dimensional vector). Rather than computing the

whole ⌃ at each step, we estimate the value of the diagonal at the beginning of the

training. Then, by exploiting Eq. (3.3), we see that the only change to ⌃ is due to

r
f
lin
t

L, whose norm decreases over time. Therefore we use the easy-to-compute r
f
lin
t

L
to re-scale our initial estimate of ⌃.

3.4.3 Larger datasets

In the MSE case from Eq. (3.4), knowing the eigenvalues �k and the corresponding

residual projections pk = (�y · vk)2 we can predict in closed form the whole training

curve. Is it possible to predict �k and pk using only a subset of the dataset? It is

known [Shawe-Taylor et al., 2005] that the eigenvalues of the Gram matrix of Gaussian

data follow a power-law distribution of the form �k = ck�s. Moreover, by standard

concentration argument, one can prove that the eigenvalues should converge to a given

limit as the number of datapoints increases. We verify that a similar power-law and

convergence result also holds for real data (see Figure 3.4). Exploiting this result,

we can estimate c and s from the spectrum computed on a subset of the data, and

then predict the remaining eigenvalues. A similar argument holds for the projections

pk, which also follow a power-law (albeit with slower convergence). We describe the

complete estimation in Appendix A.3.

3.5 Training Time prediciton Algorithm

We can compute an estimate of training time exploiting the predictions of the linearized

approximation (see Algorithm 1): we use the predictions f lin
t (X ) to compute the pre-

diction errors and hence the training loss along the optimization path (e.g. Fig. 3.9).

Then, we estimate the TT on the linearized loss according to the given TT definition.

We now briefly describe some implementations details regarding the numerical solu-

tion of ODE and SDE. Both of them can be solved by means of standard algorithms: in

the ODE case we used LSODA (which is the default integrator in scipy.integrate.odeint),

in the SDE case we used Euler-Maruyama algorithm for Ito equations.
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We observe removing batch normalization (preventing the statistics to be updated)

and removing data augmentation improve linearization approximation both in the case

of GD and SGD. Interestingly data augmentation only marginally alters the spectrum

of the Gram matrix ⇥ and has little impact on the linearization approximation w.r.t.

batch normalization. [Goldblum et al., 2019] observed similar e↵ects but, di↵erently

from us, their analysis has been carried out using randomly initialized ResNets.

Algorithm 1 Estimate the Training Time on a given target dataset and hyper-
parameters.

1: Data: Number of steps T to simulate, threshold ✏ to determine convergence, pre-

trained weights w0 of the model, a target dataset with images X = {xi}Ni=1
and

labels Y = {yi}Ni=1
, batch size B, learning rate ⌘, momentum m 2 [0, 1).

2: Result: An estimate T̂✏ of the number of steps necessary to converge within an

✏-ball around the “asymptotic” value L̄: T✏ := min{t : |Ls � L̄| < ✏, 8s � t}.

3: Initialization: Compute initial network predictions f0(X ), estimate ⇥ using ran-

dom projections (Section 3.4), compute the ELR ⌘̃ = ⌘/(1�m) to use in Eq. (3.1)

instead of ⌘

4: if B = N then

5: Get f lin
t (X ) solving the ODE in Eq. (3.1) (only deterministic part) for T steps

6: else

7: Get f lin
t (X ) solving the SDE in Eq. (3.1) for T steps (see Section 3.4)

8: end if

9: Using f lin
t (X ) and Y compute linearized loss Llin

t 8t 2 {1, ..., T}
10: if B = N then

11: Set L̄ = LT

12: else

13: Set L̄ =
P

T

i=T�Tavg+1
Li, where Tavg is the length of the running average window

used to smooth the trajectory loss

14: end if

15: return T̂✏ := min{t : |Llin
s � Llin

T
| < ✏, 8s � t}

3.6 Experiments

We now empirically validate the accuracy of Proposition 3.1 in approximating the loss

curve of an actual Deep Neural Network fine-tuned on a large scale dataset. We also

validate the goodness of the numerical approximations described in Section 3.4. Due to

the lack of a standard and well established benchmark to test Training Time estimation
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3.6. Experiments

algorithms we developed one with the main goal to closely resemble fine-tuning common

practice for a wide spectrum of di↵erent tasks.

Table 3.1: Training Time absolute errors (number of steps) for CE loss using GD for
T = 150 epochs at di↵erent thresholds ✏. TT estimates when ODE assumptions do and
do not hold: high ⌘ (0.005) and small ⌘ (0.0001).

TT error ✏ = 1% ✏ = 10% ✏= 40%
(# of steps)
⌘ low high low high low high

Cars [Krause et al., 2013] 9 18 7 8 1 0
Surfaces [Bell et al., 2015] 6 13 6 7 6 3
Mit67 [Quattoni and Torralba, 2009] 8 10 6 8 3 1
Aircrafts [Maji et al., 2013] 5 21 5 4 9 7
CUB200 [Welinder et al., 2010] 6 6 5 8 1 1
CIFAR100 [Krizhevsky, 2009] 10 15 6 7 2 3
CIFAR10 [Krizhevsky, 2009] 9 14 8 9 3 3

3.6.1 Experimental setup

We define Training Time as the time the (smoothed) loss remains persistently below

a given threshold. However, since di↵erent datasets converge at di↵erent speeds, the

same threshold can be too high (it is hit immediately) for some datasets, and too low for

others (it may take hundreds of epochs to be reached). To solve this, and have cleaner

readings, we define a “normalized” threshold as follows: we fix the total number of

fine-tuning steps T , and measure instead the first time the loss is persistently within ✏

from the final value at time T (see Definition 3.2). This measure takes into account the

“asymptotic” loss reached by the DNN within the computational budget (which may

not be close to zero if the budget is low), and naturally adapts the threshold to the

di�culty of the dataset. We compute both the real loss curve and the predicted training

curve using Proposition 3.1 and compare the ✏-training-time measured on both. We

report the absolute prediction error, that is |tpredicted� treal|. For all the experiments we

extract 5 random classes from each dataset (Table 3.1) and sample 150 images (or the

maximum available for the specific dataset). Then we fine-tuned ResNet18/34 using

either GD or SGD.
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(S
)

Figure 3.5: Wall clock time (in seconds) to compute TT estimate vs fine-
tuning running time. We run the methods described in Section 3.4.1 both on GPU
and CPU. Training (fine-tuning) is done on GPU. We implemented the approxima-
tion methods presented in Section 3.4.1 both in GPU and CPU (time comparison is
reported).

3.6.2 Training Time prediction Benchmark

In Figure 3.1 we show TT estimates errors (for di↵erent ✏ 2 {1, ..., 40}) under a plethora

of di↵erent conditions ranging from di↵erent learning rates, batch sizes, datasets and

optimization methods. For all the experiments we choose a multi-class classification

problem with Cross Entropy loss unless specified otherwise, and fixed computational

budget of T = 150 steps both for GD and SGD. We note that our estimates are

consistently within respectively a 13% and 20% relative error around the actual training

time 95% of the times.

In Table 3.1 we describe the sensitivity of our estimates to di↵erent thresholds ✏ both

when our assumptions do and do not hold (high and low learning rates regimes). Note

that a larger threshold ✏ is hit during the initial convergence phase of the network, when

a small number of iterations corresponds a large change in the loss. Correspondingly,

the Training Time can be measured more accurately and our errors are lower. A smaller

✏ depends more on correct prediction of the slower asymptotic phase, for which exact

Training Time is more di�cult to estimate.

Wall-clock run-time. In Figure 3.5 we show the wall-clock runtime of our training

time prediction method compared to the time to actually train the network for T steps.

Our method is 30-40 times faster. Moreover, we note that it can be run completely on
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Figure 3.6: Average and 95% confidence intervals of TT estimate error for: Left: GD
using di↵erent learning rates. Center: SGD using di↵erent batch sizes. Right: SGD
using di↵erent dataset sizes. The average is taken w.r.t. random classes with di↵erent
number of samples: {10, 50, 125}

CPU without a drastic drop in performance. This allows to cheaply estimate TT and

allocate/manage resources even without access to a GPU.

E↵ect of dataset distance. We note that the average error for Surfaces (Figure 3.6)

is uniformily higher than the other datasets. This may be due to the texture classifica-

tion task being quite di↵erent from ImageNet, on which the network is pretrained. In

this case we can expect that the linearization assumption is partially violated since the

features must adjust more during fine-tuning.

3.6.3 Hyper-parameters ablation study

E↵ect of hyper-parameters on prediction accuracy. We derived Proposition 3.1

under several assumptions, importantly: small learning rate and wt close to w0. In

Figure 3.6 (left) we show that increasing the learning rate decreases the accuracy of our

prediction, albeit the accuracy remains good even at larger learning rates. Fine-tuning

on larger dataset makes the weights move farther away from the initialization w0. In

Figure 3.6 (right) we show that this slightly increases the prediction error. Finally,

we observe in Figure 3.6 (center) that using a smaller batch size, which makes the

stochastic part of Proposition 3.1 larger also slightly increases the error. This can be

ascribed to the approximation of the noise term (Section 3.4.1). On the other hand, in

Figure 3.2 (right) we see that the e↵ect of momentum on a fine-tuned network is very

well captured by the e↵ective learning rate (Section 3.3.1), as long as the learning rate

is reasonably small, which is the case for fine-tuning. Hence the SDE approximation

is robust to di↵erent values of the momentum. In general, we note that even when

our assumptions are not fully met, Training Time can still be approximated with only

slightly higher error. This suggests that point-wise proximity of the training trajectory

of linear and real models is not necessary as long as their behavior (decay-rate) is similar
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(see Section 3.6.4).

3.6.4 How good is linearization?

While we do not necessarily expect a linear approximation around a random initial-

ization to hold during training of a real (non infinitely wide) network, we exploit the

fact that when using an over-parametrized pre-trained network the weights are more

likely to remain close to initialization [Mu et al., 2020], improving the quality of the

approximation. In particular, in Fig. 3.7 we show that even when using a pre-trained

network, the trajectories of the weights of linearized model and of the real model can

di↵er substantially. On the other hand, we also show that the linearized model correctly

predicts the outputs (not the weights) of the real model throughout the training, which

is enough to compute the loss. We believe that this is the reason why Eq. (3.1) can

accurately predict the training time using the linear approximation in function space.

Figure 3.7: Comparison of prediction accuracy in weight space vs. function
space. We compare the result of using the deterministic part of Eq. (3.1) to predict
the weights wt at time t and the outputs ft(X ) of the networks under GD. The relative
error in predicting the outputs is much smaller than the relative error of predicting the
weights at all times. This, together with the computational advantage, motivates the
decision of using Eq. (3.1) to predict the behavior in function space.

Comparison of predicted and real error curve

In Figure 3.8 we compare the error curve predicted by our method and the actual train

error of the model as a function of the number of optimization steps. The model is

trained on a subset of 2 classes of CIFAR-10 with 150 samples. We run the comparison

for both gradient descent (left) and SGD (right), using learning rate ⌘ = 0.001, momen-

tum m = 0 and (in the case of SGD) batch size 100. In both cases we observe that the

predicted curve is reasonably close to the actual curve, more so at the beginning of the

training (which is expected, since the linear approximation is more likely to hold). We

also perform an ablation study to see the e↵ect of di↵erent approximation of SGD noise

74



3.6. Experiments

in the SDE in Eq. (3.1). In Figure 3.8 (right) we estimate the variance of the noise of

SGD at the beginning of the training, and then assume it is constant to solve the SDE.

Notice that this predicts the wrong asymptotic behavior, in particular the predicted

error does not converge to zero as SGD does. In Figure 3.8 (center) we rescale the noise

as we suggest in Section 3.4: once the noise is rescaled the SDE is able to predict the

right asymptotic behavior of SGD.

Figure 3.8: (Left) Comparison of the real error curve on CIFAR10 using gradient
descent and the predicted curve. (Center) Same as before, but this time we train using
SGD and compare it with the prediction using the technique described in Section 3.4
to approximate the covariance of the SGD noise that appears in the SDE in Eq. (3.1).
(Right) Same as (center), but using constant noise. Note that in this case we do not
capture the right asymptotic behavior of SGD.

Point-wise similarity of predicted and observed loss curve

In some cases, we observe that the predicted and observed loss curves can di↵er. This

is especially the case when using Cross-Entropy loss (Figure 3.9). We hypothesize that

this may be due to improper prediction of the dynamics when the softmax output

saturates, as the dynamic becomes less linear [Lee et al., 2019]. However, the train

error curve (which only depends on the relative order of the outputs) remains relatively

correct. We should also notice that prediction of the ✏-training-time T̂✏ can be accurate

even if the curves are not point-wise close. The ✏-training-time seeks to find the first

time after which the loss or the error is within an ✏ threshold. Hence, as long as the

real and predicted loss curves have a similar asymptotic slope the prediction will be

correct, as we indeed verify in Figure 3.9 (bottom).

Overestimation vs. underestimation error

Up to now we focused on prediction error rates (see Table 3.1 and Fig. 3.6), in this

section we will briefly describe how the errors are distributed: are we overestimating or

underestimating training time with our method? In Figure 3.9 we compare training time
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Figure 3.9: Training time prediction is accurate even if loss curve prediction
is not. (Top row) Loss curve and error curve prediction on MIT-67 (left) and CIFAR-
10 (right). (Bottom row) Predicted time to reach a given threshold (orange) vs real
training time (blue). We note that on some datasets our loss curve prediction di↵ers
from the real curve near convergence. However this does not a↵ect the accuracy of
the prediction much since our training time definition measures the time to reach the
asymptotic value rather than the time reach an absolute threshold.

predictions and actual training time values for di↵erent thresholds ✏ and datasets. While

for high thresholds ✏ the errors distribution does not seem to be particularly skewed

(consider both MIT-67 and CIFAR-10) the situation is di↵erent for small thresholds ✏:

our method tends to slightly overestimate training time. In particular overestimation is

due to the non-linearity and high capacity of the network which might not be entirely

captured by the linearization approximation (the non-linear model decreases its loss

faster w.r.t. its linear approximation).

3.7 Discussions and conclusions

In this chapter we study the problem of predicting the fine-tuning Training Time of

overparametrized DNNs. Our results hinge on the connection between infinitely wide

feedforward DNNs and the NTK (Section 2.4). In particular, our approach is rather

general and can be applied both to images, time series, and other types of data so

long as infinitely wide feedforward DNNs are used. We exploit the empirical NTK

matrix (the Gram-Matrix ⇥ of the gradients at initialization) to describe both the

fine-tuning learning dynamics and estimate fine-tuning Training Time. We focus on a

computer vision setup and show that it is possible to predict with a 13-20% accuracy

the time that it will take for a pre-trained network to reach a given loss in only a small

fraction of the time that it would require to actually train the model. We do this by

studying the training dynamics of a linearized approximation of the DNN model using

the SDE in Eq. (3.1), which we solve numerically. To further improve the e�ciency
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of our method, we propose to estimate the matrix ⇥ using random projections of

the gradients (Section 3.4), this simple approach allows us to apply our method for

common architectures and large datasets. To validate our method we measure its

accuracy on o↵-the-shelf state-of-the-art models, we are able to predict the correct

training time within a 20% error with 95% confidence over several di↵erent real datasets

and hyperparameters at only a small fraction of the time it would require to actually

run the training (30-45x faster in our experiments).

Moreover we study the dependency of training time from pre-training and hyper-

parameters (see Section 3.3.1) and show that our method yields predictions that have

lower accuracy on some tasks rather than others, for instance it has lower accuracy on

texture-based tasks than object classification. However, since we consider datasets as

a whole, prediction inaccuracies do not impact any particular cohort or segment of the

data.

In Section 3.6.4 we show that even when the trajectories of the weights of the lin-

earized model di↵er from the real model ones, the linearization of a pre-trained model

correctly predicts the outputs of the real model throughout the training. We hypothe-

sise that this is the reason why Eq. (3.1) can accurately predict the training time with

the linear approximation in function space.

To conclude, we note that the procedure described in this chapter only relies on in-

formation available at initialization and does not require any feedback from the actual

training. It is straightforward to extend our method to allow training feedback (e.g.

gradients updates) by simply applying our Training Time prediction at di↵erent check-

points during fine-tuning. We expect training feedback could further improve accuracy

of our method thanks to the better the linearization approximation at each checkpoint.

We believe this is an interesting direction worthy of further investigation.
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4
Model Selection

A “model zoo” is a collection of pre-trained models, obtained by training di↵erent

architectures on many datasets covering a variety of tasks and domains. For instance,

the zoo could comprise models (or experts) trained to classify trees, birds, fashion items,

aerial images, etc. The typical use of a model zoo is to provide a good initialization

which can then be fine-tuned for a new target task, for which we have few training data.

This strategy is an alternative to the more common practice of starting from a model

trained on a large dataset, say Imagenet [Deng et al., 2009], and is aimed at providing

better domain coverage and a stronger inductive bias. Despite the growing usage of

model zoos [Cui et al., 2018, Kolesnikov et al., 2020, Li et al., 2020, Triantafillou et al.,

2020] there is little in the way of analysis, both theoretical and empirical, to illuminate

which approach is preferable under what conditions. In Fig. 4.1 and Fig. 4.2, we show

that fine-tuning with a model zoo is indeed better, especially when training data is

limited. Fig. 4.1 and Fig. 4.2 also shows that using a model zoo, we can outperform

Hyper-Parameter Optimization (i.e. grid search over optimization hyper-parameters)

performed on fine-tuning of the Imagenet pre-trained model.

Fine-tuning with a model zoo can be done by brute-force fine-tuning of each model

in the zoo, or more e�ciently by using “model selection” to select the closest model

to the target dataset (or best initialization) from which to fine-tune. The goal of model

selection therefore is to find the best pre-trained model to fine-tune on the target task,

without performing the actual fine-tuning. So, we seek an approximation to the fine-

tuning process. In our work, we develop an analytical framework to characterize the

fine-tuning process using a linearization of the model around the point of pre-training

[Mu et al., 2020], drawing inspiration from the theory on the Neural Tangent Kernel

[Jacot et al., 2018, Lee et al., 2019]. Inspired by NTK (Section 2.5) and kernel selection

79



4. Model Selection

Figure 4.1: Model zoo vs. di↵erent architectures. Fine-tuning using our model
zoo (green) is better (i.e. lower test error) than fine-tuning using di↵erent architectures
with Random (red) or Imagenet pre-trained (blue) initialization. We use fine-tuning
hyper-parameters of Section 4.4.3 with ⌘ = .005.

criteria (Section 2.3.6) we suggest two criteria to select the best model to fine-tune

from, which we call Label-Gradient Correlation (LGC) and Label-Feature Correlation

(LFC). Given its simplicity, we consider our criteria as baselines, rather than full-fledged

methods for model selection, and compare the state-of-the-art in model selection – e.g.

RSA [Dwivedi and Roig, 2019], LEEP [Nguyen et al., 2020], Domain Similarity [Cui

et al., 2018], Feature Metrics [Ueno and Kondo, 2020] – against it.

The methods we propose in this chapter do not depend on a particular application

domain (say image processing or time series analysis) and can be applied so long as

feedforward DNNs are used. Nonetheless, the driving force of the material developed

in this chapter started to unblock the adoption of real-world Computer Vision AutoML

systems, therefore our empirical validation has only been conducted on this application

domain.

Model selection for DNNs in computer vision being a relatively recent endeavor, there

is currently no standard dataset or a common benchmark to perform such a comparison.

For example, LEEP [Nguyen et al., 2020] performs its model selection experiments on

transfer (or fine-tuning) from Imagenet pre-trained model to 200 randomly sampled

tasks of CIFAR-100 [Krizhevsky, 2012] image classification, RSA [Dwivedi and Roig,

2019] uses the Taskonomy dataset [Zamir et al., 2018] to evaluate its prediction of

task transfer (or model selection) performance. Due to these di↵erent experimental

setups, the state-of-the-art in model selection is unclear. Therefore, in Section 4.4 we

build a new benchmark comprising a large model zoo and many target tasks. For our
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model zoo, we use 8 large image classification datasets (from di↵erent domains) to train

single-domain and multi-domain experts. We use various image classification datasets

as target tasks and study fine-tuning (Section 4.4.3) and model selection (Section 4.4.4)

using our model zoo. To the best of our knowledge ours is the first large-scale benchmark

for model selection.

By performing fine-tuning and model selection on our benchmark, we discover the

following:

1. We show (Fig. 4.1 and Fig. 4.2) that fine-tuning models in the model zoo can

outperform the standard method of fine-tuning with Imagenet pre-trained ar-

chitectures and HPO. We obtain better fine-tuning than Imagenet expert with,

both model zoo of single-domain experts (Fig. 4.3) and multi-domain experts

(Fig. 4.4). While in the high-data regime using a model zoo leads to modest

gains, it improves accuracy in the low-data regime.

2. For any given target task, we show that only a small subset of the models in the

zoo lead to accuracy gain (Fig. 4.3). In such a scenario, brute-force fine-tuning

all models to find the few that improve accuracy is wasteful. Fine-tuning with all

our single-domain experts in the model zoo is 40⇥ more compute intensive than

fine-tuning an Imagenet Resnet-101 expert in Table 4.3.

3. Our LGC model selection, and particularly its approximation LFC, can find the

best models from which to fine-tune without requiring an expensive brute-force

search (Table 4.3). With only 3 selections, we can select models that show gain

over Imagenet expert (Fig. 4.5). Compared to Domain Similarity [Cui et al., 2018],

RSA [Dwivedi and Roig, 2019] and Feature Metrics [Ueno and Kondo, 2020], our

LFC score can select the best model to fine-tune in fewer selections, and it shows

the highest ranking correlation to the fine-tuning test accuracy (Fig. 4.7) among

all model selection methods.

Fine-tuning using our model zoo can obtain lower test error compared

to: Fig. 4.1 using di↵erent architectures and Fig. 4.2 hyper-parameter op-

timization of Imagenet expert. The standard fine-tuning approach entails picking

a network architecture pre-trained on Imagenet to fine-tune and performing hyper-

parameter optimization during fine-tuning. We outperform this strategy by fine-tuning

using our model zoo described in Section 4.4.2. We plot test error as a function of

the number of per-class samples (i.e. shots) in the dataset. In Fig. 4.1, we compare

fine-tuning with our single-domain experts in the model zoo to using di↵erent architec-

tures (AlexNet, ResNet-18, ResNet-101, Wide ResNet-101) for fine-tuning. In Fig. 4.2,
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4. Model Selection

Figure 4.2: Model zoo vs. HPO of Imagenet expert. Fine-tuning using our model
zoo (green) is better than fine-tuning with hyper-parameter optimization (HPO) on
Imagenet pre-trained (blue) Resnet-101 model. We use fine-tuning hyper-parameters
of Section 4.4.3 and perform HPO with ⌘ = .01, .005, 0.001.

we show fine-tuning with our model zoo obtains lower error than performing HPO on

Imagenet pre-trained Resnet-101 [He et al., 2016] during fine-tuning. Model zoo lowers

the test error, especially in the low-data regime (5, 10, 20-shot per class samples of

target task). Since we compare to Imagenet fine-tuning, we exclude Imagenet experts

from our model zoo for the above plots.

4.1 A linearized framework to analyse fine-tuning

Notation. We have a model zoo, F , of n pre-trained models or experts: F =

{f1, f2, · · · fn}. Our aim is to classify a target dataset, D = {(xi, yi)}Ni=1
, by fine-

tuning models in the model zoo. Here, xi 2 X , is the i-th input image and yi 2 Y, is

the corresponding class label . For a network f 2 F with weights w, we denote the

output of the network with fw(x). w0 denotes the initialization (or pre-trained weights)

of models in the model zoo. The goal of model selection is to predict a score S(fw0 , D)

that measures the fine-tuning accuracy on the test set Dtest, when D is used to fine-tune

the model fw0 . Note, S does not need to exactly measure the fine-tuning accuracy, it

needs to only predict a score that correlates to the ranking by fine-tuning accuracy. The

model selection score for every pre-trained model, S(fk, D) for k 2 {1, 2, · · · , n}, can

then be used as proxy to rank and select top-k models by their fine-tuning accuracy. The

score S needs to estimate (a proxy for) fine-tuning accuracy without performing any

fine-tuning, in the following we exploit the linearization approximation to fine-tuning

we used in Chapter 3 to derive our Label-Gradient Correlation (SLG) and Label-Feature

Correlation (SLF ) (Section 4.3) scores for model selection.

82



4.2. Model selection as kernel selection

4.2 Model selection as kernel selection

Given an initialization w0 and the weights of the pre-trained model, we can define the

linearized model:

f lin

t (x) = f0(x) +
@fw(t)(x)

@w

����
w=w0

(w � w0),

which approximates the output of the real model for w close to w0. Mu et al. [Mu et al.,

2020] observe that, while in general not accurate, a linear approximation can correctly

describe the model throughout fine-tuning since the weights w tend to remain close to

the initial value w0 (see also our discussion in Section 2.4 and Chapter 3). Under the

linear approximation it is possible to show (Section 2.5.1) that the squared loss evolves

as:

L(t) = (y � fw0(X ))T e�2⌘⇥t(y � fw0(X )) (4.1)

where fw0(X ) denotes the vector containing the output of the network on all the images

in the dataset, y denotes the vectors of all training labels, and ⇥ is the empirical Neural

Tangent Kernel (NTK) matrix Section 2.4.2.

Under the linear approximation (or infinite width limit Section 2.4.3) the DNN is

equivalent to a kernel method defined on the NTK matrix ⇥ at initialization. In fact,

from Eq. (4.1), the behavior of the network during fine-tuning is fully characterized

by the kernel matrix ⇥, which depends on the pre-trained model fw0 , the data X and

the task labels y. We then expect to be able to select the best model by looking at

these quantities. In particular, thanks to the linearized approximation we argue it is

profitable to use kernel selection criteria (Section 2.3.6) to choose the best model from

the model zoo F . As described in Section 2.3.6, the model selection problem is equiv-

alent to a kernel selection problem, so that we can solve model selection for DNNs

by using kernel selection criteria. Commonly used measures for model selection are:

cross validation [Friedman et al., 2001], marginal likelihood [Rasmussen and Williams,

2006], kernel alignment [Cristianini et al., 2002, Cortes et al., 2012] and centered kernel

alignment [Wang et al., 2012, Cortes et al., 2012]. Interestingly many of these criteria

automatically encode a trade-o↵ model (kernel) complexity and fit so that the best

model (kernel) is the one for which the fitting term is as small as possible while not be-

ing too complex. This trade-o↵ is typically associated to the law of parsimony (Occam’s

razor principle) for which, if two hypothesis explain reality equally well the “simpler”

of the two must be the preferred one. As noted in Section 2.3.6 each kernel selection

criterion is characterized by its own strengths and limitations. For example cross vali-

dation is known to require high computational costs while being general enough to be
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applicable to a broad set of learning problems [Wahba, 1990, Friedman et al., 2001].

Marginal likelihood is an automatic algorithm to trade-o↵ model complexity and fit but

can be e�ciently applied only in the Bayesian setting (Section 2.3.3). Kernel alignment

is independent of the actual learning machine used but it is known to su↵er from data

imbalance. So that in the following we shall mainly focus on Centered Kernel Alignment

which is known to be an improved version of kernel alignment and does not su↵er from

data imbalance and better correlates with generalization [Cortes et al., 2012, Wang

et al., 2012].

We now proceed by deriving the connection between ⇥ and y to centered kernel

alignment.

4.3 Label-Feature and Label-Gradient correlation

In this section we briefly revise the main properties of Centered Kernel Alignment

(Section 2.3.6) and exploit CKA to build two model selection scores: Label-Gradient

Correlation and Label-Feature Correlation.

4.3.1 Centered Kernel Alignment

Centered Kernel Alignment has been proposed in [Cortes et al., 2012] as an improved

version of Kernel Alignment [Cristianini et al., 2002], this new alignment measure is

considered to better correlate with generalization and improves Kernel Alignment pre-

dictions on unbalanced classification tasks [Cortes et al., 2012, Wang et al., 2012].

The main idea in [Cortes et al., 2012] is to compute the Kernel Alignment measure

[Cristianini et al., 2002] on a centered feature space (see Section 2.3.6 for more details).

For the sake of completeness we now recall the definition of Empirical Centered

Kernel Alignment, which measures the alignment between two given kernel matrices

associated to two di↵erent kernels:

Definition 4.1 (Centered Empirical Kernel Alignment (see Definition 2.7)). Let K1 2
RN⇥N and K2 2 RN⇥N be two kernel matrices such that kKikF 6= 0 for i = 1, 2. Then,

the centered alignment between K1 and K2 is defined by:

⇢̂c(K1, K2) =
hKc1, Kc2iF
kKc1kF kKc2kF

where Kci 2 RN⇥N is the kernel matrix evaluated on all the data {xi} with i 2 [N ]
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4.3. Label-Feature and Label-Gradient correlation

and the centered kernel matrix is defined as:

Kc =


IN �

T

N

�
K


IN �

T

N

�

Remark 4.1 (Empirical CKA as similarity score). If the kernel matrices K1 and K2

are considered as bidimensional vectors, the empirical centered kernel alignment can be

seen as a similarity score based on the cosine of their angle. Therefore CKA is bounded

between -1 and 1. Moreover, since Ki are positive semi-definite Gram matrices, CKA

is lower-bounded by 0.

Remark 4.2 (Properties of CKA). It is well known that Centered Kernel Alignment

possesses favorable properties [Cortes et al., 2012, Wang et al., 2012]: computational

e�ciency w.r.t. other kernel selection criteria, the computational cost to evaluate

⇢̂c(K1, K2) scales as O(N2). Concentration, the probability of the empirical estimate

⇢̂c(K1, K2) deviating from its expected value ⇢c(k1, k2) Eq. (2.37) can be bounded as

an exponentially decaying function, so that the empirical estimator is stable w.r.t. dif-

ferent split of the data. Generalization, CKA positively correlates with generalization,

high alignment values imply there exists a separation of the data with low bound on

the generalization error. It is therefore expected that maximizing CKA on training set

foster generalization performance.

4.3.2 Label-Gradient Correlation

We now show how to apply Centered Kernel Alignment to typical classification problems

and define our Label-Gradient correlation based on the NTK matrix ⇥.

The natural way to apply CKA to a classification problem is by defining the following

two kernels: the first one measures similarity between input locations kx(xi, xj) and

the second measures similarity between target labels ky(yi, yj). We shall use the NTK

matrix evaluated on the training data ⇥ as our first kernel matrix while for the similarity

matrix of the target labels we shall use Ky = Y Y T where Y 2 RN⇥C is a matrix whose

rows are the target labels of dimension C for each datum. Ky corresponds to the

following kernel choice: ky(yi, yj) = 1 if yi = yj and 0 otherwise. We therefore define

Label-Gradient Correlation as:

SLG(fw0 , D) =

⌦
⇥, Y Y T

↵
F

k⇥k
F
kKykF

=
Tr Y T⇥Y

k⇥k
F
kKykF

(4.2)
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we highlight that the NTK matrix depends on the initialization w0:

(⇥)ij = rwf0(xi)
Trwf0(xj) (4.3)

Eq. (4.2) can be interpreted as giving high LG score (i.e., the model is good for the

task) if the gradients are similar whenever the labels are also similar, and are di↵erent

otherwise.

Remark 4.3 (Connection with Marginal Likelihood Remark 2.18). Eq. (4.2) is analogous

to the Marginal Likelihood formula Eq. (2.26). In particular note Eq. (4.2) can be

decoupled into two separate terms: a term depending on the target labels Tr Y T⇥Y

and a complexity term k⇥k
F
. The first term measures the correlation between similarity

in gradients space (measured by ⇥) and target similarity (measured by Ky). So that

it is large if gradients (which are to be considered as features in the linearized model)

are good to separate input data (good fitting) and low if not: no correlation between

gradients similarity and target labels means the model is weak for solving the task

described by the input data. Overall, the optimal model needs to face a trade-o↵

between data fit and model complexity, so that the kernels with high correlation with

target labels (low fitting loss) and small complexity are the optimal ones.

Should model selection use gradients or features? Our analysis is in terms of

the matrix ⇥ which depends on the network’s gradients Eq. (4.3), not on its features

(network’s activations). This connections is clear when looking at the definition of lin-

earized DNNs Eq. (2.39): the features of the linearized approximation are the gradients

at initialization, not the activations. Nonetheless it is interesting to evaluate how much

this fundamental di↵erence a↵ects our measure of generalization on unseen data. To

measure such discrepancy we propose a di↵erent definition of alignment: Feature-Labels

Correlation (LFC).

In Appendix B.1, we show that it su�ces to use features (i.e. network activations)

in Eq. (4.3) in place of the NTK matrix. Let g(l)(xi) denote the feature vector (or

activation) extracted from layer l of pre-trained network f after forward pass on image

(see Eq. (2.5)). In analogy with the gradient similarity matrix ⇥ of Eq. (4.3), we define

the feature similarity matrix ⇥l

F
as follows:

⇥(l)

F
:=

LX

i=l

g(i)w (X )g(i)w (X )T (4.4)
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4.3.3 Label-Feature Correlation

Instead of ⇥, we can use the approximation ⇥(L)

F
from Eq. (4.4) and define:

SLF(fw0 , D) :=

D
⇥(L)

F
, Y Y T

E

F���⇥(l)

F

���
F

kKykF
=

Tr Y T⇥(L)

F
Y���⇥(L)

F

���
F

kKykF
(4.5)

This score is higher if samples with the same labels have similar features extracted from

the pre-trained network fw0 . Indeed, it is possible to consider ⇥(1)

F
too, which considers

activations of the DNN across all hidden layers, we choose ⇥(L)

F
for the sake of simplicity.

In Appendix B.1 we proved the contribution of label-activation correlation decreases as

we consider activations far from the last layer.

4.4 Experiments

Having established the problem of model selection for fine-tuning in Section 4.1, we now

put our techniques to test. Section 4.4.2 describes our construction of model zoos with

single-domain and multi-domain experts. In Section 4.4.3, we verify the advantage of

fine-tuning using our model zoo with various target tasks. In Section 4.4.4, we compare

our LFC, LGC model selection to previous work, and show that our method can select

the optimal models to fine-tune from our model zoo (without performing fine-tuning).

4.4.1 Implementation

Which features and gradients to use? For LFC, we extract features from the layer

before the fully-connected classification layer (for both Resnet-101 [He et al., 2016]

and Densenet-169 [Huang et al., 2016] models in our model zoo of Section 4.4.2). We

use these features to construct ⇥(L)

F
and compute the LFC. For LGC, following [Mu

et al., 2020], we use gradients corresponding to the last convolutional layer in the pre-

trained network. For a large gradient vector, to perform fast computation of LGC, we

take a random projection to 10K dimensions and compute the LGC score as done in

Section 3.4.1 . This results in a trade-o↵ between accuracy and computation for LGC.

Sampling of target task. Model selection is supposed to be an inexpensive pre-

processing step before actual fine-tuning. To reduce its computation, following previous

work of RSA [Dwivedi and Roig, 2019], we sample the training set of target dataset

D and pick at most 25 images per class to compute our model selection scores. Note,

test set is hidden from model selection. Our results show, this still allows us to select
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Pre-train RESISC-45 Food-101 Logo 2k G. Landmark iNaturalist 2019 iMaterialist ImageNet Places-365

Densenet-169
⇥ 93.61 82.38 64.58 82.28 71.34 66.59 76.40 55.47
X 96.34 87.82 76.78 84.89 73.65 67.57 - 55.58

Resnet-101
⇥ 87.14 79.20 62.03 78.48 70.32 67.95 77.54 55.83
X 96.53 87.95 78.52 85.64 74.37 68.58 - 56.08

Reported Acc. - 86.02 86.99 67.65 - 75.40 - 77.37 54.74

Table 4.1: Model zoo of single-domain experts. We train 30 models, Resnet-101
and Densenet-169, on 8 source datasets and measure the top-1 test accuracy: RESISC-
45 [Cheng et al., 2017], Food-101 [Bossard et al., 2014], Logo 2k [Wang et al., 2020],
G. Landmark [Noh et al., 2017], iNaturalist 2019 [Horn et al., 2017], iMaterialist [Ma-
longTech, 2019], ImageNet [Deng et al., 2009] and Places-365 [Zhou et al., 2017]. We
train our models starting with (X) and without (⇥) Imagenet pre-training. For all
datasets we have higher test accuracy with Resnet-101 (X) than what is reported in
the literature (last row), except for iNaturalist [Horn et al., 2017] by -1.03%. We or-
der datasets from left to right by increasing dataset size, Nwpu-resisc45 [Cheng et al.,
2017] has 25K training images while Places-365 [Zhou et al., 2017] has 1.8M . We chose
datasets that are publicly available and cover di↵erent domains.

Dataset Single Domain Shared Multi-BN Adapter

Nwpu-resisc45 [Cheng et al., 2017] 96.53 73.73 96.46 95.24
Food-101 [Bossard et al., 2014] 87.95 48.12 87.92 86.35
Logo 2k [Wang et al., 2020] 78.52 24.39 79.06 70.13
Goog. Land [Noh et al., 2017] 85.64 65.1 81.89 76.83
iNatural. [Horn et al., 2017] 74.37 37.6 65.2 63.04
iMaterial. [MalongTech, 2019] 68.58 42.15 63.27 57.5
Imagenet [Deng et al., 2009] 77.54 52.51 69.03 58.9
Places-365 [Zhou et al., 2017] 56.08 41.58 51.21 47.51

Table 4.2: Multi-domain expert. The top-1 test accuracy of multi-domain model –
Multi-BN, Adapter – is comparable to single domain expert for small datasets (Nwpu-
Resisc45, Food-101, Logo 2k), while the accuracy is lower on other large datasets.
Multi-BN performs better than Shared, Adapter on all datasets and we use this as our
multi-domain expert for fine-tuning and model selection.

models that obtain accuracy gain over Imagenet expert (Fig. 4.5), and we need few

selections (< 7 for model zoo size 30) to select the optimal models (Fig. 4.7). We include

additional implementation details of our model selection methods and other baselines:

RSA [Dwivedi and Roig, 2019], Domain Similarity [Cui et al., 2018], LEEP [Nguyen

et al., 2020], Feature Metrics [Ueno and Kondo, 2020] in Appendix B.3.

4.4.2 Model Zoo

We evaluate model selection and fine-tuning with both a model zoo of single-domain

experts (i.e. models trained on single dataset) and a model zoo of multi-domain experts

described below.

Source Datasets. Table 4.1 and Table B.1 lists the source datasets, i.e. the datasets

88



4.4. Experiments

used for training our model zoo. We include publicly available large source datasets

(from 25K to 1.8M training images) from di↵erent domains, e.g. Nwpu-resisc45 [Cheng

et al., 2017] consists of aerial imagery, Food-101 [Bossard et al., 2014] and iNaturalist

2019 [Horn et al., 2017] consist of food, plant images, Places-365 [Zhou et al., 2017]

and Google Landmark v2 [Noh et al., 2017] contain scene images. This allows us to

maximize the coverage of our model zoo to di↵erent domains and enables more e↵ective

transfer when fine-tuning on di↵erent target tasks.

Model zoo of single-domain experts. We build a model zoo of a total of 30

models (Resnet-101 [He et al., 2016] and Densenet-169 [Huang et al., 2016]) trained on

8 large image classification datasets (i.e. source datasets). Since each model is trained

on a single classification dataset (i.e. domain), we refer to these models as single-domain

experts. This results in a model zoo, F = {fk}30
k=1

, to evaluate our model selection.

On each source dataset of Table 4.1, we train Resnet-101 and Densenet-169 models

for 90 epochs, with the following hyper-parameters: initial learning rate of 0.1, with

decay by 0.1⇥ every 30 epochs, SGD with momentum of .9, weight decay of 10�4 and

a batch size 512. We use the training script1 from PyTorch [Paszke et al., 2019] library

and ensure that our models are well-trained.

In Table 4.1, we show slightly higher top-1 test accuracy for our models trained

on Imagenet [Deng et al., 2009] when compared to the PyTorch [Paszke et al., 2019]

model zoo2. Our Resnet-101 model trained on Imagenet has +.17% top-1 test accuracy

and our Densenet-169 model has +.4% top-1 test accuracy vs. PyTorch. On source

datasets other than Imagenet, we train our models with (X) and without (⇥) Imagenet

pre-training. This allows us to study the e↵ect of pre-training on a larger dataset when

we fine-tune and perform model selection. Note that our Resnet-101 models with (X)

Imagenet pre-training have higher accuracy compared to that reported in the literature

for all source datasets, except iNaturalist [Horn et al., 2017] by �1.03%.

Model zoo of multi-domain expert. We also train a Resnet-101 based multi-

dataset (or multi-domain) [Rebu� et al., 2018] model on the combination of all the 8

source datasets. Our multi-domain Resnet-101 expert, f
ws,{wd}

D
d=1

, uses shared weights

(or layers), i.e. ws, across di↵erent domains (or datasets), and in addition it has some

domain-specific parameters, i.e. {wd}Dd=1
, for each domain. We have 8 source datasets

or domains, so D = 8 in our benchmark. Note, for fine-tuning we can choose any one

of the D domain-specific parameters to fine-tune. For a given multi-domain expert,

this results in a model zoo of D models (one per domain) that we can fine-tune, F =

1https://bit.ly/38NMvyu
2https://bit.ly/35vZpPE
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Figure 4.3: Fine-tuning with model zoo of single-domain experts. We plot top-1
test error (vertical axis) for fine-tuning with di↵erent single domain models in our model
zoo. For every target task (on horizontal axis), we have 4 columns of markers from left
to right: 1) Imagenet experts in red, 2) Densenet-169 experts with pre-train (X) in
green and without pre-train (⇥) in blue, 3) Resnet-101 experts with pre-train (X) in
green and without pre-train (⇥) in blue, 4) We use “black  ” to highlight models that
perform better than imagenet expert (i.e. lower error than first column of Imagenet
expert (red) per task). Our observations are the following: i) For full target task, we
observe better accuracy than Imagenet expert for Magnetic Tile Defects, UC Merced
Land Use and iCassava (see black  ). For 20 and 5-shot per class sampling of target
task, with the model zoo we outperform Imagenet expert on more datasets, see Oxford
Flowers 102, European Flood Depth, Belga Logos and Cub200. The accuracy gain over
Imagenet expert fine-tuning is obtained only for few models, e.g. only one expert for
UC Merced Land Use outperforms the Imagenet expert baseline. Hence, brute-force
fine-tuning with model zoo leads to wasteful computation since many models would
not beat Imagenet expert. This highlights the necessity of a reliable model selection
criterion to only pick the most promising models for fine-tuning. Figure is best viewed
in high-resolution.

{fws,w1 , fws,w2 , · · · , fws,wD}.

We experiment with a few di↵erent variants of domain-specific parameters – i)

Shared: The domain-specific parameters are also shared, therefore we simply train

a Resnet-101 on all datasets, ii) Multi-BN: We replace each batch norm in Resnet-

101 architecture with a domain-specific batch norm. Note, for a batch norm layer we

replace running means, scale and bias parameters, iii) Adapter: We use the domain-

specific parallel residual adapters [Rebu� et al., 2018] within the Resnet-101 architec-

ture. Our training hyper-parameters for the multi-domain expert are the same as our

single-domain expert. The only change is that for every epoch we sample at most 100K

training images (with replacement if 100K exceeds dataset size) from each dataset to

balance training between di↵erent datasets and to keep the training time tractable. As
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Figure 4.4: Fine-tuning with the multi-domain expert for the full target task.
We use the same notation as Fig. 4.3. For every target task (horizontal axis), we
have 4 columns corresponding to fine-tuning di↵erent models from left to right: 1)
Imagenet single and multi-domain expert in red, 2) Fine-tuning with di↵erent domains
of multi-domain expert in green and 3) Single-domain Resnet-101 experts in blue, 4)
We highlight multi-domain experts (green) that obtain lower error than Imagenet (red)
single domain with black  . Note, since our multi-domain expert is Resnet-101 based,
we only use all our Resnet-101 experts for for fair comparison. Our observations are: i)
We see gains over Imagenet expert (both single and multi-domain) by fine-tuning some
(not all) domains of the multi-domain expert, for Magentic Tile Defects, Oxford Flowers
102, Cucumber and iCassava target tasks. Therefore, it is important to pick the correct
domain from the multi-domain expert for fine-tuning. ii) We observe the variance in
error is smaller for fine-tuning with di↵erent domains of multi-domain experts, possibly
due to shared parameters across domains, iii) Finally in some cases, e.g. Oxford Flowers
102 and iCassava, our multi-domain experts outperform both all single domain and
Imagenet experts. Figure is best viewed in high-resolution.

we show in Table 4.2, Multi-BN model outperforms other multi-domain models and we

use it in our subsequent fine-tuning (Section 4.4.3) and model selection (Section 4.4.4)

experiments.

4.4.3 Fine-tuning on Target Tasks

Target Tasks. We use various target tasks (Table B.1) to study transfer learning from

our model zoo (Section 4.4.2): Cucumber [dataset, 2016], Describable Textures [Cimpoi

et al., 2014], Magnetic Tile Defects [Huang et al., 2018], iCassava [Mwebaze et al.,

2019], Oxford Flowers 102 [Nilsback and Zisserman, 2008], Oxford-IIIT Pets [Parkhi

et al., 2012], European Flood Depth [Barz et al., 2019], UC Merced Land Use [Yang
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(a) Full Dataset (b) 20-Shot per class

Figure 4.5: Model selection among single-domain experts. The heatmap shows
the accuracy gain over Resnet-101 Imagenet expert obtained by fine-tuning the top-
3 selected models for di↵erent model selection methods (column) on our target tasks
(row). Higher (in green) values of gain are better. Note, for every method we fine-
tune all the top-3 selected models (with same hyper-parameters as Section 4.4.3) and
pick the one with the highest accuracy. Model selection performs better than “Worst
Gain” and random selection. On average, LFC, LGC and LEEP [Nguyen et al., 2020]
outperform Domain Similarity [Cui et al., 2018], RSA [Dwivedi and Roig, 2019]. Feature
Metrics [Ueno and Kondo, 2020] performs better than LFC, LEEP in high-data regime,
but under-performs in the low-data regime.

(a) Top-1 Selection (b) Top-3 Selection

Figure 4.6: Model Selection with multi-domain expert. The heatmap shows ac-
curacy gain obtained by fine-tuning selected domain over fine-tuning Imagenet domain
from the multi-domain expert. We show results for top-1 and top-3 selections. LFC,
LEEP [Nguyen et al., 2020] are close to the best gain and they outperform Feature
Metrics [Ueno and Kondo, 2020] and Random.
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and Newsam, 2010]. For few-shot, due to lesser compute needed, we use additional

target tasks: CUB-200 [Welinder et al., 2010], Stanford Cars [Krause et al., 2013] and

Belga Logos [Joly and Buisson, 2009]. Note, while some target tasks have domain

overlap with our source datasets, e.g. aerial images of UC Merced Land Use [Yang and

Newsam, 2010], other tasks do not have this overlap, e.g. defect images in Magnetic

Tile Defects [Huang et al., 2018], texture images in Describable Textures [Cimpoi et al.,

2014].

Fine-tuning with single-domain experts in model zoo. For fine-tuning, Ima-

genet pre-training is a standard technique. Note, most deep learning frameworks, e.g.

PyTorch, MxNet/Gluon3, just have the Imagenet pre-trained models for di↵erent archi-

tectures in their model zoo. Fig. 4.3 shows the top-1 test error obtained by fine-tuning

single-domain experts in our model zoo vs. Imagenet expert.

Our fine-tuning hyper-parameters are: 30 epochs, weight decay of 10�4, SGD with

Nesterov momentum 0.9, batch size of 32 and learning rate decay by 0.1⇥ at 15 and 25

epochs. We observe that the most important hyper-parameter for test accuracy is the

initial learning rate ⌘, so for each fine-tuning we try ⌘ = 0.01, 0.005, 0.001 and report

the best top-1 test accuracy.

Does fine-tuning with model zoo perform better than fine-tuning a Im-

agenet expert? While fine-tuning an Imagenet pre-trained model is standard and

works well on most target tasks, we show that by fine-tuning models of a large model-

zoo we can indeed obtain a lower test error on some target tasks (see models highlighted

by black  in Fig. 4.3). The reduction in error is more pronounced in the low-data

regime. Therefore, we establish that maintaining a model zoo of models trained on

di↵erent datasets is helpful to transfer to a diverse set of target tasks with di↵erent

amounts of training data.

We demonstrate gains in the low-data regime by training on a smaller subset of the

target task, with only 20, 5 samples per class in Fig. 4.3 (i.e., we train in a 20-shot and

5-shot setting). In few-shot cases we still test on the full test set.

Fine-tuning with multi-domain expert. In Section 4.4.2, we show that fine-

tuning can be done by choosing di↵erent domain-specific parameters within the multi-

domain expert for fine-tuning. In Fig. 4.4, we fine-tune the multi-domain expert, i.e.

Multi-BN of Table 4.2, on our target tasks by choosing di↵erent domain-specific param-

eters to fine-tune. Similar to Fig. 4.3, we show the accuracy gain obtained by fine-tuning

multi-domain expert with respect to fine-tuning the standard Resnet-101 pre-trained

on Imagenet. We observe that selecting the correct domain to fine-tune, i.e. the cor-

3https://gluon-cv.mxnet.io/api/model zoo.html
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Shots Brute-force Fine-tuning top-3 models
LFC LGC LEEP Feat. Met. Dom. Sim.

Full 48.17⇥ 5.15⇥ 3.89⇥ 5.01⇥ 6.02⇥ 4.87⇥
20-shot 41.67⇥ 4.35⇥ 3.40⇥ 3.85⇥ 4.86⇥ 4.11⇥

Table 4.3: Computation cost of model selection and fine-tuning. We measure
the average run-time for all our target tasks (of Fig. 4.3) of: Brute-force fine-tuning and
Fine-tuning with 3 models chosen by model selection (Fig. 4.5). We divide the run-time
by the run-time of fine-tuning a Resnet-101 Imagenet expert. For the single domain
model zoo, brute-force fine-tuning of all 30 experts requires 40⇥more computation than
fine-tuning Imagenet Resnet-101 expert. Note, Densenet-169 models in our model zoo
need more computation to fine-tune than Resnet-101, therefore the gain is > 30⇥ for
our model zoo of size 30. With model selection, we can fine-tune with selected models
in only 3 � 6⇥ the computation. LFC and LEEP compute model selection scores for
30 models in our zoo with < 1⇥ the computation of fine-tuning Imagenet Resnet-101
expert. LGC model selection is expensive due to backward passes and large dimension
of the gradient vector. However, our LFC approximation to LGC is good at selecting
models (Fig. 4.5) and fast.

rect wd, where d 2 {1, 2, · · · , D} from multi-domain model zoo F = {fws,wd}Dd=1
, is

important to obtain high fine-tuning test accuracy on the target task. In Section 4.4.4,

we show that model selection algorithms help in selecting the optimal domain-specific

parameters for fine-tuning our multi-domain model zoo.

We also observe that fine-tuning with our multi-domain expert improves over the

fine-tuning of single-domain model zoo for some tasks, e.g. iCassava: +1.4% accuracy

gain with multi-domain expert compared to +.72% accuracy gain with single domain

model expert over Imagenet expert. However, the comparison between single domain

and multi-domain experts and their transfer properties is not the focus of our research

and we refer the reader to [Mallya and Lazebnik, 2018, Rebu� et al., 2017, Rebu�

et al., 2018].

4.4.4 Model Selection

In Section 4.4.3, using our benchmark we find that fine-tuning with a model zoo, both

single-domain and multi-domain domain, improves the test accuracy on the target

tasks. Now, we demonstrate that using a model selection algorithm we can select

the best model or domain-specific parameters from our model zoos with only a few

selections or trials.
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Figure 4.7: LFC and LGC comparison with SOTA In Fig. 4.1, we measure the
number of trials to select the best model, i.e. highest accuracy, from the model zoo.
LFC, LGC and LEEP [Nguyen et al., 2020] require fewer trials than Domain Similar-
ity [Cui et al., 2018], RSA [Dwivedi and Roig, 2019] and Random selection baselines.
In Fig. 4.2, we show that model selection scores of LFC obtain the highest Spear-
man’s ranking correlation to the actual fine-tuning accuracy compared to other model
selection methods.

Model Selection Algorithms. We use the following scores, S, for our model selec-

tion methods: LGC (see SLG defined in Eq. (4.2)), LFC (see SLF defined in Eq. (4.5)),

which we introduce in Section 4.3. We compare against alternative measures of model

selection and/or task similarity proposed in the literature: Domain similarity [Cui

et al., 2018], Feature metrics [Ueno and Kondo, 2020], LEEP [Nguyen et al., 2020] and

RSA [Dwivedi and Roig, 2019]. Finally, we compare with a simple baseline: Random

which selects models randomly for fine-tuning.

Model selection with single-domain model zoo. In Fig. 4.5, we select the

top-3 experts (i.e. 3 highest model selection scores) for each model selection method

for fine-tuning. We do this for all the target tasks (row) using each model selection

method (column). We use the maximum of fine-tuning test accuracy obtained by 3

selected models to compute accuracy gain with respect to fine-tuning with Resnet-101

Imagenet expert. Ideally, we want the accuracy gain with the model selection method to

be high and equal to the “Best Gain” possible for the target task. As seen in Fig. 4.5:

LFC, LGC and LEEP obtain high accuracy gain with just 3 selections in both full

dataset and 20-shot per class setting. They outperform random selection.

Model selection with multi-domain expert. For our multi-domain expert (Sec-

tion 4.4.2), we use model selection to select the domain-specific parameters to fine-tune

for every model selection method. We compute the accuracy gain for fine-tuning using
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selected domains vs. fine-tuning Imagenet parameters in the multi-domain expert. Our

results in Fig. 4.6, show that LFC and LEEP [Nguyen et al., 2020] obtain higher accu-

racy gain compared to Feature Metrics [Ueno and Kondo, 2020] and Random selection.

Is fine-tuning with model selection faster than brute-force? In Table 4.3, we

show that brute-force fine-tuning is expensive. We can save computation by performing

model selection using LFC and LEEP and fine-tuning only the selected top-3 models.

How many trials to select the model with best fine-tuning accuracy?

In Fig. 4.7, we measure the average of selections or trials, aggregated across target

tasks, required to select the best model for fine-tuning from the model zoo. LGC, LFC

and LEEP [Nguyen et al., 2020] methods can select the best model in < 7 trials for our

single domain model zoo of 30 experts and in < 3 trials for the multi-domain model

zoo with 8 domain experts.

Are model selection scores a good proxy for fine-tuning accuracy? In Fig. 4.7,

we show our LFC scores have the highest Spearman’s ranking correlation to the actual

fine-tuning accuracy for di↵erent experts. Note, we average the correlation for all our

target tasks. Our LFC score is a good proxy for ranking by fine-tuning accuracy and

it can allow us to select (or reject) models for fine-tuning.

4.5 Bibliographical Notes

Fine-tuning. The exact role of pre-training and fine-tuning in deep learning is still

debated. [He et al., 2019] show that, for object detection, the accuracy of a pre-trained

model can be matched by simply training a network from scratch but for longer.

However, they notice that the pre-trained model is more robust to di↵erent hyper-

parameters and outperforms training from scratch in the low-data regime. On the

other hand, in fine-grained visual classification, [Li et al., 2020] show that even after

hyper-parameter optimization and with longer training, models pre-trained on sim-

ilar tasks can significantly outperform both Imagenet pre-training and training from

scratch. [Achille et al., 2019], [Cui et al., 2018] study task similarity and also report im-

provement in performance by using the right pre-training. [Zoph et al., 2020] show that

while pre-training is useful in low-data regime, self-training outperforms pre-training

in high-data regime. Most of the above work, [Achille et al., 2019, Cui et al., 2018, Li

et al., 2020] draws inferences of transfer learning by using Imagenet [Deng et al., 2009]

or iNaturalist [Horn et al., 2017] experts.

Model Selection. Empirical evidence [Achille et al., 2019, Li et al., 2020, Zamir

et al., 2018] and theory [Achille et al., 2019] suggests that e↵ectiveness of fine-tuning
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relates to a notion of distance between tasks. Taskonomy [Zamir et al., 2018] defines

a distance between learning tasks a-posteriori, that is, by looking at the fine-tuning

accuracy during transfer learning. However, for predicting the best pre-training without

performing fine-tuning, an a-priori approach is best. [Achille et al., 2019, Achille et al.,

2019] introduce a fixed-dimensional “task embedding” to encode distance between tasks.

[Cui et al., 2018] propose a Domain Similarity measure, which entails using the Earth

Mover Distance (EMD) between source and target features. LEEP [Nguyen et al.,

2020, Tran et al., 2019] looks at the conditional cross-entropy between the output of

the pre-trained model and the target labels. RSA [Dwivedi and Roig, 2019] compares

representation dissimilarity matrices of features from pre-trained model and a small

network trained on target task for model selection.

Few-shot. Interestingly, while pre-training has a higher impact in the few-shot

regime, there is only a handful of papers that experiment with it [Dvornik et al., 2020,

Goyal et al., 2019, Triantafillou et al., 2020]. This could be due to over-fitting of the

current literature on standard benchmarks that have a restricted scope.

4.6 Discussions and conclusions

Fine-tuning using model zoo is a simple method to boost accuracy of a general Au-

toML system on di↵erent data domains (e.g. images and time series). In this chapter

we propose a general method to perform model selection within a model zoo composed

of DNNs, to do so we exploit the connection between fine-tuning training dynamics and

the NTK for overparametrized feedforward DNNs. Our method does not depend on

a particular application domain (say image processing or time series analysis) or loss

function (e.g. squared loss or cross-entropy loss) and can be applied so long as feedfor-

ward DNNs are used (e.g. fully-connected or convolutional), for which the NTK theory

has been developed. In particular, we focus on a computer vision application and show

that while a model zoo may have modest gains in the high-data regime, it outperforms

Imagenet experts networks in the low-data regime. In such a scenario, we show our

model selection saves the cost of brute-force fine-tuning and makes model zoos viable

in practice. Our LGC model selection criterion, and particularly its approximation

LFC, can find the best models from which to fine-tune without requiring an expensive

brute-force search (Table 4.3). Compared to other model selection criteria, our LFC

score can select the best model to fine-tune in fewer selections, and it shows the highest

ranking correlation to the fine-tuning test accuracy among all model selection methods

we tested (Fig. 4.7).
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5
Inductive Bias and Regularization

In this chapter we shall introduce some architectural choices and regularization schemes

which are specifically designed to improve learnability and generalization of DNNs. To

begin with, we shall start by asking: why do we need DNNs in the first place? It

is well-known that a feedforward fully-connected Neural Network with a su�ciently

large single hidden layer is an universal approximator of Borel measurable functions

[Cybenko, 1989, Hornik et al., 1989]. So that, virtually, there is no necessity to use

DNNs in place of their “simpler” shallow counterparts. Nonetheless, even for the sim-

pler model class of shallow networks no result on the learnability of the best set of

parameters has been proved. So that there is no guarantee that a model learnt by solv-

ing ERM can generalize well on unseen data. Despite this daunting observation which

seems to jeopardize Neural Networks learning, recent years have been a clear proof of the

gap between theory and practice. Recently, many Neural Networks-based algorithms

achieved SOTA results in di↵erent fields such as: Compute Vision [Krizhevsky et al.,

2012, He et al., 2016, Dosovitskiy et al., 2021], Natural Language Processing [Devlin

et al., 2019, Vaswani et al., 2017] and Time Series analysis [Bai et al., 2018, Zancato

et al., 2022, Zancato and Chiuso, 2021] to name but a few. Recent trend in Neural

Networks design is to exploit DNNs in place of shallow ones. The general idea is that

as the network becomes deeper it becomes more e�cient in representing complex func-

tions w.r.t. to shallow networks when the same number of parameters is used [Montufar

et al., 2014]. In turn, this implies the optimization problem needed to be solved with

DNNs is somewhat “easier”. No general theory has been proposed to justify the op-

timization landscape of DNNs is more amenable to be optimized by methods applied

in practice (based on first order optimization e.g. SGD). Nonetheless it is well known

that very deep over-parametrized models have smoother loss landscape w.r.t. to more
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shallow ones [He et al., 2016, Li et al., 2018] and thus they su↵er less from typical

first-order optimization pitfalls (e.g. spurious stationary points [Bottou et al., 2018, Li

et al., 2018]). Moreover, it is well-known that particular types of architectures are

better suited to solve specific tasks than general purpose fully-connected DNNs. For

example many, if not all, of the most remarkable successes in recent years in Computer

Vision have been achieved by means of specialized architectures such as: Convolutional

Neural Networks [Krizhevsky et al., 2012, He et al., 2016] or Transformers [Dosovit-

skiy et al., 2021]. A similar observation holds for other domains such as Time Series

prediction [Bai et al., 2018, Oreshkin et al., 2019, Zancato et al., 2020] and Natural

Language Processing [Vaswani et al., 2017]. So that it is clear that building highly

specialized architecture is key to obtain state of the art results when applying Deep

Learning in practice. In addition, the design of suitable regularization schemes proved

to be essential for DNNs generalization. Regularization can be considered either ex-

plicitly, by adding suitable penalty terms on a standard training loss [Bansal et al.,

2018, Golatkar et al., 2019], or implicitly, by the choice of optimization algorithm (e.g.

SGD [Chaudhari and Soatto, 2018, Achille and Soatto, 2017]).

In the following, we shall compare fully-connected with Convolutional Neural Net-

works for image classification and Recurrent Neural Networks with Temporal Convo-

lutional Neural Networks for time series prediction. Moreover we shall propose a novel

inductive bias and regularization for both fully-connected DNNs and TCNs for time

series data [Zancato and Chiuso, 2021]. Both the inductive bias and the regularization

are specifically designed to exploit domain knowledge (i.e. time series) and allow to

automatically perform model selection (automatic complexity selection) based solely

on available data [Zancato and Chiuso, 2021, Zancato et al., 2022].

5.1 Architecture design principles

5.1.1 Fully vs Convolutional

We now describe the main ideas behind the huge success of convolutional layers that we

introduced in Section 1.2.3: sparse interactions, parameters sharing and equivariant

representations.

Sparse interactions. The main di↵erence between a convolution (represented by

a matrix multiplication) and a matrix multiplication between two dense matrices is

locality. While for a fully-connected layer each input interacts with every output, for

convolutional layers only a subset of the input directly interacts with the output. This

is true since it is customary to choose a small convolutional kernel: smaller (several
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orders of magnitude) than the input. Despite the local receptive field of each layer,

by stacking several convolutional layers on top of each other it is possible to increase

the receptive field even using small kernels, this idea is standard an is used in many

di↵erent architectures and domains (e.g. images [Krizhevsky et al., 2012, He et al.,

2016] and time series [Bai et al., 2018]). This allows the network to e�ciently describe

complicated interactions between many variables while maintaining the complexity of

each of its building blocks small.

Parameters sharing. As a consequence of the circulant structure of convolutions

(Section 1.2.3) the weights of a convolutional layer are tied together: each output is com-

puted by means of the same kernel values. This is not true for a general fully-connected

layer in which each output is computed from its inputs using di↵erent recombination

weights. Moreover the memory cost of storing the kernel matrix for a fully-connected

layer is winput ⇥ hinput (where winput and hinput are the dimension of the input and

output respectively) while for convolutional layers the memory cost is p where p is the

length of the kernel (user’s choice, typically p << winput ⇥ hinput). This observation

is crucial for Machine Learning since the number of parameters to be learnt is much

smaller for convolutional layers.

Equivariance. This is one of the most important properties of convolutions. Equiv-

ariance makes convolutions very well suited for image and time series related tasks. In

particular any convolutional layer is equivariant to translations, which means that if

the input is translated, then the output is translated of the same amount too. Unfor-

tunately, convolutions are nor equivariant to other typical transformations which we

known are important (e.g. in image related tasks changes in scale or rotations). To

overcome this limitation other layers are typically used, e.g. pooling.

Remark 5.1. Convolutions provide a natural framework to work with inputs of variable

sizes.

Pooling. A typical convolutional layer of modern CNNs is built on three stages:

a filter bank which performs parallel convolutions, a non-linear activation (typically

ReLU) applied component-wise on the output feature of the convolutions and a pooling

function. The main idea for a pooling function is to aggregate the statistics of the

activation outputs creating a summary statistics. One of the most used pooling func-

tions is the so-called max pooling, it outputs the maximum of the non-linearly activated

features within a rectangular neighborhood. In this way, after the pooling layer the

size of features extracted on a given input is reduced. Interestingly, max pooling can

also be applied feature-wise (i.e. layer-wise) so that the optimal model can learn which

transformations to become invariant to (e.g. rotations [Goodfellow et al., 2016]).
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5.1.2 Recurrent vs Convolutional

We now turn our attention to specialized DNNs designed to deal with time series

data. We shall describe the main di↵erences between Recurrent Neural Networks and

Temporal Convolutional Neural Networks (TCNs). TCNs are built exploiting similar

design principles to the ones we described in the case of CNNs for images (Section 5.1.1)

but are used to deal with time series data.

Recurrent Neural Networks

RNNs are designed to process data sequentially, in general they can be applied to se-

quences of variable lengths (as convolution-based models do). The main representation

of RNNs closely resemble the state space representation of a dynamical non-linear sys-

tem Eq. (6.1). In particular, the non linear recurrent map implemented by a RNN

is described as: h(t) = fw(h(t � 1), x(t)), where h is a the instantaneous representa-

tion of the RNN (the so-called state in systems theory parlance) and x(t) is the input

at current time t. By unfolding the computational graph over time it is possible to

compute the hidden representation at each instant (state evolution). The state h is

supposed to be a non-linear summary statistics which contains the higher amount of

“information” w.r.t. input signal while at the same time being minimal in the sense

that all the nuisances factors not relevant for the task to be solved do not a↵ect h. How

to properly induce su�ciency and minimality of the hidden representation is an active

area of research [Su et al., 2019, Allen-Zhu et al., 2018]. Then, the output of a RNN

can be obtained by applying a static (non-recurrent) map on the hidden representation

at each time instant t.

Note that the parametrization applied across time is not changing (w does not de-

pend on the time index) so that, similarly to CNNs, we can consider RNNs to share

parameters across inputs. Sequential parameters sharing reduces the dimension of the

search space while optimizing the RNNs but, di↵erently from CNNs, does not allow to

parallelize computations. This is typical for sequential models where, to compute the

representation at time t + 1, the representation at time t must have been computed.

This makes RNNs’ cost of training and deployment high in general [Goodfellow et al.,

2016].

One prominent challenge in learning RNNs is the so-called long-term dependencies

limitation. The main idea is that RNNs might find di�cult to model long-term depen-

dencies so that their output sensitivity w.r.t. to far in the past inputs is small. This

is mainly due to the e↵ects of vanishing gradients which have been demonstrated to
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highly impact RNNs in practice [Goodfellow et al., 2016]. In fact, assuming the non-

linear model is a contractive map (stable) the relative weights of gradients associated

to long-term interaction is exponentially smaller than close (in time) ones. Note that

a non-stable non-linear map fw would cause backpropagated gradients to explode (so-

called exploding gradients phenomenon). Many architectures and design schemes have

been introduced to solve such issues for sequential models, some remarkable examples

are: Long Short-Term Memory Networks [Hochreiter and Schmidhuber, 1997], Gated

Recurrent Unit Networks [Chung et al., 2014] and Echo State Networks [Jaeger, 2003].

Temporal Convolutional Neural Networks

Despite RNNs being synonymous with sequence modeling, in recent years Temporal

Convolutional Networks have proved to outperform both LSTM and GRU recurrent

models in a variety of conditions [Bai et al., 2018, Munir et al., 2019]. One of the main

reasons for the performance improvement is the longer e↵ective memory of TCNs than

RNNs. So that, provided overfitting spurious long-term dependencies is avoided (say

by means of regularization [Bai et al., 2018, Zancato et al., 2022]), TCN models can

be used to model more complex time series with non trivial long term dependencies.

Moreover, thanks to convolutions, TCNs can be highly parallelizable (Section 1.2.3 and

Section 5.1.1), this makes them especially suited for complex time series data.

The basic building blocks of TCNs (see Fig. 5.1) are causal 1-D convolutions, so that

there is no information “leakage” from future to past [Bai et al., 2018]. Convolutions

guarantee that the input signal can be of any length (Section 1.2.3 and Section 5.1.1) as

customary for convolutional networks. Moreover, it is possible to increase TCNs’ recep-

tive field by simply stacking more convolutional layers and by using dilated convolutions

[Bai et al., 2018].

We shall now briefly describe both causal convolutions and dilated convolutions since

the precise interaction of hidden representations across the layers of a deep TCN are

fundamental for incorporating the novel fading memory inductive bias and automatic

complexity selection we present in Section 5.2 and Section 5.3.

Causal convolutions. The main idea in causal processing for time series is the con-

straint of no information “leakage” of future values. More precisely, given the sequence

of data {x(i)} with i 2 [T ] and a sequence of target values that must be predicted {y(i)}
with i 2 [T ], the causal predictor of y(t) must depend only on {x(i)} with i 2 [t]. Such

a requirement is typical in autoregressive prediction, in which a predictor is built only

using past values of the time series. 1-D causal convolutions are defined as standard

convolutions Eq. (1.6) with the requirement that the 1-D kernel (impulse response) is
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Figure 5.1: Temporal Convolutional Network Architecture (TCN). Two hidden
layers TCN with dilations d = 1, 2, 4 (see [Bai et al., 2018]).

zero for negative time indeces, this guarantees that the output of any causal convolution

does not depend on future values of the input time series.

Equally sized hidden representations. TCNs are designed to receive a T

dimensional input and output a T dimensional vector. Moreover, the dimension of

each hidden layer is constrained to be equal to the input and output dimensions. This

requires that for each 1-D convolutional layer, zero pad of length (|!|�1) is used (where

|!| is the length of the convolutional kernel Section 1.2.3) [Bai et al., 2018]. The major

disadvantage of this simple design is that to achieve a long e↵ective memory size very

deep architectures or long kernels are required (i.e. in this case the e↵ective memory

scales proportional to the number of hidden layers or kernel sizes). The solution to this

issue is to use (causal) dilated convolutions.

Dilated Convolutions. Dilated convolutions are used to increase the receptive

fields of TCNs, so that as the number of hidden layers increases the receptive field of

the TCN increases exponentially [Bai et al., 2018].

Definition 5.1 (Dilated convolution). Given a discrete (infinite) sequence x(t) 2 R
and a finite dimensional filter parametrized ! of length |!|, we denote the dilated

convolution between the sequence x and ! with (x ⇤d !)(t) 2 R and define it as:

g(t) := (x ⇤d !)(t) :=

|!|�1X

i=0

!(i)x(t� di)

where d is the dilation factor.

By using dilated convolutions it is possible to increase the receptive field either by
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5.2. Fading Memory Inductive Bias

increasing the filter length |!| or by increasing the dilation factor d. In standard TCNs

at the j-th hidden layer the dilation factor of dilated convolutional layers is chosen as

O(2j) so that as the architecture gets deeper the receptive field increases exponentially.

Residual Connections. Since large receptive fields are guaranteed only for deep

models, it is important that TCNs do not su↵er from typical optimization issues re-

lated to very deep architecture [He et al., 2016, Io↵e and Szegedy, 2015, Srivastava

et al., 2014]. It is customary to stabilize DNNs training dynamics by means of resid-

ual connections [He et al., 2016], we refer to [Bai et al., 2018] for more details on the

implementation.

5.2 Fading Memory Inductive Bias

We now describe architectural choices (inductive biases) to handle time series data

both with fully-connected neural networks [Zancato and Chiuso, 2021] and with TCN

[Zancato et al., 2022]. As we showed in Section 5.1.2 long-term dependencies are often

very important in modeling time-series data so that models not capable to cope with

far in the past input data are usually not viable models in practice. Nonetheless, too

expressive models, e.g. able to handle very long-term dependencies, are often subject to

overfitting. This highlights a clear design trade-o↵. How to choose the proper receptive

field? Typically, the relevant past of time series is not known during the model design

phase. This makes the optimal model complexity design impossible and highly prone

either to overfit or underfit. In this section and in Section 5.3 we shall describe a

method which enables automatic complexity selection on time series models, so that

the optimal causal predictor is automatically chosen with a proper receptive field (of a

similar size of the most relevant past of the time series).

5.2.1 Fading Memory Property

To begin with, we shall introduce a general property common to most non periodic

time series: fading memory [Matthews and Moschytz, 1994, Pillonetto et al., 2011].

The fading memory property can be informally described by saying that the e↵ect

of past values y(s), s  t on y(t) become negligible (tends to zero asymptotically) as

|t � s| goes to infinity. This property guarantees that the time series behaviour can

be uniformly well approximated on compact sets. Hence the universal approximation

properties of Neural Networks (see [Cybenko, 1989]) suggests that they can be seen as

natural candidates to model this class of time series. For the sake of simplicity, in this

section, we shall consider scalar time series that does not depend on other contextual
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5. Inductive Bias and Regularization

time series. The extension to multi-variate time series is straightforward.

We define the infinite past of the time series y at time t as yt� := {y(i)} with i  t

and write the time series y(t) in innovation form as:

y(t) = f0(y
t�1

�
) + e(t) (5.1)

where e(t) is the innovation sequence which captures all the information not captured

by the infinite past of y(t). The fading memory property guarantees that f0(y
t�1

�
) ⇡

f0(y
t�1

t�p
) where p is the relevant past and as p increases the approximation error de-

creases (p ! 1 =) |f0(yt�1

�
) � f0(y

t�1

t�p
)| ! 0). So that we shall assume the actual

time series only depends upon a finite (yet arbitrarily) long window of past data yt�1

t�p
. In

the following sections we shall show how to equip both fully-connected Neural Networks

and TCNs with an inductive bias based on the fading memory assumption.

5.2.2 Fading Memory for Fully-Connected DNNs

In this section we describe a fully-connected DNN specifically designed to handle time

series, and in particular encode the fading memory assumption. The main idea is to

exploit a block partitioned architecture so that each block attends to a specific finite

window of the input time series.

We define a window of length p of past values w.r.t. t of the time series y(t) as:

yt�1

t�p
2 Rp. The fading memory assumption implies the contribution of the i-th window

yi�1

i�p
on the decomposition Eq. (5.1) goes to zero as i ! �1 (i.e. we look at far in

the past windows of data). So that, if we want to successfully endow a non-linear

model with the fading memory property we should guarantee that the sensitivity of its

output w.r.t. to y(i) goes to zero as i decreases. Imposing such a constraint for general

fully-connected DNNs is not straightforward without further assumptions.

By exploiting an analogy with linear systems [Ramı́rez-Chavarŕıa and Schoukens,

2021] shows that imposing a direct regularization on the sensitivity of the output of a

non-linear model so that

����
@f(y

t�1
� )

@y(i)

����! 0 as i! �1 endows a general non-linear model

structure with a prior over functions which fosters the fading memory property. We

highlight that this is true up to first order approximation, in fact, even if

����
@f(y

t�1
� )

@y(i)

���� = 0

for some indices this does not implies that the input y(i) does not a↵ect the output of the

non-linear model. For example, it can happen that the paths connecting other inputs

to outputs are a↵ected by y(i) (e.g. through second order interactions). To guarantee

that the input y(i) does not a↵ect the outputs (or its e↵ect is small) we argue higher
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order interactions between input and outputs must be considered. For example, it is

possible to take into account second order information by simply considering the hessian✓
@
2
f(y

t�1
� )

@y(i)@y(j)

◆

i,j

. In particular, one should penalize the hessian to be entry-wise as close

as possible to zero. Clearly the limit case in which the hessian is zero describes linear

systems for which the first order condition is su�cient to guarantee the fading memory

property.

In general its is not easy to build a DNN whose hessian can be easily accessible.

For that, we explicitly constraint the hessian to have a block structure by employing a

block structured DNN. So that we can enforce the fading memory property by applying

a similar condition to the one proposed in [Ramı́rez-Chavarŕıa and Schoukens, 2021].

We consider the following non-linear model structure:

f✓,w
⇣
yt�1

t�p�nB+1

⌘
:=

nB�1X

i=0

✓ifWi

⇣
yt�i�1

t�i�p

⌘
(5.2)

where the input yt�1

t�p�nB+1
has length p � nB � 1, w := (vec W0

T , ..., vec WnB�1
T )T ,

✓ := (✓0, ..., ✓nB�1)
T 2 RnB and fWi 2 R are DNNs that process a translated window

of p past measurements. To prevent modeling bias, di↵erent lagged windows are not

assumed to be disjoint (e.g. disjoint windows would not allow to model close in time

interactions between adjacent windows). Nonetheless it is straightforward to control

how much di↵erent lagged windows are overlapped by using dilated windows (similar

to what is done for dilated convolutions Section 5.1.2).

Remark 5.2 (Block partitioned second order structure). Eq. (5.2) is a block partitioned

non-linear model in which non-linear blocks are linearly combined by ✓. Moreover each

block is computed on di↵erent lagged windows of past data. This guarantees that the

second order interactions between far apart time instants are zero (i.e. no information

“leakage” is possible). This guarantees the fading memory property holds on the whole

architecture if ✓i ! 0 as i ! 1 and the output of each block have roughly the same

scale (i.e. they are normalized Section 5.3.2).

Overall, our architecture (depicted in Fig. 5.2) is described by the following param-

eters:

• nB number of blocks

• p size of the “elementary” regressor of each DNN (lagged window of past data

yt�1

t�p
)

• w =
�
vec W0

T , ..., vec WnB�1
T
�T

DNNs weights
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zt�1
zt�2
�

zt�p

T

. . .

DNN.. DNN.. DNN…        

[ fW0 | fW1 | . . . | fWnB
] � �nB+1

�t�1,p �t�nB,p�t,p

[�0 |�1 | . . . |�nB
] � �nB+1�

�yt = F�,W � �

zt�2
zt�3
�

zt�p�1

T zt�nB�1
zt�nB�2

�
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T

W0 W1 WnB

. . .

Figure 5.2: Block-partitioned fading memory architecture.

• ✓ = (✓0, ..., ✓nB�1)T recombination parameters

Remark 5.3 (How to choose the number of blocks?). Ideally, nB should be large enough

to capture the most relevant past, so that the architecture can approximate arbitrarily

well the unknown regression function f0 and should not be chosen to face a bias-variance

trade-o↵. Regularization shall be used to control model complexity, by automatically

assigning fading weights to the outputs of each block.

Remark 5.4 (How to choose p?). The past horizon of each “elementary regressor” should

be chosen as small as possible without incurring in any modelling bias.

5.2.3 Fading Memory Temporal Convolutional Networks

We now extend the fading architecture in Eq. (5.2) to general TCN [Bai et al., 2018].

The key observation [Zancato et al., 2022] is that each layer in a TCN employs causal

temporal convolutions, hence each output of a TCN depends only on past values of the

input signal.

As described in Section 5.1.2 the output a TCN model given an input sequence of

length T has dimension T (fTCN(y) 2 RT ), moreover the i-th output neuron (fTCN(y))i,

where y 2 RT , only depends on its receptive field p which is a function of the dilation

coe�cient, the number of hidden layers and the convolutional kernel size used to perform

1-D convolutions. Hence we can write an equation similar to Eq. (5.2) by combining
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5.3. Fading Memory Regularization

the outputs of a TCN with the weights ✓i with i 2 [nB � 1]:

f✓,wTCN

⇣
yt�1

t�p�nB+1

⌘
:=

nB�1X

i=0

✓i (fTCN(y))
t�i�1

(5.3)

where p = |!|2L with L the number of hidden layers of the TCN and |!| the length of

the causal convolutional filters (see Definition 5.1).

Remark 5.5. Remarks Remark 5.2, Remark 5.3 and Remark 5.4 still hold.

5.3 Fading Memory Regularization

In previous sections we described how to consider a model structure in which fading

memory can be induced by simply choosing suitably decaying coe�cients ✓i. The rate

at which these converge to zero provides an estimate of the most relevant past (i.e. the

number of time instants mostly a↵ecting the output of the non-linear model) and is

directly connected with model complexity (the faster the decay rate the lower the com-

plexity). Nonetheless, how to choose such a decay rate is not clear. Ideally, nB should

be large enough to capture the memory of the system, so that the regression function

can be approximated arbitrarily well by the “optimal” non-linear model and should not

be chosen to face a bias-variance trade-o↵. In practice, too flexible feature extractors

(such as TCNs or DNNs) are prone to overfitting. Therefore, some regularization is

needed to control model complexity and benefit from having a large memory window.

In this section, we introduce a regularized loss inspired by Bayesian arguments which

allows us to use an architecture with a “large enough” past horizon nB (i.e., larger than

the true memory) and automatically select the relevant past to avoid overfitting. Such

information is exposed to the user through an interpretable parameter � that directly

measures the relevant time scale of the signal. Our method exploits the same Bayesian

hyper-parameters selection framework we discussed in Section 2.3.3 based on Type II

maximum likelihood.

5.3.1 Bayesian Automatic Complexity Selection

To begin with, we consider the same model structures proposed in Section 5.2.2 and

Section 5.2.3 [Zancato and Chiuso, 2021, Zancato et al., 2022]. In particular we

shall directly refer to Eq. (5.2) (anything can be carried out without modifications

for Eq. (5.3)).

Assumption 5.1 (Gaussian Likelihood). Assume the likelihood function associated to
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Eq. (5.1) is Gaussian.

Hence we have:

y(t) | yt�1

�
⇠ N

�
f0(y

t�1

�
),�2

�
(5.4)

where � is the innovation variance (we assume it does not depend on time Section 6.1)

and f0 is the optimal regression function which, in principle, is allowed to depend on

the infinite past of y(t). Note that this assumption does not restrict our framework and

is used only to justify the use of the squared loss to learn the regression function.

In practice, we do not know f0 and we approximate it with our non-linear parametric

model f✓,w Eq. (5.2) where ✓ represent the fading parameters while w represent either

the parameters of the non-linear blocks used in Eq. (5.2) or the parameters of a TCN

model (if Eq. (5.3) is used). We denote with N the number of data available from

the time series y, moreover we shall partition this dataset in two groups of consecutive

samples: np (representing the “past”) and nf (representing the “future”).

We denote the likelihood of the future window of length nf of y with the model

structure parametrized by ✓ and w as:

p
⇣
y
t+nf

t+1

��ytt�np+1, ✓, w
⌘

=

nfY

k=1

p
⇣
y(t + k)

��yt+k�1

t+k�np
, ✓, w

⌘

To make the notation simpler we shall call the vector yf := y
t+nf

t+1
2 Rnf and call the

stacked prediction outputs of the non-linear model:

ŷ✓,w := (ŷ✓,w(t + 1), ..., ŷ✓,w(t + nf ))
T =

⇣
f✓,w

⇣
ytt+1�np

⌘
, ..., f✓,w

⇣
y
t+nf�1

t+nf�np

⌘⌘
T

Note that ŷ✓,w 2 Rnf is a linear predictor w.r.t. to the output of each block (or TCN)

so that it holds: ŷ✓,w = Fw✓, where (Fw)i,j := fWj

⇣
yt+i�j

t+i�j�p+1

⌘
2 Rnf⇥nB .

In a Bayesian framework, the optimal set of parameters can be found maximizing the

posterior p(✓, w | yf ) over the model parameters. We assume ✓ and w as independent

random variables:

p(✓, w | yf ) / p(yf | ✓, w)p(✓)p(w) (5.5)

where p(✓) is the prior associated to the fading coe�cients and p(w) is the prior on the

remaining parameters. p(✓) encodes our prior belief that the complexity of the predictor

should not be too high and therefore it should depend only on the most relevant past.

Assumption 5.2 (Fading prior on ✓). We enforce the fading prior over ✓ assuming

the components of ✓ have zero mean and exponentially decaying variances: E✓2
j

= �j
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for j = 0, ..., nB � 1, where  2 R+ and � 2 (0, 1).

Remark 5.6 (Maximum entropy prior). To specify the prior, we need a density function

p(✓) but up to now we only specified constraints on the first and second order mo-

ments. We therefore need to constrain the parametric family of prior distributions we

consider. Any choice on the class of prior distributions lead to di↵erent optimal estima-

tors. Among all the possible choices of prior families we choose the maximum entropy

prior [Cover and Thomas, 1991]. Under constraints on first and second moment, the

maximum entropy family of priors is the exponential family [Cover and Thomas, 1991].

In our setting, we write it as:

log(p�,(✓)) / �k✓k2⇤�1 � log det ⇤ (5.6)

where ⇤ 2 RnB⇥nB is a diagonal matrix with elements ⇤j,j = �j with j = 0, ..., nB�1.

The parameter � represents how fast the output of the predictor “forgets” the past.

Therefore, � regulates the complexity of the predictor: the smaller �, the lower the

complexity.

In practice, we need to estimate model hyper-parameters (corresponding to the prior)

from data, so that a Type II maximum likelihood is necessary Section 2.3.3. Unfortu-

nately the task of computing (or even approximating) the marginal likelihood in this

setup is prohibitive and we should resort to Monte Carlo sampling techniques which

might not scale well with the number of parameters in the non-linear blocks. To over-

come such limitation we adopt the following variational strategy which directly exploits

the decoupling between the fading parameters and the ones associated to non-linear

blocks (or TCN). In particular we exploit the fact that the output ŷ✓,w is linear w.r.t.

fading parameters.

To begin with, we observe that jointly estimating ✓, w,�, (and possibly �) by min-

imizing the negative log of the joint posterior leads to degeneracy because the joint

negative log posterior goes to �1 as �! 0. Indeed, typically the parameters describ-

ing the prior (such as �) are estimated by maximizing the marginal likelihood, i.e., the

likelihood of the data once the parameters (✓, w) have been integrated out.

Theorem 5.1 (Variational upper bound on the marginal likelihood). Consider a model

on the form: Ŷ✓,w = Fw✓ (linear in ✓ and possibly non-linear in w) and its posterior

in Eq. (5.5). Assume the prior on the parameters ✓ is given by the maximum entropy

prior Eq. (5.6) and w is fixed. Then, the following is an upper bound on the marginal

likelihood associated to the posterior in Eq. (5.5) with marginalization taken only w.r.t.

113



5. Inductive Bias and Regularization

✓:

U✓,w,⇤ =
1

�2

���Yf � Ŷ✓,w

���
2

+ ✓>⇤�1✓ + log det(Fw⇤Fw
> + �2I). (5.7)

Note we hide the dependency of prior hyper-parameters � and  inside ⇤. The

complete proof of this is in Appendix C.1.

The upper bound U✓,w,⇤ provides an alternative loss function to the negative log

posterior which does not su↵er from the degeneracy alluded above while optimizing

over ✓, w, � and . So that the optimization problem we solve is:

arg min
✓,w,�2(0,1),>0

1

�2

���Yf � Ŷ✓,w

���
2

+ k✓k2
⇤�1 + log det(Fw⇤F T

w + �2I) + log p(w) (5.8)

Remark 5.7 (Prior on w). log p(w) defines the regularization applied on the remaining

parameters of our architecture. Di↵erent choices are possible: regularization based on

the squared norm, sparsity inducing regularization or any other type or regularization

suited to constrain the complexity of the non-linear blocks (or TCN).

Remark 5.8 (Fading memory in multivariate time series). In the case of multivariate

time series, fading regularization can be applied either with a single fading coe�cient �

for all the time series or with di↵erent fading coe�cients for each time series. In all the

experiments of the following chapters Chapter 6 and Chapter 7, we chose to keep one

single � for all the time series. In practice, this choice is sub-optimal and might lead

to more overfitting than treating each time series separately: the “dominant” (slower)

time series will highly influence the optimal �.

5.3.2 Block Normalization

As mentioned above, the blocks fWi should be rich enough to model non-linearities of

the regression function, yet they should not undo the fading memory regularization we

introduced. In particular, we note that non-identifiability occurs due to the product

Fw✓ which in turn can reduce the e↵ects of Fading Regularization: if fWi

⇣
yt�i�1

t�i�p

⌘
(the

features extracted by each block) have di↵erent scales across block indices (columns of

the matrix Fw) it can happen that features associated with small ✓i have large scale so

that the overall contribution of the past does not fade.

We can avoid degeneracy due to non-identifiability by properly normalizing the out-

put of each block; we choose to apply a modern regularization method which is typically

applied to regularize DNNs: Batch Normalization (see [Io↵e and Szegedy, 2015] or Sec-

tion 1.5). In particular we impose that the outputs of di↵erent blocks fWi

⇣
yt�i�1

t�i�p

⌘

have comparable means and scales across indices i = 0, ..., nB � 1.
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The main idea behind batch normalization is to maintain running statistics (means

and standard deviations) of the outputs of the hidden nodes of a DNN model during

training and apply a normalizing a�ne transformation to these outputs. In this way

the inputs at each layer have zero mean and unit variance. In our case we do not want

the output of each block fWi

⇣
yt�i�1

t�i�p

⌘
to have zero mean and unit variance, rather we

need comparable means and scales across each block output. We therefore use batch

normalization to normalize block features. Then we use an a�ne transformation (with

parameters to be optimized) to jointly re-scale all the output blocks before the linear

combination with ✓.

Denoting with f̄Wi the normalized i-th block output, the output of our regularized

fading architecture is: F✓,W =
P

nB
i=0

✓if̄Wi . The normalization is performed according

to:

f̄Wi =
fWi � E[fWi ]p
Var[fWi ] + ✏1

� + � i = 0, ..., nB � 14 (5.9)

where E[fWi ] and Var[fWi ] are estimated using running averages along the optimization

iterations (as standard practice with batch normalization) and ✏1 is a small number used

to avoid numerical issues in case the estimated variance becomes too small.

Remark 5.9. � and � are jointly optimized with other parameters and are shared among

the outputs of the blocks such that the relative scale among them is preserved.

5.4 Discussions and conclusions

Deep Learning without inductive bias and regularization is doomed to fail. In this chap-

ter we describe the main design principles that are usually considered while building

successful DNNs both in image processing and time series analysis application domains.

After this general discussion we specifically focus on time series analysis and propose

a novel inductive bias and regularization scheme both for fully-connected DNNs and

TCNs. Our inductive bias and regularization are designed to exploit domain knowledge

and encode the so called “fading memory” property of time series. “Fading” regulariza-

tion allows to automatically perform model selection (automatic complexity selection)

based solely on available data [Zancato and Chiuso, 2021, Zancato et al., 2022] and

therefore can be employed to improve model generalization and reduce the number of

hyperparameters needed to be tuned by the user.
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6
Fading Memory for Non-Linear System

Identification

The main goal of system identification is to build a dynamical model from observed

data which is expected to generalize well on unseen data. In the context of non-linear

systems, both parametric [Sjöberg et al., 1995, Juditsky et al., 1995, Masti and Bem-

porad, 2018] and non-parametric models [Pillonetto et al., 2011] are viable alternatives

used in practice. Recently, many e↵orts have been devoted to extend classical results for

linear systems to non-linear ones. Instances of parametric and non-parametric model

classes are respectively NARX/NARMAX and kernel based methods ([Pillonetto et al.,

2011]). Typically, the identification problem can be divided in two steps: first, find

the best model class given the available data and then find the best model within that

particular model class. None of these two problems can be easily solved in general

and often model optimization is a non-convex problem. Finding the proper model

complexity (structure) requires a complexity criterion (Section 2.3.6). Beyond classical

complexity criteria such as Akaike’s Information Criterion and Bayesian Information

Criterion [Sjöberg et al., 1995] many other automatic model complexity criteria have

been introduced, both in the parametric [Lind and Ljung, 2008] and non-parametric

frameworks [Pillonetto et al., 2011].

The aim of this chapter is to extend ideas proposed in [Pillonetto et al., 2011] to the

parametric framework. More precisely, we shall build a parametric estimator for non-

linear system identification using Neural Networks as building blocks. Due to their high

capacity, NNs are prone to overfitting unless constrained by regularization or induc-

tive bias (Chapter 5). As such, our architecture and optimization loss are specifically

designed to exploit domain knowledge (fading memory systems Section 5.2) and to
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automatically detect and choose the best model complexity from training data (Sec-

tion 5.3). The inductive bias relies on the assumption that the system to be identified

belongs to the class of fading memory systems [Matthews and Moschytz, 1994].

Previously proposed non-parametric methods such as in [Pillonetto et al., 2011] might

not scale well with the number of data; on the contrary, our architecture can scale to

hundred of thousand datapoints as is typically the case for NNs based models [Sjöberg

et al., 1995, Masti and Bemporad, 2018]. Furthermore, the parametric model and the

loss function are designed so that standard Deep Learning regularization techniques

[Bansal et al., 2018, Srivastava et al., 2014, Io↵e and Szegedy, 2015] and Stochastic

Optimization methods [Kingma and Ba, 2014, Welling and Teh, 2011] can be applied.

6.1 Problem formulation

We now proceed by briefly stating the goals of system identification.

Let {u(t)} and {y(t)}, t 2 Z be respectively the input and output of a discrete time,

time invariant, nonlinear state-space stochastic system:

x(t + 1) = f(x(t), u(t), w(t))

y(t) = h(x(t)) + v(t)
(6.1)

where {w(t)} and {v(t)} are respectively process and measurement noises. A rather

standard assumption is that both {w(t)} and {v(t)} are strictly white and independent.

For ease of exposition we shall assume that both y and u are scalar, but extension to

the vector case is straightforward. We will denote with z(t) := (y(t), u(t))> the joint

input-output process and with zt� the infinite past (z(t), z(t� 1), ..., )T of z(t) w.r.t. t.

Starting from Eq. (6.1) it is always possible to define the optimal one-step-ahead

predictor of y(t) given the joint past zt�1

�
as:

ŷt|t�1 = f0(z
t�1

�
) := E[y(t)|zt�1

�
] (6.2)

hence the input-output behaviour of the state space model Eq. (6.1) can be written in

innovation form as:

y(t) = f0(z
t�1

�
) + e(t) (6.3)

where e(t) is, by definition, the one step ahead prediction error (or innovation se-

quence) of y(t) given the joint past {z(s), s < t}. The innovation e(t) is a martingale

di↵erence sequence w.r.t. the sigma algebra generated by past data Pt := �{z(s), s <

t} = �{yt�1

�
, ut�1

�
} and, thanks to the time-invariance assumption on Eq. (6.1), it has
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6.2. Fading Memory Inductive Bias

constant conditional variance:

Var[e(t)] = Var[y(t)|zt�1

�
] = ⌘2, 8t (6.4)

We shall also assume that e(t) is strictly white.

Our main goal is to find an estimate f̂ of the predictor map f0 in Eq. (6.2). This

problem can be framed in the classical regularized Prediction Error Method (PEM)

framework, i.e. defining1:

f̂ = arg min
f2F

1

N

NX

t=1

(y(t)� f(zt�1

�
))2 + �P (f)

where F is the model class and P (f) is a penalty function.

This framework includes both classical parametric approaches (i.e. where F is a

parametric model class F := {fw, w 2 RD} and the penalty P (f) is expressed as

a function of the parameters w) as well as non-parametric ones where f lives in an

infinite dimensional space such as a Reproducing Kernel Hilbert space and P (f) is the

norm in the space (Section 2.3.1).

In particular, we shall compare state-of-the art nonparametric methods introduced

in [Pillonetto et al., 2011] that use RKHS/GPs with the class of fully-connected Neural

Networks with Fading Memory inductive bias introduced in Section 5.2.

6.2 Fading Memory Inductive Bias

We now briefly describe the Fading Memory property in the context of system iden-

tification (the notion of Fading Memory has already been introduced in Section 5.2

for general time series). We shall now consider the class of non-linear systems also

known as Fading Memory systems (see e.g. [Matthews and Moschytz, 1994] and refer-

ences therein), a property that can be informally described by saying that the e↵ect

of past inputs {u(s)} with s < t on the output y(t) becomes negligible (tends to zero

asymptotically) as |t � s| goes to infinity. This property guarantees that the system

behaviour can be uniformly approximated on compact sets. Hence, as already done

in Section 5.2, the universal approximation properties of Neural Networks [Cybenko,

1989] suggests that NNs can be seen as natural candidates to tackle the identification

problem. Yet, NNs are known to su↵er from severe overfitting. To cure this limitation

we shall exploit the model structure defined in Section 5.2.2 and introduce an inductive

1W.l.o.g we use the square loss.
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6. Fading Memory for Non-Linear System Identification

bias in the architecture and a suitable regularization both fostering the fading memory.

Under the fading memory assumption we shall assume that the optimal predictor

model f0(y
�

t
, u�

t
) in Eq. (6.2) depends only upon a finite, yet arbitrarily long window

of past data:

f0
�
yt�, ut

�

�
= f0

�
yt�1

t�T
, ut�1

t�T

�
= f0

�
zt�1

t�T

�
(6.5)

The past horizon T is finite but arbitrarily long so that no significant bias is introduced.

6.2.1 Network Architecture

We now describe how to apply the block-structured DNN we introduced in Section 5.2.2

for non-linear system identification. As in [Pillonetto et al., 2011] we assume the pre-

dictor function f0 can be written as a linear combination of (in principle) infinitely

many elementary building blocks fW ⇤
i
, each of them described by a DNN. In particular

we assume that each fW ⇤
i

is actually a function of only a small window of past data (of

length p), namely:

fW ⇤
i

:=fW ⇤
i
(yt�i�1, ut�i�1, ..., yt�i�p, ut�i�p)

=fW ⇤
i

⇣
zt�i�1

t�i�p

⌘
2 R (6.6)

where w.l.o.g. we consider the same horizon p both for the past of y and u. Note that

each block fW ⇤
i

⇣
zt�i�1

t�i�p

⌘
outputs a scalar feature.

The output predictor is then parametrized in the form:

f✓⇤,w⇤(zt�) =
1X

i=0

✓⇤i fW ⇤
i

⇣
zt�i�1

t�i�p

⌘

where w⇤ := (vec W ⇤

0

T , vec W ⇤

1

T , ...)T , ✓⇤ := (✓⇤
0
, ✓⇤

1
...)T .

The fading memory assumption guarantees that the contribution to output prediction

of blocks fW ⇤
i

⇣
zt�i�1

t�i�p

⌘
should fade to zero as the index i increases. Thus, w.l.o.g., we

shall consider a finite number of blocks nB and truncate the model f✓⇤,w⇤ to the form:

f✓,w⇤

⇣
zt�1

t�nB�p+1

⌘
=

nB�1X

i=0

✓⇤i fW ⇤
i

⇣
zt�i�1

t�i�p

⌘

We can now approximate the optimal one-step-ahead predictor with the parametric
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6.3. Fading Memory Regularization

model introduced in Section 5.2.2:

f✓,w
⇣
zt�1

t�nB�p+1

⌘
=

nB�1X

i=0

✓ifWi

⇣
zt�i�1

t�i�p

⌘
(6.7)

as illustrated in Fig. 5.2.

Ideally nB should be large enough to capture the memory of the system, so that the

network can approximate arbitrarily well the “true” f0 and should not be chosen to face

a bias-variance trade-o↵. Regularization shall be used to control the model complexity,

by automatically assigning fading weights to each block.

Remark 6.1 (How to choose each block?). The choice of fWi is completely arbitrary,

e.g. it could be a single layer, multilayer or basis functions Neural Network; each block

has its own set of parameters, so that it can potentially extract di↵erent features from

di↵erent lagged past windows. In the following we shall assume DNNs are used.

6.3 Fading Memory Regularization

In Eq. (6.7) some important hyper-parameters need to be specified: how should one

choose the number of blocks nB and the horizon of each lagged window p? We use

Fading Memory regularization we introduced in Section 5.3 to optimally choose the

right number of blocks and use cross-validation to choose the best horizon length (Sec-

tion 2.3.6).

The main idea of Fading Memory regularization [Zancato and Chiuso, 2021] is to let

the user choose an architecture with a “large enough” number of blocks nB (i.e. larger

than the actual system memory) and then automatically select the fading decay rate

to constrain the complexity of the parametric model in Eq. (6.7) to avoid overfitting.

We refer to Section 5.3 for the details on Fading Memory regularization [Zancato and

Chiuso, 2021].

6.3.1 Controlling block complexity

Without regularization, each single block could overfit and hence reduce generalization

capabilities of our architecture. We now recall some standard regularization techniques

that are used to improve trainability and generalization of DNNs: batch normalization

[Io↵e and Szegedy, 2015], dropout [Srivastava et al., 2014] and penalty terms on DNNs’

weights norm. Despite all these methods can be applied simultaneously, in the following,

we shall mainly focus on a type of regularization which can directly be imposed following
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6. Fading Memory for Non-Linear System Identification

the Bayesian argument we used in Eq. (5.8): we shall impose a prior on w (for simplicity

we consider each block Wi, i = 0, ..., nB � 1 independently).

Consider a single block fWi , which is a DNN with L layers, parametrized by Wl for

l = 1, ..., L (the bias parameter can be considered within Wl). Inspired by [Bansal et al.,

2018] we exploit Soft Orthogonality (SO) to enforce that the Gram matrix of the weights

is close to the identity. Therefore we consider the following per-layer regularization

term:

log(Wl) =
���W>

l
Wl � Idl�1

���
2

F

l = 1, ..., L (6.8)

where Wl 2 Rdl⇥dl�1 .

Remark 6.2 (Priors independence). We assume the priors are independent both across

layers and across blocks.

Soft Orthogonality regularization is known to foster network trainability by stabiliz-

ing the distribution of activations over layers [Bansal et al., 2018].

6.4 Optimization

The optimization problem Eq. (5.8) can be solved using o↵-the-shelf stochastic op-

timization tools such as Stochastic Gradient Descent and Adam [Welling and Teh,

2011, Kingma and Ba, 2014]. Both these methods rely on gradients to find the best set

of parameters, therefore we must require the fading architecture and its blocks to be

di↵erentiable w.r.t. their parameters (some extensions are applicable, e.g. with ReLU

activations functions). Note the stochasticity introduced by the choice of the mini-

batches in SGD has been proven to be highly e↵ective and provide properties which

are not shared with Gradient Descent, such as the ability to avoid saddle points and

spurious local minima of the loss function (Section 1.4).

Remark 6.3. The stochasticity in the choice of minibatches only a↵ects the computation

of the fit (minus log likelihood) and log det terms in Eq. (5.8) since the regularization

term does not need any datum to be computed.

6.5 Experiments

Similarly to [Pillonetto et al., 2011] we tested our architecture using Monte Carlo studies

on 4 nonlinear systems of increasing complexities, as listed in Table 6.1. For each

nonlinear system we generate random trajectories of length N starting from the system

initially at rest, we take u(t) ⇠ N (0, 1) (whenever possible) and e(t) ⇠ N (0, 1). We
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6.5. Experiments

Table 6.1: Non-linear systems benchmark from [Pillonetto et al., 2011]. The innovation
variance for systems (1) and (2) is 1, for system (3) is 0.222 and for system (4) is 0.142.

(1) y(t) = e�0.1y(t�1)
2
(2y(t� 1)� y(t� 2)) + e(t)

(2) y(t) = �2y(t� 1)1(y(t� 1) < 0) + 0.4y(t� 1)1(y(t� 1) � 0) + e(t)

(3) y(t) = 0.5y(t� 1)� 0.05y(t� 2)2 + u2(t� 1) + 0.8u(t� 2) + 0.22e(t)

(4) y(t) = 0.8y(t� 1) + u(t� 1)� 0.3u(t� 1)3 + 0.25u(t� 1)u(t� 2)
�0.3u(t� 2) + 0.25u(t� 2)3 � 0.2u(t� 2)u(t� 3)� 0.4u(t� 3)
+0.14e(t)
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Figure 6.1: Fading architecture vs plain DNN model. Monte Carlo results: box
plot for train and generalization on systems from Table 6.1 (20 runs, N=10k). Both
architectures have the same input horizon (12), activations (Tanh), hidden layers (5)
and a similar number of parameters. Note fading architecture avoids overfitting and
reduce generalization gap for every benchmark system.
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6. Fading Memory for Non-Linear System Identification

test generalization capabilities of each model on test data generated as the training

ones and we measure generalization error comparing ⌘true (Eq. (6.4)) with ⌘̂ where

⌘̂2 := 1

N

P
N

i=1
(y(i)� ŷ(i))2 for each system.

In each experiment we choose over-parametrized DNNs to parametrize each block

fWi : 5 hidden layers, 100 hidden units with Tanh activation function (⇡ 41k parame-

ters). In such a scenario we expect that without any regularization severe overfitting

occurs. In Fig. 6.1 we show this is indeed the case and compare a plain DNN (without

any particular structure) against our fading architecture. Both models take the same

number of data as input and have a similar number of parameters.
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Figure 6.2: Robustness to the horizon choice. Monte Carlo results on system
4 (runs=20, N=10k) for di↵erent values of nB and p. Upper panels: When p is
such that a single block does not overfit, our method prevents overfitting as nB grows.
Lower panels: Degenerate choice of p: when p is too small it introduces a bias in
the estimation. In this particular case we are not able to model mixed terms such as
u(t� 2)u(t� 3) which are present in System 4.
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Figure 6.3: Blocks’ relative importance. Single run on system 4, nB = 9 and
p = 2. Importance is measured both by |✓if̄Wi | i = 0, ..., nB � 1 (left) and by the
prediction error standard deviation of the truncated predictor up to the i-th block:q

E(y �
P

i

j=0
✓j f̄Wj )

2 for i = 0, ..., nB � 1 (right).

The proper fading horizon length is not known a priori: we tested automatic com-

plexity selection in Fig. 6.2. We compare di↵erent architectures optimized according

to Eq. (5.8) using di↵erent number of blocks and block horizons p. We show that

generalization for fixed p does not worsen as the number of blocks (and therefore repre-

sentational capability) increases. The robustness on the choice of the number of blocks

nB proves the e↵ectiveness of our regularization scheme. Moreover from the user’s per-

spective it reduces the sensitivity of the identified model w.r.t. a wrong choice of the

input horizon and allows the user to safely choose large nB without incurring overfit-

ting. Regarding the actual value of nB we have no other prescription than choosing it

large enough so that the relevant past is processed by the architecture and automatic

complexity selection can select the optimal � based on available data.

One last question remains open: how to choose the horizon of each block p? Other

than trial and error, cross validation could be used to choose the best hyper-parameter

p. In Fig. 6.2 we compare the e↵ects of di↵erent p: our regularization does not impose

fading constraints on the input of each block, we therefore expect that large p (despite

SO regularization) might overfit. From the user’s perspective the choice of p should be

as small as possible without introducing too modeling bias on each block (see Fig. 6.2

for an example of a degenerate choice: p = 1).
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6. Fading Memory for Non-Linear System Identification

For the sake of completeness in Fig. 6.3 we show the importance of each block on

the prediction ŷ(t) during optimization. We use |✓if̄Wi | and the residual error of the

truncated (in the number of blocks nB) predictor. The latter is measured by an em-

pirical estimate of
q

E(y �
P

i

j=0
✓j f̄Wj )

2 for i = 0, ..., nB � 1. In Fig. 6.3 the block

processing data closer to the present is indeed the one which mostly a↵ects ŷ(t). Note

the convergence of each block’s relevance to its asymptotic value is not uniform across

di↵erent blocks: the farther into the past the fastest to converge (and become negligi-

ble). We leave to future work the design of optimization schemes which could improve

convergence speed (e.g. using adaptive learning rates algorithms other than Adam,

and other stochastic optimization methods designed to improve DNN convergence and

generalization).

In Table 6.2 we directly compare our architecture with the GP solution proposed in

[Pillonetto et al., 2011]. We use system 4 to generate datasets of increasing lengths (up

to 100k). Note that in the large data regime GPs cannot be used without approximation

schemes. Our architecture shows a larger generalization gap in the low data regime but

achieves increasingly better results as the dataset size increases. We believe the lower

performance in the low data regime of our method w.r.t. the GP model in [Pillonetto

et al., 2011] is due to the fact that the GP model is heavily regularized and the fact

that the underlying system to be identified is relatively simple.

Table 6.2: Data e�ciency. Comparison among: (a) GP model from [Pillonetto et al.,
2011], (b) Our architecture w/o regularization, (c) Our complete architecture. ⌘̂ median
value on Monte Carlo study on system 4 (⌘true = 0.14).

N=400 N=1000 N=10k N=100k

Train Test Train Test Train Test Train Test

GP model from [Pillonetto
et al., 2011]

0.14 0.27 0.13 0.19 0.14 0.17 - -

Our architecture w/o regular-
ization

0.02 0.49 0.03 0.45 0.07 0.23 0.12 0.20

Our complete architecture 0.10 0.32 0.15 0.22 0.16 0.17 0.15 0.15
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6.6 Discussions and conclusions

In this chapter we show that overparametrized DNNs without a proper inductive bias

and regularization fail to solve non-linear system identification benchmarks. We over-

come such a limitation introducing both a new architecture inspired by fading memory

systems and a new regularized loss inspired by Bayesian arguments which in turn allows

for automatic complexity selection based on the observed data. We showed when DNN

based parametric architectures are good alternatives to state of the art non-parametric

models for modelling non-linear systems (mid-large data regime). Moreover we proved

our method does not su↵er from typical non-parametric models limitations on large

dataset sizes and favourably scales with the number of samples. We leave to future

work the design of optimization schemes which could improve convergence speed (e.g.

using adaptive learning rates algorithms other than Adam and other stochastic opti-

mization methods designed to improve DNN convergence and generalization).
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7
Interpretable Residual Temporal Convolutional

Networks

Time series data is being generated in increasing volume from industrial, medical,

commercial and scientific applications. Such growth is fueling demand for anomaly

detection algorithms that are general enough to be applicable across domains, yet re-

liable enough to operate on real-world time series data [Munir et al., 2019, Geiger

et al., 2020, Su et al., 2019]. While recent developments have focused on Deep Neural

Networks, simple linear models still outperform DNNs in applications that require ro-

bustness to dataset-specific tuning [Braei and Wagner, 2020] and interpretable failure

modes [Geiger et al., 2020, Su et al., 2019].

To harvest the flexibility and interpretability of engineered modules while enabling

end-to-end di↵erentiable training, we introduce STRIC (Time series Reliable and Inter-

pretable Anomaly Detection). STRIC is composed of three modules: A local predictor

for each component of the time series, tasked with isolating interpretable factors such

as trends, quasi-periodicity, and linearly predictable statistics. Its prediction residual is

fed to a global predictor that takes into account other time series as context to predict

each time series. The prediction residual of each time series is then fed to an anomaly

detector based on a likelihood ratio test.

More specifically, STRIC uses a parametric model implemented by a sequence of

residuals blocks with each layer capturing the prediction residual of previous layers.

The first layer models trends, the second layer models seasonality, the third layer is

a general linear predictor, and the last is a general non-linear model in the form of a

Temporal Convolution Network. While the first three layers are local to each component

of the time series, the last also integrates global statistics from additional time series,
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7. Interpretable Residual Temporal Convolutional Networks

as in [Flunkert et al., 2017, Sen et al., 2019]. The model is trained with a predictive

loss and an automatic model selection criterion which exploits the upper bound of the

marginal likelihood introduced in Chapter 5.

The detection module simply tests the hypothesis that the prediction residual is sta-

tionary. This is done via the likelihood ratio between the distributions before and after

a given point in time of the candidate anomaly time ta, as customary, but without

requiring knowledge of these distributions. Instead, we introduce a closed-form approx-

imation of the likelihood ratio derived from an upper bound of the f -divergence between

the two distributions computed directly from the prediction residuals. The sequence of

likelihood ratios is aggregated over time and compared to a data-dependent adaptive

threshold using the CUMSUM method.

7.1 Anomaly detection for time series data

A time series is an ordered sequence of data points, which can be represented as a map

from a set of time indices to a vector space. We focus on discrete and regularly spaced

time indices, and thus ignore literature specific to asynchronous time processes. An

anomaly is, fundamentally, a violation of continuity. When analyzing time series for

anomaly detection (AD), there is an underlying assumption that the mechanisms that

generate the data are stationary, so there are some (unknown, latent) parameters that

are constant during normal operation, and change as a result of an anomaly. Since

we operate in a discrete time domain, there is no natural notion of continuity. Any

anomaly detection system thus implicitly or explicitly defines a criterion for continuity,

which necessarily depends on what (discriminant) function is assumed to be constant,

over what window of observation, to within what level of tolerance. Di↵erent meth-

ods for time series anomaly detection can therefore be taxonomized by their choice

of (i) discriminant function, (ii) continuity criterion, and (iii) optimization method to

determine the tolerance threshold. It is common to use the prediction error as the dis-

criminant [Braei and Wagner, 2020], and the likelihood ratio between the distribution

of the prediction error before and after a given time instant as the continuity criterion

[Yashchin, 1993]. More recent methods compute the discriminant using DNNs [Munir

et al., 2019, Geiger et al., 2020, Su et al., 2019].

The method we proposed in this chapter follows these standard and well established

principles, but introduces novel elements in the ingredients (i) and (ii). Specifically, our

contributions are:

(i) A deep neural network architecture that explicitly isolates interpretable factors
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7.1. Anomaly detection for time series data

such as slow trends, quasi-periodicity, and linearly predictable statistics [Oreshkin et al.,

2019, Cleveland et al., 1990], and incorporates statistics from other time series as con-

text/side information (Section 7.2). The network is trained with a predictive criterion

that requires no supervision, and the prediction residual is the discriminant function

on which the hypothesis of continuity is tested. Explicit regularization added to the

prediction loss is used for model complexity selection (Section 7.3)

(ii) The decision function for whether a time instant t is an anomaly is based on

the cumulation of likelihood ratios between the distributions of prediction residuals

in (i) before and after t (Section 7.4). Since we do not know the distributions, we

present a closed-form approximation of the likelihood ratio from the given samples

(Section 7.4.2). This is derived from an approximation of the f -divergence between the

distribution of residuals before and after a candidate anomaly time instant ta [Nguyen

et al., 2010, Liu et al., 2012], which entails a tunable parameter corresponding to the

length of observation.

The resulting method, STRIC, has the advantage of separating interpretable com-

ponents due to trends and seasonality without reducing the representative power of a

generic architecture. The parameters of each of the layers are trained after random

initialization, but both the initialization and the regularization act to bias the solution

towards trends (poles of the corresponding filters close to the origin), periodicity (poles

on the unit circle), and linear predictability. At initialization, the network is approxi-

mately equivalent to a multi-scale SARIMA model [Adhikari and Agrawal, 2013], which

can be reliably applied out-of-the-box on most time series. However, as more data is

acquired, any part of the system can be further fine-tuned in an end-to-end fashion.

Di↵erently from previous work [Bai et al., 2018, Munir et al., 2019, Sen et al., 2019],

we provide our temporal model with an interpretable structure (first module) which

is similar to [Oreshkin et al., 2019]. Compared to previous works on interpretability

of DNNs [Tsang et al., 2018] our architecture is the first one to explicitly solve inter-

pretability for time series by means of TCN and regularization without assuming any

prior knowledge on the data [Guen et al., 2020]. Moreover, we endow our architecture

the capability to extract global statistics from other time series and locally aggregate

such information as context to predict each time series (second module) [Sen et al.,

2019]. The basic building block of these modules are causal convolutions [Bai et al.,

2018]. Since TCNs tend to overfit, we constrain our TCN’s representational power by

enforcing fading memory [Zancato and Chiuso, 2021].

Our method outperforms both classical statistical methods [Braei and Wagner, 2020]

and DNNs [Munir et al., 2019, Geiger et al., 2020, Su et al., 2019] on di↵erent anomaly
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detection benchmarks [Laptev and Amizadeh, 2020, Lavin and Ahmad, 2015] (Sec-

tion 7.5). Moreover, we show it can be employed to detect anomalous patterns on

complex data such as text embeddings of newspaper articles (Figure 7.9).

Note that an anomaly, as defined above, is neither a property of a datum, nor of

the underlying system that generates the data. Rather, an anomaly is a time instant:

at that time instant, either we receive an isolated observation that is inconsistent with

normal operation (outlier measurement), or a discrete change occurs in the mechanism

that generates the data (change-point) that persists beyond that time instant [Geiger

et al., 2020, Braei and Wagner, 2020, Basseville and Nikiforov, 1993]. A setpoint

change can only be determined post-mortem, so setpoint change detection involves a

“look-ahead” window. Our method treats these two phenomena in a unified manner,

without the need to di↵erentiate between outliers and setpoint changes, with specialized

detectors for each. Once the predictor is built our method can be used online, detecting

anomalies soon after occurrence and without waiting for the entire data stream to be

observed.

7.2 Interpretable Residual Temporal Convolutional Architecture

In this chapter we shall be mainly focused on multi-variate time series {y(t)} with t 2 Z
and y(t) 2 Rn, we stack observations from time t to t + k � 1 and denote the resulting

matrix as Y t+k�1

t
:= [y(t), y(t+1), ..., y(t+ k� 1)] 2 Rn⇥k. The row index refers to the

dimension of the time series while the column index refers to the temporal dimension.

At time t, sub-sequences containing the np past samples up to time t�np +1 are given

by Y t

t�np+1
(note that we include the present data into the past data), while future

samples up to time t + nf are Y
t+nf

t+1
. We will use past data to predict future ones,

where the length of past and future intervals is an hyper-parameter that is up to the

user to design.

Our architecture is depicted in Figure 7.1. Its basic building blocks are causal con-

volutions [Bai et al., 2018], with a fixed-size 1-D kernel with input elements from time

t and earlier. Rather than initializing the convolutional filters randomly, as commonly

done in deep learning, we initialize the weights so that each layer is biased to attend at

di↵erent components of the signal, as explained in the following.

Linear module. The first (linear) module is interpretable and captures local statis-

tics of a given time series by means of a cascade of learnable linear filters. Its first layer

models and removes slow-varying components in the input data using causal Hodrick

Prescott (HP) filters [Ravn and Uhlig, 2002]. The second layer models and removes

132



7.2. Interpretable Residual Temporal Convolutional Architecture
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Figure 7.1: STRIC predictor architecture.
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Figure 7.2: Interpretable blocks
structure. Time features are extracted
independently for each time series (see
Appendix D.1 for more details).

periodic components using filters with periodic impulse responses. Finally, the third

layer implements a linear stationary filter bank.

We treat the impulse responses parameters of the linear filters as trainable param-

eters. We initialize the trend layer with di↵erent HP smoothness degrees while we

initialize the periodic and linear-stationary layers with randomly chosen poles [Farah-

mand et al., 2017] (on the unit circle and within the unit circle).

Remark 7.1. The number of linear filters used in each layer is chosen so that their

poles provide a good covering of the unit circle (see [Farahmand et al., 2017] for more

details).

Non-linear module. The second (non-linear) module aggregates global statistics

from di↵erent time series (Section 5.1.2). It takes as input the prediction residual of

the linear module and outputs a matrix G(Y t

t�np+1
) 2 Rl⇥np where l is the number of

output features extracted by the TCN model. The row (G(Y t

t�np+1
)T )j with j 2 [np]

of the non-linear features is computed using data from t � np + j (due to the internal

structure of a TCN network, see Section 5.1.2). We build a linear predictor on top of

G(Y t

t�np+1
) for each single time series independently: the predictor for the i-th time

series is given by: (ŷTCN(t + 1))i := aT
i
G(Y t

t�np+1
)bi where ai 2 Rl and bi 2 Rnp

Eq. (5.3). Note ai combines features (uniformly in time) so that we can interpret it as

a feature selector. While bi aggregates relevant features across time indices to build the

one-step ahead predictor (see Appendix D.1 for more details).

Note that the third layer of the linear module is a superset of preceding ones, and
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the non-linear module is a superset of the whole linear module. While this makes the

model redundant, we show that this design, coupled with proper initialization and reg-

ularization, improves the reliability and intepretability of the final model. We improve

filters optimization by sharing their kernel parameters among di↵erent time series so

that global information (e.g., common trend shapes, periodicities, or linear stationary

components) can be extracted. In the following we shall exploit the automatic com-

plexity selection mechanism based on the upper bound on the marginal likelihood we

introduced in Chapter 5, so that the non-linear model is forced to only look at the most

relevant past.

7.3 Bayesian Automatic Complexity Selection

For simplicity, we consider for now a scalar time series so that the TCN-based fu-

ture predictor can be written as: ŷTCN(t + 1) := aTG(Y t

t�np+1
)b = X̂TCNb where

X̂TCN 2 R1⇥np is the output of the TCN block. The predictor depends on non-linear

statistics X̂TCN w.r.t. the past window Y t

t�np+1
(the memory of the predictor). Ideally,

np should be large enough to capture the memory of the system, so that the predictor

can approximate arbitrarily well the “optimal” predictor and should not be chosen to

face a bias-variance trade-o↵. In practice, too flexible feature extractors (such as TCNs

or plain DNNs) are prone to overfitting (Section 5.2 and Section 5.3). Therefore, some

regularization is needed to control model complexity and benefit from having a large

memory window. We shall employ the regularized loss inspired by Bayesian arguments

which we introduced in Section 5.3. Fading regularization allows us to use an architec-

ture with a “large enough” past horizon np (i.e., larger than the true system memory)

and automatically select the relevant past to avoid overfitting. Such information is

exposed to the user through an interpretable parameter � (Section 5.3) that directly

measures the relevant time scale of the signal.

The model structure we consider is linear in b and we can therefore stack the pre-

dictions of each available time index t to get the following linear predictor on the

whole future data available: Ŷb,W = FW b where F 2 Rnf⇥np is obtained by stacking

X̂TCN(Y i

i�np+1
) for i = t, ..., t+nf �1. In this way Theorem 5.1 can be directly applied

(with b = ✓ together with the normalization scheme in Section 5.3.2).

7.4 A novel non-parametric anomaly detector

In this section, we present our anomaly detection method based on a variational approx-

imation of the likelihood ratio between two windows of model residuals. Our temporal
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residual architecture model produces the prediction residual after removing trends,

periodicity, and stationary (linear) components, as well as considering global covari-

ates. Such a prediction residual is used to test the hypothesis that the time instant

t is anomalous by comparing its statistics before t on temporal windows of length np

and nf . The detector is based on the likelihood ratios aggregated sequentially using

the classical CUMSUM algorithm [Page, 1954, Yashchin, 1993]. CUMSUM, however,

requires knowledge of the distributions, which we do not have.

The problem of estimating the densities is hard [Vapnik, 1998] and generally in-

tractable for high-dimensional time series [Liu et al., 2012]. We circumvent this prob-

lem by directly estimating the likelihood ratio with a variational characterization of

f -divergences [Nguyen et al., 2010] which involves solving a convex risk minimization

problem in closed form.

In Section 7.4.1, we summarize the standard material necessary to derive our new es-

timator and the resulting anomaly test. The overall method is entirely unsupervised,

and users can tune the scale parameter (corresponding to the window of observation

when computing the likelihood ratios) and the coe�cient of CUMSUM, depending on

the application and desired operating point in the trade-o↵ between missed detection

and false alarms.

7.4.1 Likelihood Ratios and CUMSUM

CUMSUM [Page, 1954] is a classical Sequential Probability Ratio Test [Basseville and

Nikiforov, 1993, Liu et al., 2012] of the null hypothesis H0 that the data after the given

time c comes from the same distribution as before, against the alternative hypothesis

Hc that the distribution is di↵erent. We denote the distribution before c as pp and the

distribution after the anomaly at time c as pf .

If the density functions pp and pf were known (we shall relax this assumption later),

the optimal statistic to decide whether a datum y(i) is more likely to come from one or

the other is the likelihood ratio s(y(i)). According to the Neyman-Pearson lemma: H0

is accepted if the likelihood ratio s(y(i)) is less than a threshold chosen by the operator,

otherwise Hc is chosen. In our case, the competing hypotheses are H0 = no anomaly

has happened and Hc = an anomaly happened at time c. We denote with pH0 and pHc

the PDFs under H0 and Hc so that: pH0(Y
K

1
) = pp(Y K

1
) and pHc(Y

c�1

1
) = pp(Y

c�1

1
),

pHc(Y
K
c | Y c�1

1
) = pf (Y K

c | Y c�1

1
). Therefore the likelihood ratio is:

⌦t

c :=
pHc(Y

t

1
)

pH0(Y
t

1
)

=
pp(Y

c�1

1
)pf (Y t

c | Y c�1

1
)

pp(Y t

1
)

=
pf (Y t

c | Y c�1

1
)

pp(Y t
c | Y c�1

1
)

=
tY

i=c

pf (y(i) | Y i�1

1
)

pp(y(i) | Y i�1

1
)

(7.1)
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To determine the presence of an anomaly, we can compute the cumulative sum St
c :=

log ⌦t
c of the (log) likelihood ratios, which depends on the time c, and estimate c⇤

using a maximum likelihood criterion, corresponding to the detection function ht =

max1ct St
c. The first instant at which we can confidently assess the presence of a

change point (a.k.a. stopping time) is: cstop = min{t : ht � ⌧} where ⌧ is a design

parameter that modulates the sensitivity of the detector depending on the application.

The final estimate ĉ of the true change point c⇤ after the detection cstop is simply

given by the timestamp c at which the maximum of ht = max1ct St
c is achieved.

In Appendix D.3, we provide an alternative derivation that shows the CUMSUM is a

comparison of the test statistic with an adaptive threshold that keeps complete memory

of past ratios. The next step is to relax the assumption of known densities, which we

bypass in the next section by directly approximating the likelihood ratios to compute

the cumulative sum.

Likelihood ratio estimation with Pearson divergence

The goal of this section is to tackle the problem of estimating the likelihood ratio of

two general distributions pp and pf given samples. To do so, we leverage a variational

approximation of f -divergences [Nguyen et al., 2010] whose optimal solution is directly

connected to the likelihood ratio. For di↵erent choices of divergence function, di↵erent

estimators of the likelihood ratio can be built. We focus on a particular divergence

choice, the Pearson divergence, since it provides a direct estimate of the likelihood

ratio and the variational approximation can be solved in closed form (Appendix D.4).

Proposition 7.1 (Variational approximation of likelihood ratios [Nguyen et al., 2010,

Liu et al., 2012]). Let � := pf/pp be the likelihood ratio of the unknown distributions

pf and pp. Let F := {fi : fi ⇠ pf , i = 1, ..., nf} and H := {hi : hi ⇠ pp, i = 1, ..., np} be

two sets containing nf and np samples i.i.d. from pf and pp respectively. An empirical

estimator �̂ of the likelihood ratio � is given by the solution to the following convex

optimization problem:

�̂ = arg min
�

1

2np

npX

i=1

�(hi)
2 � 1

nf

nfX

i=1

�(fi) (7.2)

Proposition 7.2 (Optimal regularized likelihood ratio estimator [Liu et al., 2012,

Kanamori et al., 2009]). Let � in Equation (7.2) belong to the Reproducing Kernel

Hilbert Space � induced by the kernel k. Let the kernel sections be centered on the

set of data Str and let the kernel matrices evaluated on the data from pf and pp be
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Kf := K(F , Str) and Kp := K(H, Str) respectively. The optimal regularized empirical

likelihood ratio estimator on a new datum e is given by:

�̂(e) =
np

nf

K(e, Str)
⇣
KT

p Kp + np�Inp+nf

⌘
�1

KT

f
. (7.3)

Remark 7.2. The estimator in Equation (7.3) is not constrained to be positive. Nonethe-

less, the positivity constraints can be enforced. In this case, the closed form solution is

no longer valid but the problem remains convex. Note the kernel sections centers are

Str = {H, F}.

7.4.2 Subspace likelihood ratio estimation and CUMSUM

In this section, we present our anomaly detector estimator. We test for an anomaly in

the data Y t

1
by looking at the prediction residuals Et

1
Eq. (5.1), which provide a su�cient

representation of Y t

1
(Appendix D.5). We therefore assume we are given the prediction

errors Et

1
obtained from the time series predictor that is assumed to model the normal

behaviour of the time series (Section 7.2). This guarantees that the sequence Et

1
is

white in each of its normal subsequences. On the other hand, if the model is applied to

a data subsequence which contains the abnormal condition, the residuals are not white.

To apply the CUMSUM we need the likelihood ratio given in Eq. (7.1), we can

express the probability density functions of the two competing hypotheses for Y t
c as:

p(Y t

c ) =
tY

i=c

p(y(i) | Y i�1

c ) =
tY

i=c

p(e(i)) normal conditions

p(Y t

c ) =
tY

i=c

p(y(i) | Y i�1

c ) =
tY

i=c

p(e(i) | Ei�1

c ) abnormal conditions

These two conditions in turn influence the log likelihood ratio test as follows: under

H0 =)
Q

t

i=c

pf (e(i))

pp(e(i))
while under Hc =)

Q
t

i=c

pf (e(i)|E
i�1
c )

pp(e(i))
. The main issue here is the

numerator under Hc: the distribution of residuals changes at each time-stamp (it is a

conditional distribution) and pf (e(i) | Ei�1
c ) is di�cult to approximate (it requires the

model of the fault). In the following we show that replacing pf (e(i) | Ei�1
c ) with pf (e(i))

allows us to compute a lower bound on the cumulative sum. Such an approximation is

necessary to estimate the likelihood ratio in abnormal conditions, the main downside

of this approximation is that the detector becomes slower (it needs more time to reach

the stopping time threshold).

Applying the independent likelihood test in a correlated setting: In Ap-
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pendix D.5 we prove that treating pf (e(i) | Ei�1
c ) as independent random variables

pf (e(i)) for i = 1, ..., t allows us to compute a lower bound on the log likelihood log ⌦t
c

(i.e. the cumulative sum). We denote the cumulative sum of the log likelihood ratio

using independent variables as log ⌦̄t
c =

P
t

i=c
log

pf (e(i))

pp(e(i))
.

Proposition 7.3 (Lower bound on the cumulative sum). Assume a change happens

at time c so that Hc is true and the following log likelihood ratio holds true: log ⌦t
c =

P
t

i=c
log

pf (e(i)|E
i�1
c )

pp(e(i))
. Then it holds log ⌦t

c � log ⌦̄t
c.

Estimating the likelihood ratio on the prediction residuals: We estimate

the likelihood ratio of pf and pp on a datum et as �̂t(et). �̂t is obtained by applying

Equation (7.3) on the past window of size np +nf . At each time instant t, we compute

the necessary kernel matrices as:

Kf (E
t

t�nf+1, E
t

t�np�nf+1)

Kp(E
t�nf

t�np�nf+1
, Et

t�np�nf+1)

Finally, we can compute the detector function by composing the cumulative sum of

the estimated likelihood ratios: Ŝt
c :=

P
t

i=c
log �̂i(ei).

Remark 7.3 (E↵ects of the independence assumption). At time t, the likelihood ratio

is estimated assuming i.i.d. data. This assumption holds if no anomaly happened but

does not hold in the abnormal situation since residuals are not i.i.d. As we proved in

Proposition 7.3 treating correlated variables as uncorrelated provides a lower bound on

the actual cumulative sum of likelihood ratios. In practice, for a fixed threshold, this

means that the detector cumulates less and therefore it requires more time to reach the

threshold value.

How do np and nf a↵ect our detector? The choice of the windows length (np

and nf ) is fundamental and highly influences the likelihood estimator. Using small

windows makes the detector highly sensible to both point and sequential outliers, while

larger windows are better suited to estimate only sequential outliers. We now assume

np = nf and study how both small and large values a↵ect the behaviour of our detector

in simple working conditions.

In Figure 7.3 and Figure 7.4 we compute the cumulative sum of log likelihood ratios

estimated from data on equally sized windows. Intuitively any local minimum after a

“large” (depending on the threshold ⌧) increase of the cumulative sum is a candidate

abnormal point.

In Figure 7.5 and Figure 7.6 we compare the cumulative sum of estimated likelihood
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Figure 7.3: Change point: Cumulative
sum (blue) obtained with our method in a
synthetic example. We use the cumulative
sum of estimated likelihood ratios on data
in which a change point is present at t =
60. We use np = nf = 20 and kernel
length scale=0.2

Figure 7.4: Point anomaly: Cumulative
sum (blue) obtained with our method in a
synthetic example. We use the cumulative
sum of estimated likelihood ratios on data
in which a point outlier is present at t =
60. We use np = nf = 2 and kernel length
scale=2.

ratios on data in which both sequential and point outliers are present. In particular we

highlight that large window sizes np and nf are usually not able to capture point anoma-

lies Figure 7.5 while using small window sizes allow to detect both (at the expenses of

a more sensitive detector) Figure 7.6.

Remark 7.4. The choice of the windows length (np and nf ) is fundamental and highly

influences the likelihood estimator. Using small windows makes the detector highly

sensible to point outliers, while larger windows are better suited to estimate sequential

outliers.

7.5 Experiments

In this section, we show STRIC can be successfully applied to detect anomalous be-

haviours on di↵erent anomaly detection benchmarks. In particular, we test our novel

residual temporal structure, the automatic complexity regularization and the anomaly

detector on the following datasets: Yahoo [Laptev and Amizadeh, 2020], NAB [Lavin

and Ahmad, 2015], CO2 Dataset1 (Appendix D.6). To show the general applicabil-

ity and flexibility of our method, we test STRIC on the challenging task of detecting

anomalous events in time series generated from embeddings of articles from the New

1https://www.kaggle.com/txtrouble/carbon-emissions

139



7. Interpretable Residual Temporal Convolutional Networks

Figure 7.5: Large np and nf : Cumula-
tive sum (blue) obtained with our method
in a synthetic example. We use the cu-
mulative sum of estimated likelihood ra-
tios on data which contain both change
points (t = 60 and t = 200) and point
outliers (t = 80 and t = 160). We use
np = nf = 20 and kernel length scale=1.

Figure 7.6: Small np and nf : Cumula-
tive sum (blue) obtained with our method
in a synthetic example. We use the cumu-
lative sum of estimated likelihood ratios
on data which contain both change points
(t = 60 and t = 200) and point outliers
(t = 80 and t = 160). We use np = nf = 3
and kernel length scale=5.

York Times [Sandhaus, 2008]. See Appendix D.7 for a description of the data normal-

ization and experimental setup.

STRIC interpretable time series decomposition. In Figure 7.7 we show

STRIC’s interpretable decomposition. We report predicted signals (first row), esti-

mated trends (second row) and seasonalities (third row) for di↵erent datasets. For all

experiments, we plot both training data (first 40% of each time series) and test data.

Note the interpretable components of STRIC generalize outside the training data, thus

making STRIC work well on non-stationary time series (e.g. where the trend component

is non negligible and typical non linear models overfit, see Section D.7.2).

Remark 7.5 (Additive time series decomposition). Our residual framework assumes

that the input time series is the addition of trend, seasonality and residual series.

However, it might be possible that the three components are not linearly dependent

(e.g. a multiplicative decomposition might be necessary). In these circumstances it

would simply be necessary to pre-process the time-series by means of a logarithmic

function. This is a standard approach used for time series decomposition techniques

and it is indeed applicable to our method. We point out that the current version

of our algorithm does not automatically discover which type of decomposition to use

and it is the user’s responsibility to recognize whether the additive or multiplicative
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Figure 7.7: We test STRIC time series intepretability on di↵erent datasets (columns).
In each panel we are displaying both training data and test data a reported (see col-
ors). First row: STRIC time series predictor (output of non-linear module). Second
row: Trend components extracted by the interpretable blocks. Third row: Seasonal
components extracted by the interpretable blocks.

decomposition is better suited, this is not di↵erent to standard practice on STL based

methods [Cleveland et al., 1990].

Ablation study. We now compare the prediction performance of a general TCN

model with our STRIC method in which we remove the interpretable module and the

fading regularization one at the time. In Table 7.1, we report the training and test

RMSE prediction errors for di↵erent datasets while keeping all the training parame-

ters the same (e.g. training epochs, learning rates etc.) and model parameters (e.g.

nb = 100). Overall, the addition of the linear interpretable model before the TCN

slightly improves the test error while not changing the training error. We note this

e↵ect is more visible on Yahoo A2, A3, A4, mainly due to the non-stationary nature

of these datasets and the fact that TCNs do not easily approximate trends [Braei and

Wagner, 2020] (we further tested this in Section D.7.1). While STRIC generalization

is always better than a standard TCN model and STRIC’s ablated components, we

note that applying fading memory regularization alone to a standard TCN might not

be enough: this highlights that the benefits of combining the linear module and the

fading regularization together are not a trivial “sum of the parts”. Consider for ex-

ample Yahoo A1: STRIC achieves 0.62 test error, the best ablated model (TCN +

Linear) 0.88 while TCN + Fading does not improve over the baseline TCN. A similar

observation holds for the CO2 Dataset. We believe fading regularization might not

be beneficial (nor detrimental) for times series containing purely periodic components
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Table 7.1: Ablation study on the RMSE of prediciton errors: We compare a
standard TCN model with our STRIC predictor and some variation of it (using the
same train hyper-parameters).

D
a
ta

se
ts

TCN TCN + Linear TCN + Fading STRIC pred

Train Test Train Test Train Test Train Test

Yahoo A1 0.10 0.92 0.10 0.88 0.44 0.92 0.43 0.62
Yahoo A2 0.11 0.82 0.13 0.35 0.20 0.71 0.14 0.30
Yahoo A3 0.13 0.43 0.16 0.22 0.15 0.40 0.19 0.22
Yahoo A4 0.15 0.61 0.19 0.35 0.17 0.55 0.23 0.24
CO2 Dataset 0.14 0.62 0.15 0.45 0.18 0.61 0.33 0.41
NAB Tra�c 0.03 1.06 0.04 1.00 0.62 0.93 0.83 0.74
NAB Tweets 0.18 1.02 0.20 0.98 0.47 0.83 0.70 0.77

which correspond to infinite memory systems (systems with unitary fading coe�cient).

In such cases the interpretable module is essential in removing the periodicities and

providing the regularized non-linear module (TCN + Fading) with an easier to model

residual signal. We refer to Figure 7.7 (first column) for a closer look on a typical time

series in CO2 dataset, note it contains a periodic component which is captured by the

seasonal part of the interpretable model. To conclude, our proposed fading regular-

ization has (on average) a beneficial e↵ect in controlling the complexity of a standard

TCN model and reduces its generalization gap (⇡ 40% reduction). Moreover, coupling

fading regularization with the interpretable module guarantees the best generalization

overall.

Automatic complexity selection. In Figure 7.8, we test the e↵ects of our au-

tomatic complexity selection (fading memory regularization) on STRIC. We compare

STRIC with a standard TCN model and STRIC without regularization as the mem-

ory of the predictor increases. The test error of STRIC is uniformly smaller than a

standard TCN (without interpretable blocks nor fading regularization). Adding inter-

pretable blocks to a standard TCN improves generalization for a fixed memory w.r.t.

standard TCN, but gets worse (overfitting occurs) as soon as the available past data

horizon increase. On the other hand, the generalization gap of STRIC does not dete-

riorate as the memory of the predictor increases (see Section D.7.1 for a comparison

with other metrics).

Anomaly detection. While recent works show deep learning models might not be

well suited to solve AD on standard anomaly detection benchmarks [Braei and Wag-

ner, 2020], we prove deep models can be e↵ective, provided they are used with a proper

inductive bias and regularization. In Table 7.2, we compare STRIC against statistical
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Figure 7.8: Automatic com-
plexity selection: Fading mem-
ory regularization preserves gen-
eralization gap as the memory of
the predictor increases on NAB
Tweets.

Figure 7.9: Anomaly score on the New
York Times dataset. Our method finds
anomalies in a complex time series consisting of
the BERT embedding of articles from the New
York Times. Peaks in the anomaly score corre-
spond to historical events that sensibly changed
the content of the news cycle.

and deep learning based anomaly detection methods. Our experiments follow the ex-

perimental setup and evaluation criteria used in [Braei and Wagner, 2020] and [Munir

et al., 2019]. STRIC outperforms most of the statistical based and DNNs based meth-

ods. Note no other method performs consistently (across di↵erent datasets) as good as

STRIC. In particular, STRIC achieves the greatest increase in F1 score on Yahoo A3

compared to other methods based on DNNs. In Appendix D.7, we show this is mainly

due to STRIC’s predictor. In fact, most of the time series in Yahoo A3 are charac-

terized by trend components and seasonalities which STRIC’s interpretable predictor

can easily model (see Section D.7.2). In Appendix D.7, we show some ablation studies

on the e↵ects of the hyper-parameters of STRIC on its performance. In particular, we

find out that STRIC is highly a↵ected by the choice of the length of the windows used

to estimate the likelihood ratio, while not being much sensitive to the choice of the

memory of the predictor (Section D.7.1 and Remark 7.4). Interestingly, STRIC does

not achieve the optimal AUC compared to linear models on Yahoo A4. The ability of

linear models to outperform non-linear ones on Yahoo A4 is known in literature (e.g.

in [Geiger et al., 2020] any non-linear model is outperformed by AR/MA models of the

proper complexity). The main motivation of this is the fact that modern (non-linear)

methods tend to overfit on Yahho A4 and therefore generalization is usually low. We

highlight that, thanks to fading regularization and model architecture, STRIC does not

exhibit severe overfitting despite having larger complexity than a SOTA linear model on

Yahoo A4. To conclude, we believe that STRIC merges both the advantages of simple

and interpretable linear models and the flexibility of non-linear ones while discounting
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the major drawbacks: lack of flexibility of linear models and lack of interpretability and

overfitting of non-linear ones (see Appendix D.8 for a more in depth discussion).

Anomaly detection on the New York Times dataset. We test STRIC on a

time series consisting of BERT embeddings [Devlin et al., 2019] of New York Times

articles [Sandhaus, 2008] from 2000 to 2007. We set np = nf = 30 days, to be able to

detect change-point anomalies that altered the normal distribution of news articles for

a prolonged period of time. Without any human annotation, STRIC is able to detect

major historical events such as the 9/11 attack, the 2004 Indian Ocean tsunami, and

U.S. elections (Figure 7.9). Additional details and comparison with a baseline model

built on PCA are given in Section D.8.1.

7.6 Discussions and conclusions

In this chapter we show how to build an anomaly detector based on an interpretable

deep learning architecture. Our anomaly detection scheme is composed by two main

building blocks: a time series predictor and an anomaly detector that operates on

the prediction residuals. The three novel ingredients that play a key role are (i) the

inductive bias on the architecture, (ii) the automatic complexity selection that enforces

fading memory of the predictors, and (iii) the unsupervised estimation of the likelihood

ratio, used to compute the test statistic.

Our ablation studies proved the e↵ectiveness and impact of the di↵erent design

choices. In particular, we showed that the interpretable module (which extracts trends,

sesonalities, and linear stationary components) helps STRIC generalize correctly on

non-stationary time series on which standard deep models (such as TCNs) overfit [Braei

and Wagner, 2020]. Moreover, we showed that the fading regularization alone can im-

prove the generalization error up to ⇡ 40% over standard TCN models.

The unsupervised estimation of the likelihood ratio test statistic allows us to extend

CUMSUM-type algorithms to the realistic situation where the data distribution (nom-

inal and faulty) is unknown. In addition, our framework allows us to handle detection

of both outliers and change-points, by tuning suitable parameters.

Thanks to these advances, STRIC outperforms SOTA anomaly detection methods

using several evaluation criteria. Interesting open issues remain: how to tune the

window lengths of the anomaly detector as a function of the signal’s time scale, and

how to design statistically optimal rules to calibrate the detector’s threshold to trade-o↵

false alarms and missed detections.
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Table 7.2: Comparison with SOTA anomaly detectors: We compare STRIC with
other anomaly detection methods on the experimental setup and the same evaluation
metrics proposed in [Braei and Wagner, 2020, Munir et al., 2019]. The baseline models
are: MA, ARIMA, LOF [Shen et al., 2020], LSTM [Braei and Wagner, 2020, Munir
et al., 2019], Wavenet [Braei and Wagner, 2020] , Yahoo EGADS [Munir et al., 2019]
, GOAD [Bergman and Hoshen, 2020], OmniAnomaly [Su et al., 2019], Twitter AD
[Munir et al., 2019], TanoGAN [Bashar and Nayak, 2020], TadGAN [Geiger et al.,
2020] , DeepAR [Flunkert et al., 2017] and DeepAnT [Munir et al., 2019] . STRIC
outperforms most of the other methods based on statistical models and based on DNNs.
See Table D.4 for the same table obtained by looking at the relative performance w.r.t.
STRIC.

M
o
d
el
s

F1-score Yahoo
A1

Yahoo
A2

Yahoo
A3

Yahoo
A4

NAB
Tweets

NAB
Tra�c

ARIMA 0.35 0.83 0.81 0.70 0.57 0.57
LSTM. 0.44 0.97 0.72 0.59
Yahoo EGADS 0.47 0.58 0.48 0.29
OmniAnomaly 0.47 0.95 0.80 0.64 0.69 0.70
Twitter AD 0.48 0 0.26 0.31
TanoGAN 0.41 0.86 0.59 0.63 0.54 0.51
TadGAN 0.40 0.87 0.68 0.60 0.61 0.49
DeepAR 0.27 0.93 0.47 0.45 0.54 0.60
DeepAnT 0.46 0.94 0.87 0.68
STRIC (ours) 0.48 0.98 0.89 0.68 0.71 0.73

M
o
d
el
s

AUC Yahoo
A1

Yahoo
A2

Yahoo
A3

Yahoo
A4

NAB
Tweets

NAB
Tra�c

MA 0.8681 0.9942 0.9942 0.9864
ARIMA 0.8730 0.9891 0.990 0.9709
LOF 0.9037 0.9011 0.6405 0.6403 0.4906 0.4283
Wavenet 0.8239 0.7614 0.5796 0.5924
LSTM 0.8121 0.7348 0.5781 0.5891
GOAD 0.8933 0.9212 0.8879 0.866 0.5724 0.6414
DeepAnT 0.8976 0.9614 0.9283 0.8597 0.5542 0.6371
STRIC (ours) 0.9308 0.9999 0.9999 0.9348 0.6578 0.6849
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8
Conclusions

The main questions posed in the thesis are:

1. What is the connection between learning dynamics and generalization of over-

parametrized DNNs?

2. How does modern deep learning theory compares with standard practice?

3. Can we exploit domain prior knowledge and explicit regularization to improve

DNNs learning and interpretablity?

To answer both the first and the second questions we exploited the theory of the

Neural Tangent Kernel, which characterizes the learning dynamics of over-parametrized

DNNs. In Chapter 3 and Chapter 4 we empirically show the NTK theory still holds for

finite sized modern DNNs architectures so that the linear approximation of the learning

dynamics is applicable in the fine-tuning case. By means of the model linearization

around initialization we study both Training Time and Generalizability of SOTA DNNs

models trained with fine-tuning.

Both these works started to unblock the adoption of a real-world Computer Vision

AutoML system, nonetheless our theory has a broader applicability range, e.g. it can

be applied to time series without modifications. Typically, in AutoML systems users

fine-tune models selected from a large model zoo testing hundreds of combinations of

di↵erent architectures, pre-training sets and hyper-parameters, but are reluctant to do

so without visibility of the expected rough order of magnitude cost of the training. We

focus on fine-tuning since it is faster and typically performs better than training from

scratch. For these reasons, it is generally the choice in AutoML systems, where users

pay by the hour.
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Our work is an enabler of large-scale AutoML, which we expect will further foster

academic research in the years ahead. The main contributions of this part of thesis are

the methods we propose, which enable a cost estimate and allow reducing a large search

space to fit a user’s budget, a small step toward better accessibility and democratization

of ML. Moreover, our results also go towards better understanding of the functioning of

deep networks, so in that sense our results are contributing to improve interpretability

of deep learning, in a broad sense.

To answer the last question we restrict our scope to time series domain. In particular,

we introduce a novel regularization scheme for DNNs temporal models which only

assumes the fading memory assumption on the underlying system or time series to be

modeled. In Chapter 5, Chapter 6 and Chapter 7 we show how to take advantage of

such prior knowledge to design architectures and explicit regularization schemes which

foster both generalization and interpretability. The flexibility of our method makes it

suitable for di↵erent tasks related to time series modeling: we specifically looked at non-

linear system identification in Chapter 6 and multivariate time series anomaly detection

in Chapter 7. In both cases we proved Bayesian automatic complexity selection criteria

can be applied to DNNs models on time series data.

Summary of Contributions

8.0.1 Training Time Prediction

To summarize, the main contributions of Chapter 3 are:

1. We present both a qualitative and quantitative analysis of the fine-tuning Train-

ing Time as a function of the Gram-Matrix ⇥ of the gradients at initialization

(empirical NTK matrix).

2. We show how to reduce the cost of estimating the matrix ⇥ using random projec-

tions of the gradients, which makes the method e�cient for common architectures

and large datasets.

3. We introduce a method to estimate how much longer a network will need to train

if we increase the size of the dataset without actually having to see the data

(under the hypothesis that new data is sampled from the same distribution).

4. We test the accuracy of our predictions on o↵-the-shelf state-of-the-art models

trained on real datasets. We are able to predict the correct training time within

a 20% error with 95% confidence over several di↵erent datasets and hyperparam-

eters at only a small fraction of the time it would require to actually run the

training (30-45x faster in our experiments).
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In particular, we have shown that we can predict with a 13-20% accuracy the time

that it will take for a pre-trained network to reach a given loss, in only a small fraction

of the time that it would require to actually train the model. We do this by studying

the training dynamics of a linearized version of the model – using the SDE in Eq. (3.1) –

which, being in the smaller function space compared to parameters space, can be solved

numerically. We have also studied the dependency of training time from pre-training

and hyper-parameters (Section 3.3.1), and how to make the computation feasible for

larger datasets and architectures (Section 3.4). Moreover, we have observed that our

method yields predictions that have lower accuracy on some tasks rather than others,

for instance it has lower accuracy on texture-based tasks than object classification.

However, since we consider datasets as a whole, prediction inaccuracies do not impact

any particular cohort or segment of the data.

While we do not necessarily expect a linear approximation around a random ini-

tialization to hold during training of a real (non wide) network, we exploit the fact

that when using a pre-trained network the weights are more likely to remain close to

initialization [Mu et al., 2020], improving the quality of the approximation.

We believe that important avenues for further research can be focused on extending

the applicability of our method to other DNN architectures and on improving Training

Time predictions by considering feedback from training. Recently, some authors [Yang,

2020] extended the NTK theory to a larger class of architectures (e.g. Transformers,

RNNs), we believe the extension of our Training Time prediction algorithm to such

models is feasible and could be very impactful on the community. Moreover we note

that the procedure described in Chapter 3 only relies on information available at initial-

ization and does not require any feedback from the actual training. Hence we believe

that exploiting training feedback (e.g. gradients updates) with the goal of improving

the prediction is an interesting research direction.

8.0.2 Model Selection

Fine-tuning using model zoo is a simple method to boost accuracy. In Chapter 4

we show that while a model zoo may have modest gains in the high-data regime, it

outperforms Imagenet experts networks in the low-data regime. Moreover we show our

model selection saves the cost of brute-force fine-tuning and makes model zoos viable

in practice. In particular, in Chapter 4 by performing fine-tuning and model selection

on our benchmark, we discover the following:

1. We show (Fig. 4.1 and Fig. 4.2) that fine-tuning models in the model zoo can

outperform the standard method of fine-tuning with Imagenet pre-trained ar-
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chitectures and HPO. We obtain better fine-tuning than Imagenet expert with,

both model zoo of single-domain experts (Fig. 4.3) and multi-domain experts

(Fig. 4.4). While in the high-data regime using a model zoo leads to modest

gains, it improves accuracy in the low-data regime.

2. For any given target task, we show that only a small subset of the models in the

zoo lead to accuracy gain (Fig. 4.3). In such a scenario, brute-force fine-tuning

all models to find the few that improve accuracy is wasteful. Fine-tuning with all

our single-domain experts in the model zoo is 40⇥ more compute intensive than

fine-tuning an Imagenet Resnet-101 expert in Table 4.3.

3. Our LGC model selection, and particularly its approximation LFC, can find the

best models from which to fine-tune without requiring an expensive brute-force

search (Table 4.3). With only 3 selections, we can select models that show gain

over Imagenet expert (Fig. 4.5). Compared to Domain Similarity [Cui et al., 2018],

RSA [Dwivedi and Roig, 2019] and Feature Metrics [Ueno and Kondo, 2020], our

LFC score can select the best model to fine-tune in fewer selections, and it shows

the highest ranking correlation to the fine-tuning test accuracy (Fig. 4.7) among

all model selection methods.

Both the empirical results in Chapter 3 and Chapter 4 only consider Computer Vision

tasks, nonetheless our framework is general enough to be applied to other domains

too (e.g. Time Series) provided feedforward and highly overparametrized DNNs are

used. Under these assumptions we believe an interesting, yet incremental future avenue

would be to empirically validate our methods on AutoML systems that are specifically

designed for time series data. Furthermore, we believe that exploiting novel extensions

of the NTK theory [Yang, 2020] to a broader class of DNNs is an interesting research

direction which can unlock and reduce the cost of general AutoML systems for a broader

class of Machine Learning problems.

8.0.3 Fading Memory for Non-Linear System Identification

In Chapter 6 we show that overparametrized DNNs without a proper inductive bias and

regularization fail to solve non-linear system identification benchmarks. We overcome

such a limitation introducing both a new architecture inspired by fading memory sys-

tems and a new regularized loss inspired by Bayesian arguments which in turn allows

for automatic complexity selection based on the observed data. We showed when DNN

based parametric architectures are good alternatives to state of the art non-parametric

models for modelling non-linear systems (mid-large data regime). Moreover we proved
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our method does not su↵er from typical non-parametric models limitations on large

dataset sizes and favourably scales with the number of samples.

We leave to future work the design of optimization schemes which could improve

convergence speed (e.g. using adaptive learning rates algorithms other than Adam and

other stochastic optimization methods designed to improve DNN convergence and gen-

eralization).

8.0.4 Interpretable Residual Temporal Convolutional Networks

In Chapter 7 we show how to build an anomaly detector based on a deep learning

architecture that is both interpretable and reliable. Our anomaly detection scheme is

composed by two main building blocks: a time series predictor and an anomaly detector

that operates on the prediction residuals. The three novel ingredients that play a key

role are (i) the inductive bias on the architecture, (ii) the automatic complexity selection

that enforces fading memory of the predictors, and (iii) the unsupervised estimation of

the likelihood ratio, used to compute the test statistic.

Our ablation studies proved the e↵ectiveness and impact of the di↵erent design

choices. In particular, we showed that the interpretable module (which extracts trends,

sesonalities, and linear stationary components) helps STRIC generalize correctly on

non-stationary time series on which standard deep models (such as TCNs) overfit [Braei

and Wagner, 2020]. Moreover, we showed that the fading regularization alone can im-

prove the generalization error up to ⇡ 40% over standard TCN models.

The unsupervised estimation of the likelihood ratio test statistic allows us to extend

CUMSUM-type algorithms to the realistic situation where the data distribution (nom-

inal and faulty) is unknown. In addition, our framework allows us to handle detection

of both outliers and change-points, by tuning suitable parameters.

Thanks to these advances, STRIC outperforms SOTA anomaly detection methods

using several evaluation criteria. Interesting open issues remain: how to tune the

window lengths of the anomaly detector as a function of the signal’s time scale, and

how to design statistically optimal rules to calibrate the detector’s threshold to trade-o↵

false alarms and missed detections.

153





Appendices





A
Training Time Prediction

A.1 Target datasets

Dataset Number of images Classes Mean samples per class Imbalance factor

cifar10 [Krizhevsky, 2009] 50000 10 5000 1
cifar100 [Krizhevsky, 2009] 50000 100 500 1
cub200 [Welinder et al., 2010] 5994 200 29.97 1.03
fgvc-aircrafts [Maji et al., 2013] 6667 100 66.67 1.02
mit67 [Quattoni and Torralba, 2009] 5360 67 80 1.08
opensurfacesminc2500 [Bell et al., 2015] 48875 23 2125 1.03
stanfordcars [Krause et al., 2013] 8144 196 41.6 2.83

Table A.1: Training Time Target datasets.

A.2 Additional Experiments

A.2.1 E↵ective learning rate

In Section 3.3.1 we note that as long as the e↵ective learning rate ⌘̃ = ⌘/(1�m) remains

constant, runs with di↵erent learning rate ⌘ and momentum m will have similar learning

curve. We show a formal derivation in Appendix A.4. In Figure A.1 we show additional

experiments, similar to Figure 3.2, on several other datasets to further confirm this

point.

157



A. Training Time Prediction

Figure A.1: Additional experiments on the e↵ective learning rate. We show
additional plots showing the error curves obtained on di↵erent datasets using di↵erent
values of the e↵ective learning rate ⌘̃ = ⌘/(1 � m), where ⌘ is the learning rate and
m is the momentum. Each line is the observed error curve of a model trained with a
di↵erent learning rate ⌘ and momentum m. Lines with the same color have the same
ELR ⌘̃, but each has a di↵erent ⌘ and m. As we note in Section 3.3.1, as long as ⌘̃
remains the same, training dynamics with di↵erent hyper-parameters will have similar
error curves.

A.2.2 Di↵erent training time definitions

Our method to predict training time can be extended to other training time definitions.

We started defining training time as the first time the (smoothed) loss is below a given

threshold (which we then normalized w.r.t. the total computational budget allowed,

see Section 3.6). Similarly one can define training time as the first time training error

decreases by less than ✏ over the last T epochs. With this definition we achieve 13%

avg. relative prediction error and 0.94 Pearson’s correlation between predicted and

ground-truth time in the same experimental setting we used in Section 3.6.

A.3 Training Time prediction on larger datasets

In Section 3.4 we suggest that, in the case of MSE loss, it is possible to predict the

training time on a large dataset using a subset of the samples. To do so we leverage

the fact that the eigenvalues of ⇥ follows a power-law [Fan and Wang, 2020] which is

independent on the size of the dataset for large enough sizes (see Figure 3.4, right).

More precisely, from Proposition 3.2, we know that given the eigenvalues �k of ⇥ and
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the projections pk = (�y · vk)2 it is possible to predict the loss curve using

Lt =
X

k

pke
�2⌘�

2
kt

Let ⇥0 be the Gram-matrix of the gradients computed on the small subset of N0

samples, and let ⇥ be the Gram-matrix of the whole dataset of size N . Using the fact

that, as we increase the number of samples, the eigenvalues (once normalized by the

dataset size) converge to a fixed limit (Figure 3.4, right), we estimate the eigenvalues �k
of ⇥ as follow: we fit the coe�cients s and c of a power law �k = ck�s to the eigenvalues

of ⇥0, and use the same coe�cients to predict the eigenvalues of ⇥. However, we notice

that the coe�cient s (slope of the power law) estimated using a small subset of the

data is often smaller than the slope observed on larger datase (note in Figure 3.4

(right) that the curves for smaller datasets are more flat). We found that using the

following corrected power law increases the precision of the prediction:

�̂k = ck�s+↵

�
N0
N �1

�
.

Empirically, we determined ↵ 2 [0.1, 0.2] to give a good fit over di↵erent combinations

of N and N0. In Figure A.2 (center) we compare the predicted eigenspectrum of ⇥

with the actual eigenspectrum of ⇥.

The projections pk follow a similar power-law, albeit more noisy (see Figure A.2,

right), so directly fitting the data may give an incorrect result. However, notice that in

this case we can exploit an additional constraint, namely that
P

k
pk = k�yk2 (k�yk2

is a known quantity: labels and initial model predictions on the large dataset). Let

pk = (�y · vk)2 and let p0
k

= (�y · v0
k
)2 where vk and v0

k
are the eigenvectors of ⇥ and

⇥0 respectively. Fix a small (w.r.t. number of data) k0 (in our experiments, k0 = 100).

By convergence laws [Shawe-Taylor et al., 2005], we have that p0
k
' pk when k < k0.

The remaining tail of pk for k > k0 must now follow a power-law and also be such that
P

k
pk = k�yk2. This uniquely identify the coe�cients of a power law. Hence, we use

the following prediction rule for pk:

p̂k =

8
<

:
p0
k

if k < k0

ak�b if k � k0

where a and b are such that p̂k0 = p0
k0

and
P

k
p̂k = k�yk2.

In Figure A.2 (left), we use the approximated �̂k and p̂k to predict the loss curve on a

dataset of N = 1000 samples using a smaller subset of N0 = 100 samples. Notice that we
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Figure A.2: Training time prediction using a subset of the data. (Left) We
predict the loss curve on a large dataset of N = 1000 samples using a subset of N0 =
100 samples on CIFAR10 (similar results hold for other datasets presented so far).
(Center) Eigenspectrum of ⇥ computed using N0 = 100 samples (orange), N = 1000
samples (green) and predicted spectrum using our method (blue). (Right) Value of
the projections pk of �y on the eigenvectors of ⇥, computed at N0 = 100 (orange) and
N = 1000 (blue). Note that while they approximatively follow a power-law on average,
it is much more “noisy” than that of the eigenvalues. In green we show the predicted
trend using our method.

correctly predict that the convergence is slower on the larger dataset. Moreover, while

training on the smaller dataset quickly reaches zero, we correctly estimate the much

slower asymptotic phase on the larger dataset. Increasing both N and N0 increases

the accuracy of the estimate, since the eigenspectrum of ⇥ is closer to convergence: In

Figure A.3 we show the same experiment as Figure A.2 with N0 = 1000 and N = 4000.

Note the increase in accuracy on the predicted curve.

A.3.1 Prediction of training time using a subset of samples

In Section 3.4 we suggest that in the case of MSE loss, it is possible to predict the

training time on a large dataset using a smaller subset of samples (we discuss the

details in Appendix A.3). In Figure A.3 we show the result of predicting the loss curve

on a dataset of N = 4000 samples using a subset of N = 1000 samples. Similarly, in

Figure A.2 (top row) we show the more di�cult example of predicting the loss curve

on N = 1000 samples using a very small subset of N0 = 100 samples. In both cases we

correctly predict that training on a larger dataset is slower, in particular we correctly

predict the asymptotic convergence phase. Note in the case N0 = 100 the prediction

is less accurate, this is in part due to the eigenspectrum of ⇥ being still far from its

limiting behaviour achieved for large number of data (see Appendix A.3).
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Figure A.3: Training-time prediction using a subset of the data. (Left) Using
the method described in Appendix A.3, we predict (green) the loss curve on a large
dataset of N = 4000 samples (orange) using a subset of N0 = 1000 samples (blue).
In Figure A.2 we show a similar result using a much smaller subset of N0 = 100
samples. (Right) Corresponding estimated training time on the larger dataset at
di↵erent thresholds ✏ compared to the real training time on the larger dataset.

A.4 E↵ective learning rate

We now show that having a momentum term has the e↵ect of increasing the e↵ective

learning rate in the deterministic part of Eq. (3.1). A similar treatment of the momen-

tum term is also in [Smith and Le, 2018, Appendix D]. Consider the update rule of

SGD with momentum:

at+1 = m at + gt+1,

wt+1 = wt � ⌘ at+1,

If ⌘ is small, the weights wt will change slowly and we can consider gt to be approxi-

mately constant on short time periods, that is gt+1 = g. Under these assumptions, the

gradient accumulator at satisfies the following recursive equation:

at+1 = m at + g,

which is solved by (assuming a0 = 0 as common in most implementations):

at = (1�mt)
g

1�m
.

In particular, at converges exponentially fast to the asymptotic value a⇤ = g/(1�m).

Replacing this asymptotic value in the weight update equation above gives:

wt+1 = wt � ⌘a⇤ = wt �
⌘

1�m
g = wt � ⌘̃ g,
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that is, once at reaches its asymptotic value, the weights are updated with an higher

e↵ective learning rate ⌘̃ = ⌘

1�m
. Note that this approximation remains true as long as

the gradient gt does not change much for the time that it takes at to reach its asymptotic

value. This happens whenever the momentum m is small (since at will converge faster),

or when ⌘ is small (gt will change more slowly). For larger momentum and learning

rate, the e↵ective learning rate may not properly capture the e↵ect of momentum.

A.5 Proof of propositions

A.5.1 SDE in function space for linearized networks trained with SGD

We now prove Proposition 3.1 and show how we can approximate the SGD evolution in

function space rather than in parameters space. We follow the standard method used

in [Hayou et al., 2019] to derive a general SDE for a DNN, then we specialize it to

the case of linearized deep networks. Our notation follows [Lee et al., 2019], we define

f✓t(X ) = vec(ft(X )) 2 RCN the stacked vector of model output logits for all examples,

where C is the number of classes and N the number of samples in the training set.

Proof. To describe SGD dynamics in function space we start from deriving the SDE

in parameter space. In order to derive the SDE required to model SGD we will start

describing the discrete update of SGD as done in [Hayou et al., 2019].

✓t+1 = ✓t � ⌘r✓LB(✓t) (A.1)

where LB(✓t) = L(f✓t(XB), YB) is the average loss on a mini-batch B (for simplicity,

we assume that B is a set of indexes sampled with replacement).

The mini-batch gradient r✓LB(✓t) is an unbiased estimator of the full gradient, in

particular the following holds:

E[r✓LB(✓t)] = 0 Cov[r✓LB(✓t)] =
⌃(✓t)

|B| (A.2)

Where we defined the covariance of the gradients as:

⌃(✓t) := E
⇥
(girft(xi)

L)⌦ (girft(xi)
L)
⇤
� E

⇥
girft(xi)

L
⇤
⌦ E

⇥
girft(xi)

L
⇤

and gi := rwf0(xi). The first term in the covariance is the second order moment matrix

while the second term is the outer product of the average gradient.

Following standard approximation arguments (see [Chaudhari and Soatto, 2017] and
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references there in) in the limit of small learning rate ⌘ we can approximate the discrete

stochastic equation Eq. (A.1) with the SDE:

d✓t = �⌘r✓L(✓t)dt +
⌘p
|B|

⌃(✓t)
1
2 dn (A.3)

where n(t) is a Brownian motion.

Given this result, we are going now to describe how to derive the SDE for the output

ft(X ) of the network on the train set X . Using Ito’s lemma (see [Hayou et al., 2019]

and references there in), given a random variable ✓ that evolves according to an SDE,

we can obtain a corresponding SDE that describes the evolution of a function of ✓.

Applying the lemma to f✓(X ) we obtain:

dft(X ) = [�⌘⇥trftL(ft(X ), Y) +
1

2
vec(A)]dt +

⌘p
|B|
r✓f(X )⌃(✓t)

1
2 dn (A.4)

where r✓f(X ) 2 RCN⇥D is the jacobian matrix and D is the number of parameters.

Note A is a N ⇥ C matrix which, denoting by f (j)

✓
(x) the j-th output of the model on

a sample x, is given by:

Aij = Tr[⌃(✓t)r2

✓
f (j)

✓
(xi)].

Using the fact that in our case the model is linearized, so f✓(x) is a linear function of

✓, we have that r2

✓
f (j)(x) = 0 and hence A = 0. This leaves us with the SDE:

dft(X ) = �⌘⇥trftLdt +
⌘p
|B|
r✓f(X )⌃(✓t)

1
2 dn (A.5)

as we wanted. ⌅

A.5.2 Loss decomposition

We now prove Proposition 3.2.

Proof. Let rwfw(X ) = V ⇤U be the singular value decomposition of rwfw(X ) where

⇤ is a rectangular matrix (of the same size of rwfw(X )) containing the singular values

{�1, . . . ,�N} on the diagonal. Both U and V are orthogonal matrices. Note that we

have

S = rwfw(X )Trwfw(X ) = UT⇤T⇤U,

⇥ = rwfw(X )rwfw(X )T = V ⇤⇤TV T .
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A. Training Time Prediction

We now use the singular value decomposition to derive an expression for Lt in case of

gradient descent and MSE loss (which we call Lt). In this case, the di↵erential equation

Eq. (3.1) reduces to:

ḟ lin

t (X ) = �⌘⇥(Y � f lin

t (X )),

which is a linear ordinary di↵erential equation that can be solved in closed form. In

particular, we have:

f lin

t (X ) = (I � e�⌘⇥t)Y + e�⌘⇥tf0(X ).

Replacing this in the expression for the MSE loss at time t we have:

Lt =
X

i

(yi � f lin

t (xi))
2

= (Y � f lin

t (X ))T (Y � f lin

t (X ))

= (Y � f0(X ))T e�2⌘⇥t(Y � f0(X )).

Now recall that, by the properties of the matrix exponential, we have:

e�2⌘⇥t = e�2⌘V ⇤⇤
T
V

T
t = V e�2⌘⇤⇤

T
tV T ,

where e�2⇤⇤
T
t = diag(e�2⌘�

2
1t, e�2⌘�

2
2t, . . .) . Then, defining �y = Y � f0(X ) and denot-

ing with vk the k-th column of V we have:

Lt = �yTV e�2⌘⇤⇤
T
tV T �y

=
nX

k=1

e�2⌘�
2
kt(�y · vk).

where n  min(N, D) is the number of non-null singular values of rwfw(X ).

Now let uk denote the k-th column of UT and rwfw(xi) is the gradient of the i-th

sample (that is the i-th column of rwfw(X )T ). To conclude the proof we only need

to show that �kvk = (rwfw(xi) · uk)Ni=1
. But this follows directly from the SVD

decompostion rwfw(X ) = V ⇤U , since then V ⇤ = rwfw(X )UT . ⌅
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B.1 Approximating NTK matrix with feature similarity

Proposition B.1 (Gradients back-propagation formula [Arora et al., 2019b]). The

partial derivative of the output of a DNN with respect to the parameters of its l-th

hidden layer can be expressed as:

@fw(x)

@W (h)
= b(h)(x)⌦ gh�1(x), h 2 [L + 1]

where

b(h)(x) :=

8
<

:
1 2 R, h = L + 1
q

c�
dh

Dh(x)(W h+1)T b(h+1)(x) 2 Rdh⇥dh , h 2 [L]

Dh(x) := diag(�̇(f (h))(x)) 2 Rdh⇥dh , h 2 [L]

Proposition B.2 (Approximating NTK matrix with activations similarity). Let Ê be

the empirical measure associated to the dataset D. Let fw(x) be a DNN and consider the

explict formula of gradients given in Proposition B.1. Assuming the random variables

(w.r.t. x) ygh�1(x) and b(h)(x) are uncorrelated, it holds:

yT⇥y = N2

LX

h=1

���E[b(h)(x)]
���
2

2

���E[ygh�1(x)]
���
2

2

(B.1)
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B. Model Selection

Proof.

yT⇥y =
NX

i,j

yiyj(⇥)i,j =
NX

i,j

yiyjrwfw(xi)
Trwfw(xj)

=

 
NX

i=1

yirwfw(xi)

!T
0

@
NX

j=1

yjrwfw(xj)

1

A

=
LX

h=1

 
NX

i=1

yib
(h)(xi)⌦ gh�1(xi)

!T
0

@
NX

j=1

yjb
(h)(xj)⌦ gh�1(xj)

1

A

= N2

LX

h=1

Ê[yb(h)(x)⌦ gh�1(x)]T Ê[yb(h)(x)⌦ gh�1(x)]

= N2

LX

h=1

���E[yb(h)(x)⌦ gh�1(x)]
���
2

2

= N2

LX

h=1

���E[b(h)(x)]⌦ E[ygh�1(x)]
���
2

2

(B.2)

= N2

LX

h=1

���E[b(h)(x)]
���
2

2

���E[ygh�1(x)]
���
2

2

where in Eq. (B.2) we used the assumption ygh�1(x) and b(h)(x) are uncorrelated. In the

last equation we applied standard results on the euclidean norm of outer products. ⌅

Remark B.1 (Uncorrelatedness assumption). This assumption does not hold in general,

nonetheless in practice it can be show to be approximately true, see Section 3.1 in

[Martens and Grosse, 2015] for theoretical and empirical justifications.

Remark B.2 (Approximating NTK matrix with feature similarity). Note the term

Ê[ygh�1(x)] measures the correlation between each individual activation and the la-

bel. If activations are correlated with labels, then yT⇥y is larger. Note that in general

it should be necessary to consider all the hidden layers of the DNN. However the contri-

bution of earlier layers is discounted by a factor
��E[b(h)(x)]

��2
2
. So that, as we progress

further down the network (closer to the input), this term may become smaller (since

the mobility of earlier weights may be smaller see Proposition B.1) and hence the con-

tribution of activation-label correlations for these layers is small.
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B.2. Datasets

Dataset Training Images Testing Images # Classes URL

NWPU-RESISC45 [Cheng et al., 2017] 25,200 6300 45 https://www.tensorflow.org/datasets/catalog/resisc45

Food-101 [Bossard et al., 2014] 75,750 25,250 101 https://www.tensorflow.org/datasets/catalog/food101

Logo 2k [Wang et al., 2020] 134,907 32,233 2341 https://github.com/msn199959/Logo-2k-plus-Dataset

Goog. Landmark [Noh et al., 2017] 200,000 15,601 256 https://github.com/cvdfoundation/google-landmark

iNaturalist [Horn et al., 2017] 265,213 3030 1010 https://github.com/visipedia/inat comp

iMaterialist [MalongTech, 2019] 965,782 9639 2019 https://github.com/malongtech/imaterialist-product-2019

Imagenet [Deng et al., 2009] 1,281,167 50,000 1000 http://image-net.org/download

Places-365 [Zhou et al., 2017] 1,803,460 36,500 365 http://places2.csail.mit.edu/download.html

Magnetic Tile Defects [Huang et al., 2018] 1008 336 6 https://github.com/abin24/Magnetic-tile-defect-datasets

UC Merced Land Use [Yang and Newsam, 2010] 1575 525 21 http://weegee.vision.ucmerced.edu/datasets/landuse.html

Oxford Flowers 102 [Nilsback and Zisserman, 2008] 2040 6149 102 https://www.robots.ox.ac.uk/⇠vgg/data/flowers/102/

Cucumber [dataset, 2016] 2326 597 30 https://github.com/workpiles/CUCUMBER-9

European Flood Depth [Barz et al., 2019] 3153 557 2 https://github.com/cvjena/eu-flood-dataset

Oxford-IIIT Pets [Parkhi et al., 2012] 3680 3669 37 https://www.robots.ox.ac.uk/⇠vgg/data/pets/

Describable Textures [Cimpoi et al., 2014] 4230 1410 47 https://www.robots.ox.ac.uk/⇠vgg/data/dtd/

iCassava [Mwebaze et al., 2019] 5367 280 5 https://sites.google.com/view/fgvc6/competitions/icassava-2019

CUB-200 [Welinder et al., 2010] 5994 5793 200 http://www.vision.caltech.edu/visipedia/CUB-200-2011.html

Belga Logos [Joly and Buisson, 2009] 7500 2500 27 http://www-sop.inria.fr/members/Alexis.Joly/BelgaLogos/BelgaLogos.html

Stanford Cars [Krause et al., 2013] 8144 8041 196 https://ai.stanford.edu/⇠jkrause/cars/car dataset.html

Table B.1: Datasets description. The number of training images, testing images
and classes as well as the URL to download the dataset are listed above. The top part
contains our source datasets used to train the model zoo and the bottom part lists our
target tasks used for fine-tuning and model selection with our model zoo.

B.2 Datasets

We choose our source and target datasets such that they cover di↵erent domains, and are

publicly available for download. Detailed data statistics are in the respective citations

for the datasets, and we include a few statistics e.g. training images, testing images,

number of classes in Table B.1. For all the datasets, if available we use the standard

train and test split of the dataset, else we split the dataset randomly into 80% train

and 20% test images. If images are indexed by URLs in the dataset, we download all

accessible URLs with a python script.

B.3 Details of model selection methods

Domain Similarity [Cui et al., 2018]. As per [Cui et al., 2018], we extract avg.

features for every class for source and target datasets using pre-trained model. We

compute an earth movers distance between these average class vectors and convert

them to domain similarity score. We use the code provided by the authors at https://

github.com/richardaecn/cvpr18-inaturalist-transfer. We exclude classes with less than

5 training images for Earth-Movers Distance computation.

RSA [Dwivedi and Roig, 2019]. Following the procedure outlined in [Dwivedi

and Roig, 2019], we extract features before the classification layer (e.g. 2048 dim features

of Resnet-101 after average pool) for images in the target dataset. We denote this set

of features as f(x), 8(x, y) 2 D. We build a representation dissimilarity matrix (RDM)
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B. Model Selection

(a) 25 samples per class (b) 50 samples per class (c) Full target task

Figure B.1: Ablation study of dataset size for model selection. Above we use
25,50-samples per class and full target task to perform model selection with di↵erent
methods. We plot accuracy gain vs. Imagenet expert for top-3 selected models for
every method (similar to Fig. 4 of the paper). The accuracy gain increases for LFC,
LEEP and RSA with more samples of the target task. However, we see that even as
small as 25 samples su�ce to obtain good accuracy gain with low computational cost.

as follows:

rdmf (i, j) = 1� correlation(f(xi), f(xj)) (B.3)

We train a small neural network fsmall on target dataset. Note, this is much cheaper

to train than fine-tuning the model zoo. Features are extracted from fsmall and we

build another rdm:

rdmfsmall
(i, j) = 1� correlation(fsmall(xi), fsmall(xj)) (B.4)

If rdm’s of trained small network fsmall and our pre-trained model f are similar, then

the pre-trained model is a good candidate for fine-tuning with target dataset. The final

RSA model selection score is:

SRSA(f, D) = spearmanr(rdmf , rdmfsmall
) (B.5)

Since the method requires training a small neural network on target task, we train a

Resnet-18 as the small neural network with the same fine-tuning configuration used in

Section 4.1 of the paper with initial learning rate .005.

Feature Metrics [Ueno and Kondo, 2020]. Features are extracted for all images

of target dataset from pre-trained model, i.e. f(x), 8x 2 D. We use same features as

RSA, our LFC/LGC and compute variance, sparsity metrics of [Ueno and Kondo,

2020]. We use the sparsity metrics as model selection score, SFeat. Metrics(f, D) =
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sparsity(f(x), 8x 2 D). Note, we use the optimal linear combination of the two spar-

sity metrics proposed in the paper. For feature metrics, the hypothesis is that if the

pre-trained model generates more sparse representations, they are can generalize with

fine-tuning to the target task.

LEEP [Nguyen et al., 2020]. LEEP builds an empirical classifier from source

dataset label space to target dataset label space using base model f . The likelihood of

target dataset D under this empirical classifier is the model selection score for the pre-

trained model and target dataset. See [Nguyen et al., 2020] for a detailed explanation.

B.4 Di↵erent dataset sizes for model selection

In Fig. B.1, we perform an ablation study on di↵erent sampling sizes of the target

task used for model selection. We find that, our choice of 25 samples per class for

model selection, su�ces to select good models to fine-tune in top-3 selections at low-

computational cost.

B.5 Visualization of feature correlation with fine-tuning

In Fig. B.2, we plot the feature correlation matrix for di↵erent pre-trained models

across di↵erent epochs of fine-tuning (i.e. 0th, 15th, 30th epoch) for the UC Merced

Land Use [Yang and Newsam, 2010] target task. We see that the pre-trained model on

NWPU-RESISC45 [Cheng et al., 2017], exhibits the ideal correlation wherein features

of the images with the same class are correlated and features of images with di↵erent

classes are uncorrelated. This NWPU-RESISC45 [Cheng et al., 2017] also has the

highest LFC score.
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(a) NWPU-RESISC45, Epoch=0 (b) NWPU-RESIC45, Epoch=15 (c) NWPU-RESISC45, Epoch=30

(d) Food-101, Epoch=0 (e) Food-101, Epoch=15 (f) Food-101, Epoch=30

(g) Logo 2k, Epoch=0 (h) Logo 2k, Epoch=15 (i) Logo 2k, Epoch=30

Figure B.2: Feature correlation matrix visualization. We plot the feature cor-
relation matrix, ⇥F , for di↵erent pre-trainings (row) and di↵erent epochs (columns)
of fine-tuning. Above, we fine-tune on the UC Merced Land Use [Yang and Newsam,
2010] dataset comprising of aerial images. Images with same class label are grouped
along the vertical/horizontal axis. Since, features of the same class should be correlated
and features of di↵erent classes should be uncorrelated, the matrix is expected to have
higher values along block diagonal and zero elsewhere. We observe that the matrix
exhibits this ideal behaviour for pre-training on semantically related domain (aerial
images) of NWPU-RESISC45 [Cheng et al., 2017] (top row) and has highest LFC score
for this pre-training.
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C
Inductive Bias and Regularization

C.1 Variational upper bound proof

To begin with we prove a simple lemma which we shall use in the proof of Theorem 5.1.

Lemma C.1 (Optimal loss value on Regularized Least Squares). Consider the regu-

larized optimization problem given by:

min
✓

1

�2
kYf � Fw✓k2 + ✓T⇤�1✓ (C.1)

The optimal minimum value is given by:

min
✓

1

�2
kYf � Fw✓k2 + ✓T⇤�1✓ = Y >

f
⌃�1Yf

with ⌃ := F⇤F> + �2I.

Proof. To begin with, let µ be the optimal ✓ for Eq. (C.1):

µ :=
�
F T

w Fw + �2⇤�1
��1

F T

w Yf = A�1F T

w Yf

where A := F T
w Fw + �2⇤�1. We now apply the matrix inversion lemma to obtain the

following:

⇣
F⇤F> + �2I

⌘
�1

=��2I � ��2F T

w A�1Fw

(C.2)
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So that we get:

Y >

f
⌃�1Yf =��2Y >

f
(Yf � Fwµ)

=��2

⇣
Y >

f
Yf � 2Y >

f
Fwµ + µTF T

w Fwµ
⌘

+ ��2Y >

f
Fwµ� ��2µTF T

w Fwµ

=��2 kYf � Fwµk2
2
+ ��2µT

�
A� F T

w Fw

�
µ

= ��2 kYf � Fwµk2
2
+ µT⇤�1µ

which is the Regularized Least Squares loss evaluated at the optimum. ⌅

We now prove the upper bound to the marginal likelihood associated to the posterior

given by Eq. (5.5) with marginalization taken only w.r.t. ✓ Theorem 5.1.

Proof. Consider the regularized linear least squares problem in Eq. (C.1) with feature

matrix Fw✓ and parameters ✓ (where w is assumed fixed). Then, Lemma C.1 guarantees

that:
1

�2
kYf � Fw✓k2 + ✓T⇤�1✓ + log det ⌃ � Y >

f
⌃�1Yf + log det ⌃

where the right hand side is proportional to the negative log marginal likelihood with

marginalization taken only w.r.t. ✓. Therefore, for fixed w,

1

�2
kYf � Fw✓k2 + ✓>⇤�1✓ + log det(Fw⇤F>

w + �2I)

is an upper bound of the marginal likelihood with marginalization over ✓. ⌅
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D
Interpretable Residual Temporal Convolutional

Networks

D.1 Implementation

D.1.1 Architecture

Let Y t

t�np+1
2 Rn⇥np be the input data to our architecture at time step t (a window of

np past time instants). The main blocks of the architecture are defined to encode trend,

seasonality, stationary linear and non-linear part. In the following we shall denote each

quantity related to a specific layer using either the subscripts {TREND, SEAS, LIN,

TCN} or {0, 1, 2, 3}.

We shall denote the input of each block as Xk 2 Rn⇥np and the output as X̂k 2 Rn⇥np

for k = 0, 1, 2, 3. The residual architecture we propose is defined by the following:

X0 = Y t

t�np+1
and Xk = Xk�1 � X̂k�1 for k = 1, 2, 3. At each layer we extract lk

temporal features from the input Xk. We denote the temporal features extracted from

the input of the k-th block as: Gk := Gk(Xk) 2 Rlk⇥np . The i-th column of the

feature matrix Gk is a feature vector (of size lk) extracted from the input Xk up to

time t� np � i. To do so, we use causal convolutions of the input signal Xk with a set

of filter banks [Bai et al., 2018].

D.1.2 Interpretable Residual TCN on scalar time series

Modeling Interpretable blocks: In this section, we shall describe the main design

criteria of the linear module. For each interpretable layer (TREND, SEAS, LIN), we

convolve the input signal with a filter bank designed to extract specific components of

the input.

For example, consider the trend layer, denoting its scalar input time series by x and
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D. Interpretable Residual Temporal Convolutional Networks

its output by gTREND. Then gTREND is defined as a multidimensional time series (of

dimension lTREND := l0) obtained by stacking l0 time series given by the convolution

of x with l0 causal linear filters: 'TRENDi ⇤ x for i = 0, ..., l0 � 1. In other words,

gTREND := ['TREND1 ⇤ x,'TREND2 ⇤ x, ...,'TRENDl1 ⇤ x]T . We denote the set of linear

filters 'TRENDi for i = 0, ..., l0 � 1 as KTREND and parametrize each filter in KTREND

with its truncated impulse response (i.e. kernel) of length k0 := kTREND.

We interpret each time series in gTREND as an approximation of the trend component

of x computed with the i-th filter. We design each 'TRENDi so that each filter extracts

the trend of the input signal on di↵erent time scales [Ravn and Uhlig, 2002] (i.e., each

filter outputs a signal with a di↵erent smoothness degree). We estimate the trend of

the input signal by recombining the extracted trend components in gTREND with the

linear map aTREND. Moreover, we predict the future trend of the input signal (on the

next time-stamp) with the linear map bTREND.

We construct the blocks that extract seasonality and linear part in a similar way.

Implementing Interpretable blocks: The input of each layer is given by a window

of measurements of length np. We zero-pad the input signal so that the convolution

of the input signal with the i-th filter is a signal of length np (note this introduces a

spurious transient whose length is the length of the filter kernel). We therefore have the

following temporal feature matrices: G0 = GTREND 2 Rl0⇥np , G1 = GSEAS 2 Rl1⇥np

and G2 = GLIN 2 Rl2⇥np .

The output of each layer X̂k is an estimate of the trend, seasonal or stationary

linear component of the input signal on the past interval of length np, so that we have

X̂k 2 R1⇥np (same dimension as the input Xk). On the other hand, the linear predictor

ŷk computed at each layer is a scalar. Intuitively, X̂k and ŷk should be considered as

the best linear approximation of the trend, seasonality or linear part given block’s filter

bank in the past and future. Our architecture performs the following computations:

X̂k := aT
k
Gk and ŷk := X̂kbk for k = 0, 1, 2 where ai 2 Rlk and bk 2 Rnp . Note ak

combines features (uniformly in time) so that we can interpret it as a feature selector

while bk aggregates relevant features across di↵erent time indices to build the one-step

ahead predictor.

Non-linear module The non-linear module is based on a standard TCN network.

Its input is defined as X3 = Y t

t�np+1
� X̂0 � X̂1 � X̂2, which is to be considered as a

signal whose linearly predictable component has been removed. The TCN extracts a

set of l3 non-linear features G3(X3) 2 Rl3⇥np which we combine with linear maps as

done for the previous layers. The j-th column of the non-linear features G3 is computed

using data up to time t� np + j (due to the internal structure of a TCN network [Bai
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D.1. Implementation

et al., 2018]). The linear predictor on top of G3 is ŷTCN := aT
3
G3b3, where a3 2 Rl3

and b3 2 Rnp .

Finally, the output of our time model is given by:

ŷ(t + 1) =
3X

k=0

ŷk =
3X

k=0

X̂kbk =
3X

k=0

aT
k
Gk(Xk)bk.

D.1.3 Interpretable Residual TCN on multi-dimensional time series

We extend our architecture to multi-dimensional time series according to the following

principles: preserve interpretability (first module) and exploit global information to

make local predictions (second module).

In this section, the input data to our model is Y t

t�np+1
2 Rn⇥np (a window of length

np from an n-dimensional time series).

Interpretable module: Each time series undergoes the sequence of 3 interpretable

blocks independently from other time series: the filter banks are applied to each time

series independently. Therefore, each time series is processed by the same filter banks:

KTREND, KSEAS and KLIN. For ease of notation we shall now focus only on the trend

layer. Any other layer is obtained by substituting “TREND” with the proper subscript

(“SEAS” or “LIN”).

We denote by GTREND, i 2 Rl0⇥np the set of time features extracted by the trend

filter bank KTREND from the i-th time series. Each feature matrix is then combined

as done in the scalar setting using linear maps, which we now index by the time series

index i: aTRENDi and bTRENDi. The rationale behind this choice is that each time series

can exploit di↵erently the extracted features. For instance, slow time series might need

a di↵erent filter than faster ones (chosen using aTRENDi) or might need to look at

values further in the past (retrieved using bTRENDi). We stack the combination vectors

aTRENDi and bTRENDi into the following matrices:

ATREND = [aTREND1, aTREND2, ..., aTRENDn]T 2 Rn⇥l0

BTREND = [bTREND1, bTREND2, ..., bTRENDn]T 2 Rn⇥np .

Non-linear module: The second (non-linear) module aggregates global statistics

from di↵erent time series [Sen et al., 2019] using a TCN model. It takes as input the pre-

diction residual of the linear module and outputs a matrix GTREND(Y t

t�np+1
) 2 Rl3⇥np

where l3 is the number of output features that are extracted by the TCN model (which

is a design parameter). The j-th column of the non-linear features GTREND(Y t

t�np+1
)
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D. Interpretable Residual Temporal Convolutional Networks

is computed using data up to time t � np + j. This is due to the internal struc-

ture of a TCN network [Bai et al., 2018] which relies on causal convolutions. As

done for the time features extracted by the interpretable blocks, we build a linear

predictor on top of GTREND(Y t

t�np+1
) for each single time series independently: the

predictor for the i-th time series is given by: ŷTCN(t + 1)i := aT
i
GTREND(Y t

t�np+1
)bi

where ai 2 Rl3 and bi 2 Rnp . We stack the combination vectors aTCNi and bTCNi

into the following matrices: ATCN = [aTCN1, aTCN2, ..., aTCNn]T 2 Rn⇥l3 and BTCN =

[bTCN1, bTCN2, ..., bTCNn]T 2 Rn⇥np .

Finally, the outputs of the predictor on the i-th time series are given by:

ŷ(t + 1)i =
X

k2{TREND,SEAS,LIN}

ak
T

i Gkibki + aTCN
T

i GTCNbTCNi.

D.1.4 Block structure and initialization

In this section, we shall describe the internal structure and the initialization of each

block.

Structure: Each filter is implemented by means of depth-wise causal 1-D convolu-

tions [Bai et al., 2018]. We call the tensor containing the k-th block’s kernel parameters

Kk 2 Rlk⇥Nk , where lk and Nk are the block’s number of filters and block’s kernel size,

respectively (without loss of generality, we assume all filters have the same dimension).

Each filter (causal 1D-convolution) is parametrized by the values of its impulse response

parameters (kernel parameters). When we learn a filter bank, we mean that we opti-

mize over the kernel values for each filter jointly. For multidimensional time series, we

apply the filter banks to each time series independently (depth-wise convolution) and

improve filter learning by sharing kernel parameters across di↵erent time series.

Initialization: The first block (trend) is initialized using l0 causal Hodrick Prescott

(HP) filters [Ravn and Uhlig, 2002] of kernel size N0. HP filters are widely used to

extract trend components of signals [Ravn and Uhlig, 2002]. In general a HP filter is

used to obtain from a time series a smoothed curve which is not sensitive to short-term

fluctuations and more sensitive to long-term ones [Ravn and Uhlig, 2002]. In general,

a HP filter is parametrized by a hyper-parameter �HP which defines the regularity of

the filtered signal (the higher �HP, the smoother the output signal). We initialize each

filter with �HP chosen uniformly in log-scale between 103 and 109. Note the impulse

response of these filters decays to zero (i.e., the latest samples from the input time

series are the most influential ones). When we learn the optimal set of trend filter

banks, we do not consider them parametrized by �HP and search for the optimal �HP.
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Instead, we optimize over the impulse response parameters of the kernel which we do

not assume live in any manifold (e.g., the manifold of HP filters). Since this might lead

to optimal filters which are not in the class of HP filters, we impose a regularization

which penalizes the distance of the optimal impulse response parameters from their

initialization.

The second block (seasonal part) is initialized using l1 periodic kernels which are ob-

tained as linear filters whose poles (i.e., frequencies) are randomly chosen on the unit

circle (this guarantees to span a range of di↵erent frequencies). Note the impulse re-

sponses of these filters do not go to zero (their memory does not fade away). Similarly

to the HP filter bank, we do no optimize the filters over frequencies, but rather we opti-

mize them over their impulse response (kernel parameters). This optimization does not

preserve the strict periodicity of filters. Therefore, in order to keep the optimal impulse

response close to initialization values (purely periodic), we exploit weight regularization

by penalizing the distance of the optimal set of kernel values from initialization values.

The third block (stationary linear part) is initialized using l2 randomly chosen linear

filters whose poles lie inside the unit circle, as done in [Farahmand et al., 2017]. As the

number of filters l2 increases, this random filter bank is guaranteed to be a universal

approximator of any (stationary) linear system (see [Farahmand et al., 2017] for details).

Remark D.1. This block could approximate any trend and periodic component. How-

ever, we assume to have factored out both trend and periodicities in the previous blocks.

The last module (non-linear part) is composed by a randomly initialized TCN model.

We employ a TCN model due to its flexibility and capability to model both long-term

and short-term non-linear dependencies. As is standard practice, we exploit dilated

convolutions to increase the receptive field and make the predictions of the TCN (on

the future horizon) depend on the most relevant past [Bai et al., 2018].

Remark D.2. Our architecture provides an interpretable justification of the initializa-

tion scheme proposed for TCN in [Sen et al., 2019]. In particular our convolutional

architecture allows us to handle high-dimensional time series data without a-priori

standardization (e.g., trend or seasonality removal).

D.2 Automatic Complexity Determination for STRIC

In this section, we briefly recall the fading regularization introduced in Section 5.3.1.

The output of the TCN model is G(Y t

t�np+1
) 2 Rl3⇥np where l3 is the number of

output features extracted by the TCN model. The predictor built from TCN features

is given by: aTCN
T

i
GTCN(Y t

t�np+1
)bTCNi, where the predictor bTCNi 2 Rnp takes as
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input a linear combination of the TCN features (weighted by aTCNi). The j-th column

of the non-linear features G(Y t

t�np+1
) is computed using data up to time t�np + j (due

to causal convolutions used in the internal structure of the TCN network [Bai et al.,

2018]). One expects that the influence on the TCN predictor as j increases should

increase too (in case j = np, the statistic is the one computed on the closest window

of time w.r.t. present time stamp). The exact relevance on the output is not known a

priori and needs to be estimated. In other words, the predictor should be less sensitive

to statistics (features) computed on a far past, a property which is commonly known

as fading memory. Currently, this property is not built in the predictor bTCNi, which

treats each time instant equally and might overfit while trying to explain the future by

looking into far and possibly non-relevant past. We impose our fading memory property

on STRIC’s predictor to constrain it complexity and reduce overfitting.

Remark D.3 (Prior on the parameters). The prior log p(W ) in Eq. (5.8) defines the

regularization applied on the remaining parameters of our architecture. In particu-

lar, we induce sparsity by applying L1 regularization on ATREND, ASEAS, ALIN and

ATCN. Also, we constrain filters parameters to stay close to initialization by applying

L2 regularization on KTREND, KSEAS and KLIN.

D.3 Alternative CUMSUM Derivation and Interpretation

In this section, we describe an equivalent formulation of the CUMSUM algorithm we

derived in Section 7.4.1. Before a change point, by construction we are under the

distribution of the past. Therefore, log
pf (y)

pp(y)
 0 8y, which in turn means that the

cumulative sum St

1
will decrease as t increases (negative drift). After the change, the

situation is opposite and the cumulative sum starts to show a positive drift, since

we are sampling y(i) from the future distribution pf . This intuitive behaviour shows

that the relevant information to detect a change point can be obtained directly from the

cumulative sum (along timestamps). In particular, all we need to know is the di↵erence

between the value of the cumulative sum of log-likelihood ratios and its minimum value.

The CUMSUM algorithm can be expressed using the following equations: vt :=

St

1
�mt, where mt := minj,1jt St

j
. The stopping time is defined as: tstop = min{t :

vt � ⌧} = min{t : St

1
� mt + ⌧}. With the last equation, it becomes clear that the

CUMSUM detection equation is simply a comparison of the cumulative sum of the

log likelihood ratios along time with an adaptive threshold mt + ⌧ . Note that the

adaptive threshold keeps complete memory of the past ratios. The two formulations

are equivalent because St

1
�mt = ht.
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D.4. Variational Approximation of the Likelihood Ratio

D.4 Variational Approximation of the Likelihood Ratio

In this section, we present some well known facts on f -divergences and their variational

characterization. Most of the material and the notation is from [Nguyen et al., 2010].

Given a probability distribution P and a random variable f measurable w.r.t. P, we useR
fdP to denote the expectation of f under P. Given samples x(1), ..., x(n) from P, the

empirical distribution Pn is given by Pn = 1

n

P
n

i=1
�x(i). We use

R
fdPn as a convenient

shorthand for the empirical expectation 1

n

P
n

i=1
f(x(i)).

Consider two probability distributions P and Q, with P absolutely continuous w.r.t.

Q. Assume moreover that both distributions are absolutely continuous with respect

to the Lebesgue measure µ, with densities p0 and q0, respectively, on some compact

domain X ⇢ Rd.

Variational approximation of the f-divergence: The f -divergence between P
and Q is defined as [Nguyen et al., 2010]

Df (P, Q) :=

Z
p0f
⇣ q0

p0

⌘
dµ (D.1)

where f : R ! R is a convex and lower semi-continuous function. Di↵erent choices of

f result in a variety of divergences that play important roles in various fields [Nguyen

et al., 2010]. Eq. (D.1) is usually replaced by the variational lower bound:

Df (P, Q) � sup
�2�

Z
[�dQ� f⇤(�)dP] (D.2)

and equality holds i↵ the subdi↵erential @f( q0
p0

) contains an element of �. Here f⇤ is

defined as the convex dual function of f .

In the following, we are interested in divergences whose conjugate dual function is

smooth (which in turn defines commonly used divergence measures such as Kullback

Leibler and Pearson divergence), so that we shall assume that f is convex and di↵er-

entiable. Under this assumption, the notion of subdi↵erential is not required and the

previous statement reads as: equality holds i↵ @f( q0
p0

) = � for some � 2 �.

Remark D.4. The infinite-dimensional optimization problem in Eq. (D.2) can be written

as Df (P, Q) = sup�2� EQ�� EPf⇤(�).

In practice, one can have an estimator of any f -divergence restricted to a functional

class � by solving Eq. (D.2) [Nguyen et al., 2010]. Moreover, when P and Q are not

known one can approximate them using their empirical counterparts: Pn and Qn. Then

an empirical estimate of the f -divergence is: D̂f (P, Q) = sup�2� EQn�� EPnf⇤(�).
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Approximation of the likelihood ratio: An estimate of the likelihood ratio can

be directly obtained from the variational approximation of f -divergences. The key

observation is the following: equality on Eq. (D.2) is achieved i↵ � = @f( q0
p0

). This

tells us that the optimal solution to the variational approximation provides us with an

estimator of the composite function @f( q0
p0

) of the likelihood ratio q0
p0

. As long as we

can invert @f , we can uniquely determine the likelihood ratio.

In the following, we shall get an empirical estimator of the likelihood ratio in two

separate steps. We first solve the following:

�̂n := arg max
�2�

EQn�� EPnf⇤(�) (D.3)

which returns an estimator of @f( q0
p0

), not the ratio itself. And then we apply the inverse

of @f to �̂n. We therefore have a family of estimation methods for the likelihood function

by simply ranging over choices of f .

Remark D.5. If f is not di↵erentiable, then we cannot invert @f but we can obtain

estimators of other functions of the likelihood ratio. For instance, we can obtain an es-

timate of the thresholded likelihood ratio by using a convex function whose subgradient

is the sign function centered at 1.

Likelihood ratio estimation with Pearson divergence

In this section, we show how to estimate the likelihood ratio when the Pearson diver-

gence is used. With this choice, many computations simplify and we can write the

estimator of the likelihood ratio in closed form. Other choices (such as the Kullback-

Leibler divergence) are possible and legitimate, but usually do not lead to closed form

expressions (see [Nguyen et al., 2010]).

The Pearson, or �2, divergence is defined by the following choice: f(t) := (t�1)
2

2
.

The associated convex dual function is :

f⇤(v) = sup
u2R

n
uv � (u� 1)2

2

o
=

v2

2
+ v.

Therefore the Pearson divergence is characterized by the following:

PE(P||Q) :=

Z
p0
⇣ q0

p0
� 1
⌘
2

dµ � sup
�2�

EQ��
1

2
EP�

2 � EP�. (D.4)

Solving the lower bound for the optimal � provides us an estimator of @f( q0
p0

) = q0
p0
�1.

For the special case of the Pearson divergence, we can apply a change of variables which
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preserves convexity of the variational optimization problem Eq. (D.4) and provides a

more straightforward interpretation. Let the new variable be z := � + 1 with z 2 Z,

which in this case is nothing but the inverse function of @f . We get

sup
�2�

EQ��
1

2
EP�

2 � EP� = sup
z2Z

EQz � 1

2
EPz2 � 1

2
(D.5)

It is now trivial to see that z is a “direct” approximator of the likelihood ratio (i.e., it

does not estimate a composite map of the likelihood ratio). Therefore for simplicity,

we shall employ

arg min
�2�

1

2
EP�

2 � EQ� (D.6)

to build our “direct” estimator of the likelihood ratio.

Let the samples from P and Q be, respectively, xp(i) with i = 1, ..., np and xq(i) with

i = 1, ..., nq. We define the empirical estimator of the likelihood ratio �̂n:

�̂n = arg min
�2�

1

2np

npX

i=1

�(xp(i))
2 � 1

nq

nqX

i=1

�(xf (i)). (D.7)

A closed form solution: Up to now we have not defined in which class of functions

our approximator � lives. As done in [Nguyen et al., 2010, Liu et al., 2012], we choose

� 2 � where � is a RKHS induced by the kernel k.

We exploit the representer theorem to write a general function within � as:

�(x) =
ntrX

i=1

k(x, xtr(i))↵i,

where we use ntr data which are the centers of the kernel sections used to approximate

the unknown likelihood ratio. We shall use both data from Pn and from Qn as centers.

Let us define the following kernel matrices: Kp := K(Xp, Xtr) 2 Rnp⇥ntr , Kq :=

K(Xq, Xtr) 2 Rnq⇥ntr , where Xp := {xp(i)}, Xq := {xq(i)} and Xtr := {xtr(i)}.
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We therefore have:

�̂n = arg min
�2�

1

2np

npX

i=1

�(xp(i))
2 � 1

nq

nqX

i=1

�(xf (i))

= arg min
↵,↵�0

1

2np

npX

i=1

(
ntrX

j=1

k(xp(i), xtr(j))↵j)
2 � 1

nf

nfX

i=1

ntrX

j=1

k(xf (i), xtr(j))↵j

= arg min
↵,↵�0

1

2np

↵TKT

p Kp↵�
1

nf

TKf↵

Remark D.6. We impose the recombination coe�cients ↵ to be non negative since the

likelihood ratio is a non negative quantity. The resulting optimization problem is a

standard convex optimization problem with linear constraints which can be e�ciently

solved with Newton methods, nonetheless in general it does not admit any closed form

solution.

We now relax the positivity constraints so that the optimal solution can be obtained

in closed form. Moreover we add a quadratic regularization term as done in [Nguyen

et al., 2010] which lead us to the following regularized optimization problem:

arg min
↵

1

2np

↵TKT

p Kp↵�
1

nf

TKf↵+
�

2
k↵k2

�

whose solution is trivially given by:

↵̂ =
np

nf

⇣
KT

p Kp + np�Intr

⌘
�1

KT

f
:=

np

nf

H�1KT

f
(D.8)

The estimator of the likelihood ratio for an arbitrary location x is given by the

following:

pq(x)

pp(x)
⇡ �̂n(x) = K(x, Xtr)↵̂ =

np

nf

K(x, Xtr)
⇣
KT

p Kp + np�Intr

⌘
�1

KT

f
(D.9)

Remark D.7. In the following we shall exploit RBF kernels which are defined by the

length scales �.

D.5 Subspace likelihood ratio estimation and CUMSUM

In this section we describe our subspace likelihood ratio estimator and its relation to

the CUMSUM algorithm. The CUMSUM algorithm requires to compute the likelihood

ratio
pf (y(t)|Y

t�1
c )

pp(y(t)|Y
t�1
c )

for each time t. We denote pp as the normal density and pf as the
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abnormal one (after the anomaly has occurred).

We shall proceed to express the conditional probability p(y(t) | Y t�1

1
) using our

predictor. In particular it is always possible to express the optimal (unknown) one-step

ahead predictor as Eq. (5.1):

ŷt|t�1 = f0(Y
t

t�K+1) := E[y(t) | Y t

t�K+1]

which is a deterministic function given the past of the time series (whose length is K).

So that the data density distribution can be written in innovation form (based on the

optimal prediction error) as:

y(t) = f0(Y
t

t�K+1) + e(t)

where e(t) := y(t) � f0(Y t

t�K+1
) is, by definition, the one step ahead prediction error

(or innovation sequence) of y(t) given its past. We therefore have: p(y(t) | Y t

t�K+1
) =

p(e(t) | Y t

t�K+1
). Where e(t) is the optimal prediction error for each time t and is

therefore indipendent on each time t.

Remark D.8. In practice we do not know f0 and we use our predictor learnt from normal

data as a proxy. This implies the prediction residuals are approximately independent

on normal data (the predictor can explain data well), while the prediction residuals are,

in general, correlated on abnormal data.

Applying the independent likelihood test in a correlated setting: We now

prove Proposition 7.3.

Proof. By simple algebra we can write:

pf (e(i) | Ei�1
c )

pp(e(i))
=

pf (e(i) | Ei�1
c )

pf (e(i))

pf (e(i))

pp(e(i))
8i

Now recall the cumulative sum of the log-likelihood ratios taken under the current data

generating mechanism pf (Et

1
) provides an estimate of the expected value of the log-

likelihood ratio. Due to the correlated nature of data Et

1
the samples are drawn from

a multidimensional distribution of dimension t (a sample from this distribution is an

entire trajectory from c to t).

We now take the expectation of previous formula w.r.t. the “true” distribution
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pf (Et

1
):

Epf (E
t
c)

⌦t

c = Epf (E
t
c)

log
tY

i=c

pf (e(i) | Ei�1
c )

pp(e(i))

= Epf (E
t
c)

log
tY

i=c

pf (e(i) | Ei�1
c )

pf (e(i))
+ Epf (E

t
c)

log
tY

i=c

pf (e(i))

pp(e(i))

= MI
⇣
pf (E

t

c);
tY

i=c

pf (e(i))
⌘

+ KL
⇣ tY

i=c

pf (e(i))
���
���

tY

i=c

pp(e(i))
⌘

� KL
⇣ tY

i=c

pf (e(i))
���
���

tY

i=c

pp(e(i))
⌘

where KL is the Kullback-Leibler divergence and we use the fact the mutual information

(MI) is always non negative. ⌅

D.6 Datasets

D.6.1 Yahoo Dataset

Yahoo Webscope dataset [Laptev and Amizadeh, 2020] is a publicly available dataset

containing 367 real and synthetic time series with point anomalies, contextual anomalies

and change points. Each time series contains 1420-1680 time stamps. This dataset is

further divided into 4 sub-benchmarks: A1 Benchmark, A2 Benchmark, A3 Benchmark

and A4 Benchmark. A1Benchmark is based on the real production tra�c to some of

the Yahoo! properties. The other 3 benchmarks are based on synthetic time series. A2

and A3 Benchmarks include point outliers, while the A4Benchmark includes change-

point anomalies. All benchmarks have labelled anomalies. We use such information

only during evaluation phase (since our method is completely unsupervised).

D.6.2 NAB Dataset

NAB (Numenta Anomaly Benchmark) [Lavin and Ahmad, 2015] is a publicly available

anomaly detection benchmark. It consists of 58 data streams, each with 1,000 - 22000

instances. This dataset contains streaming data from di↵erent domains including read

tra�c, network utilization, on-line advertisement, and internet tra�c. As done in

[Geiger et al., 2020] we choose a subset of NAB benchmark, in particular we focus on

the NAB Tra�c and NAB Tweets benchmarks.
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Table D.1: Anomaly detection datasets summaries. We report some properties
of the datasets used (see [Geiger et al., 2020] for mode details).

P
ro

p
er

ti
es

Yahoo NAB Kaggle

A1 A2 A3 A4 Tra�c Tweets CO2

# signals 67 100 100 100 7 10 9
# anomalies 178 200 939 835 14 33

point 68 33 935 833 0 0
sequential 110 167 4 2 14 33

# anomalous
points

1669 466 943 837 1560 15651

(% tot) 1.8% 0.32% 0.56% 0.5% 9.96% 9.87%
# data points 94866 142100 168000 168000 15662 158511 4323

D.6.3 CO2 Dataset

We test the prediction and interpretability capabilities of our model on the CO2 dataset

from kaggle1. The main goal here is to predict both trend and periodicity of CO2

emission rates on di↵erent years. This is not an Anomaly detection task.

D.6.4 NYT Dataset

The New York Times Annotated Corpus2 [Sandhaus, 2008] contains over 1.8 million

articles written and published by the New York Times between January 1, 1987 and

June 19, 2007. We pre-processed the lead paragraph of each article with a pre-trained

BERT model [Devlin et al., 2019] from the HuggingFace Transformers library [Wolf

et al., 2020] and extracted the 768-dimensional hidden state of the [CLS] token (which

serves as an article-level embedding). For each day between January 1, 2000 and June

19, 2007, we took the mean of the embeddings of all articles from that day. Finally, we

computed a PCA and kept the first 200 principal components (which explain approx-

imately 95% of the variance), thus obtaining a 200-dimensional time series spanning

2727 consecutive days. Note that we did not use any of the dataset’s annotations,

contrary to prior work such as [Rayana and Akoglu, 2015].

D.7 Experimental setup

In this section, we shall describe the experimental setup we used to test STRIC.

Data preprocessing: Before learning the predictor we standardize each dataset to

1https://www.kaggle.com/txtrouble/carbon-emissions
2https://catalog.ldc.upenn.edu/LDC2008T19
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have zero mean and standard deviation equals to one. As done in [Braei and Wagner,

2020] we note standardization is not equal to normalization, where data are forced to

belong to the interval (0, 1). Normalization is more sensitive to outliers, thus it would

be inappropriate to normalize our datasets, which contain outliers.

We do not apply any deseasonalizing or detrending pre-processing.

Data splitting: We split each dataset into training and test sets preserving time

ordering, so that the first data are used as train set and the following ones are used

as test set. The data used to validate the model during optimization are last 10% of

the training dataset. Depending on the experiment, we choose a di↵erent percentage in

splitting train and test. When comparing with [Braei and Wagner, 2020] we used 30% as

training data, while when comparing to [Munir et al., 2019] we use 40%. Such a choice

is dictated by the particular (non uniform) experimental setup reported in [Braei and

Wagner, 2020, Munir et al., 2019] and has been chosen to produce comparable results

with state of the art methods present in literature.

Evaluation metrics: We compare di↵erent predictors by means of the RMSE (root

mean squared error) on the one-step ahead prediction errors. Given a sequence of data

Y N

1
and the one-step ahead predictions Ŷ N

1
the RMSE is defined as:

vuut 1

N

NX

i=1

ky(i)� ŷ(i)k2

As done in [Braei and Wagner, 2020] we compare di↵erent anomaly detection meth-

ods taking into account several metrics. We use F-Score which is defined as the armonic

mean of Precision and Recall (see [Braei and Wagner, 2020, Munir et al., 2019]) and

another metric that is often used is receiver operating characteristic curve, ROC-Curve,

and its associated metric area under the curve (AUC). The AUC is defined as the area

under the ROC-Curve. This metric is particularly useful in our anomaly detection

setting since it describes with an unique number true positive rate and false positive

rate on di↵erent threshold values. We now follow [Braei and Wagner, 2020] to describe

how AUC is computed. Let the true positive rate and false positive rate be defined,

respectively, as: TPR = TP

P
and FPR = FP

N
, where TP stands for true positive, P

for positive, FP for false positive and N for negative. To copute the ROC-Curve we

use di↵erent thresholds on our anomaly detection method. We therefore have di↵erent

pairs of TPR and FPR for each threshold. These values can be plotted on a plot whose

x and y axes are, respectively: FPR and TPR. The resulting curve starts at the origin

and ends in the point (1,1). The AUC is the area under this curve. In anomaly detec-
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tion, the AUC expresses the probability that the measured algorithm assigns a random

anomalous point in the time series a higher anomaly score than a random normal point.

Hardware: We conduct our experiments on the following hardware setup:

• Processor: Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz

• RAM: 128 Gb

• GPU: Nvidia TITAN V 12Gb and Nvidia TITAN RTX 24Gb

Hyper-parameters: All the experiments we carried out are uniform on the opti-

mization hyper-parameters. In particular we fixed the maximum number of epochs to

300, the learning rate to 0.001 and batch size to 100. We optimize each model using

Adam and early stopping.

We fix STRIC’s first module hyper-parameters as follows:

• number of filter per block: l0 = 10, l1 = 100, l2 = 200

• linear filters kernel lengths (N0, N1, N2): half predictor’s memory

In all experiments we either use a TCN composed of 3 hidden layers with 300 nodes

per layer or a TCN with 8 layers and 32 nodes per layer. Moreover we chose N3 = 5

(TCN kernels’ lengths) and ReLU activation functions [Bai et al., 2018].

Comparison with SOTA methods: We tested our model against other SOTA

methods (Table 7.2) in a comparable experimental setup. In particular, we chose com-

parable window lengths and architecture sizes (same order of magnitude of the number

of parameters) to make the comparison as fair as possible. For the hyper-parameters

details of any SOTA method we used we refer the relative cited references. We point

out that while the window length is a critical hyper-parameter for the accuracy of

many methods, our architecture is robust w.r.t. choice of window length: thanks to our

fading regularization, the user is required only to choose a window length larger than

the optimal one and then our automatic complexity selection is guaranteed to find the

optimal model complexity given the available data Section 5.3.1.

Anomaly scores: When computing the F-score we use the predictions of the CUM-

SUM detector which we collect as a binary vector whose length is the same as the

number of available data. Ones are associated to the presence of an anomalous time

instants while zeros are associated to normality.

When computing the AUC we need to consider a continuous anomaly score, therefore

the zero-one encoded vector from the CUMSUM is not usable. We compute the anomaly

scores for each time instant as the estimated likelihood ratios. Since we write the
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D. Interpretable Residual Temporal Convolutional Networks

Figure D.1: STRIC ablation studies on di↵erent datasets: E↵ects of interpretable
blocks and fading regularization on model’s forecasting as the available window of past
data increases (memory). Left Panel: Train error. Center Panel: Test error. Right
Panel: Generalization Gap. The test error of STRIC is uniformiy smaller than a
standard TCN (without interpretable blocks nor fading regularization). Adding in-
terpretable blocks to a standard TCN improves generalization for fixed memory w.r.t.
Standard TCN but get worse (overfitting occurs) as soon as the available past data hori-
zon increase. Fading regularization is e↵ective: STRIC generalization GAP is almost
constant w.r.t. past horizon.
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D.7. Experimental setup

likelihood ratio as
pf

pp
, it is large when data does not come from pp (which we consider

the reference distribution).

D.7.1 Ablation study

In Fig. D.1 we show di↵erent metrics based on the predictor’s RMSE (training, test and

generalization gap) as a function of the memory of the predictor. We test our fading

regularization on a variety of di↵erent datasets. In all situations fading regularization

helps improving test generalization and preserving the generalization gap (by keeping it

constant) as the model complexity increases. All plots show confidence intervals around

mean values evaluated on 10 di↵erent random seeds.

In Table D.2 we extend the results we show in the main paper by adding uncer-

tainties (measured by standard deviations on 10 di↵erent random seeds) to the values

of train and test RMSE on di↵erent ablations of STRIC. Despite the high variability

across di↵erent datasets STRIC achieves the most consistent results (smaller standard

deviations both on training and testing).

Finally, in Table D.3 we show the e↵ects on di↵erent choices of the predictor’s memory

npred and length of the anomaly detectors windows ndet = nf = np on the detection

performance of STRIC. Note both F-score and AUC are highly sensible to the choice

of ndet: the best results are achieve for small windows. On the other hand when ndet is

large the performance drops. This is due to the type of anomalies present in the Yahoo

benchmark: most of the them can be considered to be point anomalies. In fact, as we

showed in Section 7.4.2, our detector is less sensible to point anomalies when a large

window ndet is chosen.

In Table D.3 we also report the reconstruction error of the optimal predictor given

it’s memory npred. Note small memory in the predictor introduce modelling bias (higher

training error) while a large memory does not (thanks to fading regularization). As

we observed in Appendix D.5 better predictive models provide the detection module

with more discriminative residuals: the downstream detection module achieves better

F-scores and AUC.

D.7.2 Comparison TCN vs STRIC

In this section we show standard non-linear TCN without regularization and proper

inductive bias might not generalize on non-stationary time series (e.g. time series with

non zero trend component) and TCN architecture. In Fig. D.2 we compare the predici-

ton errors of a standard TCN model against our STRIC on the A3 Yahoo dataset.
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D. Interpretable Residual Temporal Convolutional Networks

Table D.2: Ablation study on the RMSE of prediciton errors with standard
deviation on 10 di↵erent seeds: We compare a standard TCN model with our
STRIC predictor and some variation of it (using the same train hyper-parameters).

D
a
ta

se
ts

TCN TCN + Linear TCN + Fading STRIC pred

Train Test Train Test Train Test Train Test

Yahoo A1 0.10 ±
0.06

0.92 ±
0.06

0.10 ±
0.03

0.88 ±
0.03

0.44 ±
0.03

0.92 ±
0.03

0.43 ±
0.02

0.62 ±
0.02

Yahoo A2 0.11 ±
0.02

0.82 ±
0.02

0.13 ±
0.01

0.35 ±
0.02

0.20 ±
0.01

0.71 ±
0.01

0.14 ±
0.01

0.30 ±
0.01

Yahoo A3 0.13 ±
0.01

0.43 ±
0.01

0.16 ±
0.01

0.22 ±
0.01

0.15 ±
0.01

0.40 ±
0.01

0.19 ±
0.01

0.22 ±
0.01

Yahoo A4 0.15 ±
0.01

0.61 ±
0.01

0.19 ±
0.01

0.35 ±
0.01

0.17 ±
0.01

0.55 ±
0.01

0.23 ±
0.01

0.24 ±
0.01

CO2
Dataset

0.14 ±
0.02

0.62 ±
0.02

0.15 ±
0.02

0.45 ±
0.02

0.18 ±
0.03

0.61 ±
0.03

0.33 ±
0.01

0.41 ±
0.01

NAB
Tra�c

0.03 ±
0.01

1.06 ±
0.02

0.04 ±
0.01

1.00 ±
0.02

0.62 ±
0.01

0.93 ±
0.01

0.83 ±
0.02

0.74 ±
0.02

NAB
Tweets

0.18 ±
0.05

1.02 ±
0.05

0.20 ±
0.05

0.98 ±
0.05

0.47 ±
0.02

0.83 ±
0.02

0.70 ±
0.01

0.77 ±
0.01

Table D.3: Sensitivity of STRIC to hyper-parameters: We compare STRIC
on di↵erent anomaly detection benchmarks datasets using di↵erent hyper-parameters:
memory of the predictor npred and length of anomaly detector windows np = nf = ndet.

M
o
d
e
ls

Yahoo A1 Yahoo A2 Yahoo A3 Yahoo A4

F1 AUC F1 AUC F1 AUC F1 AUC

npred = 10, ndet = 2 0.45 0.89 0.63 0.99 0.87 0.99 0.64 0.89
npred = 100, ndet = 2 0.48 0.9308 0.98 0.9999 0.99 0.9999 0.68 0.9348
npred = 10, ndet = 20 0.10 0.58 0.63 0.99 0.47 0.83 0.37 0.72
npred = 100, ndet = 20 0.10 0.55 0.98 0.9999 0.49 0.86 0.35 0.76

M
o
d
e
ls

Yahoo A1 Yahoo A2 Yahoo A3 Yahoo A4

Train Test Train Test Train Test Train Test

npred = 10 0.44 0.62 0.16 0.31 0.22 0.23 0.25 0.26
npred = 100 0.42 0.61 0.14 0.30 0.19 0.22 0.23 0.24
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D.8. STRIC vs SOTA Anomaly Detectors

Figure D.2: STRIC vs o↵-the-shelf TCN: We compare an o↵-the-shelf TCN against
STRIC (time series predictor) on the Yahoo dataset A3 Benchmark. Note the standard
TCN overfits compared to STRIC: the standard TCN does not handle correctly the
trend component of the signal (First row). If we consider a time series without trend,
the standard TCN model performs better but overfitting is still present. In particular
the generalization gap (measured using squared reconstruction error) for the two models
is: Standard TCN 0.3735 and STRIC 0.0135.

We train both models using the same optimization hyper-parameters (as described in

previous section). Note a plain TCN does not necessarily capture the trend component

in the test set.

D.8 STRIC vs SOTA Anomaly Detectors

In this section we further expand the discussion on the main di↵erences between STRIC

and other SOTA anomaly detectors by commenting results obtained in Table 7.2 and

Table D.4. Table D.4 highlights the relative performance of STRIC when the pefor-

mance are nearly saturated (e.g. Yahoo A2 and A3). For each comparing SOTA method

we report the following: AUCmethod�AUCSTRIC
1�AUCSTRIC

· 100 (similarly for F1).

To begin with, STRIC outperforms “traditional” methods (LOF and One-class SVM)

which are considered as baselines models for comparing time series anomaly detectors.

Comparison with other Deep Learning based methods: STRIC outperforms

most of the SOTA Deep Learning based methods reported in Table 7.2: TadGAN,

TAnoGAN, DeepAnT and DeepAR (the last one is a SOTA time series predictor). Note

the relative improvement of STRIC is higher on the Yahoo dataset where statistical

models outperforms deep learning based ones. We believe this is due to both fading

regularization and the seasonal-trend decomposition performed by STRIC.
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D. Interpretable Residual Temporal Convolutional Networks

Figure D.3: Zoom on the second row of panels in Fig. D.2. We show the interface
between train and test data both on a plain TCN and on our STRIC predictor. A plain
TCN overfits w.r.t. STRIC also when not trend is present.

Despite the general applicability of GOAD [Bergman and Hoshen, 2020] this method

has not been designed to handle time series, but images and tabular data. “Geometric”

transformations which have been considered in GOAD and actually have inspired it

(rotations, reflections, translations) might not be straightforwardly applied to time

series. Nevertheless, while we have not been able to find in the literature any direct

and principled extension of this work to the time series domain, we have implemented

and compared against [Bergman and Hoshen, 2020] by extending the main design ideas

of GOAD to time-series. So that we applied their method on lagged windows extracted

from time series (exploiting the same architectures proposed for tabular data case with

some minor modifications). We report the results we obtained by running the GOAD’s

o�cial code on all our benchmark datasets. Overall, STRIC performs (on average) 70%

better than GOAD on the Yahoo dataset and 15% better on the NAB dataset.

D.8.1 Details on the NYT experiment

Fig. 7.9 shows the normalized anomaly score computed by STRIC on the NYT dataset,

following the setup described in Section D.6.4. Some additional insights can be gained

by zooming in around some of the detected change-points. In Fig. D.4 (left), we see

that the anomaly score (blue line) rapidly increases immediately after the 9/11 attack

and reaches its peak some days later. Such delay is inherently tied to our choice of time

scale, that privileges the detection of prolonged anomalies as opposed to single-day

anomalies (which are not meaningful due to the high variability of the news content).

The change-point which occurs the day after the 9/11 attack is reflected by a sudden

increase of the relative frequency of article descriptors such as “Terrorism” (orange

line). Article descriptors are annotated in the NYT dataset, but they are not given as

input to STRIC so that we do not rely on any human annotations. However, they can
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D.8. STRIC vs SOTA Anomaly Detectors

Table D.4: Comparison with SOTA anomaly detectors: We compare STRIC with
other anomaly detection methods on the experimental setup and the same evaluation
metrics proposed in [Braei and Wagner, 2020, Munir et al., 2019]. The baseline models
are: MA, ARIMA, LOF [Shen et al., 2020], LSTM [Braei and Wagner, 2020, Munir
et al., 2019], Wavenet [Braei and Wagner, 2020] , Yahoo EGADS [Munir et al., 2019]
, GOAD [Bergman and Hoshen, 2020], OmniAnomaly [Su et al., 2019], Twitter AD
[Munir et al., 2019], TanoGAN [Bashar and Nayak, 2020], TadGAN [Geiger et al.,
2020] , DeepAR [Flunkert et al., 2017] and DeepAnT [Munir et al., 2019] . STRIC
outperforms most of the other methods based on statistical models and based on DNNs.
Same as Table 7.2, here we report the relative improvements w.r.t. STRIC (the higher
the better).

M
o
d
el
s

Relative F1-
score improve-
ment over
STRIC in %

Yahoo
A1

Yahoo
A2

Yahoo
A3

Yahoo
A4

NAB
Tweets

NAB
Tra�c

ARIMA -20 -88 -42 6 -33 -37
LSTM -7 -33 -60 - 21
Yahoo EGADS -1 -95 -78 -54
OmniAnomaly -1 -60 -45 -11 -6 -10
Twitter AD 0 -98 -85 -53
TanoGAN -11 -85 -73 -13 -36 -44
TadGAN -13 -85 -65 -20 -25 -47
DeepAR -29 -72 -79 -41 -37 -32
DeepAnT -4 -67 -15 0
STRIC (ours) 0 0 0 0 0 0

M
o
d
el
s

Relative AUC
improvement
over STRIC in
%

Yahoo
A1

Yahoo
A2

Yahoo
A3

Yahoo
A4

NAB
Tweets

NAB
Tra�c

MA -47 -98 -98 379
ARIMA -45 -99 -99 124
LOF -28 -99 -99 -81 -32 -44
Wavenet -60 -99 -99 -84
LSTM -63 -99 -99 -84
GOAD -37 -99 -99 -51 -19 -12
DeepAnT -32 -99 -99 -53 -23 -13
STRIC (ours) 0 0 0 0 0 0
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D. Interpretable Residual Temporal Convolutional Networks

Figure D.4: A closer look at some of the change-points detected by STRIC. Left:
Normalized anomaly score (blue line) and normalized frequency of the “Terrorism”
descriptor (orange line) around the 9/11 attack. Right: Normalized anomaly score
(blue line) and normalized frequency of the “Earthquakes” descriptor (orange line)
in the second half of 2004 and beginning of 2005. The 2004 U.S. election causes an
increase in the anomaly score, but the most significant change-point occurs after the
Indian Ocean tsunami.

help interpreting the change-points found by STRIC.

In Fig. D.4 (right), we can observe that the anomaly score (blue line) is higher in

the months around the 2004 U.S. election and immediately after the inauguration day.

However, the highest values for the anomaly score occur around the end of 2004, shortly

after the Indian Ocean tsunami. Indeed, this is reflected by an abrupt increase of the

frequency of descriptors like “Earthquakes” (orange line) and “Tsunami”.

We note this experiment is qualitative and unfortunately we are not aware of any

ground truth or metrics we can compare against (e.g. in [Rayana and Akoglu, 2015] a

similar qualitative result has been reported on the NYT dataset). We therefore tested

STRIC against a simple baseline which uses PCA on BERT features and a threshold

to detect anomalies. Despite being a simple baseline thie method prooved to be highly

applied in practice due to its simplicity [Blázquez-Garćıa et al., 2020]. The PCA +

threshold baseline is able to pick up some events (2000 election, 9/11 attack, housing

bubble) but is otherwise more noisy than STRIC’s anomaly score. This is likely due

to the lack of a modeling of seasonal/periodic components. For instance, the anomaly

score of the simple baseline contains many false alarms which are related to normal

weekly periodicity that is not easily modeled by the baseline. This does not a↵ect

STRIC’s predictions since normal weekly periodicity is directly modeled and identified

as normal behaviour.
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