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1. ABSTRACT 

Local cattle breeds are characterized by strict historical and environmental connection 

with the areas of diffusion. They presented different phenotypic and genetics aspect among 

them, due to the adaptation to different environment and partially to genetic drift due to the 

environment. Preserving this diversity is essential to ensure future food production in an 

environment that is constantly changing due to climate change, i.e., temperature increment 

and reduced distribution of rainfall. Furthermore, they play an important role in producing 

services unrelated to food production such as ecosystem services, but also cultural and 

historical services. In addition, they have a primary role to sustain the local economy 

especially in rural areas, being linked often to specific traditional products. Despite this a 

deterioration of local breeds consistency has taken place in last decades. This was due by 

the progressive substitution with more specialized/productive breeds that ensured a 

generally higher profitability. However, higher profitability to these breeds is not entirely 

impossible, and it can be done by farming them in low-input environments, and/or through a 

further valorization of breed specific product. The competitiveness of these breeds can 

also be achieved by adequate breeding plans that guarantees a progressive increase of 

the productive traits with the maintenance of the typical traits and low increase of 

inbreeding levels. The DUALBREEDING is a ministerial project aimed at promoting the 

competitiveness of local dual-purpose breeds in Italy through the good breeding practices 

described above. It is based on some milestones as the monitoring of inbreeding, selection 

for functional traits and longevity. Three breeds involved in the DUALBREEDING project 

were considered in the present thesis: the Alpine Grey (Grigio Alpina), Reggiana, and 

Rendena. In each breed three different approaches are developed to promote the local 

breed within the territory of origin. For example, the Alpine Grey breed is the quintessential 

alpine breed, where there is a strong link between farming environments and breeding. 

The Reggiana, on the other hand, represented the symbol of the valorization of 

autochthonous breeds through the animal-breed-food association. Lastly, the Rendena 

breed is particularly appreciated by breeders for its "rusticity" and its ability to apt in different 

environment combined with good milk and meat production. In this study, thanks to the data 

and directives provided by the DUALBREEDING project, some strategies have been 

developed to improve and enhance the genetic value of the three breeds. The first 

approach was based on the development variance components estimation and response to 

selection for each breed. A technical note was then produced to demonstrate how to 
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derive selections indexes by attributing specific economic weights considering even 

constrains on some traits. 

New selection indices and response to selection were then calculated for Alpine Grey 

breeds. In that study we demonstrate that the current selection index leads in the medium-

long term to a detriment of genetic progress for beef, functional characteristics of the cattle. 

For these reasons we have presented various selection indices more oriented to the dual 

aptitude of these cattle without worsening some morphological characteristics appreciated 

by breeders, maintaining a modest selective response for milk production. While for 

Reggiana the variance of milk components and fertility traits was estimated. Furthermore, 

for these phenotypes the quote of Genotyped from the environmental interaction (GxE) was 

calculated. In that study we identify a significant quote of GxE expressed by those traits, 

however the models that consider GxE do not differ in terms of EBV accuracy and bull re-

ranking. The second study was focused on the introduction of genomic selection in Rendena 

breed. At first, data on performance test were analyzed with “classical” BLUP. Three 

models were then compared: (i) Pedigree-BLUP (PBLUP); (ii) single-step GBLUP 

(ssGBLUP), and (iii) weighted single-step GBLUP (WssGBLUP). We identify that the 

models including genomic information presented higher accuracies than PBLUP, especially 

WssGBLUP. However, the model with the best overall properties was the ssGBLUP, 

showing higher accuracy than PBLUP with optimal values of bias and dispersion 

parameters. This study demonstrated that integrating phenotypes for beef traits with 

genomic data can be helpful to estimate performance test EBVs, even in a small local 

breed. The subsequent study consisted in a further implementation of genomic selection in 

the Rendena cattle. This time we investigated several alternative methods to improve the 

accuracy of genomic selection in the population. Particularly, the impact of using only a 

subset of informative markers regarding accuracy of prediction, bias, and dispersion, was 

investigated. We tested different machine learning variable selection algorithms to select 

the SNPs, i.e., LASSO, recursive recursive feature elimination and Extreme Gradient Boost. 

At first, in a simulated dataset we benchmark the performance of ssGBLUP with variable 

selection models with the models mentioned above. Simulation differs in terms of number of 

QTLs and effective population size. Then, these approaches were implemented on the 

Rendena performance test dataset. Our results showed that the accuracy of GBLUP in 

small sized populations increase when performed with SNPs selected via variable selection 

methods both in simulated and actual datasets. In addition, the use of variable selection 
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models – especially those using XGboost – in the actual dataset did not impact on bias and 

the dispersion of estimated breeding values. 

In the last part of this thesis, a study on the genetic makeup of local breeds, by 

conducting a GWAS analysis on Rendena cattle breed, was carried out. However, since 

there were several sources of information for Rendena (animals with and without 

genotyping or phenotype), an efficient method combining each information was needed. For 

this purpose, single-stepGWAS (ssGWAS) promises a good strategy. However, its ability to 

account for population structure has not been explored. We investigated the equivalence 

among ssGWAS, efficient mixed-model association expedited (EMMAX), and genomic best 

linear unbiased prediction GWAS (GBLUP-GWAS), and how they differ from the single-

SNP analysis without correction for population structure (SSA-NoCor). Simulated datasets 

were then constructed and structured populations that mimicked fish, beef cattle, and dairy 

cattle populations with 1,040, 5,525, and 1,400 genotyped individuals, respectively, were 

produced. A larger population that had up to 10-fold more genotyped animals were also 

simulated. In dairy cattle phenotypes of daughters were projected into genotyped sires (i.e., 

de-regressed proofs) before applying EMMAX and SSA-NoCor. Although SSA-NoCor had 

the largest number of true positive SNPs among the four methods, the number of false 

negatives was two–fivefold that of true positives. Interesting we found that GBLUP-GWAS 

and EMMAX had a similar number of true positives, which was slightly smaller than in 

ssGWAS, although the difference was not significant. After the validation of single-step 

GWAS performance, the equation was used in the Rendena actual dataset. GWAS a post-

GWAS analysis for body weight (BW), average daily gain (ADG), carcass fleshiness (CF) 

and dressing percentage (DP) in 1,690 individuals were then carried out. Moreover, we 

considered two of the target phenotypes (BW and ADG) at different times in the individuals’ 

life, a potentially important aspect in the study of the traits’ genetic architecture. We 

identified 8 significant and 47 suggestively associated SNPs, located in 14 autosomal 

chromosomes (BTA). Among the strongest signals, 3 significant and 16 suggestive SNPs 

were associated with ADG and were located on BTA10 (50–60 Mb), while the hotspot 

associated with CF and DP was on BTA18 (55–62 MB). Among the significant SNPs some 

were mapped within genes, such as SLC12A1, CGNL1, PRTG (ADG), LOC513941 (CF), 

NLRP2 (CF and DP), CDC155 (DP). Concluding, although the improvement of local breeds 

plays a secondary role, the results produced in this thesis seem suitable for the breeding 
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systems even in small local populations, in terms of selection / accuracy plans but also in 

the enhancement of their genomic heritage 
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2. ABSTRACT (ITA) 

Le razze bovine autoctone sono caratterizzate da uno stretto legame storico e 

ambientale con i territori di diffusione. Esse presentano una varietà aspetti fenotipici e genetici, 

dovuti all'adattamento al diverso ambiente e anche in parte alla deriva genetica dovuta 

all'ambiente. La conservazione di questa diversità è essenziale per garantire la futura 

produzione alimentare in un ambiente in costante mutamento a causa dei cambiamenti 

climatici, come l'aumento della temperatura e la ridotta distribuzione delle precipitazioni. Inoltre, 

svolgono un ruolo importante nella produzione di servizi esterni alla produzione alimentare 

come i servizi ecosistemici, ma anche i servizi culturali e storici. Inoltre, hanno un ruolo primario 

nel sostenere l'economia locale soprattutto nelle zone rurali poiché esse sono spesso legate a 

specifici prodotti tradizionali. Nonostante ciò, negli ultimi decenni si è verificato un 

deterioramento della consistenza delle razze locali. Ciò era dovuto alla progressiva sostituzione 

con razze più specializzate/produttive che garantivano una redditività generalmente maggiore. 

Tuttavia, una maggiore redditività per queste razze non è del tutto impossibile e può essere 

ottenuta allevandole in ambienti a basso input e/o attraverso un'ulteriore valorizzazione del 

prodotto specifico della razza. La competitività di queste razze può essere raggiunta anche da 

adeguati piani di allevamento che garantiscano un progressivo incremento dei tratti produttivi 

con il mantenimento dei tratti tipici e un basso incremento dei livelli di consanguineità. Il 

DUALBREEDING è un progetto ministeriale volto a promuovere la competitività delle razze 

locali a duplice attitudine in Italia attraverso le buone pratiche di allevamento sopra descritte. Si 

basa su alcune pietre miliari come il monitoraggio della consanguineità, la selezione dei tratti 

funzionali e la longevità. Nella presente tesi sono state considerate tre razze coinvolte nel 

progetto DUALBREEDING: la Grigia Alpina (Grigio Alpina), la Reggiana e la Rendena. In ogni 

razza vengono sviluppati tre diversi approcci per promuovere la razza locale all'interno del 

territorio di origine. Ad esempio, la razza Alpine Grey è la razza alpina per eccellenza, dove 

esiste un forte legame tra ambienti di allevamento e allevamento. La Reggiana, invece, 

rappresentava il simbolo della valorizzazione delle razze autoctone attraverso l'associazione 

animale-razza-alimentazione. La razza Rendena, infine, è particolarmente apprezzata dagli 

allevatori per la sua "rusticità" e per la sua capacità di adattamento in ambienti diversi abbinata 

ad una buona produzione di latte e carne. In questo studio, grazie ai dati e alle direttive fornite 

dal progetto DUALBREEDING, sono state sviluppate alcune strategie per migliorare e 

valorizzare il valore genetico delle tre razze. Il primo approccio era basato sulla stima delle 



 

7 
 

componenti della varianza dello sviluppo e sulla risposta alla selezione per ciascuna razza. 

Come prima cosa è stata sviluppata una nota tecnica per dimostrare come ricavare indici di 

selezione attribuendo pesi economici specifici considerando anche i vincoli su alcuni tratti. 

Sono stati quindi calcolati nuovi indici di selezione e risposta alla selezione per le razza 

Grigio Alpina. In questo dimostriamo che l'attuale indice di selezione porta nel medio-lungo 

periodo a scapito del progresso genetico della carne bovina, caratteristiche funzionali del 

bovino. Per questi motivi abbiamo presentato vari indici di selezione più orientati alla duplice 

attitudine di questi bovini senza peggiorare alcune caratteristiche morfologiche apprezzate dagli 

allevatori, mantenendo una modesta risposta selettiva per la produzione di latte. Mentre per la 

Reggiana è stata stimata la varianza delle componenti del latte e dei tratti di fertilità. Inoltre, per 

questi fenotipi è stata calcolata la quota di interazione genotipo per ambiente (GxE). In questo 

studio identifichiamo una quota significativa di GxE espressa da quei tratti; tuttavia, i modelli 

che considerano GxE non differiscono in termini di accuratezza EBV e riclassificazione 

rialzista. Il secondo gruppo di ricerche si è concentrato sull'introduzione della selezione 

genomica nella razza Rendena. Inizialmente, i dati sul test delle prestazioni sono stati 

analizzati con BLUP "classico". Sono stati quindi confrontati tre modelli: (i) Pedigree-BLUP 

(PBLUP); (ii) GBLUP a fase singola (ssGBLUP) e (iii) GBLUP a fase singola ponderata 

(WssGBLUP). Identifichiamo che i modelli che includono informazioni genomiche presentavano 

precisioni maggiori rispetto a PBLUP, in particolare WssGBLUP. Tuttavia, il modello con le 

migliori proprietà complessive è stato ssGBLUP, che mostra una maggiore precisione rispetto a 

PBLUP con valori ottimali di bias e parametri di dispersione. Questo studio ha dimostrato che 

l'integrazione dei fenotipi per i tratti della carne bovina con i dati genomici può essere utile per 

stimare gli EBV dei test di prestazione, anche in una piccola razza locale. Lo studio successivo 

è consistito in un'ulteriore implementazione della selezione genomica nei bovini Rendena. 

Questa volta abbiamo studiato diversi metodi alternativi per migliorare l'accuratezza della 

selezione genomica nella popolazione. In particolare, è stato studiato l'impatto dell'utilizzo di 

solo un sottoinsieme di marcatori molecolari informativi. Abbiamo testato diverse varianti di 

machine learning. algoritmi di selezione per selezionare questi marcatori, ovvero LASSO, 

recuersive feature eliminations e Extreme Gradient Boost. Inizialmente, in un set di dati 

simulato, confrontiamo le prestazioni di ssGBLUP con modelli di selezione variabile con i 

modelli sopra menzionati. Le simulazioni differiscono in termini di numero di QTL e dimensione 

effettiva della popolazione. 



 

8 
 

Quindi, questi approcci sono stati implementati sul set di dati del test delle prestazioni 

Rendena. I nostri risultati hanno mostrato che l'accuratezza di GBLUP in popolazioni di piccole 

dimensioni aumenta se eseguita con SNP selezionati tramite metodi di selezione variabile sia 

in set di dati simulati che effettivi. Inoltre, l'uso di modelli di selezione variabile, in particolare 

quelli che utilizzano l'algoritmo XGboost, nel set di dati effettivo non ha avuto alcun impatto 

sulla distorsione e sulla dispersione dei valori riproduttivi stimati. 

Nell'ultima parte di questa tesi è stato condotto uno studio sul corredo genetico delle 

razze locali, effettuando un'analisi GWAS sulla razza bovina Rendena. Tuttavia, poiché 

esistevano diverse fonti di informazione per Rendena (animali con e senza genotipizzazione o 

fenotipo), era necessario un metodo efficiente che combinasse ciascuna informazione. A 

questo scopo, single-stepGWAS (ssGWAS) si promette una buona strategia. Tuttavia, la sua 

capacità di tenere conto della struttura della popolazione non è stata esplorata. Abbiamo 

studiato l'equivalenza tra ssGWAS, efficiente associazione di modelli misti accelerati (EMMAX) 

e miglior previsione lineare imparziale genomica GWAS (GBLUP-GWAS) e come differiscono 

dall'analisi a singolo SNP senza correzione per la struttura della popolazione (SSA-NoCor) . 

Sono stati quindi costruiti set di dati simulati e sono state prodotte popolazioni strutturate che 

imitavano le popolazioni di pesci, bovini da carne e bovini da latte con rispettivamente 1.040, 

5.525 e 1.400 individui genotipizzati. Sono state anche simulate popolazioni più grandi che 

avevano fino a 10 volte più animali genotipizzati. Nei bovini da latte i fenotipi delle figlie sono 

stati proiettati in tori genotipizzati (cioè prove de-regredite) prima di applicare EMMAX e SSA-

NoCor. Sebbene SSA-NoCor avesse il maggior numero di SNP veri positivi tra i quattro metodi, 

il numero di falsi negativi era due-cinque volte quello dei veri positivi. È interessante notare che 

GBLUP-GWAS ed EMMAX avevano un numero simile di veri positivi, leggermente inferiore 

rispetto a ssGWAS, sebbene la differenza non fosse significativa. Dopo la convalida delle 

prestazioni GWAS a fase singola, l'equazione è stata utilizzata nel set di dati effettivo di 

Rendena. GWAS è stata quindi eseguita un'analisi post-GWAS per peso corporeo (BW), 

guadagno medio giornaliero (ADG), carcassa della carcassa (CF) e percentuale di 

medicazione (DP) in 1.690 individui. Inoltre, abbiamo considerato due dei fenotipi target (BW e 

ADG) in momenti diversi della vita degli individui, un aspetto potenzialmente importante nello 

studio dell'architettura genetica dei tratti. Abbiamo identificato 8 SNP significativi e 47 associati 

in modo suggestivo, situati in 14 cromosomi autosomici (BTA). Tra i segnali più forti, 3 SNP 

significativi e 16 suggestivi erano associati all'ADG e si trovavano su BTA10 (50–60 Mb), 
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mentre l'hotspot associato a CF e DP era su BTA18 (55–62 MB). Tra gli SNP significativi alcuni 

sono stati mappati all'interno dei geni, come SLC12A1, CGNL1, PRTG (ADG), LOC513941 

(CF), NLRP2 (CF e DP), CDC155 (DP). In conclusione, sebbene il miglioramento delle razze 

locali svolga un ruolo secondario, i risultati prodotti in questa tesi sembrano adatti ai sistemi di 

allevamento anche in piccole popolazioni locali, in termini di piani di selezione/accuratezza ma 

anche nella valorizzazione del loro patrimonio genomico. 
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3. INTRODUCTION 

IMPORTANCE OF LOCAL BREEDS 

Livestock farming, while being one of the drivers that marginally contribute to climate 

change (14.5% of GHG emission source: https://www.fao.org/), is at the same time one of the 

activities that is and will be most impacted by environmental changes (Mastrangelo et al., 

2014). The negative effect on food production and distribution, the increase in animal diseases 

or other effects on feed supply are some of the consequences caused by climate change 

(Hoffmann, 2010). For example, a critical situation is identified in Northern Italy, an area 

historically devoted to diary production, where the reduction in rainfall and the increase in 

temperatures have negative impacts on the ability of farms to produce feed and milk, with 

expected future economic losses (Vitali et al., 2019). For that this reason, it is evident that the 

current livestock production system based on few and highly specialized species/breeds, will 

not be able to guarantee food security in the future (Boudalia et al., 2020). This becomes even 

more critical, if in addition to climate change, an increased future human demand for food is 

considered (FAO, 2003). For this perspective, preserve livestock biodiversity, especially across 

breed genetic diversity, is becoming essential (Hoffmann, 2010). Local breeds are the main 

contributor to a crossbreed animal genetic biodiversity, as reported on Figure 1 

(https://www.fao.org/dad-is). 

Figure 1. Number of livestock breeds obtained from Domestic Animal Diversity Information 

System (DAD-IS). 

 

http://www.fao.org/)
http://www.fao.org/dad-is)
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Although native breeds were once a key to ensure food security in specific local/rural 

areas and supporting their economies, in the near future, these breeds will become essential to 

ensure the global food security (Hoffmann, 2013). Indeed, such breeds often present unique 

characteristics that allow them to adapt to different conditions (Krupová et al., 2016; Sutera et 

al., 2021), which in turn implies a better response to environmental changes or new challenges 

due to these changes (Biscarini et al., 2015, Mancin et al 2021). Thus, these non-specialized 

breeds represent an unexploited source of diversity for the animal breeding sector since they 

have not been under excessive specialization. Recently, thanks to the no longer prohibitive 

costs of genotyping with single nucleotide polymorphisms (SNP; Blasco and Toro, 2014), many 

studies focused on the characterization of genomic assets even in these breeds (Sechi et al., 

2007; Bertolini et al., 2018; Yin and König, 2019). Results identified in these studies further 

confirmed what expected, i.e., i) the wide genetic variability carried by local breeds; ii) and the 

different genomic asset in terms of genes and biological pathways involved. For example, 

(Ben-Jemaa et al., 2021), showed that natural selection (i.e., selection for adaptability in a 

specific environments), shaped several immunity genes, not present in most cosmopolite 

breeds, involved in both innate and adaptive response to the pathogens. Furthermore, in some 

cases even the candidate genes associated with the main productive traits seem to be targets 

of natural or semi-artificial selection, which shows a differential number of genes and a greater 

complexity of the pathways involved for these traits (Mancin et al., 2022). Regarding the large 

genetic variability carried by these breeds, a striking example can be identified in Senczuk et 

al.(2020), where authors indicates that although many of the local Italian breeds analyzed are 

endangered, they still retain a significant amount of genetic variation compared to some 

specialized breeds (i.e. Holstein and Brow Swiss). 

Furthermore, preserving the genetic biodiversity of livestock can be fundamental for 

contrasting new undue phenomena caused by climate change such as the increase in the 

circulation of potentially pandemic viruses (Fan et al., 2020), SARS-CoV-2, among all. Indeed, 

there is a clear link between intensification and specialization of the worldwide livestock sector 

and other recent zoonotic pandemics, e.g., influenza viruses (Gandini and Hiemstra, 2021). 

This is why livestock has an important component aimed at a "One Health" perspective to 

control viral infections affecting both animals and humans. For instance, in Bovo et al. (2021), it 

has been demonstrated that pig sector can be a "One Healt" approach against coronavirus 

through the inclusion of less specialized breeds. 
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In addition to the new role assigned to native breeds as a “gene pool” to ensure future 

food production in an ever-changing environment, these breeds have always played a key role 

in supporting the local ecosystem and economy (Hiemstra et al., 2010). They can generate 

immaterial socio-cultural or ecosystem benefits. Indeed, local breeds are generally raised in an 

"open" livestock system in which the production is based on a resource-driven activity linked to 

the circumscribed ecosystems, while production for the cosmopolitan breed is a question-driven 

activity, disconnected from the surrounding environment (FAO, 2003; Marsoner et al., 2018). 

For these reasons native breeds provide more local ecosystem services and cultural values, 

commonly called “externalities”, compared to specialized breeds (Leroy et al., 2018). The 

externalities provided by local cattle breeds can be mainly grouped in i) cultural services, and ii) 

ecosystem services. The ecosystem services can in turn be divided in supply services and 

regulatory services. Supply services include food-feed, fiber, genes, while the regulatory ones 

include nutrient cyclin, as disease control (Ovaska and Soini, 2017). Cultural services, on the 

other hand, consist in preservation of heritage and uniqueness through local gastronomy and 

landscapes, but also through rural services, such as agritourism and rehabilitation. (Ovaska 

and Soini, 2017). 

Despite this, in the last century (from 1950 to 1980) unprecedented deterioration of 

livestock genetic diversity has taken place (FAO, 2007). The main driver was the interest in 

increasing farm profitability through the augmentation of output production (milk and beef). This 

geared towards the use of specialized/high-yielding breeds with a consequently a decline in the 

use of multi- purpose/local cattle breed (Gandini et al., 2010). Other secondary drivers are: the 

unbalanced assessments, the genetic introgression of other breeds, the lack of market and 

public incentives, the excessive use of the same sires, or for developing countries natural 

disasters or political instability (Bett et al., 2013). Fashion-driven factors also play an important 

role in the abandonment of local breeds, since the breeders themselves felt the pressure to 

switch from native breeds to "modern" and "more efficient" specialized breeds (Hiemstra and 

Gandini, 2010). However, this decline did not follow the same patterns in all countries: for 

example a milder decline was seen in the countries of the Mediterranean belt (Spain, Grece 

and Italy), while in the Nord Europe countries the local breeds were almost replaced with 

cosmopolitan breeds (Hiemstra and Gandini, 2010). For example, in Spain, the percentage of 

local breeds decreased form 74% in 1995 to 26% in 1986 (Gómez et al., 1997). In Finland a 

more intensive decline was observed: the Finncattle breed rapidly declined from approximately 
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500,000 animals 1950 to only few thousand today (https://faba.fi/en/history/). The most 

effective defense to counter the progressive abandonment of local breeds consists in 

increasing the market value of local breed farms (Gandini et al., 2007; Hiemstra et al., 2010; 

Biscarini et al., 2015). This could be done through public subsidies or, more effectively, by 

raising the awareness of farmers. Indeed, increasing the competitiveness of these breeds can 

be done i) by enhancing these breeds in low input-output systems (i.e., alpine pastures) ii) by 

considering livestock a multifunctional activity, capable of producing both food and other 

services that are not easily tangible (Gandini et al., 2010). An example of the second point is 

the enhancement of local and unique products derived from these breeds (FAO, 2007), where 

in addition to the intrinsic products values, an added value is guaranteed by the uniqueness 

of the products given by the simultaneous connection between food, the breed, the 

environment and the historical heritage of the place. A striking example is what happened to 

the Reggiana cattle, a native breed of northern Italy. Thanks to the creation of high-quality 

single-breed cheeses (Parmigiano Reggiano delle Vacche Rosse, founded in 1990), the 

population progressively grew from 800 heads in 1980 to 3,000 heads nowadays. This was 

guarantee by high profitability of Parmigiano Reggiano delle Vacche Rosse, that ensured over 

time a sustained price for milk that compensated the lower productivity of the breed (Gandini et 

al., 2007). Although the increase in the market values of these breeds is the key factor in the 

perspective of conservation, albeit secondary, it is given by adequate breeding programs, 

which are sometime poorly implemented in the local breeds (Biscarini et al., 2015). Although, 

most technologies and equation have been implemented for high-input and larger breeds are 

therefore applied more effectively in that context, their application in native breeds is not 

prevented and can bring considerable advantages. The uses of this technologies can be more 

successfully if they are utilized in close cooperation with farmer and breeding associations 

(Biscarini et al., 2015). In addition to an increased production level, these plans are needed to 

preserve genetic variability within each livestock population. This is essential for the long-term 

success of the animal husbandry industry to ensure productive and reproductive efficiency, 

health, survival, and overall resilience in future unforeseen environmental pressures 

(Mastrangelo et al., 2014). For this reason, the objectives of this thesis consisted in applying 

and developing ad hoc breeding strategies and equations, for i) broadening the knowledge of 

the genetic architecture of the local breed but above all ii) aiming to increase genetic progress 

net of maintenance of the functional and peculiar characteristics of these breeds.
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THE DUALBREEDING PROJECT 

Although the competitiveness of native breeds must be mainly ensured by the 

commercial ability of the breeder, public incentives can be supportive. More than "direct" 

economic aid, the "indirect" ones are useful. Public incentives that stimulate the technological 

progress or that aim at a reorganization of the local breed sector are therefore welcome. The 

DUALBREDING project is an example of this indirect public intervention to support local dual-

purpose breeds. It is financed by the European Agricultural Fund for Rural Development (PSRN 

2014-2020) through the National Rural Development Program, specifically by sub-measure 

10.2. The National Rural Development Program (PSRN) is an instrument developed by the 

Italian Ministry of Agricultural, Food and Forestry Policies (MIPAAF) and co-financed by the 

European Agricultural Fund for Rural Development (EAFRD; Reg. (EU) n.1305 / 2013). The 

2014-2020 PSRN to finance these sub-measures has a total public funding of 2.14 billion euros 

approved by the European Commission with decision (C2015) 8312 of 20/11/2015. The PSRN 

2014-2020 pays attention to sustainability and supports rural areas with various objectives: 

1) Protect and safeguard the environment and animal biodiversity 

2) Investing in irrigation resources by promoting investments to facilitate water 

saving 

3) Promote the use of risk management tools such as mutuality funds and income 

stabilization  

As aforementioned, DUALBREEDING was financed by sub-measure 10.2: "Support for the 

sustainable conservation, use and development of genetic resources in agriculture". This sub-

measure is aimed at the conservation of the genetic heritage and the maintenance of animal 

genetic variability and the safeguard of biodiversity. Sub-measure 10.2 also indirectly includes 

the sustainable use of farm animal biodiversity, as well as the preservation, restoration, and 

enhancement of connected ecosystems. The most significant application of sub-measure 10.2 

was the creation of 9 livestock sectors: dairy cattle, beef cattle, dual-purpose cattle, buffaloes, 

sheep/goats, pigs, burrows, equine, and poultry. The DUALBREEDING is the specific 

measure for dual purpose, mostly local breeds. 

The project involves 5 main national breeders associations, i.e., the Italian Simmental breed 

(Pezzata Rossa, ANAPRI), the Alpine Grey (Grigio Alpina, ANAGA), the Rendena (ANARE), 

the Reggiana (ANABORARE) and the Valdostana breeds (ANABORAVA).. The 
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DUALBREEDING also involves other 11 autochthonous small and less diffused dual-purpose 

breeds distributed throughout the national territory, i.e., Pinzgauer, Modicana, Cinisara, 

Pezzata Rossa D'Oropa, Pustertaler Sprinzen/Barà, Modenese/Bianca Val Padana, Burlina, 

Agerolese, Cabannina, Varzese-Ottonese Tortonese, and Garfagnina breeds, as described in 

Table 1. As respect the main 5 breeders associations, these breeds do not present a 

selection, but a conservation program. A total contribution of € 7,920,298.79 have been 

granted by a Ministerial decreet (Decreto Minesteriale; no. 7388) released on 23rd of February 

2018, equivalent to 90% of the Admitted Expenditure of € 8,800,331.99 The DUALBREDING 

object is based on milestones. The first is the biodiversity or genetic variability, the specifically 

involves reduction and constant monitoring of inbreeding in populations. The second 

milestone is the progress of cattle husbandry toward the environmental sustainability, that can 

be achieved directly by increasing feed efficiency to reduce emission, but also indirectly 

through the increase of cows’ longevity or placing new selection criteria that emphasize the 

double attitude, since dual-purpose animals have a lower environmental impact due to the co-

production of milk and meat in the same process (Kaptijn, 2016). The increase in disease 

resistance is another milestone of the project. In fact, reducing the occurrence of diseases it 

may increase production efficiency and at same time reduce the costs for farmers, and to 

improve the conditions of animal welfare. One last point, transversal to all the others, is the so-

called “Open data”, that is the usability of the information collected with the project actions by 

the users. 

  



 

16 
 

Table 1 Table represented the list of breeds involved in the DUALBREEDING project and their 

characteristics. 

Breed  Type1 Competent body Heads Herds Inbreeding 

Pezzata Rossa Italiana LG ANAPRI 64,544 5,163 1.3 

Valdostana PR,PN,Castana* LG ANABORAVA 19,500 1,322 2.7-1.5-2.2 

Grigio Alpina LG ANAGA 7,930 1,258 2.2 

Rendena LG ANARE 3,985 199 5.5 

Reggiana LG ANABORARE 2,408 145 3.7 

Pinzgauer LG AIA 1,308 222 2.9 

Modicana RA AIA 1,825 147 2.2 

Cinisara RA AIA 1,638 134 3.0 

Pezzata-Rossa-D’Oropa RA AIA 2,039 120 3.9 

Pustertaler Sprinzen/Barà RA AIA 286 43 3.7 

Modenese/Bianca Val Padana RA AIA 451 40 2.3 

Burlina RA AIA 426 23 3.6 

Agerolese RA AIA 166 34 1.0 

Cabannina RA AIA 100 17 2.9 

Varzese-Ottonese-Tortonese RA AIA 34 5 2.6 

Garfagnina RA AIA 0 0 1.0 

*Inbreeding was distinguish for the 3 different Valodostana cattle populations, (PR: pezzata rossa, PN: pezzata nera and Castana) 
1Type of selection, LG means that genetic improvement has carried on alongside conservation; while RA means only conservation propose 
(LG: Libro Genealogico; GA registro anagrafico) 
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LOCAL BREED CONSIDERED IN THE PRESENT STUDY 

Three different local breeds were considered in current study: the Rendena, the Alpine 

Grey (Grigio Alpina), and the Reggiana breeds. The origin and consistency of these breeds are 

shown in Figure 2. Although these breeds have many similarities, they show three different 

approaches to the valorization process. For example, the Alpine Grey breed is the 

quintessential alpine breed, where a strong link between environments and breeding is 

considered. The Reggiana, however, represented the symbol of the valorization of 

autochthonous breeds through the food product-breed association. On the other hand, the 

Rendena breed is particularly appreciated by breeders for its "rusticity" and its ability to adapt in 

different environment combined with good milk and meat production. 

Figure 2. Origin (A) and total number of animals distributed per year (from 2005 to 2020) (B) 
for the three breeds considered int that study Data extracted form (www.fao.org/dad-is/; update: 
26 December 2021) and plotted in R (R Core Team, 2017). 

 

http://www.fao.org/dad-is/%3B
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Rendena 

History  

The Rendena is a native breed originating from the Alps, precisely from the 

homonymous valley located in the Trento province. The origin of this breed dates back to about 

1700, where due to the rinderpest that struck the Rendena valley, breeders began to import 

cows from Switzerland   and to cross them with local Brown Swiss (Bonsembiante et al., 1988). 

The imported animals were chosen by Rendena breeders for a certain affinity with the 

characteristics of native Trentino cattle populations to integrate them harmoniously. Then in the 

1800 the new populations have been rapidly expanded form the original areas to South Tyrol, 

then in Veneto and in Lombardy. The Rendena population reach its peak in 1900, where more 

than 200,000 cows were present. However, after the first word-war, like in many other local 

breeds, the number of animals dramatically declined to few thousand head (Bonsembinate et 

al., 1988). This was determined by the new policies of the fascist regime (Serpieri and Mortara, 

1934), which encouraged the abandonment of local breeds in favour of the more specialized 

ones such as the Brown Swiss (Bruna Alpina). However, after the Second World War the 

agricultural policies changed again and in 1947 a breeders association (Associazione 

Nazionale Allevatori di Razza Rendena) was created, although an effective herd book was 

created in 1976. Only in 1981 the data collection of productive, reproductive, morphological, 

and genealogical information was started, and consequently the first genetic indices were 

implemented in the middle of eighties. (Mantovani et al., 1997; Del Bo et al., 2001; Mazza and 

Mantovani, 2012). 

Current diffusion and type of farming 

According to the FAO (www.fao.org/dad-is/; update: 26 December 2021) the population 

of Rendena is considered at risk. However, in the past 10 years, the number of animals has 

remained stable, with a total population ranging between 5,000-7,000 per year 

(www.fao.org/dad-is/; update: 26 December 2021). Populations in 2020 was about 6.512 

animals register at the herd-book, of which 4.543 cows. Animals are reared in 199 farms 

mainly distributed in Trentino Alto Adige and Veneto, specifically in the provinces of Trento, 

Padova, Vicenza, and Verona in the North-east of Italy (Bittante et al., 1993). The farms are 

of small-medium size, (about 29 animals/farm) located both in mountain and in plain. 

http://www.fao.org/dad-is/%3B
http://www.fao.org/dad-is/%3B
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Rendena is reared in two main different way characterized by different management and 

feeding strategies. The first husbandry method is more connected with the traditional farming 

systems, in which animals are tied in stalls and fed with hay and concentrates, but with a 

large diffusion of the grazing practice on alpine pasture of the entire flock during the summer 

season; this form is obviously largely diffused in the farms located in the mountain area of 

origin. An opposite situation occurs in the plains, (Pò Valley, Veneto Region) in which a more 

intensive farming system is applied (i.e., a feeding system based on corn silage and with 

summer pasture being common mainly for replacement heifers. Rendena cattle put on grazing 

in alpine pasture usually spend about four months on mountains (from early June to late 

September) of both Val Rendena and in the Altopiano di Asiago (ANARE, 2017). Alpine pasture 

involves almost all the cows reared in Trentino and more than 50% of those reared in the 

Veneto region. As effect of the pasture, this breed maintains the seasonality of calving, with a 

maximum number of calving between October and December. 

Characteristics, Appearance and Production: 

Rendena cattle presented brown coat with different shades of dark brown with hairs 

of tuft and the dorsal line characterized by lighter dorsal stripe. The coat is almost black in 

males, and a white ring around the black muzzle is always present in both sexes Figure 3. 

Figure 3. Rendena breed cow specimen 

 
As other Alpine breeds, Rendena is a small size cattle (132 cm of height at withers in 

cows) with a good beef conformation (Forabosco et al., 2011). Rendena cattle show also 
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excellent fertility and longevity performance, together with a good milk production higher than 

the other local breeds and possess a fairly good beef conformation (Mazza et al., 2014). 

Specifically, primiparous cows that spend 100 days or more on high alpine pasture average 

4,733 kg per lactation; the milk has 3.50% fat and 3.36% protein; However, cows breed in more 

intensively product system shows an average milk production nearly 6,000 kg per lactation. 

Regarding beef production, Rendena calves may be slaughtered as milk veal, or as beef cattle 

at the age of 16–18 months, when they weigh 450–550 kg and yield 58–60% of good quality 

meat (Forabosco & Mantovani, 2011). The current selection index account the dairy and beef 

attitudes in the ratio 70:30% (Sartori et al., 2018) However the main characteristic of the breed 

is the rusticity, i.e., the ability to cope in different environment especially in harsh environments 

with low quality forages, as well as its suitability to graze during the summer season in the 

alpine high pastures (Mantovani et al. 1997). The Rendena breed also has a single breed 

product called “Spressa delle Giudicarie DOP cheese”, produced and directly sold in many 

mountain farms in the territory of origin. 

Alpine Grey - Grigio Alpina 

History 

The Alpine Grey-Grigio Alpina belongs to the group of Gray breeds of the Alpine arc and 

is probably one of the oldest breeds of the Alps. The Alpine Grey has originated nearly in 1800, 

where different “breeds” or strains presented in some Alpine valley have been merged into the 

current Alpine Grey-Grigio Alpina breed, in particular animals present in Passiria, Senales, 

Sarentino, Fassa and Fiemme valleys were joined to form the current breed . The 

characteristics of these strains remained almost unchanged over time due to the isolation of 

these valleys and the difficult genetic exchanges (Senczuk et al., 2020) and still they are 

present in animals belonging to the Alpine Grey breed. The first attempt of selection in Alpine 

grey dates to the beginning of the last century (1905), when the first breeding companies were 

founded in Trentino Alto Adige. Their role was to manage the breeding of bulls locally. This was 

also moved by the fear of losing the identity of the breed due to the increasingly crosses with 

the Brown Swiss, suggested as for the Rendena, by the autarchy policy imposed during the 

Fascist government era in Italy. The war events with the consequent economic crisis also had 

devastating repercussions on the breeding of the Alpine Gray. After the Second World War a 

first local associations of breeders were established; this association led in 1949 to the 
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foundation of the Federation of Breeders of the Alpine Grey Breed in Bolzano. In 1956 the 

“Società Allevatori Grigia Alpina” was refunded with the headquarters in Predazzo (TN). The 

latter joined the Breeders Provincial Federation of Trento. The National Association of the 

Alpine Grey Cattle Breeders was established on 19th of June 1980. After receiving legal 

recognition in 1985 and consequently being recognized the management of the National Herd 

Book, the National Association of Alpine Grey, began its own activities, setting up the Central 

Office in Bolzano in 1986 and developing its own selection program. 

Current diffusion and type of farming 

The Alpine Grey-Grigio Alpina breed is not considered at risk according to FAO 

(https://www.fao.org/dad-is/browse-by-country-and-species/en). The breed is traditionally 

diffused in Provinces of Bolzano and Trento, with small presence even in Belluno. However, in 

recent years some herds are emerging out of this area both in Norther and in Southern regions 

of Italy, such as in the provinces of Udine, Como, Torino, and Campobasso (ww.anaga.it). The 

estimated population is composed of about 25,000 head, and about 17,583 are registered in 

the Herd Book, (www.fao.org/dad-is/; update: 26 December 2021). In recent decades, the 

number of this population has remained almost constant, albeit with fluctuation over years. 

These animals are widespread in 1,788 farms located mostly in the provinces of Bolzano and 

Trento. The Alpine Grey-Grigio Alpina play an irreplaceable role for a multifunctional 

sustainable development of mountain environment (Marsoner et al., 2018). In fact, breeding is 

the main activity of that mountain area, and therefore represents the basic livelihood of 

mountain inhabitants. 

Characteristics, Appearance and Production: 

The Alpine Grey cattle is small-sized (120-125 cm of height at withers), it is robust breed 

and demonstrate excellent adaptability to unfavorable grazing environmental conditions, thanks 

to their agility with hard and resistant claws and an innate instinct to search for the best forage, 

that permit to venture to remote pastures. The breed standard foresees the following 

characteristics: the coat is light silver in color with darker ones on the head, neck, shoulder, 

hips, thighs, and limbs; the skin is fine and soft; the eyes are large and bright; the horns are 

fine, white at the base, black at the tip, directed forward upwards and with diverging tips; the tail 

is very thin, long and with abundant bow (Mantovani & Forabosco 2011), Figure 4. 

http://www.fao.org/dad-is/browse-by-country-and-species/en)
http://www.fao.org/dad-is/%3B
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Figure 4: Grigio Alpina cows breed specimen 

 

 

As many locals’ breeds, Alpine Grey has good characteristics in terms of longevity and 

fertility. Despite this, the breed has good production parameters, especially considering the 

environment in which it is raised, with on average milk production of 5,000 kg per lactation with 

also a good milk quality (3.75 % of fat and 3.44% of protein and low SCS). Alpine Gray is a 

double proposed breed, in fact it has good attitude to beef production, with an average daily 

gain of about 1.2 kg/d, and a good carcass conformation, and about 58% of dressing 

percentage (www.ANAGA.it; Mancin et al., 2021) 
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Reggiana 

History 

The origins of the Reggiana breed date back to the barbarian invasions in 568,where the 

invaders brought with them red cattle originating from southern Russia and the Pannonia 

regions, that efficiently adapted to new plain environment of the Pò Valley Even today the red 

color “fromentino” - like wheat grains - is still a characteristic of the cattle of Ukraine and central 

Russia (www.razzareggiana.it). The ancient Reggiana was a rustic and triple aptitude breed 

with good milk production. The cheese produced by Reggiana was the precursor of the current 

Parmigiano Reggiano. Around the 9th century the monks reported the presence of Reggiana 

cattle in Parma and Reggio Emilia. The breed at that time was a main player in the agricultural 

and livestock context of the area. Indeed, Reggiana was so widespread in central Italy that 

Renaissance painters constantly illustrate the red ox in the frescoes of the Nativity, Figure 5. 

 Figure 5. Natività - Andrea de Litio, 1460 - Cathedral of Atri (TE). Detail of the cycle of 
frescoes, the largest in Abruzzo and one of the largest in central-southern Italy by the 
Abruzzese painter Andrea de Litio (Lecce nei Marsi, 1420 - Atri, 1490) 

 



 

24 
 

Reggiana was also presented at the Vienna Expo in 1873, as most representative cattle 

breeds of the Pò Valley (https://www.regionalcattlebreeds.eu/). The breed reached its peak in 

1954 with 139,695 heads. However, post-war Italian agricultural policy, aimed at increasing 

national agricultural production, led to replace/cross local Reggiana cows with more specialized 

cattle breeds (Serpieri and Mortara, 1934). Like many other local breeds, there has been a 

decline in animal numbers since the sixties, reaching less than 1000 cows in the 1980s. 

Fortunately, a slight but gradual increase in the number of animals has been observed since 

the 1990s, because of the creation of the "Parmigiano Reggiano delle Vacche Rosse" 

consortium which encouraged the breeding of the Reggiana due to the higher than average 

price of the milk(Figure 6). 

 

Figure 6 Trends of Reggiana breeds population, the slight increase after the creation of the 
consortium Parmigiano Reggiano delle Vacche Rosse in 1995 is highlighted, figure was 
extracted form (https://www.regionalcattlebreeds.eu/). 

 

The National Association of Reggiana Breeders (ANABoRaRe) was founded in 1962, 

but only in 1996 the herd book recording was started. Furthermore, the association has the task 

of enhancing the products deriving from the Reggiana breed, in fact ANABoRaRe retains the 

brand "Parmigiano Reggiano delle Vacche Rosse" 

(http://dualbreeding.com/it/associazioni/anaborare). 

http://www.regionalcattlebreeds.eu/)
http://www.regionalcattlebreeds.eu/)
http://dualbreeding.com/it/associazioni/anaborare)
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Current diffusion and type of farming 

FAO reported the Reggiana populations at risk, in endangered situations. However, as 

mentioned above, the size of populations has been steadily increasing over the past two 

decades, although today the population is composed by 3,896 head (registered in the Herd 

Book), of which 2,409 lactating cows (www.fao.org/dad-is/; update: 26 December 2021). The 

animals are reared in about 50 herds. The average number of animals per herd (48) is much 

greater than that found in the other local breeds belonging to the DUALBREEIDNG project. The 

largest number of farms (95%) are in the provinces of Reggio Emilia, Parma, and Modena. The 

Reggiana breeding system is more like that of cosmopolitan breeds where animals are kept in 

free stalls with little or no presence of pasture 

Characteristics, Appearance and Production 

Reggiana presents a “fromentino” red coat colour (like the colour of wheat kernels) 

varying between light and darker Formentino. It may present lighter colour e in the internal and 

inferior areas of the limbs, around the eyes, and around the pink snout 

(https://www.razzareggiana.it), Figure 7. 

Figure 7. Reggiana cows breed specimen 

 

 

http://www.fao.org/dad-is/%3B


 

26 
 

Compared to the other previous two breeds, the Reggiana is structurally slender (140-

145 cm of height at withers in cows), with a structure closer to the "dairy type" as respect to the 

dual-purpose one. However, Reggiana has been officially recognize as dual cattle breeds 

(https://www.regionalcattlebreeds.eu/). For these reasons, future selection plans are necessary 

to improve, or at least to preserve, the dual-purpose attitude of Reggiana (Mantovani & 

Fontanesi, personal communication). The average milk production in 305 days of lactation is 

5,557 kg (3.45% protein; 3.54% fat) (https://www.consorziovaccherosse.it) 

http://www.regionalcattlebreeds.eu/)
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EVOLUTIONS OF ANIMAL BREEDING 

Animal breeding is the discipline that aims to maximize the genetic merit over time by 

selecting/mating the" best "animals; for doing that it is necessary: i) define what the merit is and 

ii) how to estimate that merit (Céron-Rojas and Crossa, 2018). The modern animal breeding is 

based on theory of random effects and correlations between relatives developed in (Fisher, 

1919); and thanks to the earlier discoveries as segregation of traits and Mendelian inheritance. 

From here, two fundamental theories arose: i) the aggregate selection index (how merit is 

defined) ii) Mixed Models Equations (MME) and Best linear unbiased predictor (BLUP) (how 

merit is estimated). 

The aggregate selection index (Hazel, 1943), has been used both for estimating 

aggregate genetic merit and predicting response to selection. However, nowadays the 

aggregate selection index is only used to design optimum breeding program as it presented 

some disadvantages in genetic evaluations (Satoh et al., 2000). The selection index is common 

procedure to select many traits at once. It is based on the selection of an unobservable variable 

through an observable variable. The unobservable variable is the genetic merit (𝐻𝐻 = 𝑤𝑤′𝑔𝑔), 

where w is the vector of economic weight and g is the vector of true breeding values. 

Therefore, the observable variable is (𝐼𝐼 = 𝑏𝑏′𝑦𝑦) where y is the vector of phenotype, and b is the 

vector that maximized the correlation between I and H. Once 𝑐𝑐𝑐𝑐𝑐𝑐(𝐻𝐻, 𝐼𝐼) is maximized we 

obtained 𝑏𝑏 =  𝑃𝑃−1𝐺𝐺′𝑎𝑎. After, that b is integrated in function I to rank the animals. 

Henderson 1948 and then formalized in (Henderson, 1975) has developed a 

straightforward approach to predict the genetic called mixed model equations (MME). MME 

allow to estimate at once environmental effect (𝑏𝑏�, systematic effect) and genetic values of the 

animals (𝑢𝑢�, random effect). MME were derived by maximizing the joint density for the two 

effects 𝑦𝑦 and 𝑢𝑢, after some derivation and matrix handling, we obtained (proof 1): 

�𝑋𝑋
′𝑅𝑅−1 X 𝑋𝑋′𝑅𝑅−1Z

Z′𝑅𝑅−1 X Z′𝑅𝑅−1Z+𝐺𝐺−1
� �𝑏𝑏�
𝑢𝑢�
�= �𝑋𝑋

′𝑅𝑅−1𝑦𝑦
Z′𝑅𝑅−1𝑦𝑦

� (1) 

where y is a vector of observations, X is a known matrix of incidence connecting 

phenotype with fixed effect, Z is a known matrix of incidence connecting phenotype with 

random effect, b is the vector of unknown systematic effect, environmental values, a is the 

vector of unknown random effect, animal breeding values, e the vector of residuals. The 
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momentum of models give to u and e are equal to �𝑢𝑢𝑒𝑒� =  �00; 𝐺𝐺 0
0 𝑅𝑅�. Since residuals are uniform 

distributed variances 𝑉𝑉 = 𝑍𝑍𝐺𝐺𝑍𝑍′ + 𝑅𝑅 . 

Henderson demonstrated that the second part of the equations is the equivalent to the 

BLUP of genetic effect: 𝑢𝑢� = 𝐺𝐺𝑍𝑍′𝑉𝑉−1(𝑌𝑌 − 𝑋𝑋�̂�𝛽). Then, when 𝑢𝑢� is substituted in the first part of 

equations, after some matrix handling 𝑏𝑏� is equivalent the Best Linear Unbiased Estimator 

(BLUE) 𝑏𝑏� = (𝑋𝑋𝑇𝑇𝑉𝑉−1𝑋𝑋)−1𝑋𝑋𝑇𝑇𝑉𝑉−1𝑦𝑦. Note that MME in (Henderson, 1975)was an efficient method 

(respect to BLUP and BLUE equation shown above) since does not require 𝑉𝑉−1, that at the 

time was computationally costly. The animal model proposed in (Henderson, 1975), was an 

arrangement of (1), where 𝐆𝐆 =  𝑨𝑨⨂𝜎𝜎𝑎𝑎2. A is the covariance structure, that were built form 

pedigree relationship and 𝜎𝜎𝑎𝑎2 is the additive genetic variance. Motivation behind A is based on 

the study of Fisher 1919 in which the similarity between relative has been hypothesized, while 

�̂�𝜇 is considered “random” due to Inheritance or Mendelian error studies.  

When 𝑅𝑅 = 𝐼𝐼⨂𝜎𝜎𝑒𝑒2 (homogenous residual) models (1) can be arranged in: 

�
𝑋𝑋′ X 𝑋𝑋′Z
Z′ X Z′Z+𝐴𝐴−1 𝜎𝜎𝑒𝑒

2

𝜎𝜎𝑎𝑎2
� ��̂�𝜇𝑎𝑎�

�= �𝑋𝑋
′𝑦𝑦

Z′𝑦𝑦� (2) 

However, MMEs were not immediately routinely implemented for two reasons: i) 

difficulties to estimate the variance of the random effect ii) the inversion of A was still too 

computationally demanding at the time.  

Regarding variance components, (Henderson, 1982) developed three different methos. 

These methods have the same procedure:(i) calculation of the average squares of some kind, 

(ii) getting their expectations and (iii) solving linear equations in the components of the 

unknown variance, derived from by equating the calculated mean squares to their expectations. 

However, this approach was too far to be straightforward, especially in unbalance situations. 

Maximum Likelihood (ML) was also adopted, but it led to a is biased downwards, i.e. it 

underestimates the true variance. The problem was resolved by Patterson & Thompson (1971), 

using the Restricted Maximum Likelihood estimator (REML). In simplistic terms the REML 

considers systematic effect and the mean (not the variance as for ML) as disturbance 

parameter, that must be removed from the equation. Regarding the second problem, the 

computational demand of inverting A, it was brilliantly solved by (Henderson, 1976). In this 
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study Henderson demonstrated that 𝐴𝐴−1 can be directly construct form pedigree, without the 

need to construct A and then inverted it (Figure 8). 

Figure 8.  Simple Fortran code representing the algorithm to compute A inverse directly 

 

 

The development and implementation of MME was a game changer in animal breeding, 

with an increasing number of Henderson's MME adaptations implemented in the following 

years. Examples are maternal effect, social interaction models, non-additive genetic models, 

random regression, or reaction norm models. 

The other turning point is what we now call "genomic selection" (GS), occurred around 

the first years of the 21st century. Indeed, GS has permitted unprecedented advances in 

animals breeding, involving a doubling of dairy cattle genetic progress compared with traditional 

BLUP(de Koning, 2016), Figure 9. 

  

 
print *,  'calculating A inverse ...' 
do i=1,n 
!call cpu_time(start) 
  add=0.00 
  if((dams_list(i) .eq. 0 ) .and.  (sire_list(i) .eq. 0)) then 
 
 add=1.0 
 A(i,i)=add 
  else if ((dams_list(i) .eq. 0 ).and.  (sire_list(i) > 0)) then 
     
 add=4.0/3.0   
 A(i,i)=add 
 A(i,sire_list(i))=A(i,sire_list(i)) - (add/2) 
 A(sire_list(i),sire_list(i))= A(sire_list(i),sire_list(i)) + (add/4) 
    A(sire_list(i),i)=A(sire_list(i),i) - (add/2) 
 
  else if((dams_list(i) > 0) .and. (sire_list(i) .eq. 0)) then 
 
 add=4.0/3.0 
 A(i,i)=add 
 A(i,dams_list(i))=A(i,dams_list(i)) - (add/2) 
 A(dams_list(i),dams_list(i))=A(dams_list(i),dams_list(i))  +  (add/4) 
 A(dams_list(i),i)=A(dams_list(i),i) - (add/2) 
 

  elseif((dams_list(i) > 0) .and.  (sire_list(i) > 0)) then 
 
add=2.0 
A(i,i)=2.00 
A(i,dams_list(i))=A(i,dams_list(i)) - (add/2) 
 A(i,sire_list(i))=A(i,sire_list(i)) - (add/2) 
 A(sire_list(i),sire_list(i))= A(sire_list(i),sire_list(i)) +  (add/4) 
 A(dams_list(i),dams_list(i))=A(dams_list(i),dams_list(i))  +  (add/4) 
 A(dams_list(i),sire_list(i))=A(dams_list(i),sire_list(i))  +  (add/4) 
 ! ovviamente anche il rovescio 
 A(dams_list(i),i)=A(dams_list(i),i) - (add/2) 
 A(sire_list(i),i)=A(sire_list(i),i) - (add/2) 
 A(sire_list(i),dams_list(i))=A(sire_list(i),dams_list(i))  +  (add/4) 
  endif 
  enddo 
print *, 'done ..' 
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Figure 9. Changes in genetic selection differentials in US Holstein dairy cattle (orange arrow 

indicated when GS has been started), figure modify form (García-ruiz et al., 2016). 

 

However, the first studies attempting to estimate genetic value from molecular data had 

already been conducted a decade earlier. These are based on Marked Assisted Selection 

(MAS) proposed by Lande and Thompson 1990. The MAS is a two-step procedure where at 

first the markers associated with the phenotype are identify and then selection occur increasing 

the frequencies of favorable allele. However, MAS found little interest since the few markers 

associated  marginally contributed of the total genetic variance express by the phenotype 

(Blasco and Toro, 2014). 

What we now call genomic selection (GS) was first implemented in (Meuwissen et al., 

2001). The main assumption behind GS is that Single Nucleotide Polymorphisms panels (SNP) 

must be dense enough to be in LD with all quantitative traits loci (QTL). GS is a two-step 

procedure where the allelic substitution effects are estimated for all markers and then the 

genomic values are calculated as the summatory of these effects. The marker effect is 

estimated in a validation dataset (animals with both genotype and phenotype) while genomic 

prediction was calculated for candidate to selection (animal with genotype and not necessarily 

phenotype, generally young bulls), represented in Figure 10 
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Figure 10. Schematic representation of two-step procedure of GS (Boichard et al., 2016) 

 

 (Meuwissen et al., 2001) estimated the SNPs effect as a regression SNPs on the 

phenotype, in that study three models were used: BLUE, BLUP, and Bayesian models (Bayes 

A and B). Later, the Bayesian approaches have been extensively optimized and revised by 

other researchers, with many improvements related to prior’s distributions, ucalled Bayesian 

Alphabet (Gianola, 2013). Despite the great accuracy of Bayesian model (i.e. variable selection 

models as Bayes B), especially in presence of small training populations these models have 

been scarcely implemented in real selection scheme (Habier et al., 2013). However, the most 

common method is the SNP-BLUP models (or SNPs ridge regression) are represented as 

follow: 

�
𝑋𝑋′X 𝑋𝑋′Z
Z′X Z′Z+I 𝜎𝜎𝑒𝑒

2

𝜎𝜎𝑎𝑎02
� ��̂�𝜇𝑎𝑎�

�= �𝑋𝑋
′𝑦𝑦

Z′𝑦𝑦� (3) 

Where Z, in this case, is the matrix representing the gene content, and 𝜎𝜎𝑎𝑎02 is the SNPs 

variances. Note since is a SNP-BLUP model 𝜎𝜎𝑎𝑎02 is equal for all SNPs. However, GS has two 

main drawback: i) for an accurate estimation of SNPs effects are required an large enough 

training population  ii) the SNPs effect and the training population need to be update every 3-4 

generation, due the change of the LD between SNPs and QTLs (Ibáñez-Escriche et al., 2014). 

In addition, the use of multi-trait models is far from easy to implement. 
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(VanRaden, 2008)reinvented again the concept GS. This study proposes to replace A 

matrix present in animal model (equation 2) with a genomic relationship matrix G, such as: 

�
𝑋𝑋′X 𝑋𝑋′Z
Z′X Z′Z+G−1 𝜎𝜎𝑒𝑒

2

𝜎𝜎𝑎𝑎2
� ��̂�𝜇𝑎𝑎�

�= �𝑋𝑋
′𝑦𝑦

Z′𝑦𝑦� (4) 

G is and Identical By State matrix (IBS), constructed as:  

G = MM′

2 ∑𝑝𝑝𝑖𝑖 (1−𝑝𝑝𝑖𝑖 )
 (5) 

Where M is matrix conteined the gene content in (3) and p is the alleic frequencies of ith 

locus. For that reason, these models are usually called Genomic BLUP (GBLUP). 

This method is matematical equivalent of BLUP of SNP regression (equation 3). GBLUP 

made GS more flexible and rutinable form some reason:  

i) It reduced MME’s dimesion ,at the time, since SNP-BLUP is (systematic effect + 

number of SNP)2 while GBLUP is (systematic effect + number of animals)2.  

ii) GBLUP has less convergence problem respect of SNP-BLUP 

iii) Relex the concept of training and test population  

iv) Above all it has made the transition from BLUP to GS much easier and understable, 

since it allowed conceptual comparisons between pedigree-based and genome-

based predictions (Misztal et al., 2020). 

However, both methods (GBLUP and SNP-BLUP) are comonly called multi-step 

methods. Multi-steps means that some pre and post genomic analyzes are needed. The first 

step a genetic evalution based on pedigree information has carried on, and then pseudo-

phenotype are calculated. Second step consist to proceed with genomic estimation. Finally, the 

genomic and genetic selection index are combined by removing the parent average. Multisteps 

are necessary to combine the different sources of information (animals with and without 

genotype and animals with and without phenotype) (Misztal et al., 2020). However, multi-step 

methods are not easy to implement as many operations are required and especially in some 

cases the pseudo-phenotypes are trivial and accuracy is by definition approximate(Masuda et 

al., 2018). 
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On this point  (Legarra et al., 2009) proposed an new apprach of GS called single step 

GBLUP (ssGBLUP). The MME presented in the ssGBLUP are equal to (1 or 4), but the 

covariances structure is rappresented by H matrix. The idea behind H matrix was based on 

previus study of (Gengler et al., 2007) in which pedigree and genomic relashionship are jointly 

distributed. Infact, (Legarra et al., 2009) considered that that pedigree (𝑢𝑢1) and genomic (𝑢𝑢2) 

information are multinormal distributed, as: 

𝐻𝐻 = �𝐴𝐴11 −  𝐴𝐴12𝐴𝐴22−1𝐴𝐴21 + 𝐴𝐴12𝐴𝐴22−1𝐺𝐺𝐴𝐴22−1𝐴𝐴21 𝐴𝐴21𝐴𝐴22−1𝐺𝐺
𝐺𝐺𝐴𝐴22−1𝐴𝐴21 𝐺𝐺

� (6) 

Derivation of (8) was intuitively described in (Lourenco et al., 2020). 

However,ssGBLUP was not easy to implement becouse H inverse was too compuational 

demands. For this reason, as append to BLUP in (Henderson, 1976) ssGBLUP become 

felasible when inverse of relashionship matrix was directly compute. Indeed (Aguilar et al., 

2010) directly compute H inverse as: 

H−1 =  A−1 +  �
0 0
0 G−1 − A22

−1� (7) 

However, over the years the number of genotyped animals has grown more and more, 

which has made it difficult to make ssGBLUP computationally flexible (since cost was 

animals3). (Misztal, 2016) proposed the APY algorithm to simplify the construction of G, based 

on the main eigenvalues express by G matrix. 

An alternative approach commonly called single step SNP-BLUP (ssSNP-BLUP) was 

proposed by (Fernando et al., 2014), SNP-BLUP is equivalent to ssGBLUP.The idea behind 

ssSNP-BLUP is based on avoid the computational cost in ssGBLUP of “imputing” genotypes for 

non-genotyped animals. Indeed, ssGBLUP based on less demanding SNP-based prediction or 

“imputation”. The other advantages of ssSNP-BLUP respect to ssGBLUP consist of frequencies 

of the SNP alleles in the founders are not required and that different priorities for the distribution 

of the SNP can be easily integrated. Additionally, SNPs effect are easier to use in interim 

prediction, since it doesn’t required a second step as ssGBLUP (Taskinen et al., 2017). 

However, ssSNP-BLUP exhibited less flexibility in indirect genetic effect models (such as 

maternal models) or in multi-trait models. Other limitation of ssSNP-BLUP, it is the poor 
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convergence of when preconditioned conjugate gradient (PCG), but it was partially solved by in 

(Vandenplas et al., 2021), using a second levels preconditioner PCG (PCG is the most 

common method for solving MME of genetic evaluations). 

Nowadays there are many promising new perspectives in animal breeding. Omics 

technologies are into this category. Despite their scientific interest, the main advantage of this 

consists of predict a phenotype at low-cost. Nevertheless, their effectiveness seems to be 

limited only to certain phenotype. Machine learning and deep learning algorithms are also seen 

as a new perspective. However so far they do not seem to have caught on in animal genetics 

due to the small increase in accuracy over "traditional methods"(Abdollahi-Arpanahi et al., 

2020). Lastly the genome editing apperead as promising strategy. However, despite the initial 

hype, it could be an auxiliary tool for increasing genetic progress for disease-related traits, but 

many technical limitations are still present (Tait-Burkard et al., 2018). However, few models and 

technologies have been developed ad-hoc for small populations/locals,due the marginal 

economic interest of thosse breeds. For those reasons, in the present work we aimed to 

applied new and existed equation in a local breeding framework, and evaluated the impact of 

them. 
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4. GENERAL AIMS 

The present thesis has carried out with the intent of provided suitable methos of 

valorization of Italian locals breeds through a careful selection scheme and through the 

valorization of their genetic heritage. This project arises with collaboration between university of 

Padova (Department of Agronomy, Food, Natural resources, Animals and Environment) and 

the breeding association who took part to the DUALBREEDING project. This thesis can be 

divided into three main chapters. Each chapter contains a theoretical part in which the new 

formulas / equations are applied to simulated data while the second part consists in the 

application of these methods to real data. The three main research line followed were in the 

direction of: i) genetic selection plans ii) genomic selection iii) genome wide association study. 

Genetic and plans: 

The objective of this part of the study was to produce an algorithm able to process genetic 

and phenotypic correlations to derive economic weights to be used in the selection indices for 

small dual-purpose cattle, finalized to select for many antagonistic traits (milk yield and quality, 

beef characteristics, morphological, and functional traits) to guarantee even zero genetic 

progress for some traits of interest (constrains of maintenance of the genetic level in the 

population). 

A second objective was then to develop a new selection index for Alpine Grey cattle breed 

in which milk, meat and functional characteristics were considered, aiming at improving the 

dual-purpose attitude and maintain the breed’s peculiar characteristics by attributing specific 

economic weights at each trait. A preliminary analysis of genetic correlations among different 

traits was the preliminary objective of this study. 

A third part was aimed at estimating genetic and phenotypic correlations among milk yield 

and fertility traits considering a genotype by environment (GxE) approach in the Reggiana 

breed, looking accuracy and bulls re-ranking respect classical single traits models were 

compared. 

Genomic selection 

The aim of studies on genomic selection were addressed at first to the analysis of 

performance test data belonging to the Rendena breed to evaluate the impact of genomic 

selection as EBVs accuracy due to use of genomic information. 
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A second objective was the identification of ad-hoc models to be used for small 

populations including different genomic relationships matrix constructed from selected SNPs 

using different variable selection algorithms. As preliminary part, this study also aimed at 

developing a variable selection algorithm by considering different genomic architecture available 

through simulated dataset 

Genome wide association study 

The objective of studies carried out on this research line were at first to identify 

strategies that would allow GWAS to be conducted on small populations like the Rendena 

cattle breed, with a limited number of genotyped animals. Particularly, the objective of the 

study was to investigate the equivalence between ssGWAS, efficient association of 

accelerated mixed models (EMMAX) and best impartial linear genomic prediction GWAS 

(GBLUP-GWAS) and to analyze how they differ from single-SNP analysis without correction 

for population structure (SSA-NoCor). 

The final aim of this research line was the GWAS analysis on performance test traits 

obtained from the Rendena breed A secondary objective of the study was the analysis of two 

of the target phenotypes at different times in the lives of individuals, to deeply evaluate the 

genetic architecture of the traits. 
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5. TECHNICAL NOTE: ECONOMIC WEIGHTS FOR RESTRICTION 

OF SELECTION INDEX: 
 

   STATUS: ON SUBMISSION TO JOURNAL OF DAIRY SCIENCE 
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Economic weights for restriction of selection index 

Enrico Mancin*,Roberto Mantovani and Cristina Sartori 

INTRODUCTION 

The aggregate economic selection index is commonly used to classify animals based on 

a combination of the estimated breeding values (EBVs) for traits of interest and weighted by the 

economic values of traits (Hazel, 1943). Weights of combined traits are given considering 

market, breeding system or functional need of each breed. However, the main drawback of 

including many traits in the selection index is to ensure a positive genetic progress for all these 

traits, as many of them are negatively correlated. For example in dual-purpose breeds beef 

conformation is also considered a productive trait alongside milk production (Cunningham and 

McClintock, 1974), but an antagonistic genetic relationship among the two aptitudes exist 

(Fuerst-Waltl et al., 2016; Mazza et al., 2016; Sartori et al., 2018). Additionally, not all traits 

require positive genetic progress, and for some traits is necessary at least to guarantee a non-

worsening genetic progress over time (Miglior et al., 2005). For example, dairy cattle have some 

traits of interest that are not strictly related to production but to individual welfare, such as 

somatic cells score (SCS), fertility, longevity, or some morphological traits that not necessarly 

need improvement, but just their stability over time (Mancin et al., 2021). In literature, several 

methods to restrict to zero the genetic gain of target traits have been proposed (e.g.,  

Kempthorne and Nordskog, 1959; Xie and Xu, 1997). The restriction to zero of the genetic 

progress for some traits can be advantageous in the aforementioned situations, allowing to 

maximize the productive characteristics at the net of conservation of functional and/or 

morphological characteristics. Furthermore, the restriction to zero can be particularly useful for 

local breeds, where the addition in the selection index of some non-economical traits is 
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sometime required. These are mainly phenotypes linked to some peculiar aspects of the breed, 

e.g., head tipicality in Alpine Grey cattle (Mancin et al., 2021). This technical note aims to 

analytically demonstrate how to derive economic weights to be used in selection indices to 

ensure a zero genetic progress of certain traits of interest. With this in mind, we analyzed (i) the 

classical formula of univarited genetic progress; (ii) the genetic progress in a multiple traits 

framework where the economic weigth for multiple traits is obtained, and (iii) the procedure to 

restrict some traits (i.e., ensure gentic progress equal to zero). Last, the procedure to obtain the 

resultant economic weights with restriction on some trais  is also reported. A small example was 

provided using the genetic and phenotypic correlation of a dual-purpose cattle population. 

Where restriction on SCS and muscularity while maximizing the genetic gain for other milk and 

meat production traits is presented including a R-code to run all the requested steps. 

MATERIAL AND METHODS 

Genetic progress for one trait 

The response to selection (R) represents the difference between the mean phenotypic 

value of the progeny of selected parents and that of the whole parental generation before 

selection (Falconer and Mackay, 1996). The selection response for one trait of interest has 

been represented in many formulas. For consistency to what will be reported later, the formula 

presented in Harris (1964), is: 

R = βgy∆I (1), 

Where βgy is the linear regression coefficient of the offspring genetic value g on selected 

parents’ phenotype (y), and ∆I stands for the selection differential, representing the deviation of 

selected parents’ mean from the population mean. Replacing βgy with its mathematical 
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expression Cov(g,y)
σy2

 and then grouping ∆I/σy  into i, i.e., the intensity of selection in standardized 

units, we obtain (Falconer and Mackay, 1996): 

R = Cov(g,y)
σy

 i  (2), 

Where, under the assumption of a normal distribution of the phenotype y, the integration of i or 

∆I/σy provides the proportion of selected individuals (the parents). 

Economic weight and genetic progress for multiple traits 

In a multiple trait framework, the parents’ phenotype (y) are represented in matrix of form, 

such as the phenotypic (co)variances P = (𝐲𝐲 T𝐲𝐲), and thengenetic (co)variances, i.e., G = (𝐠𝐠 T𝐠𝐠), 

for traits (T) of interest. The maximization of the genetic progress for multiple traits is based on 

the indirect selection for an unobservable variable (H), by the truncated selection of an 

observable variable, I (Harris, 1964). The observable variable I, is a linear combination of (𝐈𝐈 =

𝐛𝐛′𝐲𝐲), where 𝐛𝐛′ is the vector of selection index coefficients for the traits of interest. Therefore, the 

variance of selection index I (𝜎𝜎𝑖𝑖 ) can be expressed as var(b’y) or, in matrix form, as 𝐛𝐛’𝐏𝐏𝐛𝐛. The 

role of vector b is to maximize the genetic progress through a maximization of the covariance 

between H and I, Cov(𝐇𝐇, 𝐈𝐈) (Harris, 1964). Regression of H on I is linear for any set of b values. 

Since no economic weight are applied, H is equal to the vector of the true breeding values 𝐇𝐇 =

𝐚𝐚′. Given that Cov(𝐆𝐆,𝐏𝐏) = 𝐆𝐆. It can be demonstrated by put equal the two different selection 

response formula in Falconer and Mackaay (1996), that the covariance between H and I, 

(Cov(y′b, g′)), becomes 𝐆𝐆𝐛𝐛’. 

Considering i,𝐏𝐏,𝐆𝐆 as constants (they are known values), maximizing genetic progress is 

equal to maximize Cov(𝐇𝐇, 𝐈𝐈) , that means minimizing the squared differences between H and I, 
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that is (E[(𝐇𝐇 − 𝐈𝐈)2]) (Céron-Rojas and Crossa, 2018). Setting the partial derivative of 𝐛𝐛 equal to 

zero:  

∂
∂b

E[(𝐇𝐇− 𝐈𝐈)2] = 0  (3) 

by changing H and I in (3), the formula becomes: 

∂
∂b

(𝐆𝐆 + 𝐛𝐛′𝐏𝐏𝐛𝐛 − 2𝐆𝐆𝐛𝐛′) = 0  (4) 

Deriving the formula above we have: 

2𝐛𝐛𝐏𝐏 –  2𝐆𝐆 = 0  (4a) 

𝐛𝐛 = 𝐏𝐏−𝟏𝟏𝐆𝐆 (4b) 

with b being the vector that maximized the genetic progress. Replacing cov(𝐆𝐆, 𝐈𝐈) with 𝐛𝐛′𝐆𝐆 and 

σi with (𝐛𝐛′𝐏𝐏𝐛𝐛)1/2 in formula 2, we obtain:  

R = 𝐛𝐛′𝐆𝐆(𝐛𝐛′𝐏𝐏𝐛𝐛)−1/2i (5) 

Then, if we considered the different economic importance of traits, it become necessary 

to introduce a new element in the equation (3), that is a vector (a) reppresenting the weights of 

each trait. According with Wolfová et al., 2001 vector a can be standardized  by dividing the 

economic weight of the traits by the respective genetic standard deviation as 𝐚𝐚𝐭𝐭_𝐬𝐬𝐭𝐭𝐬𝐬 = 𝐚𝐚𝐭𝐭/𝛔𝛔𝐚𝐚𝐭𝐭. 

Thus H can be described as a function 𝐇𝐇 =  𝐚𝐚𝐭𝐭’𝐠𝐠, called linear aggregate genotype (Hazel, 

1943), that is the function of the additive genetic values of the traits of interest, each one 

showing a specific economic weight. Therefore, in this form the function H includes the 

expected genetic progress for each trait. When economic weight are used, the variance of H 
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becomes cov(𝐚𝐚’𝐠𝐠, 𝐚𝐚′𝐠𝐠) that is equal to 𝐚𝐚′𝐆𝐆𝐚𝐚 and correlation between H and I cov(𝐛𝐛’𝐲𝐲,𝐚𝐚′𝐠𝐠) 

becomes  𝐚𝐚′𝐆𝐆𝐛𝐛. Similarly,  to minimize the error of E[(𝐇𝐇 − 𝐈𝐈)2] , that’s equal to ∂
∂b

E[(𝐇𝐇 − 𝐈𝐈)2] = 0, 

the equation 4a becomes: 

𝐚𝐚′𝐆𝐆𝐚𝐚 + 𝐛𝐛′𝐏𝐏𝐛𝐛 − 2𝐚𝐚′𝐆𝐆𝐛𝐛 = 0 (6) 

That after some math become: 

𝐛𝐛 = 𝐏𝐏−1𝐆𝐆𝐚𝐚 (7) 

Note that the correlation between I and true genetic value (G) remain the same. Thus, the 

latter genetic progress formula is equal to the previous one (5). 

Restricted selection index 

Restricted selection index is adopted to preserve the genetic value of specifics 

phenotypes during the time, i.e. setting genetic progress of these traits to 0. Three different 

approaches have been developed in literature (Kempthorne and Nordskog, 1959; Tallis, 1962; 

Gjedrem, 1970), all of them leading to the same results. However, Tallies (1962) and further 

integration given by Ceron Rojas and Crossa (2018) are the most intuitive. The basic idea of 

these two studies is that maintain the genetics progress to zero, it is equivalent to assume a null 

correlation between selection index and response to selection for the traits considered, i.e., 

(Cov(𝐇𝐇, 𝐈𝐈) = 0). Traits under constrain are collected in matrix C, where Cov(𝐂𝐂, 𝐈𝐈) = 0 which 

means 𝐂𝐂𝐛𝐛′ = 0. C is constructed as 𝐂𝐂′ = 𝐔𝐔′𝐆𝐆, where U is an incident matrix including as many 

1’s as many traits have to be restricted, and 0’s for the other traits. In this situation, the 

objective of the selection index is twofold: minimize the error E[(𝐇𝐇 − 𝐈𝐈)2], and ensure a null 

genetic progress for the traits of interest, that means  Cov(𝐂𝐂, 𝐈𝐈) = 0. To solve both objectives it 
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become necessary to apply the Lagrange multipliers, that allow maximizing (or minimizing) the 

value of a given function f(x, y, … ) under another function of restriction: g(x, y, … ) = c: 

∇f(x0, y0) =  λ∇g(x0, y0)  (8) 

It can be rearranged in  

ℒ(x, y, λ) = f(x, y) −  λ(g(x, y) − c) (9) 

Where 𝛌𝛌 is the vector of Lagrange multipliers. 

Thus considering E[(𝐇𝐇 − 𝐈𝐈)2] as f(x, y) and Cov(𝐂𝐂, 𝐈𝐈) − 0 as  g(x, y) − c, were c is equal to 

0, thus equation (9) becomes: 

ℒ(𝐛𝐛, 𝛌𝛌) =  E[(𝐇𝐇 − 𝐈𝐈)2] −  𝛌𝛌(Cov(𝐂𝐂, 𝐈𝐈) − 0 ) (10) 

As demonstrated above E[(𝐇𝐇− 𝐈𝐈)2] is equivalent to 𝐚𝐚′𝐆𝐆𝐚𝐚 + 𝐛𝐛′𝐏𝐏𝐛𝐛 − 𝟐𝟐𝐚𝐚′𝐆𝐆𝐛𝐛 and Cov(𝐂𝐂, 𝐈𝐈) is 

equal to 𝐂𝐂𝐛𝐛′. 

ℒ(𝐛𝐛,𝛌𝛌) = 𝐚𝐚′𝐆𝐆𝐚𝐚 + 𝐛𝐛′𝐏𝐏𝐛𝐛 − 2𝐚𝐚′𝐆𝐆𝐛𝐛 −  𝛌𝛌(𝐂𝐂𝐛𝐛′ − 0 )(11) 

Setting the partial derivative of 𝐛𝐛 and v equal to zero 

∂
∂b,v

  𝐚𝐚′𝐆𝐆𝐚𝐚 + 𝐛𝐛′𝐏𝐏𝐛𝐛 − 2𝐚𝐚′𝐆𝐆𝐛𝐛 + 𝐯𝐯′𝐂𝐂𝐛𝐛 − 0 = 0  (12) 

The derivative results from b and v of (12) are the following (v correspond to the vector of 

Lagrange multiplayer, precedently called 𝛌𝛌):  

∂
∂b

 𝐏𝐏𝐛𝐛 + 𝐂𝐂𝐯𝐯 −  𝐆𝐆𝐚𝐚 = 0  (13) 
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∂
∂v
𝐂𝐂′𝐛𝐛 = 0 (13a)  

In matrix notation the two equations (11) and (11a) are: 

�𝟎𝟎 𝐂𝐂′
𝐂𝐂 𝐏𝐏

� � 𝐯𝐯𝐛𝐛′� = � 𝟎𝟎𝐆𝐆𝐚𝐚�   (14) 

The solution of the matrix �𝟎𝟎 𝐂𝐂′
𝐂𝐂 𝐏𝐏

� must be obtained by inversion (Rojas and Crossa, 

2018), that is: 

�𝟎𝟎 𝐂𝐂′
𝐂𝐂 𝐏𝐏

� −1 = �
(−𝐂𝐂𝐏𝐏−𝟏𝟏𝐂𝐂)−𝟏𝟏 (𝐂𝐂𝐏𝐏−𝟏𝟏𝐂𝐂)−𝟏𝟏𝐂𝐂′𝐏𝐏−𝟏𝟏

𝐏𝐏−𝟏𝟏𝐂𝐂(−𝐂𝐂𝐏𝐏−𝟏𝟏𝐂𝐂)−𝟏𝟏 −𝐏𝐏−𝟏𝟏𝐂𝐂(−𝐂𝐂𝐏𝐏−𝟏𝟏𝐂𝐂)−𝟏𝟏𝐂𝐂′𝐏𝐏−𝟏𝟏 + 𝐏𝐏−𝟏𝟏
� (15) 

and therefore: 

�𝐯𝐯𝐛𝐛� = �
(−𝐂𝐂𝐏𝐏−𝟏𝟏𝐂𝐂)−𝟏𝟏 (−𝐂𝐂𝐏𝐏−𝟏𝟏𝐂𝐂)−𝟏𝟏𝐂𝐂′𝐏𝐏−𝟏𝟏

𝐏𝐏−𝟏𝟏𝐂𝐂(−𝐂𝐂𝐏𝐏−𝟏𝟏𝐂𝐂)−𝟏𝟏 −𝐏𝐏−𝟏𝟏𝐂𝐂(−𝐂𝐂𝐏𝐏−𝟏𝟏𝐂𝐂)−𝟏𝟏𝐂𝐂′𝐏𝐏−𝟏𝟏 + 𝐏𝐏−𝟏𝟏
�  � 𝟎𝟎𝑮𝑮𝑮𝑮�  (15a) 

Solving (13a) for 𝐛𝐛 could be considered as the equation that maximizes the function 

under the 𝐂𝐂′𝐛𝐛 restriction: 

b =  0 + 𝐆𝐆𝐚𝐚(−𝐏𝐏−𝟏𝟏𝐂𝐂(−𝐂𝐂𝐏𝐏−𝟏𝟏𝐂𝐂)−𝟏𝟏𝐂𝐂′𝐏𝐏−𝟏𝟏 + 𝐏𝐏−𝟏𝟏)  (16) 

Gathering by P−1: 

b =  𝐏𝐏−𝟏𝟏𝐆𝐆𝐚𝐚 (−𝐏𝐏−𝟏𝟏𝐂𝐂(−𝐂𝐂𝐏𝐏−𝟏𝟏𝐂𝐂)−𝟏𝟏𝐂𝐂′ + 𝐈𝐈)  (16a) 

and replacing (−𝐏𝐏−𝟏𝟏𝐂𝐂(−𝐂𝐂𝐏𝐏−𝟏𝟏𝐂𝐂)−𝟏𝟏𝐂𝐂′ + 𝐈𝐈) with matrix K. 

𝐛𝐛 = 𝐊𝐊𝐏𝐏−𝟏𝟏𝐆𝐆𝐚𝐚  (17) 
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For a matter of clarity, the vector b identify in equation (17), is called 𝐛𝐛𝐫𝐫 to distinguish it 

with vector b (the vector that maximized the E[(𝐇𝐇− 𝐈𝐈)2], thus: 

𝐛𝐛𝐫𝐫 = 𝐊𝐊𝐏𝐏−1𝐆𝐆𝐚𝐚 (18) 

Since 𝐛𝐛 =  𝐏𝐏−1𝐆𝐆𝐚𝐚 equation (16) can be written as 𝐛𝐛𝐫𝐫 = 𝐊𝐊𝐛𝐛. Note that matrix K is a linear 

transformation that reduces the space in which b is projected. The space was reduced as many 

are the restriction applied, obtaining a vector 𝐛𝐛𝐫𝐫 that is b after restriction for the traits of interest.. 

The genetic progress (R) is obtained replacing b with 𝐛𝐛r in formula (8a), that is 𝐛𝐛𝐫𝐫 = 𝐏𝐏−1𝐆𝐆𝐚𝐚 and 

then using the new weights in formula (5): 

𝐑𝐑 = 𝐛𝐛𝐫𝐫′𝐆𝐆(𝐛𝐛𝐫𝐫
′𝐏𝐏𝐛𝐛𝐫𝐫)

−𝟏𝟏𝟐𝟐 i (19) 

In this study, we analytically demonstrate how it is possible to obtain the economic 

weights (reported in vector a) when the restriction to variation for some traits included within the 

selection indices is applied. This passage is not described in the literature, but it has 

considerable practical importance. 

The new economic weights can be obtained by considering equation (19) and (8a) as 

equal. Thus, we obtain 𝐛𝐛𝐫𝐫 = 𝐊𝐊𝐛𝐛 and inverting the formula (8a) and we get 𝐚𝐚 = 𝐆𝐆−𝟏𝟏𝐏𝐏𝐛𝐛. Then the 

values of new economic weights, that we call ar, are obtained substituting b with Kb in the 

previous equations: 

𝐚𝐚 𝐫𝐫 = 𝐊𝐊𝐆𝐆−𝟏𝟏𝐏𝐏𝐛𝐛𝐫𝐫 (20) 

The term ar, represents the vector of the new weights to provide to the traits for obtaining 

a null genetic progress for some target traits and a positive genetic gain for the others. It is 
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possible to express the new economic weights in a scale from 0 to 1 by dividing each weight for 

the sum of the absolute values of the others.  

Finally, it is possible to check if the genetic progress with the new 𝐚𝐚𝐫𝐫 is what desired, by 

using this new vector of economic weights in the general formula for genetic progress without 

restriction (5) after divided the 𝐚𝐚𝐫𝐫 for the genetic standard deviation of each trait t if this 

operation was done also previously 𝐚𝐚𝐫𝐫𝐭𝐭/σat; see (Wolfová et al., 2001)). 

Application 

In this study actual genetic and phenotyps correlations estimated for a dual purpose local 

breed (Mancin et al., 2021), were considered (Table 1). To simplify the number of tratis, milk 

yield (kg), fat yield (kg), protein yield (kg), somatic cell score (SCS) and muscularity (as factor 

score; see Mancin et al., 2021 for computation) were considered. This study example 

considered a restriction to zero for the last two traits, SCS and muscularity. The initial economic 

weights, the final economic weights obtained after restriction of two traits and the corresponding 

responses to selection (ΔG) are reported in Table 2. The main equations described above have 

been used through the example and recalled at the corresponding steps. 
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Table 1. Traits included in the example with their phenotypic mean (Mean) heritability (h2, on 
diagonal), and phenotypic (above diagonal) and genetic correlations (below diagonal) among 
the traits. 

Trait ID Mean MY FY PY SCS MUSC 

Milk yield (kg) MY 2.210 0.219 0.049 0.081 0.0630 -2.056 

Fat yield (kg) FY 2.600* 0.250 0.178 0.002 0.002 -0.054 

Protein yield (kg) PY 1.895* 0.411 0.0112 0.1255 0.0035 -0.077 

Somatic cell score (points)1 SCS 0.379 -0.792 -0.014 -0.026 0.1332 -0.290 

Muscularity (points)1 MUSC 9.144 1.484 -0.002 -0.002 0.0317 0.328 

1 Traits to which a restriction to the genetic progress was applied 

*Variances have been multiplied by 103 

Table 2. Traits included in the example with their initial economic weights (a) and the final 
economic weights (ar) applied after a restriction for the genetic progress of two traits, and the 
corresponding response to selection (ΔG and ΔGr). 

Trait a ΔG ar ΔGr 

Milk yield (kg) 0.000 0.844  0.000 0.513 

Fat yield (kg) 0.300 0.030  0.518 0.025 

Protein yield (kg) 0.400 0.051  0.465 0.041 

Somatic cell score 

(points)1 

0.000 0.079 -0.008 0.000 

Muscularity (points)1 0.300 -0.878 0.010 0.000 

1 Traits to which a restriction to the genetic progress was applied 

The procedure is presented below as R code (R Core Team, 2017). 

Step 1: definition of matrices and vectors of data. A selection intensity of i=1.755 has 

been set, corresponding to a percentage p=0.1 of parents selected. Matrices of phenotypic and 

genetic (co)variances (P and G) for the target traits have been also set. Traits considered were: 
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milk yield (MY), fat yield (FY), protein yield (PY), somatic cell score (SCS) and muscularity 

(MUSC). The economic weights of the traits have been reported in the vector a, and they mimic 

a real situation: 0.3 and 0.4 for fat and protein as milk quality traits and 0.3 for muscularity, to 

preserve the dual purpose attitude. Milk yield has an economic weight of zero because it is 

indirectly selected due its high genetic correlations with fat and protein yields. SCS has an initial 

weight of zero because the trait is aimed to be then restricted to obtain a null genetic progress. 

The economic weights of traits have been standardized to calculate the genetic progress.  

 

# selection intensity  

i = 1.755      

 

traits = c("MY", "FY" ,"PY","SCS", "MUSC") 

# matrix of phenotypic covariances 

P = matrix(c(10.1072, 0.2507,  0.4118, -0.7921, -1.4849, 

             0.2507,  0.0105,  0.0112, -0.0137, -0.0017, 

             0.4118,  0.0112,  0.0205, -0.0265, -0.0018, 

            -0.7921, -0.0137, -0.0265,  2.7916,  0.0317, 

             1.4849, -0.0017, -0.0018,  0.0317, 27.3200), 

             ncol=5)  

 

 

# matrix of genetic covariances 

G = matrix(c(  2.2353,  0.0494,  0.0815,  0.0630, -2.0559, 

               0.0494,  0.0019,  0.0023,  0.0018, -0.0540, 

               0.0815,  0.0023,  0.0042,  0.0035, -0.0769, 
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               0.0630,  0.0018,  0.0035,  0.3768, -0.2906, 

              -2.0559, -0.0540, -0.0769, -0.2906,  9.0014), 

               ncol=5) 

 

colnames(G) = traits; row.names(G) = traits 

colnames(P) = traits; row.names(P) = traits 

print(P) 

##           MY      FY      PY     SCS    MUSC 

## MY   10.1072  0.2507  0.4118 -0.7921  1.4849 

## FY    0.2507  0.0105  0.0112 -0.0137 -0.0017 

## PY    0.4118  0.0112  0.0205 -0.0265 -0.0018 

## SCS  -0.7921 -0.0137 -0.0265  2.7916  0.0317 

## MUSC -1.4849 -0.0017 -0.0018  0.0317 27.3200 

print(G) 

##           MY      FY      PY     SCS    MUSC 

## MY    2.2353  0.0494  0.0815  0.0630 -2.0559 

## FY    0.0494  0.0019  0.0023  0.0018 -0.0540 

## PY    0.0815  0.0023  0.0042  0.0035 -0.0769 

## SCS   0.0630  0.0018  0.0035  0.3768 -0.2906 

## MUSC -2.0559 -0.0540 -0.0769 -0.2906  9.0014 

# genetic standard deviations of traits 

ds_G = sqrt(diag(G)) 
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# initial economic weights of traits  

a = c(0,0.5,0.5,0,0.0) 

 

# standardized economic weights 

a_std = a/(ds_G) 

Step 2. Multivariate genetic progress calculated without restrictions for any traits. 

The equations [4], [5b] and [6] have been applied. 

 

# Inverse of P matrix 

Pinv = solve(P) 

 

# Coefficient that maximize the equations Pb = Ga 

b = Pinv %*% G %*% (a_std)   

print(b) 

##             [,1] 

## MY    0.02889588 

## FY    1.50905975 

## PY    1.52049245 

## SCS   0.04759244 

## MUSC -0.04268001 

# calculate standard deviation of the index 

ds_I = sqrt(t(b) %*% P %*% b) 

 

# calculate genetic progress 
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gp = (i/ds_I) %*% t(b) %*% G 

 

print(round(gp,5)) 

##           MY      FY      PY     SCS     MUSC 

## [1,] 1.27378 0.03666 0.05638 0.14471 -2.36117 

Step 3. Application of the restriction. Milk yields traits (MY, FY and PY) have shown 

a positive genetic progress, whereas SCS had a positive increase (that means a detrimental 

effect on uddr health) and MUSC resulted in worsening the mean vale by selection. Two 

restrictions to genetic progress were then applied to SCS and to MUSC, to prevent their 

negative effect on udder health and on reduction of muscularity. The procedure moved from 

the definition of the matrix C including the genetic variances for SCS and MUSC and their 

covariances with the other traits, in column. This matrix has been then included within the 

matrix of restriction K then used for finding out the new coefficients br. This step applied the 

equations [12], [14] and [6] including the new coefficients. 

 

# create a matrix of restriction for SCS and MUSC  

C = G[c('SCS','MUSC'),] 

C = t(C) 

print(C) 

##          SCS    MUSC 

## MY    0.0630 -2.0559 

## FY    0.0018 -0.0540 

## PY    0.0035 -0.0769 
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## SCS   0.3768 -0.2906 

## MUSC -0.2906  9.0014 

# create an identity matrix with the dimension of the matrix correlations: 

I = diag(rep(1,ncol(G))) 

 

# calculate matrix K (matrix of restrictions) 

K = I - (Pinv %*% ((C) %*% solve(t(C) %*% Pinv %*% (C)) %*% t(C))) 

 

# coefficient that maximizes restriction  

br = K %*% Pinv %*% G %*% (a_std)   

 

#calculate genetic progress 

gp = ((i/(ds_I))%*%t(br)%*%G) 

 

print(round(gp,3)) 

##        MY    FY    PY SCS MUSC 

## [1,] 0.36 0.017 0.029   0    0 

Step 4. Obtaining the new economic weights for traits arising from the 

restrictions in the selection index.  The equation [15] has been used in this case. The new 

economic weights have been then divided by the sum of their absolute value to obtain a sum 

of zero. Looking at the results, it is possible to observe that applying the restriction for SCS 

and MUSC is equivalent to provide a negative economic weight of -0.008 to SCS, an 

economic weight of 0.010 to MUSC, and weights of 0.518 and 0.465 for fat and protein. 
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# calculated economic weight according with the restrictions 

new_a = solve(G)%*%(P)%*%(br)  

 

a = c(new_a)/(sum(abs(new_a))) 

print(round(a,3)) 

## 0.000  0.588  0.395 -0.007  0.010 

Step 5. Check the genetic progress. Aiming to check that inserting the new economic 

weights in the traditional equation for the genetic progress provides the same result than 

applying the restriction, it is possible to insert these new economic weights in the equation of 

genetic progress [6] after divided the economic weight for the genetic standard deviation of 

each trait. 

a_std = a/(ds_G) 

 

b = Pinv %*% G %*% (a)   

print(b) 

##               [,1] 

## MY   -0.0043681974 

## FY    0.0754342010 

## PY    0.1605745558 

## SCS  -0.0004963555 

## MUSC  0.0008106308 

# calculate standard deviation of the index 

ds_I = sqrt(t(b) %*% P %*% b) 
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# calculate genetic progress 

gp = (i/ds_I) %*% t(b) %*% G 

 

print(round(gp,3)) 

##         MY    FY    PY SCS MUSC 

## [1,] 0.513 0.025 0.041   0    0 
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RESULTS AND DISCUSSION 

Finding the economic weights that make a genetic progression equal to zero in each 

trait is helpful in dairy cows breeding (but also in beef cattle and in other livestock species), in 

which many different traits are included in the selection index. 

Particularly, this approach could be convenient for traits that had an intermediate 

optimum value. In dairy and beef cattle indeed, but also in other livestock species, selection 

indexes also include a wide number of morphological characters with an intermediate 

optimum, such as leg traits or udder conformation (Jeyaruban et al., 2012). In these traits 

genetic improvement is aimed at maintaining the phenotype at intermediate values, and this 

could be only realized by guaranteeing that the trait has not a positive (or negative) increase. 

Other traits that should be maintained at the existing value while selecting for production 

improvement are the functional traits showing negative genetic correlations with production, 

such as birth weight vs. growth. In the study of Winder et al., (1990), in Red Angus cattle, the 

genetic gain of birth weight was restricted to zero aiming to preserve the trait, despite the 

negative genetic correlations (around -0.7) with the relative growth rate. Other functional traits 

typically showing negative genetic correlations with production are fertility and longevity 

(Oltenacu and Broom, 2010). Depending on the breeds’ attitude and on their history, these 

traits are aimed to be maintained (as in dual purpose cattle) or positive selected due to their 

detriment occurred over the last decades of selection for just improving production (as in 

specialized dairy and beef breeds; Miglior et al., 2005). 

This technique could be also implemented on traits that have a low or not calculable 

economic value but are related to the typical characteristics of the breed or to its adaptability 

to the territory in which it is reared (Krupová et al., 2016). This is the case of traits like feed 
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efficiency (Fuerst-Waltl et al., 2016) or important morphological traits (Mancin et al., 2021. 

These traits could be lost during the selection process for productive traits such as milk yield, 

therefore a solution consists of guarantee at least a non-negative genetic progress by applying 

a restriction while increasing the production. 

The restriction of the genetic gain could be also applied to traits which positive increase 

corresponds to a detriment of some functional characteristics, such as the somatic cells’ traits 

like SCS, which positive variation means a loss in udder health. A restriction to zero as a 

solution to prevent positive trends for SCS has been proposed e.g., in Alpine Grey (Mancin et 

al., 2021) and Rendena cattle (Sartori et al., 2018). 

The restriction could be also a solution for productive traits with lesser economic 

importance than others and showing negative genetic correlations with the first one. This 

situation is likely to occur in some dual-purpose breeds, in which the two aptitudes, e.g., milk 

and beef, show negative genetic correlations, and a much greater economic weight is 

assigned to one aptitude. Under these circumstances, the genetic trend of the other aptitude 

may be negative, and restriction to zero could be a valuable solution to prevent a negative 

variation. This is the case of muscularity (MUSC) in the practical example reported above, 

showing a negative genetic correlation (around -0.4) with milk yield traits, as observed in many 

further studied on dual purpose breeds (Mancin et al., 2021, Sartori et al., 2018). In order to 

obtain the greatest positive increase as possible for milk without a detriment in muscularity, a 

restriction to the genetic gain of MUSC has been applied, as also proposed in Mancin et al. 

(2021). 

According to Wolfová et al. (2005), it should be an uncorrected priori assumptions to 

consider some traits like MUSC and SCS as restricted traits, because they have own specific 
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economic value. However, in some situation as local breeds no previous studies about 

economic assessment of rearing system of the target breed (Alpine Grey in this example) 

were done. According to Krupová et al. (2016), it could be considered as a preliminary 

process to establish a suitable selection index satisfying the needs of any breed associations.  

In conclusion, this study aimed to explain the theory behind the creation of single and 

multivariate selection indices and use of restriction for some traits following in a selection 

index, and how to derive new economic weights for each trait under restriction of genetic 

progress for some target traits. The method presented could be useful in all situations in which 

negative correlations occurs among target selected traits, allowing simultaneous increase 

and/or not worsening of the all-target traits, with beneficial effects especially in situation where 

many traits are required to be accounted for selection. 
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and morphological traits in the Alpine Grey cattle breed 

Enrico Mancin, Cristina Sartori, Nadia Guzzo, Beniamino Tuliozi, and Roberto Mantovani 

 

ABSTRACT 

Selection in local dual-purpose breeds requires great carefulness because of the need to 

preserve peculiar traits and also guarantee positive genetic progress for milk and beef 

production to maintain economic competitiveness. A specific breeding plan accounting for milk, 

beef, and functional traits is required by breeders of the Alpine Grey cattle (AG), a local dual-

purpose breed of Italian Alps. Hereditability and genetic correlations among all traits have been 

analyzed for this purpose. After that, different selection indexes were proposed to identify the 

most suitable for this breed. Firstly, a genetic parameters analysis was carried out with different 

datasets. The milk dataset contained 406,918 test day records of milk, protein, and fat yields 

and somatic cells (expressed as SCS). In the beef dataset were included performance test data 

conducted on 749 young bulls. Average daily gain, in vivo estimated carcass yields and 

SEUROP were the phenotypes obtained from the performance tests. The morphological 

dataset included 21 linear type evaluations of 11,320 first party cows. Linear type traits were 

aggregated through factor analysis and three factors were retained, while head typicality (HT) 

and rear muscularity (RM) were analyzed as single traits. Heritability estimates (h2) for milk 

traits ranged from 0.125 to 0.219. 

Analysis of beef traits showed h2 greater than milk traits, ranging from 0.282 to 0.501. 

Type traits showed a medium value of h2 ranging from 0.238 to 0.374. Regarding genetic 

correlation, SCS and milk traits were strongly positively correlated. Milk traits had a negative 

genetic correlation with the factor accounting for udder conformations (-0.40) and with all 

performance test traits and RM. These latter traits showed also a negative genetic correlation 

with udder volume (-0.28). The HT and the factor accounting for rear legs traits were not 

correlated with milk traits, but negatively correlated with beef traits (-0.32 with RM). We argue 

that the consequence of these results is that the use of the current selection index, which is 

mainly focused on milk attitude, will lead to a deterioration of all other traits. In this study we 

propose more appropriate selection indexes that account for genetic relationships among traits, 

including functional traits. 
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 INTRODUCTION 

The extension of milk and beef markets has contributed to the gradual decline of the 

appeal of local domestic breeds due to their low productive performance compared with 

specialized breeds [1]. 

Despite this, in recent years local breeds have received an increased interest, as 

compared with cosmopolite breeds, they have better preserved functional characteristics 

(health, fertility, longevity, and rusticity). Local breeds are also often associated with the 

production of labelled foods (protected designation of origin/protected geographical indication), 

especially cheeses. [2]. Not considering only the economic aspects, these breeds have a link 

with the territory supporting rural/local economy and represent an effective resource of 

biodiversity [3]. In addition, local breeds are more adaptable to environmental changes than 

specialized breeds and they can also be bred in marginal areas and low-income environments 

[4]. Many local breeds have a dual-purpose attitude for milk and meat, but with differing 

emphases depending on traits' local economic importance. 

For these reasons, it is fundamental to ensure accurate breeding plans (aimed at 

improving the traits of interest) for local breeds, as previous studies have shown a negative 

genetic correlation between milk and meat traits [5,6]. 

The Alpine Grey is an autochthonous cattle breed of the central Alpine arc, widespread 

in Tyrol (Austria), South Tyrol (Italy), and neighboring Switzerland. Each country maintains its 

own herd book and independent breeding plans [7]. The Alpine Grey is generally well adapted 

to live and produce both milk and meat under challenging environments based on Alpine 

pastures. The present Italian Alpine Grey population accounts for 17,373 heads in 1,737 farms 

(www.fao.org/dad-is/; update: 26 Oct. 2020) distributed mainly in the provinces of Bolzano and 

Trento (85%). Milk production amounts to 5,339 kg of milk per lactation with 3.75% of fat and 

3.39% of protein, respectively. The average daily gain (ADG) of young bulls can reach 1.2 

kg/day, and the carcass yields about 58% (ANAGA; www.grigioalpina.it). The breeding system 

for this Gray Alpine is generally constituted by small farms housing cattle during the winter 

months and releasing them to pasture in summer. The actual breeding goal to improve milk and 

meat traits is based on a selection index that assigns an economic weight of 24% to fat yield 

and 46% to protein yield. A further 20% of the economic weight is attributed to young bulls’ 

ADG, and the remaining 10% to rear muscularity (RM), which is evaluated as a type trait on 

primiparous cows. Therefore, the present breeding plan does not account for further functional 

http://www.fao.org/dad-is/%3B
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and morphological traits that characterize the breed. Notwithstanding, these traits are required 

with increasing interest by breeders to maintain the typicality and rusticity of the breed. 

Therefore, the aim of this study was to estimate the genetic correlations between milk, 

beef, and functional and morphological traits in the local Alpine Grey breed. This was done by 

analyzing the genetic response to selection under different scenarios in which different weights 

were applied to current and novel traits to be accounted for in the selection index. Particularly, 

traits investigated were milk, fat, protein, and somatic cell score. This latter trait was derived 

from the test-day (milk) dataset, whereas type traits were obtained from the scoring of 

primiparous cows and beef traits from young bulls at performance test. 

MATERIALS AND METHODS 

 Data editing: 

All data were provided by the National Breeder Association of Alpine Grey cattle 

(ANAGA). The study used three different datasets, including milk, beef, and morphological 

traits. The milk dataset contained information on milk, fat, and protein yields (MY; FY, and PY, 

respectively; kg/d) and somatic cell counts (no./ml), with an average interval of 4 weeks 

between test day collection. 

Dataset of morphological evaluations contained 21 type traits routinely scored on 

primiparous cows when aged about three years (36.9 ± 5.0 months). The dataset on beef 

attitude was obtained from performance test data and contained the average daily gain (ADG), 

an in vivo estimate of carcass yield (CY) and muscularity traits (SEUROP scale) carried out by 

skilled classifiers on young bulls aged about 12 months. 

Milk dataset initially contained 1,134,032 individual test-day (TD) productions routinely 

collected from 1997 to 2018 following the Italian official milk recording system. The number of 

somatic cells/ml was converted into the normally distributed somatic cells score (SCS) 

according to [8]. As first data editing, the TD records with missing values, and the ones 

recorded when days in milk (DIM) was under 5 d or over 305 d from calving were removed. In 

additions, only TD belonging to lactation from 1 to 3 were retained. Values for MY, FY, and PY 

outside the mean ± four standard deviations within parity and lactation phase (considering 15 d 

intervals) were taken away from the data set as outliers. Among the remaining records, only 

those belonging to cows with age at calving between 21 and 44 months at first parity, between 

32 and 60 months at second parity, and between 44 and 76 months at third parity were 

retained for analysis. Furthermore, only lactations with a first TD carried out within 45 days from 
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calving and including at least four records were kept for further analysis: the reason for this was 

that functional controls of the cows are limited during the first 45 days, with the lactation peak 

occurring later in this breed [5] 

Lastly, only records belonging to herd-TD with at least two observations could enter the 

final dataset. At the end of the editing process, a final dataset with 406,918 TD records 

belonging to 58,041 lactations and 29,219 cows was used. The pedigree file contained 49,389 

animals, tracing back up to the sixth generation (complete generations). 

Morphological traits are routinely measured once in the lifetime, around the time of first 

calving. Data initially consisted of 14,669 observations of 21 type traits scored on a scale of 1 to 

50 points by trained classifiers during 2010 – 2018. The edited dataset contained 11,318 final 

records belonging to the same number of cows and 32,494 animals in the pedigree file. 

Records allowed to the final dataset were scored between 5 to 305 days in milk (DIM) and 

considered cows with age at first calving between 21 and 45 months. An exploratory factor 

analysis was carried out on all 21 type traits applying the varimax rotation [5,9]. Varimax 

rotation allows for a better interpretation of the biological meaning of each factor. The process 

consists in adjusting (rotating) the coordinates obtained from Principal Components Analysis 

(PCA). This adjustment is based on maximizing the variance shared among components, 

increasing the squared correlation of items related to one factor, while decreasing the 

correlation to any other factor. 

Then, further analysis retained three main factors describing: udder volume (UV; Factor 

2, that is F2 in Figure 1), udder conformation (UC; Factor 3, that is F3 in Figure 1) and rear legs 

(RL; Factor 7, that is F7 in Figure 1), as these three were the main factors of interest to 

breeders in terms of the genetic index, as they are latent factors connected with the production 

of milk (F2), with the health of the udder (F3) or with the aptitude for grazing (F7). 

These factors showed eigenvalues greater than one. They were named based on the 

biological meaning of the linear type traits showing the loading coefficients highest than an 

absolute threshold of |0.45|, a way of proceeding also applied in other previous studies [5,6]. 

The milk trait dataset and the morphological dataset were combined to perform 

correlation analysis. The two datasets had in common 9,145 animals representing about 30% of 

the animals in the milk dataset. 
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The performance test dataset contained 749 records collected from 1988 to 2018 and 

belonging to the same number of bulls grouped by age and accounting for 6,266 animals in the 

pedigree file. The final dataset included only contemporary groups of young bulls consisting of 

at least three animals. The average daily gain (ADG) was obtained as a linear regression of 

monthly weight on age. 

Further analysis considered only regressions with a coefficient of determination of at 

least 0.95. The number of weight-age couples used for the linear regression was 12 for each 

bull, and the average age at the beginning and the end of the performance test were 

respectively 50 ± 12 d and 356 ± 11d . The in vivo visual appreciation of fleshiness, evaluated 

using the SEUROP scale, and the in vivo carcass yields scored independently by two 

evaluators, were obtained at about 375 ± 16 d of age. For each trait, the analysis considered 

the average of the two evaluations. The in vivo SEUROP score considering the grades S, E, U, 

R, O, and P, from the best to worst conformation, was further subdivided into + or − subclasses 

as in [10]. The scores were then transformed in a linear scale from 80 (corresponding to a 

grade of P) to 130 (corresponding to S), adding or subtracting 3.33 points to the full class when 

necessary; that is, for an R+ grade, the score was 103.33, whereas for the U− it was 106.67. 

The whole numeric interval, ranging from 76.67 to 133.33, was considered as continuous. The 

carcass yield was expressed as a percentage and was an in vivo appraisal of the predicted 

carcass incidence at slaughter. 

Models: 

Milk traits were analyzed using the following test-day model: 

yijklmno = HTDi+LNj + GLk + �φr

3

r=1

× AP-LNl + �𝜓𝜓r

3

r=1

× MP-LNm + Pen+ an + eijklmno 

where yijklmno is the individual test-day oth record (milk, fat, protein, and SCS) of the nth 
cow; HTDi is the fixed effect of the herd-test-day (90 012 levels); LNj represents the fixed effect 
of lactation number (3 levels, corresponding to the first three lactations); GLk is the fixed effect 
of kth gestation length class (18 classes with 1 meaning no gestation and further classes 
accounting for 15-d intervals, from 1 to 240 d of gestation); AP-LN is the fixed effect of lth age 
at parity within lactation (42 classes in total); MP-LN is the fixed effect of the mth month of parity 
(36 classes corresponding to single months of a year within each j lactation); Pe is the random 

permanent environmental component, N (0, 𝜎𝜎2pe); a is the additive genetic component, N (0, 
𝜎𝜎2a); and eijklmno is the random residual term, N (0, 𝜎𝜎2e). Fourth-order Legendre polynomials 

described the shape of the lactation curve for the fixed effects of AP-LN and MP-LN, with φ and 
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ψ as fixed regression coefficients for the Legendre polynomial of order r varying between 0 and 
3. Factor analysis for all the morphological traits was carried out to reduce the number of traits 
and avoid redundant morphological measurements (see also Data Editing section). The traits 
included in the analysis are described in Table 1. The factor analysis was performed using the 
“psych” package of R [11]. The varimax rotation method was used [12]. Latent variables with 
eigenvalues ⩾1 were retained for further analysis. The factor score originated from every latent 
variable was considered as a new trait. According to traits of main interest expressed by the 
national breeders’ association, only three of seven latent factors were considered for 
subsequent analyses. They were called as Factor 2 (F2), corresponding to udder volume; 
Factor 3 (F3), that is udder correctness, and Factor 7 (F7), rear legs (Figure 1). Together with 
these factors, the subsequent analysis also included the linear scores for rear muscularity (RM) 
and head typicality (HT), respectively considered as a beef trait and a functional trait for the 
breed. 

The five morphological traits, two linear and three factor scores, were analyzed with the 

following model: 

yijklm = HYi + Cj + ACk + DIMl + am+ eijklm; 

where yijkl is one of the five morphological traits; HYi, Cj, ACj, and DIMk are respectively 

the fixed effects of the herd-year (i = 3 318 levels); the classifier (j = 67 levels); the age at 

calving (k = 12 classes: <21 months, from 21 to 45 using 2-months intervals); and the days in 

milk (l= 20 classes from 5 to 305 days after calving and using 15-days intervals am is genetic 

random additive effect of animals N (0,𝜎𝜎2a); and eijklm is the random residual term, N (0, 𝜎𝜎2e ). 

Regarding the beef traits, the following animal model was implemented: 

yij = GPi + aj + eij, 

where yij is a performance test phenotype for ADG, SEUROP, or CY; GP represents the 

categorical fixed effect of the contemporary group (i = 142 levels); aj is the random additive 
genetic effect of the young bull j; and eij is the random residual term. 

Variance component estimates and model assumptions 

To estimate the (co)variance components, a Gibbs sampling algorithm was used, and 

the analysis was performed with the gibbs3f90 program [13].The program generated a total 

number of 480,000 samples and considered an initial burn-in of 30,000; one of every 150 chains 

was retained. A Gaussian distribution for all effects was considered. Flat priors were used for 
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all fixed effects, and null means and normal distributed priors were used for permanent 

environment, additive genetic, and residual terms, with this matrix notations: 

a ∼ N(0, G ⊗ A); pe ∼ N(0, Pe ⊗ I); e ∼ N(0, R ⊗ I); 

where A represents the relationship matrix obtained from pedigree, and I is an identity 

matrix. Heritability was obtained from variance components estimated by applying single-trait 

models, while genetic and phenotypic correlations from bi-traits models were obtained by 

merging the three different datasets in pairs. The covariance matrices used in the bi-traits 

analysis were as follows: 

G = � σa1
2 σa1a2

σa1a2 σa22
�; Pe = �

0�σPe12 � 0[σPe1Pe2]
0[σPe1Pe2] 0�σPe22 �

� ;  R = � σe12 0[σe1e2]
0[σe1e2] σe22

�; 

where G is the matrix of additive genetic (co)variances σ2a1, σ2a2, σa1a2 of traits 1 and 2, 
Pe is the matrix of permanent environmental (co)variances σ2pe1, σpe1pe2, σ2pe2, and R the matrix 
of residual (co)variances σ2e1, σ2e2 and σe1e2 of traits 1 and 2. When different datasets were 
merged, residual (co)variance was set to zero because the traits were recorded in different 
moments. In single traits analysis, Pe was not considered (i.e., beef and morphological 
datasets) because obtained only once in life. Nevertheless, when morphological or beef traits 

were analyzed with milk traits, a covariance σpe1pe2 was included to provide a better estimate of 

the permanent environment component for milk yields traits, according to [14]. From a 
biological point of view this σpe1pe2 represents the relationship between traits due to the common 
environment represented by each individual 

Estimated selection response 

A final step consisted in calculating the theoretical multivariate response to selection (R) 

under different weights for each trait considered as a breeding goal. The response to selection 

(R) is the change of the phenotypic mean during a generation for a specific or a group of 

selected traits. The theoretical multivariate response to selection [15] was calculated according 

to [16] using the following formula: 

R=(i/σi)·b’·P-1 

where i is the selection intensity set to 1.755 as in [6] corresponding to a proportion of 

0.10 selected animals in the whole population, assuming a normal distribution; σi is the SD of 

the selection index, obtained as 𝜎𝜎i = (𝑏𝑏’ 𝑃𝑃 𝑏𝑏)1/2; b is the vector of the weights for selection index 

and b’ its transpose, with 𝑏𝑏 = 𝑃𝑃−1 𝐺𝐺𝐺𝐺𝑠𝑠. In this formula P and G are the phenotypic and the 
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genetic (co)variance matrices, respectively, and as is the vector including the economic weights 

of traits. In this vector P and G have the same meaning as in in the formula above, and as is 

the vector including the standardized economic weights of traits. As in [16], the relative 

emphasis of the traits in the selection index was intended as a proportion a of the trait's 

standardized economic value (i.e., as = a× σa) compared with the sum of all standardized 

values of all the traits accounted in the index. A final standardized response to selection (Rdsi) 

was calculated as 𝑅𝑅𝑑𝑑𝑠𝑠i = 𝑅𝑅 / 𝜎𝜎i. 

Eight different scenarios (Si) to estimate the selection response were simulated.  

The first scenario(S1) considered the current selection emphasis given to traits under 

routinely selection practices: 70% for milk traits (24% to fat yield and a 46% to protein yield) 

and the remaining 30% attributed to ADG (20%) and RM (10%) beef traits. All the other traits 

(that are all the traits mentioned above of the three datasets) had a selection emphasis of zero 

since they are not included in the selection index. They are indirectly selected due to the 

genetic correlations they have with the traits under direct selection. Scenario 2 and 3 (S2 and 

S3) had the same selection weights of S1, but in S2 the genetic gain for SCS was restricted to 

zero according to previous studies [6,16]. This restriction was done to prevent an increase in 

SCS since it could imply a detriment in udder health conditions. 

Similarly, in S3, the genetic gain for both SCS and RM were restricted to zero. The RM 

variation was restricted to zero to prevent a worsening of the traits due to the negative genetic 

correlations occurring with milk yield traits, as reported below. In this latter case, 30% of weight 

attributed to beef traits was entirely shifted to ADG. The S4 and S5 provided less emphasis on 

milk attitude (65% for both scenarios), and the remaining 35% was divided in different manners. 

The S4 assigned 15% of the weight to RM, 5% to SEUROP, and 5% to CY, meaning a total of 

25% of the weight on beef traits, and attributed 7% of the weight to F3-UC and 3% to HT. In S5, 

less credit to morphological traits was given respect to S4, i.e., 3.5% of the weight to F3-UC 

and 1.5% to HT, with a corresponding increase of RM to 20% of the weight. In S6 e S7, the 

milk traits’ weight was further reduced to 55%. The morphological traits F3-UC and HT received 

the same weight as in S4 (for S6), and S5 (for S7), while the beef traits SEUROP and CY 

received a 10% of weight each in both S6 and S7. Last, in S8, milk traits were set to 70%, and 

beef traits to 30%, specifically 20% to RM and 5% each to SEUROP and CY, but restriction to 

zero were imposed for SCS and morphological traits (F3-UC, F7-RL, and HT) to prevent a 

detriment in their genetic variation. 
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 RESULTS 

Descriptive statistics and factor analysis 

Mean, standard deviation, maximum and minimum values for all the studied traits are 

shown in Table 1. Milk, fat, and protein TD yields indicated a daily production of 16.3 kg/d, 0.62 

kg/d, and 0.56 kg/d, respectively. Regarding SCS, a mean of 2.33 was found, i.e., 

approximately 62,760 cells/ml, suggesting an excellent value for mammary health in Grey 

Alpine. Almost all morphological traits present an average value close to 28 points, except the 

teats position – rear view (23.5 points). Young proved bulls presented a mean ADG of 1.15 

kg/d, with a carcass yield of 56% and an average SEUROP conformation score of 103 points, 

corresponding to an R+ score. 
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Table 1. Descriptive statistics of analyzed traits. 

Traits  Mean SD Minimum Maximum 

Milk traits:      

- Milk yield (kg/d)  16.30 5.36 0.60 45.20 

- Fat yield (kg/d)  0.62 0.21 0.02 2.163 

- Protein yield (kg/d)  0.56 0.17 0.02 1.49 

- Somatic cell score (points)  2.33 1.86 -3.64 10.84 

Linear Type traits (points; scale 1-

50): 

     

- Strength/Robustness  29.15 6.67 Tight & weak Large & strong 

- Thinness  26.42 5.46 Heavy & coarse Thin & sharp 

- Shoulders  28.80 5.65 Loose Smooth and 

adherent 

- Top line  28.86 5.99 Weak Straight & Strong 

- Rear legs - side view  27.66 4.80 Straight Sickle-Hocked 

- Rear legs - rear view  29.09 5.54 Cow-hocked Correct 

- Foot angle  26.17 4.89 Narrow Wide 

- Pastern  27.02 5.11 Weak Straight & strong 

- Fore udder strength  27.68 5.54 Loose Tight 

- Fore udder length  26.73 5.35 Short Long 

- Rear udder height  26.83 5.41 Short Tall 

- Rear udder width  27.14 6.03 Narrow Broad 

- Suspensory ligament  28.43 5.19 Weak Strong 

- Udder depth  30.47 5.44 Deep Shallow 

- Udder symmetry  24.18 2.75 Not levelled front Not levelled rear 

- Teats position - rear view  23.50 3.58 Far Close 

- Teats Position - side view  26.74 3.92 Far Close 

- Teats length  26.18 5.07 Short Long 

- Front muscularity  28.61 6.13 Scarce Developed 

- Rear muscularity  27.60 5.61 Scarce Developed 

- Head typicality  26.44 6.21 Poor Very good 

Performance test traits:      

- Average daily gain (kg/d)  1.15 0.11 0.74 1.50 

- SEUROP score (points)  103.3 4.09 90.0 120.0 

- Carcass yield (%)  56.15 1.23 51.0 60.0 
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Figure 1 reports the factor analysis's main results that indicate a quite clear biological 

interpretation of latent factors based on loading coefficients with an absolute value greater than 

0.45. Indeed, muscularity, udder volume (UV), udder conformation (UC), general aspect, feet 

correctness, teats, and rear legs (RL) have been identified after varimax rotation pattern as the 

biological meaning of factors F1, F2, F3, F4, F5, F6, and F7, respectively (Figure 1). These 

latent factors express an amount of variance of 2.68, 2.38, 2.03, 1.91, 1.62, 1.25, and 1.20, 

respectively (Table 1). The F1 included the following traits (minimum loading coefficient of 

|0.45|: strength/robustness with a loading coefficient of 0.86, rear muscularity (0.90), and fore 

muscularity (0.91). The F2 included some morphological traits regarding udder volume, such 

as: fore udder length with a loading coefficient of 0.67, and rear udder attaches (height; 0.83; 

and width; 0.86). The F3 was related to udder conformation and accounted for: fore udder 

strength (0.64), suspensory ligament (0.66), udder depth (0.81), and udder symmetry (0.47). 

The F4 contained traits describing the general aspect of the individual: thinness (0.63), 

shoulders (0.73), dorsal line (0.69), and head typicality (0.58). The F5, accounting for the Leg 

correctness, comprised pastern and foot angle (both with a loading coefficient of about 0.85). 

The F6, teats, included traits related to teats evaluation, i.e., teats length (0.76), and both side 

(0.52) and rear view (-0.54) of teats position, although with opposite sign. Last, F7 accounted 

for rear legs viewed by side (0.77) and back view (-0.48). F2, F3 and F7 was retained for 

further genetic analysis. Overall, these three factors accounted for 27.3% of the total variance 

of traits (Table 2) and allowed a clear interpretation of the latent variables. Each of them was 

further analyzed as a factor score, which resumes the information of the traits included using a 

standardized phenotypic variable [5]. In addition to the three factor scores, single linear type 

traits of rear muscularity (RM) and head typicality (HT) were analyzed. 

In fact, the first one represents a trait presently under selection, and the second one is a 

trait in which breeders shows a strong interest because it is part of the breed's typicality: a 

qualitative assessment of the cranial shape according to the Gray Alpine Herd Book 

(http://www.grigioalpina.it/wp-content/uploads/2015/10/Norme-tecniche.pdf, April 2021). 

  

http://www.grigioalpina.it/wp-content/uploads/2015/10/Norme-tecniche.pdf
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Table 2. Variance explained (Var) and percentage of the total variance explained (Var %) by the 

factors after rotations. 

 

Analyzed traits 

Variance components1  

HPD 52 

 

HPD 953 σ2a σ2p h2 

Milk traits:      

- Milk yield 2.211 10.100 0.219 0.181 0.336 

- Fat yield 2.6004 14.5254 0.178 0.117 0.125 

- Protein yield 1.8954 15.1604 0.125 0.166 0.201 

- Somatic cell score (SCS, points) 0.379 2.834 0.133 0.119 0.148 

Morphological aspects traits:      

- Udder volume factor (F2-UV) 0.244 0.793 0.309 0.254 0.364 

- Udder conformation factor (F3-UC) 0.300 0.894 0.325 0.274 0.388 

- Rear legs factor (F7-RL) 0.208 0.869 0.238 0.181 0.214 

- Head typicality (HT) 13.001 34.601 0.374 0.304 0.417 

Beef traits:      

- Rear muscularity (RM) 9.144 27.354 0.328 0.279 0.385 

- Average daily gain (ADG, kg/d) 2.631 9.221 0.282 0.094 0.494 

- SEUROP (points) 0.529 1.392 0.376 0.184 0.567 

- Carcass yield (CY, %) 9.180 18.152 0.501 0.310 0.697 

1σ2a is the additive genetic variance; σ2P is the phenotypic variance; h2 is the heritability 
2 HPD5 is the highest posterior density region at 5% 
3 HPD95 is the highest posterior density region at 95% 
4 Variances have been multiplied by 103 
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Figure 1. Loading coefficient (LC) of individual morphological traits within the seven latent 
factors extracted from the factor analysis (i.e., with eigenvalue >1) after the varimax rotation. 
Only LC ≤−0.45 or ≥0.45 have been reported. Blue bars represent positive loading coefficients, 
red bars negative loading coefficients. 

 

 Genetic parameters and genetic correlations 

Table 3 reports the variance components and genetic parameters estimated in single-
trait models. Note that not all traits possess all three components, i.e., genetic, environmental 

and residual: for example, udder volume factor, since it is tested once, does not possess σ2pe 

component. Compared to morphological and beef traits, milk traits showed generally lower 
heritability values, ranging from 0.218 (milk yield) to 0.133 (SCS). Morphological traits had 
medium-high heritability, i.e., near to 0.30, with head typicality that presents the highest h2 in 
this group of traits (0.374), while F3-UC (udder conformation) showed the lowest value of 
heritability (0.238). Beef traits measured early in life on young bulls at performance testing 
station showed the highest h2. SEUROP and CY (carcass yield) reached a value of 0.376 and 
0.501, respectively. Conversely, AGD presented a medium heritability value of 0.282. 
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Table 3. Estimates of variance components and heritability (h2) of analyzed traits as the means 

and HPD of the marginal posterior densities. Note that not all traits possess all three 

components (e.g., udder volume factor does not have a σ2pe, i.e., permanent environment 

component). 

 

Analyzed traits 

Variance components1  

HPD 52 

 

HPD 953 σ2a σ2p h2 

Milk traits:      

- Milk yield 2.211 10.100 0.219 0.181 0.336 

- Fat yield 2.6004 14.5254 0.178 0.117 0.125 

- Protein yield 1.8954 15.1604 0.125 0.166 0.201 

- Somatic cell score (SCS, points) 0.379 2.834 0.133 0.119 0.148 

Morphological aspects traits:      

- Udder volume factor (F2-UV) 0.244 0.793 0.309 0.254 0.364 

- Udder conformation factor (F3-UC) 0.300 0.894 0.325 0.274 0.388 

- Rear legs factor (F7-RL) 0.208 0.869 0.238 0.181 0.214 

- Head typicality (HT) 13.001 34.601 0.374 0.304 0.417 

Beef traits:      

- Rear muscularity (RM) 9.144 27.354 0.328 0.279 0.385 

- Average daily gain (ADG, kg/d) 2.631 9.221 0.282 0.094 0.494 

- SEUROP (points) 0.529 1.392 0.376 0.184 0.567 

- Carcass yield (CY, %) 9.180 18.152 0.501 0.310 0.697 

 

1 σ2a is the additive genetic variance; σ2pe is the permanent environmental variance, σ2e is the residual variance; h2 is the 
heritability. 
2 HPD5 is the highest posterior density region at 5% 
3 HPD95 is the highest posterior density region at 95% 
4 Variances have been multiplied by 103 
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Table 4 showed the genetic and phenotypic correlations between each trait pair 

considered in the study (full table with HPD is available in Supplementary Material). High 

genetic correlations (>0.75) were observed within milk traits, except SCS, which was mildly 

correlated from the genetic point of view with milk yield traits. High genetic correlations were 

also found between beef traits; mainly, SEUROP and CY presented a genetic correlation 

greater than 0.90. Regarding the genetic correlations within morphological traits, low values 

were generally observed, except for some negative correlations between F2-UV and F3-UC (-

0.208) and between rear muscularity and F2-UV (-0.319). On the other hand, a medium but 

positive genetic correlation was obtained between rear muscularity and F3-UC (0.346). 

Considering the genetic correlations between different groups of traits, F2-UV had positive 

correlations with all milk yield traits, whereas F3-UC had a negative association with milk yield. 

F2-UV also had negative correlations with beef traits SEUROP and CY. Another trait related to 

the beef attitude is the morphological trait Rear muscularity of primiparous cows (RM). This trait 

had a medium but negative genetic relationship with milk yield traits (from -0.158 to -0.458). 

Interestingly, despite ADG carcass yields, and SEUROP were strongly correlated with RM, they 

were not so negatively correlated as RM with milk yield traits. 

Phenotypic correlations follow the same trends as the genetic ones, but their absolute 

values were slightly lower, especially among different groups' traits. 

  



 

84 

 

Table 4. Genetic (above the diagonal), and phenotypic (below the diagonal) correlations among 
milk traits, SCS, morphological and beef traits analysed. (within brackets). Traits that do not 
include zero in their HPD are reported in bold. Full table with HPD is reported in the 
Supplementary Material. 

TRAITS1 MY FY PY SCS 
F2 

UV 

F3 

UC 

F7 

RL 
HT RM ADG SEUROP CY 

MY  

0.758 

(0.732 

0.781) 

0.845 

(0.829 

0.860) 

0.069 

(-0.001 

0.141) 

0.330 

(0.235 

0.421) 

-0.448 

(-0.546 -

0.354) 

0.060 

(-0.066 

0.182) 

-0.091 

(-0.191 

0.011) 

-0.458 

(-0.547 -

0.365) 

-0.071 

(-0.362 

0.187) 

-0.24 

(-0.491 

0.001) 

-0.156 

(-0.363 

0.051) 

FY 

0.768 

(0.752 

0.802) 

 

0.824 

(0.804 

0.844) 

0.067 

(-0.008 

0.144) 

0.286 

(0.185 

0.383) 

-0.326 

(-0.429 -

0.224) 

0.045 

(-0.086 

0.175) 

-0.136 

(-0.241 -

0.033) 

-0.413 

(-0.514 -

0.316) 

-0.092 

(-0.339 

0.145) 

0.029 

(-0.196 

0.233) 

-0.103 

(-0.390 

0.140) 

PY 

0.905 

(0.850 

0.960) 

0.766 

(0.244 

0.247) 

 

0.088 

(0.014 

0.164) 

0.289 

(0.188 

0.388) 

-0.423 

(-0.521 -

0.322) 

0.099 

(-0.031 

0.228) 

-0.169 

(-0.274 -

0.062) 

-0.397 

(-0.493 

0.299) 

-0.066 

(-0.280 

0.139) 

0.175 

(-0.102 

0.433) 

-0.156 

(-0.385 

0.073) 

SCS 

-0.149 

(-0.250 -

0.050) 

-0.08 

(-0.120 -

0.020) 

-0.111 

(-0.195 -

0.060) 

 

0.246 

(0.120 

0.369) 

0.149 

(0.009 

0.284) 

0.190 

(0.005 

0.240) 

-0.109 

(-0.223 

0.004) 

-0.158 

(0.274 -

0.039) 

-0.184 

(-0.452 

0.043) 

-0.008 

(-0.219 

0.182) 

-0.259 

(-0.475 -

0.054) 

F2-UV 

0.24 

(0.211 

0.244) 

0.172 

(-0.080 -

0.051) 

0.211 

(-0.119 -

0.085) 

-0.001 

(-0.006 

0.028) 

 

-0.208 

(-0.340 -

0.073) 

0.097 

(-0.062 

0.260) 

0.129 

(-0.005 

0.259) 

-0.319 

(-0.441 -

0.190) 

-0.121 

(-0.395 

0.144) 

-0.351 

(-0.536 -

0.129) 

-0.359 

(-0.736 -

0.040) 

F3-UC 

-0.122 

(-0.137 -

0.101) 

-0.067 

(-0.001 

0.028) 

-0.104 

(0.003 

0.037) 

0.012 

(-0.006 

0.028) 

0.003 

(0.010 

0.054) 

 

0.098 

(-0.067 

0.255) 

0.079 

(-0.057 

0.209) 

0.346 

(0.224 

0.463) 

-0.128 

(-0.444 

0.157) 

0.067 

(-0.210 

0.334) 

0.061 

(-0.258 

0.381) 

F7-RL 

0.02 

(0.001 

0.038) 

0.014 

(-0.213 -

0.147) 

0.021 

(-0.238 -

0.157) 

0.012 

(-0.023 

0.056) 

0.033 

(-0.326 -

0.224) 

0.01 

(0.243 

0.344) 

 

0.075 

(-0.053 

0.197) 

-0.324 

(-0.460 -

0.183) 

0.148 

(-0.176 

0.426) 

-0.156 

(-0.457 

0.157) 

-0.159 

(-0.573 

0.213) 

HT 

-0.02 

(-0.093 -

0.002) 

-0.012 

(-0.072 

0.035) 

-0.023 

(-0.135 

0.070) 

-0.022 

(-0.113 

0.011) 

0.07 

(-0.036 

0.014) 

0.021 

(-0.040 

0.016) 

0.085 

(-0.014 

0.040) 

 

0.075 

(-0.053 

0.197) 

-0.189 

(-0.477 

0.081) 

0.208 

(-0.051 

0.463) 

0.171 

(-0.129 

0.481) 

RM 

-0.134 

(-0.349 -

0.265) 

-0.079 

(-0.066 

0.006) 

-0.086 

(-0.100 -

0.013) 

0.001 

(-0.095 -

0.012) 

-0.120 

(0.114 

0.227) 

0.128 

(-0.006 

0.109) 

-0.177 

(0.151 

0.262) 

0.085 

(0.031 

0.080) 

 0.656 

(0.343 

0.909) 

0.798 

(0.556 

0.981) 

0.849 

(0.540 

0.991) 

ADG 

-0.014 

(-0.069 

0.036) 

-0.018 

(-0.045 

0.053) 

-0.015 

(-0.021 

0.085) 

-0.046 

(-0.11 

0.093) 

-0.034 

(-0.437 -

0.097) 

-0.037 

(-0.169 

0.264) 

0.043 

(-0.313 

0.111) 

-0.064 

(-0.045 

0.405) 

0.182 

(0.408 

0.719) 

 

0.839 

(0.594 

0.996) 

0.545 

(0.156 

0.977) 

SEUROP 

-0.057 

(-0.122 

0.000) 

0.006 

(-0.088 

0.031) 

0.034 

(-0.106 

0.022) 

-0.002 

(-0.257 -

0.031) 

-0.133 

(-0.211 -

0.014) 

0.025 

(-0.094 

0.129) 

-0.052 

(-0.151 

0.068) 

0.087 

(-0.049 

0.183) 

0.276 

(0.184 

0.338) 

0.621 

(0614 

0.741) 

 

0.928 

(0.831 

0.990) 

CY 

-0.047 

(-0.219 

0.034) 

-0.024 

(-0.088 

0.031) 

-0.041 

(-0.106 

0.022) 

-0.07 

(-0.257 -

0.031) 

-0.109 

(-0.211 -

0.014) 

0.019 

(-0.094 

0.129) 

-0.041 

(-0.151 

0.068) 

0.06 

(-0.049 

0.183) 

0.241 

(0.184 

0.338) 

0.545 

(0.994 

1.263) 

0.825 

(1.607 

1.788) 

 

1MY = Milk yield; FY = Fat yield; PY = Protein yield; SCS = Somatic cell score; F2-UV = Udder volume factor; F3-UC = Udder conformation 

factor; RL- F7 = Rear legs factor; HT = Head typicality; RM = Rear muscularity; ADG = Average daily gain; SEUROP = in vivo SEUROP score; 

CY = in vivo Carcass yield 

 

 Genetic trends and response to different selection scenarios 

Table 5 reports the economic weights assigned to each scenario (a) and the weight 

obtained after restriction to zero(b). In the current selection scheme (S1), great standardized 

selection responses were obtained for all milk traits (including F2-UV; Figure 2). The protein 

yield (PY), as expected, had the maximum value (0.47), corresponding to a genetic progress of 

0.067 kg of protein per generation (data not shown). All other traits (morphological and beef) 
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showed a negative genetic trend (Figure 2; S1). F3-UC presented the worst selection response 

(-0.32). ADG and SEUROP resulted in the only beef traits with non-negative selection response 

(0.29 and 0.05, respectively). 

When restrictions were applied to SCS (S2), corresponding to null genetic progress for 

this trait, the expected genetic gain for milk traits slightly declined: for PY from 0.47 to 0.40 

and from 0.32 to 

0.29 for FY. About morphological traits, F3-UC showed a further decrease from -0.32 to -

0.36. Similarly, RM resulted in less negative genetic variation (from -0.16 to -0.04 standardized 

units) than in S1, almost null genetic progress. In the scenario in which restriction was applied 

on RM (S3) a similar situation than in S2 was seen, although with a small reduction of 

standardized genetic gain for milk and a small increase for all beef traits was observed, i.e., a 

non-negative variation for RM, positive increase for ADG, SEUROP, and CY (Figure 2, S3). On 

the other hand, the expected genetic progress for all morphological traits remained almost 

unchanged with respect S1 and S2. Indeed, F2-UV still showed a small increase, F3-UC 

remained negative, such as HT and F7-RL, although with a lower magnitude than for F3-UC. In 

S4 and S5, despite the small reduction of fat and protein yields and beef traits in favor of 

morphological traits, a small but favorable increase of FY and PT was still observed, because 

of the lower incidence of beef traits, but SCS increased negatively. However, in both scenarios, 

F3-UC and HT genetic gain resulted less negative than in the previous ones (Figure 2), while 

F7-RL showed a small negative increase. In S5, notably, RM resulted non-negative. In S6 and 

S7, there was a further reduction of milk traits favoring beef traits but maintaining the same 

weights for morphological traits as in S4 and S5. Thus, both FY and PY were reduced, and 

beef traits increased compared to the previous scenarios. S6 and S7 showed the best genetics 

progress for beef traits (>0.20, >0.30, >0.45, and >0.40 for RM, ADG, SEUROP and CY, 

SEUROP, respectively; Figure 2). These were the first scenarios in which RM had a positive 

selection response. On the contrary, milk traits presented the worse genetic gain as compared 

to other scenarios. In both S6 and S7, the SCS increased negatively, but slowly than in S4 and 

S5. Response to selection of F3-UC was less negative than in the previous scenarios, while 

F7-RL resulted more negatively affected (Figure 2). Last, in S8, milk yield genetic gain was 

maintained at the same level as in S6 and S7, but morphological traits resulted in a non-

negative variation, and beef traits improved, particularly RM in primiparous cows. Also, 



 

86 

 

SEUROP and CY of young performance-tested bulls showed a positive increase (Figure 2). In 

general, F2-UV, not weighted in any scenario, followed the same trend as milk yield, i.e., 

increasing when milk yield increased, showing a selection response over to 0.20 standardized 

units. Notwithstanding, reducing milk traits’ economic weight has contributed to an adverse 

selection response for F2-UV in scenarios S6, S7, and S8. 

Table 5. Economic weights of traits as applied before (a) and after (b) the restriction for the 
genetic progress of target traits1. The sum to 1 of the economic weights of traits considers the 
absolute values of the weights. 

a)                 
Scenari
o MY FY PY SCS F2-UV F3-UC F7-RL HT RM ADG SEUROP CY  Milk2 Morph.3 Beef4 

S1 0 0.24 0.46 0 0 0 0 0 0.1 0.2 0 0  0.7 0 0.3 

S2 0 0.24 0.46 05 0 0 0 0 0.1 0.2 0 0  0.7 0 0.3 

S3 0 0.24 0.46 05 0 0 0 0 05 0.3 0 0  0.7 0 0.3 

S4 0 0.217 0.433 0 0 0.07 0 0.03 0.15 0 0.05 0.05  0.65 0.1 0.25 

S5 0 0.217 0.433 0 0 0.035 0 0.015 0.2 0 0.05 0.05  0.65 0.05 0.3 

S6 0 0.18 0.37 0 0 0.07 0 0.03 0.15 0 0.1 0.1  0.55 0.1 0.35 

S7 0 0.18 0.37 0 0 0.035 0 0.015 0.2 0 0.1 0.1  0.55 0.05 0.4 

S9 0 0.24 0.46 05 0 05 05 05 0.2 0 0.05 0.05  0.7 0 0.3 

b)                 
Scenari
o MY FY PY SCS F2-UV F3-UC F7-RL HT RM ADG SEUROP CY  Milk2 Morph.3 Beef4 

S1 0 0.24 0.46 0 0 0 0 0 0.1 0.2 0 0  0.7 0 0.3 

S2 0 0.186 0.356 
-

0.2255 0 0 0 0 0.077 0.155 0 0  0.768 0 
0.23

2 

S3 0 0.175 0.335 
-

0.2205 0 0 0 0 0.0525 0.218 0 0  0.730 0 
0.27

0 

S4 0 0.217 0.433 0 0 0.07 0 0.03 0.15 0 0.05 0.05  0.65 0.1 0.25 

S5 0 0.217 0.433 0 0 0.035 0 0.015 0.2 0 0.05 0.05  0.65 0.05 0.3 

S6 0 0.18 0.37 0 0 0.07 0 0.03 0.15 0 0.1 0.1  0.55 0.1 0.35 

S7 0 0.18 0.37 0 0 0.035 0 0.015 0.2 0 0.1 0.1  0.55 0.05 0.4 

S8 0 0.153 0.294 
-

0.1345 0 0.1605 0.0525 0.0155 0.128 0 0.032 
0.03

2  0.581 0.227 
0.19

1 
1Traits: MY = Milk yield; FY = Fat yield; PY = Protein yield; SCS = Somatic cell score; F2-UV = Udder volume factor; F3-UC = Udder 
conformation factor; RL- F7 = Rear legs factor; HT = Head typicality; RM = Rear muscularity; ADG = Average daily gain; SEUROP = in vivo 
SEUROP score; CY = in vivo Carcass yield 2Milk traits: MY, FY, PY, SCS; 3Morphological traits: F2-UV, F3-UC, F7-RL, HT; 4Beef traits: RM, 
ADG, SEUROP, CY; 5Restriction applied to target traits 

  



 

87 

 

Figure 2. Standardized genetics progress (y axes) for 12 traits studied considering 8 different 
scenarios (from S1 to S8) attributing different weights to specific traits in the possible selection 
index. Red bars represent milk, fat, and protein, orange bars SCS, light-yellow morphological 
traits (both factors and single trait analyzed), and grey bars beef traits (type rear muscularity or 
performance test traits). Traits’ abbreviations are reported in Table 1. 

 

 

  DISCUSSION 

 Heritability 

The Grey Alpine represents a perfect example of a local breed with a dual-purpose 

attitude, as it shows good productive performances for both milk and beef traits. In our study 

heritability of milk yield was lower than other traits analyzed, but this is because milk yield was 

analyzed as test-day records, that are recognized to give lower heritability, because of the high 

environmental variance. Moreover, it is also due to the nature of the data, i.e., longitudinal 

observations instead of data recorded once in life. Fat yields showed lower heritability than 

protein yields, although both PY and FY had about the same additive genetic variance. 

However, FY's residual variance was almost double compared to that of PY, reducing the 

heritability. Many studies have reported that fat is much more affected than protein by external 
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factors, such as the feeding regimen [17,18], and that is in agreement with the greater residual 

variance for FY than for PY. On the other hand, the Grey Alpine showed heritability valued for 

milk traits similar to those reported for other dual propose/local breeds, as Italian Simmental, 

Rendena, and Valdostana. The Italian Simmental presented a heritability value of 0.18, 0.13, 

and 0.17 for milk, fat, and protein yields, respectively [19]. In Rendena local breed, heritability 

levels for these traits were 0.188, 0.157, and 0.165 [6], and similar values were also found in 

Valdostana breed, for which heritability estimates were 0.198, 0.132, and 0.169 [20]. In 

general, heritability for milk traits resulted slightly greater than in specialized breeds, like 

Holstein (e.g., 0.108 for MY in Italian Holstein; [21]). This could be related to the fact that in 

dual-purpose cattle, milk traits have been subjected to less selective pressures over time than 

dairy cattle [3]. 

Although many studies considered SCS as a low heritability trait (h2 = 0.08 on average), 

especially in Holstein cows [22], a slightly greater value of 0.133 was found in this study. Still, 

the lower selection pressure could be identified as the possible cause of such greater than 

expected estimates. However, for other local cattle breeds of the Alpine area, Rendena, and 

Valdostana (Aosta Chestnut), heritability estimates were closer to those observed in 

cosmopolitan breeds, i.e., 0.08 [20]. 

Factor analysis allowed to characterize any factor with an explicit biological meaning due 

to the orthogonalization of loading coefficients, performed by varimax rotation, that maximizes 

factor independence [12]. According to [23], factor loadings are one of the best approaches for 

selection when a lot of different traits can be easily combined because of their collinearity. 

Factor loadings indeed allow summarizing the information from a multi-trait analysis by 

concentrating the traits into single information, avoiding the use of highly correlated 

measures. In this study, F2 was entirely explained by all the udder attaches (length of the 

fore udder and length and width of the rear udder); a greater value of the factor loading 

indicates a wider dimension of udder attach, directly linking the factor to the volume of the 

udder. The F3 included the other udder traits connected to udder “health”, like the strength of 

the suspensory ligament, the udder depth, and the udder symmetry. These three traits describe 

the mammary apparatus's conformation and assume an increasing value of F3 with an 

increased score of the three traits. Last, F7 describes the posterior rear legs conditions, 

including the side and the back view of rear legs. These two traits, characterized by 
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intermediate optimum values, entered the factor with opposite sign (i.e., positive the rear legs 

side view, and negative the rear legs back view), because the sickle-hocked defect, 

associated with a greater score, is often associated to the cow-hocked defect, assuming the 

lowest scores in Alpine Grey morphological evaluation (www.grigioalpina.it/?lang=en, Date of 

access: 30 March 2021). 

Overall, morphological traits showed a medium-high value of h2, as widely reported in 

the literature [24-26], including dual-purpose cattle [5]. Recent studies [27,28] demonstrated that 

the higher heritability values could be due to the greater number of gene clusters involved in 

biological processes relevant for udder morphology. 

A wide range of studies has been carried out for morphological traits in specialized 

breeds, and generally, the heritability resulted lower than those estimated in this research. 

Regarding morphological traits evaluated in dairy cattle (udder volume, udder conformation 

also the leg), heritability values of 0.14, 0.08, and 0.07 were found in Holstein; also, a 0.18 for 

udder volume was reported [30,31] and as a mean of 0.22 for other traits regarding udder 

conformation [30,31]. For beef conformation traits, an heritability of 0.40 has been reported in 

both Brown Swiss and Red &White breeds [32], but in Italian dual purpose breeds values 

similar to those of the present study were found. For muscularity, udder volume and udder 

conformation heritabilities of 0.314, 0.166, and 0.169 were found in Valdostana [5], whereas 

Rendena showed higher heritability values of 0.359, 0.260, 0.267, possibly due to the different 

nature of the factorial score in these breeds as compared to the Alpine Grey. On the other 

hand, in beef cattle, similar heritability estimates have been reported for head typicality [25,26]. 

The high heritability estimates observed in this study for performance test traits 

compared to the morphological and milk traits were commonly observed even in other dual-

purpose or beef breeds, like the Piedmontese (e.g., heritability of 0.47 for ADG) [6,32–35]. 

Genetic correlations 

expected, milk yield traits shoed strong phenotypic and genetic correlations among 

them, as both protein and fat productions depend on the amount of milk produced. Somatic cell 

score showed a low-positive genetic correlation with milk traits, confirming previous findings 

[36], where the independence of traits was demonstrated by genomic analysis indicating the 

http://www.grigioalpina.it/?lang=en
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presence of different genes and loci under the traits [37,38]. Udder volume (F2) showed a 

positive correlation with all milk traits, including SCS (a positive correlation was also reported in 

other studies [39]). On the contrary, F3 (udder conformation) presented a negative correlation 

with F2, and consequently, with all other milk yield traits. The genetic improvement for milk 

production leads to an indirect increase of udder volume that causes damage to its 

conformation. Similarly [6,30,31] found a negative genetic correlation of about -0.3 between 

udder conformation and udder volume for Italian Brow Swiss, Rendena and Valdostana cattle. 

An impressive result was discovered by analyzing the genetic correlation of SCS with F2-UV 

and F3-UC, which resulted positive, suggesting a detriment in udder health for increasing udder 

volume and conformation values. A similar result was also found in Rendena breed for udder 

volume [5], but it was the opposite for udder conformation. Rear legs (F7) and head typicality 

had genetic correlations not different from zero, either with milk or beef traits, considering that 

in all cases, the HPD95% included zero. The only positive correlation was observed between 

SCS and F7-RL, meaning that an increase in inflammatory udder status is associated with an 

impairment of rear legs and possibly a general unhealthy animal status [40]. Milk traits and F2-

UV had a negative correlation with rear muscularity, whereas the positive medium correlation 

between F3-UC and RM can be explained considering the negative correlations that both 

these traits showed with milk yield because they both resemble a typical aspect observable 

more frequently in muscular cows. Positive correlations between muscularity and udder 

correctness have been previously reported [5]. Muscularity scored in cows showed a strong 

positive genetic correlation with all performance test traits, which agrees with other studies 

[6,10,4], despite a negative genetic correlation sometimes found between muscularity and ADG 

[33,41] The negative correlations between milk and beef traits have been identified in the 

different asset of genes involved in metabolism regulation, catabolism of collagen, and 

myogenesis compared to milk synthesis [42]. Other studies have reported this negative genetic 

correlation, estimating a similar correlation coefficient to our study, e.g., in Brown Swiss and 

Swiss Simmental cattle [39] or Italian Simmental [40]. On the other hand, slightly lower 

negative genetic correlations were found by Croué et al. [43], comparing the postmortem 

SEUROP with milk, fat, and protein yields in French dual-purpose cattle breeds (Montbeliarde, 

Normande, and Simmental). 
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Genetic response under different selection scenarios 

Multivariate response to selection was calculated to properly account for different traits 

in the aggregate selection index of the breed. This index is made by assigning a different 

economic weight to EBVs of each target trait [44]. 

A proper knowledge of the true genetic relationships among target traits, and of the 

expected response under different selection pressures can help properly drive selection 

decisions and therefore the genetic trend of traits. 

The present selection scheme (S1) produces the greatest growth of milk traits in terms 

of standardized genetic progress due to the high weight accounted by fat and protein yields in 

the selection index (70% of total). The positive selection response for milk yield is due to the 

favorable and strong genetic correlations with the FY and PY. The present scheme produces a 

negative increase of the SCS, negatively affect udder conformation, the muscularity measured 

in primiparous cows, and head typicality. S1 produces also a positive increase in udder volume, 

ADG measured on bulls, and, to a less extent, SEUROP scores on young bulls. A steady-state 

is detectable for rear legs and estimated CY on performance-tested young bulls. 

The considerable selection response attainable for F2-UV, despite not being directly 

accounted for in the selection index in S1, is due to the strong genetic correlation of this 

composite trait with milk yield traits, since a large udder volume allows an increased milk 

production. In the current selection index, all the beef traits except ADG showed a negative 

(RM) to almost null (SEUROP and CY) selection response, because the economic weight for 

beef attitude was attributed only to ADG (i.e., 30%). Overall, the present selection index does 

not reflect the goal of selection for the dual-purpose attitude in the Alpine Grey cattle breed. A 

different situation was observed in the current selection response of another Italian dual-

purpose cattle, the Rendena, in which an economic weight for beef attitude is due to all the 

traits accounted for in this study [5]. Nevertheless, negative response for RM is also produced 

in this breed due to the strong antagonistic correlations with milk traits. The positive response 

for SCS, observed in this study as also in [5] is undesirable for selection since it means a 

detriment in udder health. 
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The restriction for maintaining unchanged SCS in S2 produces a slightly negative effect 

on milk yields and slightly increases the response for the beef traits measured in performance-

tested bulls. Despite this, the negative genetic correlations between muscularity and milk traits 

still led to an adverse effect of RM selection, limiting a proficient selection for the breed's dual-

purpose attitude. Despite the neutral selection response for SCS, udder conformation (F3-UC) 

worsens with respect to S1, highlighting the need for further investigations on these traits that 

are both indirectly linked to udder health. 

When a restriction toward unchanged SCS and muscularity was analyzed (S3), a decline 

in milk yield progress was observed, underscoring the importance to reduce milk yield growth 

despite a selection goal more oriented toward the dual-purpose attitude. Although CY and 

SEUROP in young bulls were not directly selected, an increase in the standardized genetic 

response for these traits is detectable because of the positive correlation with muscularity. 

In the fourth scenario (S4), an increase in milk yield response is observed, despite a 5% 

reduction of its weight, but beef trait response was like S2 and S3. However, SCS and 

morphology generally showed a negative response to selection, slightly more negative in the 

fifth scenario (S5), where they received a lesser economic weight, in favor of beef traits. Such 

traits on the other hand increased, particularly muscularity in primiparous cows which was 

slightly positive for the first time. In subsequent scenarios, milk yield was negatively affected 

due to the reduced economic weight in the selection index (as in S6 and S7) or the 

introduction of constraints in non-negative growth of traits negatively correlated to milk, fat, 

and protein yields. In the last three scenarios, muscularity was greatly increased as compared 

to the previous scenarios. S6 and S7 were the scenarios in which beef had more emphasis in 

the selection process. On the other hand, S8, notwithstanding the 70% of the weight on milk 

traits, produced results like S6 and S7, due to the greater incidence of beef and morphology. 

These latter scenarios should be considered technically more balanced toward the dual-

purpose attitude, although they could be considered not as economically convenient due to the 

high commercial value of milk as compared to other traits. 

In all scenarios proposed, the udder volume (F2) was always not directly selected due to 

its high correlation with fat and protein, and milk yield. Nevertheless, this trait showed a 

negative selection response in the last three scenarios due to the negative correlations with 
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beef traits. Regarding other morphological traits (F7-RL and HM), following breeders’ 

suggestions, it could be important to ensure a non-negative or slightly negative genetic 

progress for these traits, as observed in most cases. Regarding performance test traits, high 

economic weight for ADG, as in S1, is meaningless. ADG has a less economic interest than CY 

and SEUROP (ANAGA, personal communication) that are also less negatively correlated with 

milk traits. If non-negative genetic progress for SCS, but especially for F3-UC and RM, is 

considered a priority, a necessary reduction of milk traits' genetic progress occurs. 

In conclusion, due to the complex structure of genetic correlations among traits and the 

large number of negative genetic correlations, a selection index including all the important 

aspects for the breed (milk, beef, and morphology) can be considered the best compromise. As 

expected, milk and beef traits have negative genetic correlation, and the situation becomes 

more complicated if morphological traits are included in the selection index. 

However, the present selection index (S1) produces a detriment of beef attitude in the 

medium-long term and a loss of some peculiar and important functional characteristics in the 

breed. For these reasons, a selection index more oriented toward the beef attitude, without 

worsening some morphological characteristics appreciated by breeders, can be considered 

more appropriate, despite the reduction of the expected response for milk yield. 

CONCLUSIONS 

In conclusion, due to the complex structure of genetic correlations among traits and the 

large number of negative genetic correlations listed above, selection index including all the 

important aspects for the breed (milk, beef, and morphology) can be considered the best 

compromise. As expected, milk and beef traits have negative genetic correlation, and the 

situation became more complicated if morphological traits are included in the selection index. 

However, the present selection index (S1) produces a detriment of beef attitude in the medium-

long term and a loss of some peculiar and important functional characteristics in the breed. For 

these reasons, a selection index more oriented toward the beef attitude, without worsening 

some morphological characteristics appreciated by breeders, can be considered more 

appropriate, despite the reduction of the expected response for milk yield. 
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The best scenario cannot be uniquely identified, because the economic values of a 

standard deviation of different traits are not equally predictable. This is particularly true for 

morphological traits for which intrinsic economic value is often hard to measure (i.e., F7), or it 

has a null value, but it is of great importance for maintaining the typicality of the breeds (i.e., 

HT). In this regard, the authors however suggest scenario 7 as the most suitable for selection in 

the alpine gray breed. In fact, scenario 7 allows a slight genetic progress for both productive 

traits (i.e, milk and meat), while preserving the dual attitude of the breed. Furthermore, this 

scenario guarantees the maintenance of the functional characteristics of this breed. 
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Genetic Selection in Local Reggiana Breed: estimation of genetic 
parameter and phenotype plasticity for main productive and reproductive 

traits 

 

INTRODUCTION 

Local breeds refer to animals related to a limited territory (Derrouch et al., 2016). These 

breeds may present peculiar characteristics due to the adaptation to a specific environment 

(Bertolini et al., 2020). In recent decades there has been a general increase in awareness of 

the role of indigenous breeds, with a consequent increase in research conducted on the latter. 

(Sechi et al., 2007; Mastrangelo et al., 2017; Senczuk et al., 2020; Mancin et al., 2022). These 

studies revealed the great diversity and variability in terms of genes and biological pathways 

involved, in particular they have identified many genes implicated in disease resistance or 

associated with more general "adaptability" traits. (Ben-Jemaa et al., 2021; Mancin et al., 

2022). Indeed, preserving genetic heritage of local breed can be particularly useful to ensure 

food security in an ever-changing environment (Boudalia et al., 2020) thanks to the more 

“genetic adaptability”. Furthermore, native breeds have a fundamental role into preserving the 

local ecosystem, thanks to the generation of ecosystem and socio-cultural services (Hiemstra 

et al., 2010; Ovaska and Soini, 2017; Leroy et al., 2018). However, since 80’s an 

unprecedented deterioration of local breeds animals have been observed (FAO and Platform 

for Agrobiodiversity Research, 2011), mainly due with the substitution of those breeds with 

more productive and specialized ones (Gandini et al., 2010). This can be prevented by 

increasing farm profitability through new strategies, such as enhancement of the farming 

system in a low-input context or through the enhancement of typical products (Gandini et al., 

2010). The Reggiana cattle, a local breed raised on Reggio Emilia province, is strictly example. 

In fact, starting from the second post-war period, Reggiana suffered a drastic demographic 

decline, which led to only 800 head in the 1980s (www.razzareggiana.it, update: 26 December 

2021). However, this negative trend stopped around the 90s, when the of high-quality single-

breed cheese (Parmigiano Reggiano delle Vacche Rosse) has been created. Indeed, the high 

profitability of that product has ensured over time a sustained price for milk that compensated 

the lower productivity of this breed (www.razzareggiana.it, update: 26 December 2021). Since 

1990 the population is progressively increase up to the 3,000 heads present today. Despite 

http://www.razzareggiana.it/
http://www.razzareggiana.it/
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this, an adequate breeding program on Reggiana is necessary to ensure competitiveness of 

that breeds, where along with increase in the productive traits, a maintenance of the original 

rusticity must be considered (Biscarini et al., 2015). An adequate breeding plan for local breeds 

should also consider the impact of the Genotype by Environment interaction (GxE) as native 

breeds are usually read in heterogenous environmental, i.e. mountain vs plans or herd with 

higher discrepancy in terms of technological inputs. Therefore, in case of a high level of GxE, 

the currents breeding plans should be re-designed based on different production systems 

(Beat) Furthermore, the GxE analysis can be useful to deepen the knowledge of phenotypic 

plasticity on local cattle as it has been hypothesized that the latter have greater resilience, 

however few studies have been conducted. Indeed, the GxE, or phenotype plasticity indicates 

the ability of an organism to cope in different environment. 

Specifically, it represented the capability of genotype to change the phenotypic 

expression when the organism is exposed to different environment (Huang et al., 2020), In dairy 

cattle, the GxE covers an important part of quantitative variation on the main productive and 

morphological traits (Tait- Burkard et al., 2018), while it seems slightly affect reproductive 

(Zhang et al., 2019) and longevity traits (Mwansa and Peterson, 1998). However, the amount of 

additive variance expressed by GxE for specific traits depend by many factors, as the type of 

environment descriptor considered and by the models used. For example, multivariate models 

are commonly used for series of character states (e.g., presence of silage or not) while in 

presence of continuous gradient (e.g., herd milk production) the reaction norms models are 

mostly used (RNN). The RNN is particularly suitable for dairy cattle, in which sire have large 

number of daughters that are in turn that raised in a variety of herd environments (Rauw and 

Gomez-Raya, 2015). The amount of additive variance expressed by GxE change also 

according to the type of breeds considered. Recently some studies (Toledo- Alvarado et al., 

2017) compared the impact of less specialized breeds as Simental or Alpine Grey with more 

specialized ones (Holstein or Brow Swiss), and demonstrates that less specialized breeds are 

fewer sensitive to changes in herd productivity. (Martinez-Castillero et al., 2020), reported 

similar results for fertility traits using a bit-traits models based on herd productivity. However 

only few studies evaluated the impact of RNN on those breeds (Schmid et al., 2021) Sartori et 

al., 2022 in press. The estimation of environmental plasticity or adaptability of these local 

breeds can be a further process of enhancement of the latter, especially in a focused 

agriculture increasingly interested in collaborating with climate change (Mulder, 2016). Despite 
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this, estimated GxE is also fundamental since it may improve may increase the accuracy of 

environment-specific breeding values. In addition, is interesting to calculated the GxE it quote 

since may reduce the genetic progress of specific traits (Mulder and Bijma. 2007). Therefore, 

with an aims to developed a suitable selection plans for Reggiana breeds in that study we 

estimated variance components of milk and fertility traits and his environmental plasticity using 

as covariate the herd environment. 

MATERIAL AND METHODS: 

 Data editing: 

All data were provided by the National Breeder Association of Reggiana cattle 

(ANABoRaRe, Mancasale Reggio Emilia, Italy), following the official milk recording system. 

Milk dataset: 

Test day dataset (TD) contains information of 301,537 records routinely collected from 

1991 to 2021, belonged to 13,467 animals and lactations. Milk dataset contains information 

about milk yields (MILK_Y, kg/d), percentage of fat (FAT_p, , kg/d) and protein (PRT_p, , kg/d), 

and somatic cell counts (no./mL). Only TD belonged to 1 to 5 parities has been used. Record 

with a day in milk (DIM) outside the interval of 5 d and 305 d were removed. The cows with an 

age at calving outside the interval of 21-44 months for first parity, 23-60 for the second, 44-76 

for the third and 56-87 and 59 -110 for the fourth and fifth parity respectability, has been also 

deleted form dataset. 

Additionally, only lactations with at least one TD starting before 45 days and at least four 

TD records has been retrieved for further analysis. The phenotype outside the mean ± four 

standard deviations within parity and lactation phase (considering 15 d intervals) has been 

removed from the dataset. Lastly, only records belonging to herd-TD with at least three 

observations was retained. Then, somatic cell counts (no./mL) were normalized in SCS 

according to (Ali and Shook, 1980), Protein and Fat yields was also derived as multiplication of 

MILK_Y per PRT_p and FAT_p respectability. The final dataset contained 115,432 TD records 

belonging to 16,134 and 6,921 cows. The pedigree file contained 8,792 animals, tracing back up 

to the 5th generations. 
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Fertility: 

Fertility traits were analyzed combing information from two data sources, the 

insemination dataset and the test-day dataset. The insemination dataset contained the 

inseminations events (n =53,201) of 11.936 cows collected from 1986 to 2020. For what 

concern TD database, same data editing reported above was performed, and in addition 

lactation that presented two and more herd for the same animals was removed, interval of two 

consecutive parity less than 8 months and over 10 months. After these checks, the test-day 

and the insemination datasets were merged and cleaned according to (Mancin et al., 2020). 

The merged dataset contained of 22,650 lactations information of 8,007 cows. Four fertility 

traits have been considered in this study: days open (DO), calving interval (CI), calving to first 

insemination (PFI) and number of inseminations to achieve the pregnancy (N_INS). The DO 

represented the interval between date of parity and the insemination in which pregnancy was 

achieved, CI was calculated as difference between two consecutive dates of parity, CFI is 

difference between date of parity and first insemination after the parity, NINS is the count of 

insemination necessary to achieve the pregnancy, it is considered as categorical trait (Tiezzi et 

al., 2012a). Category was divided by number of inseminations expect for insemination after 5 

are considered as unique category (Tiezzi et al., 2012a). DO and N_INS records belong to the 

last lactations, i.e., lactations without a subsequent one of a live animals was considered as 

censored information. Since censored records represented nearly 2% of phenotypes, it was 

removed for a matter of simplicity. 

Note that the phenotype has different consistency, CI has the least amount of data 

13,826 since two consecutive parity dates are needed, DO and CFI contain 17,350 

phenotypes, while N_INS contains contain more phenotypes than all other traits 22,535 since it 

was also possible to calculate it on heifers. 

Single traits models: 

Univariate animal model was applied to estimate the variance components and 
heritability for the ten phenotypes. 

Milk traits: 

Random regression test day models have been used for estimated variance components 
for MY, PRT_y, FAT_y PRT_p FAT_p and SCS 
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yijklmno = HTD𝑖𝑖 + LNj + GL𝐾𝐾 + � 3φr

3

𝑟𝑟=1

×  AP − LNl + � 3ωr

3

𝑟𝑟=1

×  MP − LN + Pen + a𝑛𝑛 + eijklmno (1) 

where y is the individual test-day record of the nth cow; HTDi is the cross-classified fixed 

effect of herd-test-day (17,628 levels); LNj represents the cross classified fixed effect of 
lactation number (3 levels, corresponding to the first three lactations); GLk is the cross 
classified fixed effect of kth class (18 classes with 1 meaning no gestation and further classes 
accounting for 15-d intervals, from 1 to 240 d of days after conception),AP-LN is the cross 
classified fixed effect of lth age at parity within lactation (42 classes in total); MP-LN is the fixed 
effect of the mth month of parity (36 classes corresponding to single months of a year within 
each j lactation). 

While random effect is represented by permanent environmental component (Pe), and 

the additive genetic effect (a𝑛𝑛) both sampled from a normal distribution with different co-

variances structure, for further information see Model computation paragraphs. Residuals 

(eijklmno) are also sample form a homogenous normal distribution. 

To describe form of lactation curve Fourth-order Legendre polynomials are covariates on 

the effect of AP-LN and MP-LN, φ and ψ on the formula 1 are coefficients for the polynomial of 

order r varying between 0 and 3. 

Fertility traits: 

For what concerned fertility traits the following animal’s model has been used: 

yijkn = H𝑖𝑖 + YS𝑗𝑗 + LN𝑘𝑘 + a𝑛𝑛 + eijkn (2) 

where yijkl represent one of the fourth fertility traits, Hi is the cross-classified fixed effect 
indicating herd effect, levels change according with the traits considered (form 153 in CI to 175 

for NINS). YSj is the years-season cross classified fixed effects extract form the date of parity 

(86 to 92 levels). The random effect additive and residual are sampled form the same 
distributions described above. 

Environmental gradient 
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Environmental gradient was calculated form the solution of random cross-classified effect 

HYM (herd and the years and months of the control) for the MY (kg/d). Tests day random 

regression model are used: 

yijklmno = HYM𝑗𝑗 + LN𝐽𝐽 + GL𝐾𝐾 + � 3φr

3

𝑟𝑟=1

×  AP − LNl + � 3ωr

3

𝑟𝑟=1

×  MP − LN + Pen + a𝑛𝑛 + eijklmno (3) 

The model is like (1) expect that HTDi has been replace by HYMj. Additional to avoid the 

effect was sampled form a normal distribution with 𝑁𝑁(0, 𝐼𝐼𝜎𝜎2 ). To avoid bias and inaccurate 

estimation of the environmental gradients data HYM with at least four record was retrieved. Then 

HYM with higher standard error or with accuracy over than 50%). was maintained. 

Bit-traits models: 

Genetic correlations between all the phenotypes are calculated using bi-variate models 
where: 

�
𝑦𝑦1
𝑦𝑦2� =  �𝑋𝑋1 0

0 𝑋𝑋2
� �𝑏𝑏1𝑏𝑏2

� + �𝑊𝑊1 0
0 𝑊𝑊2

� �
𝑝𝑝𝑝𝑝1
𝑝𝑝𝑝𝑝2� + �𝑍𝑍1 0

0 𝑍𝑍2
� �
𝐺𝐺1
𝐺𝐺2� + �

𝑝𝑝1
𝑝𝑝2�  (4) 

to the phenotypic records or traits the liabilities of the categorical traits (N_INS); X1 and 

X2 are the incidence matrices for fixed, while W1,W2 incidence matrices of the random effects 

permanent environment and 𝑍𝑍1, and 𝑍𝑍2 are the ones of the additive genetic. The vectors of the 

systematic effects are represented by 𝑏𝑏1, 𝑏𝑏2, whereas 𝑝𝑝e1a 𝑝𝑝e2 are those of the permanent 

environment effects. The vector of additive genetic effect is represented by 𝐺𝐺1 and 𝐺𝐺2, residual 

is represented by e1 and e2. 

Reaction norm: 

RNN consist of an implementation of single traits animal models, in which genetic 

sensitivity has been taken in account by a random regression of genetic additive effect on 

environmental gradient estimated on (3). In this case beyond the random genetic effect (𝐺𝐺0) it is 

reported (𝐺𝐺1) that is the quote represented by the GxE. In matrix from RN is reported as the 

following: 

𝑦𝑦 = 𝑋𝑋𝑏𝑏 + 𝑊𝑊𝑝𝑝𝑝𝑝 + 𝑍𝑍0𝐺𝐺0 + 𝑍𝑍1𝐺𝐺1 + 𝑝𝑝 (5) 



 

106 

 

Where 𝑍𝑍0 and 𝑍𝑍1 are matrix of the two additive effects, 𝑍𝑍0 is a matrix that connect 𝐺𝐺0 to 

the phenotype, while Z1 is a matrix containing environmental gradient obtained in (3) and used 

Where 𝑍𝑍0 and 𝑍𝑍1 are matrix of the two additive effects, 𝑍𝑍0 is a matrix that connect 𝐺𝐺0 to the 

phenotype, while Z1 is a matrix containing environmental gradient obtained in (3) and used as 
covariables 

And it is assumed a distributions  

�
𝐺𝐺𝑛𝑛0
𝐺𝐺𝑛𝑛1�  ~ 𝑁𝑁�0,𝐴𝐴⊗ �

𝜎𝜎𝑎𝑎0
2 𝜎𝜎𝑎𝑎0,𝑎𝑎1

𝜎𝜎𝑎𝑎0,𝑎𝑎1 𝜎𝜎𝑎𝑎1
2 ��  (6) 

Where Z0 is an incidence matrix presented as in (1-2), while  According to (Zhang et al., 
2019); residuals residual variances are usually fitted when residual variances differ among 
production environments. In this model residual vector are heterogenous distribution in followed 

a normal distribution, 𝑁𝑁(0, �
𝐼𝐼 ⊗ 𝜎𝜎𝑒𝑒1 ⋯ 0
⋯ ⋯ ⋯
0 ⋯ 𝐼𝐼 ⊗ 𝜎𝜎𝑒𝑒𝑛𝑛

�) where a diagonal matrix with elements for 

observations in the ith quantile groups of the standard deviations. In the present study only 3 
quantiles have been used, due to limited data size. 

Model’s computations and assumption: 

To estimate the (co)variance components, a Gibbs sampling algorithm was used 
implemented in the gibbs3f90 for continuous traits and in thrgibbs3f90 for threshold traits 
(Aguilar et al., 2018). A total of 500,000 Gibbs samples chain was generated, with an initial 
burn-in of 100,000 and to avoid collinearity one of every 100 chains was retained, this was 
done using postgibbsf90, median and highest posterior density interval (HDP5 and HPD95) of 
that chain was reported in the results. Continuous traits was genereted form a normal 
probability function. Categorical traits were sample form a truncated normal distribution 
bounded by T delimiter based on values of observed variable (y). For example, assuming that 
the random y is composed by n levels, thus n+1 delimiter:  𝑇𝑇 =  {𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛, 𝑡𝑡𝑛𝑛+1}. Then 

assuming a liability scales of : 

𝑙𝑙𝑖𝑖 = 𝑋𝑋𝑏𝑏 + 𝑝𝑝 
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Were 𝑋𝑋𝑏𝑏 are generic effect used in the models, thr conditional probability of y is under 

one of category (l) is: 

P(yi =  j| β, T)  = P(tj − 1 < l ≤ t | β, T ) = Φ[Tj –  Xβ] –  Φ[Tj − 1 –  Xβ ], 

Φ(.) is the standard cumulative normal distribution function, with Xb we generally mean 
all effect presented in the models. In the Gibbs sampling Bounded uniform prior were used for 
all fixed effects, and null means and normal distributed priors were used for permanent 
environment, additive genetic, and residual effect, with this matrix notations: 

𝐺𝐺 ∼ 𝑁𝑁(0,𝐺𝐺 ⊗ 𝐴𝐴);  𝑝𝑝𝑝𝑝 ∼ 𝑁𝑁(0,𝑃𝑃𝑝𝑝 ⊗ 𝐼𝐼); 𝑝𝑝 ∼ 𝑁𝑁(0,𝑅𝑅 ⊗ 𝐼𝐼)(7) 

where A represents the relationship matrix obtained from pedigree, and I is an identity 
matrix. In single traits G Pe and R are represented by a scalar, (𝜎𝜎𝑎𝑎2, 𝜎𝜎𝑝𝑝𝑒𝑒,

2  𝜎𝜎𝑒𝑒2), representing 

additive genetic variances, permanent environment variances and residuals one’s 
respectability, while in the bi-traits analysis were as follows: 

𝐺𝐺 = �
𝜎𝜎𝑎𝑎12 𝜎𝜎𝑎𝑎1𝑎𝑎2
𝜎𝜎𝑎𝑎1𝑎𝑎2 𝜎𝜎𝑎𝑎22 �;𝑃𝑃𝑝𝑝 = �

𝜎𝜎𝑝𝑝𝑒𝑒12 𝜎𝜎𝑝𝑝𝑒𝑒1𝑝𝑝𝑒𝑒2
𝜎𝜎𝑝𝑝𝑒𝑒1𝑝𝑝𝑒𝑒2 𝜎𝜎𝑝𝑝𝑒𝑒22 � ;  𝑅𝑅 �

𝜎𝜎𝑒𝑒12 𝜎𝜎𝑒𝑒1𝑒𝑒2
𝜎𝜎𝑒𝑒1𝑒𝑒2 𝜎𝜎𝑒𝑒22 �(8) 

where G is the matrix of additive genetic (co)variances 𝜎𝜎𝑎𝑎12 , 𝜎𝜎𝑎𝑎1𝑎𝑎2, 𝜎𝜎𝑎𝑎1𝑎𝑎2 of traits 1 and 2. 

Pe is the matrix of permanent environmental (co)variances 𝜎𝜎𝑝𝑝𝑒𝑒12 , 𝜎𝜎pe1,pe2, 𝜎𝜎pe22 , and R the matrix 

of residual (co)variances 𝜎𝜎e12 , 𝜎𝜎e1e2 and 𝜎𝜎e22 of traits 1 and 2. Note that when different datasets 

were merged (i.e. milk and fertility traits), residual (co)variance was set to zero because the 
traits were recorded in different moments. Estimated heritability calculated in the single traits 

analysis was calculated as ℎ2 =  
𝜎𝜎𝑎𝑎2

𝜎𝜎𝑝𝑝2, where 𝜎𝜎𝑝𝑝2 is the total phenotypic variance express as 

𝜎𝜎𝑝𝑝2 =  𝜎𝜎𝑎𝑎2 + 𝜎𝜎𝑝𝑝𝑒𝑒2 + 𝜎𝜎𝑒𝑒2, in the reaction norm due to the heterogenous variances of the residuals 𝜎𝜎𝑒𝑒2 

was calculated as the mean of five quantile groups variances. The estimated of correlation 

(genetic and residual) were calculated as 𝑟𝑟𝑎𝑎 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦)
𝜎𝜎𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖  , where i refers to the genetic, and 

phenotypic; x and y refer the different phenotyped while; cov stands for the estimated 
covariance between the traits; and σi x, and σi y, are the standard deviation of traits 

Validation of Random Regression models: 
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To evaluate the effectiveness of inclusion of reaction norm Likelihood Ration Test (LRT) 
was used as in (Zhang et al., 2019). RNN models was compared with reduced models that is 
equal to RNN without considering random regression. Prediction accuracy of EBV of RNN was 
also compared with reduced models, using LR cross validations. LR cross validation was used 
for young bulls born after 2008 (70 animals). In these phenotypes of bulls’s daughter has been 
removed (20% of data) (Legarra and Reverter, 2018), using similar statistic of (Mancin et al., 
2021b).  

RESULTS AND DISCUSSION: 

Descriptive statistic: 

Mean, coefficient of variation (CV), minimum and maximum values for the ten 

phenotypes were reported in Table 1 and their distributions were reported on S1. In literature 

few studies reported the performance of productive and reproductive traits of Reggiana breed. 

(Gandini et al., 2007) is one of the few studies. Moreover, since this study was conducted 16 

ago, it may be interesting to make a comparison on the state of selection and not of Reggiana, 

in terms of phenotypic progress. No differences were observed for fertility traits, while a slight 

increase was found for protein and fat percentage: PRT_P increase from 3.38 % to 3.70%, 

while FAT_P increase from 3.21% to 3.45%. 

An increase of milk production of about 450 kg of milk per lactation was also observed. 

The increase in milk production together with the increase in lipid and protein content could be 

attributed to an increase in production technologies, i.e. feeding, housing (Khanal et al., 2010), 

but also from an interest of farmers in selecting more productive animals net of a higher protein 

content of milk due to the incentive of “Parmiggiano Reggiana delle Razze Rosse”. 

Reggiana has daily milk production levels that are on average 19.3 kg/d, that is lesser 

than those reported by the Italian Breeders Association (AIA (Italian Breeders Association), 

2016) in specialized Italian Holstein (31.3 kg/d), Italian Brown Swiss breeds (23.6 kg/d), and 

dual-purpose Italian Simmental cows (22.0 kg/d). However, compared with other local breeds 

Reggiana has greater milk production as Grey Alpine (16.30 kg/d) (Mancin et al., 2021a) or 

Rendena (16.5 kg/d) (Guzzo et al., 2019). On the other hand, Reggiana presented a high SCS 

value compared to the other local breeds mentioned, (3.22 points) which places it much closer 

to other cosmopolitan breeds such as Holsteins and Brown Swiss (Franzoi et al., 2020). 
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Table 1 proved the good Reggiana fertility parameters presented by Reggiana breed. 

Indeed, Reggiana has a DO of only 180 days and only 1.30 interventions for conception. 

Comparing them with studies conducted on other breeds (Toledo-Alvarado et al., 2017; 

Martinez-Castillero et al., 2020), the Reggiana presented significantly lower DO, CI and CFI 

respect to the other breeds as Holstein, Brown Swiss Italian Simental, it presented also better 

parameter than other local breeds as Gray Alpine. However, this discrepancy with respect to 

the Alpine Gray is mainly due to the non- seasonality of pregnancy of Reggiana which makes 

it have shorter intervals on average. Both traits have shown a slight progress over time, this 

more than from an increase in the genetic value is due to an increase in environmental 

conditions, such as the breeding effect, especially for the fertility traits (S1).  
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Table 1. Descriptive statistic of the ten phenotypes after data-editing  

Type traits traits units Mean Min.1 Max.2 C.V. (%)3 N4 

MILK 
TRAITS 

MILK_y Kg/day 19.110 0.200 90.000 0.376 115432 

FAT_y Kg/day 0.660 0.008 5.359 0.429 115432 

PRT_y Kg/day 0.637 0.006 3.456 0.341 115432 

FAT_p % 3.701 0.053 16.930 0.233 115432 

PRT_p % 3.450 0.160 10.650 0.112 115432 

SCS Count 3.227 -3.644 10.893 0.569 115397 

FERTILITY 
TRAITS 

DO Days 108.930 3 299 0.625 17465 

CI Days 391.410 279 594 0.140 13897 

CFI Days 80.580 3 199 0.525 17465 

N_INS* number 1.330 1 5 0.583 22650 

1Min: minimum values; 2Max: maximum value;3Coefficient of Variation 4N:number of phenotype; milk 
yields;*categorical traits. Milk yields (MILK_y), percentage of fat (FAT_p) and protein (PRT_p), Fat yields 
(FAT_y); Protein yields (PRT_y); somatic cells score (SCS); Days open (DO); Calving Interval (CI) ; Calving First 
Insemination (CFI); number of insemination (N_INS ) 

Variance components: 

Single traits 

Variance’s components of the then phenotype is reported on table 2. Milk traits presented 

medium hereditability ranging from 27% from PRT_P to 7% for FAT_Y, while reproductive 

traits presented a low hereditability close to 2%.  

Observing milk traits, Reggiana presented smaller h2 values compared with other Italian 

cattle breeds. For example Italian Simmental presented a heritability value of 0.18, 0.13, and 

0.17 for milk, fat, and protein yields, respectively (Frigo et al., 2013), Rendena breed has an 

heritability of 0.188, 0.157, and 0.165 (Sartori et al., 2018), in Valdostana they were 0.198, 

0.132, and 0.169 (Sartori et al., 2020), while hereditability are presented in Grey Alpine with 

0.219 for MILK_Y and 0.125 0.178 for FAT_Y and PRT_Y (Mancin et al., 2021a). The lower 

values found Reggiana can be attributed by two factors. One factor is relating to the short and 

incomplete pedigree compared with the others breeds, only four generation on pedigree were 

traced back. The second reason may be the lower genetic variance expressed by Reggiana 
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due to the bottleneck present in the 1980s which could have reduced the genetic variances 

(www.ANABoRaRE.it). However, these results are consistent with the ones present in the 

extensive literature conducted on milk (co)variances components.(Miglior et al., 2017). In our 

study and in those previously cited, the FAT_Y showed lower heritability than protein ones. 

Although the similar amount of additive genetic variance was present in both traits, the fat 

yield had nearly double the residual varices. The greater residual variance may be the cause 

of lower fat yields heritability. In fact some studies reported that lipid components on milk are 

more influenced by feeding regimen respect to protein (Van Soest, 1963; Gurr, 1985). The 

heritability of SCS in Reggiana, was similar to the ones reported in other countrywide spread 

dairy and/or dual-purpose breeds such as Holstein, Ayrshire, and Italian Brown Swiss 

(Reents, 1995; Ikonen et al., 2004; Dal Zotto et al., 2007).Similar values were also present in 

the other local breeds as Valdostana, Rendena, Grey Alpine (Sartori et al., 2018; Mancin et 

al., 2021a).  

An h2 of almost 0.02 have been identify for all fertility traits, ranging to 1.8% for N_INS to 

2.3% for CFI. However, it is difficult to make a comparison with other local breeds, since i) few 

studies have investigated the hereditability of fertility traits in local breeds ii) probably there will 

not be many differences as extremely fertility is an extreme conserved trait. Indeed, results 

found in our studies were similar to those from previous studies conducted on specialized 

breeds ((González-Recio and Alenda, 2005; Tiezzi et al., 2012b; Liu et al., 2017)). In our study 

as in (Zhang et al., 2019)), N_INS presented the lower h2 values among all fertility traits, while 

CFI has greater hereditability.  

  

http://www.anaborare.it/
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Table 2. Variance’s components estimated under single traits models 

Traits Va Vpe Vres h2 

MILK_y 2.995 
(2.170 3.785) 

8.205 
(7.520 8.822) 

13.692 
(13.590 13.830) 

0.120 
(0.089 0.151) 

FAT_y 0.376 
(0.2721 0.4823) 

1.080 
(0.986 1.170) 

3.950* 
(3.918 3.986) 

0.069 
(0.051 0.089) 

PRT_y 0.2571 
(0.1863 0.3300) 

0.837 
(0.7748 0.9016) 

1.5673* 
(1.5540 1.581) 

0.097 
(0.071 0.123) 

FAT_p 0.0902* 
(0.0776 0.1033) 

0.044 
(0.0366 0.0532) 

0.4664 
(0.4624 0.4704) 

0.150 
(0.130 0.170) 

PRT_p 0.024 
(0.0213 0.0277) 

0.014 
(0.0117 0.0158) 

0.051 
(0.0506 0.0515) 

0.273 
(0.242 0.305) 

SCS 0.213 
(0.1506 0.2837) 

0.774 
(0.7147 0.8320) 

1.787 
(1.7680 1.7990) 

0.077 
(0.054 0.100) 

DO 57.355 
(22.7100 97.4700) 

173.990 
(117.5000 236.30) 

2742.827 
(2668 2818) 

0.019 
(0.008 0.033) 

CI 55.176 
(14.790 99.780) 

169.380 
(102. 231.3) 

2570  
(2489 2650) 

0.0197 
(0.06 0.0356) 

CFI 29.383 
(11.880 46.610) 

57.395 
(35.400 82.810) 

1037.2 
(1010 1067) 

0.0261 
(0.011 0.042) 

N_INS 0.020 
(0.010 0.036) 

0.047  
(0.017 0.066) 

1.033** 
(0.987 1.233) 

0.0193** 
(0.010 0.0233) 

*express as liability . Milk yields (MILK_y), percentage of fat (FAT_p) and protein (PRT_p), Fat yields (FAT_y); Protein 

yields (PRT_y); somatic cells score (SCS); Days open (DO); Calving Interval (CI) ; Calving First Insemination (CFI); number of 

insemination (N_INS ),Additive genetic variance (Va), Permanent enviroment variance (Vpe); residual variances (Vres);(h2) 

hereditabilty 

Bit-traits and genetic correlations 

The estimated genetic and phenotypic correlation are reported on Table 3. As expected, 

production tare highly correlated. PRT_Y has a correlation of 0.88, with MILK_Y, and a 

correlation of 0.638 with FAT_Y, while in PRT_Y and FAT_Y correlation was 0.75. The 

extensive literature conducted on both local and specialized breeds, confirm the high 

correlations among traits (Dube et al., 2009; Mazza et al., 2016; Charton et al., 2018; Sabedot 

et al., 2018). In fact, FAT_y and PRT_y is directly dependent to the daily milk production. 

However, MILK_y is negatively correlated with FAT_y and PRT_Y, with a value of -0.378 -

0.531, respectability. It means that a selection focus only on milk production will reduce the 

solid content of milk. Indeed, in a genomic perspective the antagonism of Milk yields and milk 

solids has been demonstrated by the opposite effect on SNPs in linkage disequilibrium with 

DGAT1 (Jiang et al., 2019). In addition some studies identify the GABARAPL1 gene 

presented an antagonistic effect on milk yield and fat percentage (Pimentel et al., 2011; Nayeri 

et al., 2016). This negative correlation must be taken in account in selection plans on 

Reggiana were besides to selection for milk traits and selection for increase of percentage of 

protein and lipid must be considered. On the contrary, selecting the animals only for milk 
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productivity may result in a decline in the genetic parameters for the various percentages in 

the long terms (de Jager and Kennedy, 1987). Furthermore, a reduction in the protein and lipid 

content of milk leads to a less cheese-making milk (Guinee et al., 2007). This could be a 

particular problem in the Reggiana breed as the majority milk produced is destined for cheese.  

SCS presented significative positive correlation with MILK_Y, which mean that increase of 

milk productivity lead a detriment of udder condition and a consequently augment SCS 

concentration (Kheirabadi and Razmkabir, 2016). However, SCS has a negative correlation 

with fat and protein percentages therefore a selection focus on increase percentage of solid 

content, as mentioned before, could be also beneficial for the udder health. Furthermore, the 

slight positive correlation with milk production (0.36), demonstrated the possible suitability of 

selection plans to focus and increase both milk production and quality (SCS and percentage of 

solid). All fertility traits are highly genetic correlated among them. DO and CI are extremely 

genetically correlated (r=0.984), in fact DO and CI only differs for parity length that is almost 

equal in all animals. These traits are also highly genetic correlated with CFI, about 0.89. 

N_INS presented overall lower correlation with these traits, it presented average correlation of 

0.50 with DO CI, while no significant correlation has been observed with CFI. Same 

correlation pattern has been observed in (González-Recio and Alenda, 2005; Tiezzi et al., 

2012a). Fertility traits have a positive correlation with milk traits, which means that an 

increasing of milk production is genetically connect with worse performance in terms of fertility. 

Milk yields have a correlation of about 0.52 with DO and CI, while 0.3 with CI and no 

significant correlation with N_INS. The other yields (FAT_Y and PRT_Y) traits presented 

similar correlation. In fact it is widely known that the more productive cows presented  

negative energetic balance and thus less energy to dedicated to the reproduction (Berry et al., 

2016). However, (Strucken et al., 2012) claims that increasing the allele favorable to 

reproductive seems not affect the selection on milk production, since only tree marker 

associated with both traits are identify. 
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Table 3. Genetic correlations (upper diagonal) and phenotypic (lower diagonal), bold 
number are significant correlation, zero not included in the HPD95 

 MILK_y FAT_y PRT_Y FAT_p PRT_p SCS DO CI CFI N_INS* 
MILK_y   0.638 0.886 -0.378 -0.531 0.273 0.501 0.542 0.372 0.415 
FAT_y 0.894   0.752 0.501 -0.011 -0.270 0.468 0.381 0.348 0.582 
PRT_y 0.901 0.729   -0.093 -0.071 0.050 0.488 0.470 0.422 0.343 
FAT_p -0.067 0.392 0.016   0.585 -0.601 0.100 -0.038 0.151 0.096 
PRT_p -0.426 -0.046 -0.012 0.295   -0.496 -0.117 -0.209 0.094 -0.224 
SCS -0.027 -0.010 -0.019 0.013 0.022   -0.015 -0.118 0.518 -0.748 
DO 0.071 0.031 0.022 0.002 -0.001 -0.005   0.984 0.885 0.524 
CI 0.074 0.032 0.022 0.001 -0.002 0.003 0.994   0.892 0.654 

CFI 0.071 0.032 0.022 0.003 -0.002 0.016 0.531 0.520   0.097 
N_INS* 0.728 0.766 0.598 0.121 0.013 -0.273 0.662 0.133 -0.113   

*Express as liability. Milk yields (MILK_y), percentage of fat (FAT_p) and protein (PRT_p), Fat yields (FAT_y); 
Protein yields (PRT_y); somatic cells score (SCS); Days open (DO); Calving Interval (CI) ; Calving First 
Insemination (CFI); number of insemination (N_INS ) 

Reaction norm  

Variance estimated under RNN are reported on Table 4, Figure 1 described the ration 

between 𝜎𝜎02, 𝜌𝜌0,1,𝜎𝜎12 and phenotypic variances. RNN analysis was possible to conduct on 

Reggiana despite the reduced populations numerosity. This may be due to the use of few 

sires and the homogeneous distribution of their dams in the different herd ranked by 

production. However, RNN analysis performed on fertility traits presented estimation with 

higher standard deviation while in milk traits not. This discrepancy are explained by the 

different number of phenotype in the two dataset (Misztal and Legarra, 2017). The Results 

identify in the current study agree to what reported on literature, namely that production traits 

expressed the higher quote of GxE respect the ones connected with longevity or fertility (Tait-

Burkard et al., 2018). Milk traits presented higher quote of variance explained by GxE (𝜎𝜎12), 

ranging form 5% (MILK and PRT_Y) to almost zero for PRT_p, while fertility presented lower 

values around 0.05%. In particular, yields traits presented higher GxE (slope), for MILK_y and 

PRT_Y. Small GxE quote are found for FAT_p, SCS ; while for PRT_p the quote was not 

significant. Study in which herd production was used as enviromental gradient presented 

simlar pattern Sartori 2022 and Smith et al. 2021. Additionally, similar results for milk 

production were identified in a study that used THI (Temperature Humidity Index) as an 

environmental covariate, but not always for fat and protein yield.(Negri et al., 2021, Mulim et 
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al, 2021). Excecpt for SCS and PRT_p, the milk traits had a significant positive correlation 

between slope and intercept. Ideed ,MILK_y and PRT_y presented similar correlation of about 

0.5, while higher correlation are identify on FAT_p (r=0.58) and FAT_y (r=0.70). The higher 

correlations of FAT traits respect to the other traits was also reported in (Fikse et al., 2003; 

Shariati et al., 2007). 

Fertility traits have only a low quote of genetic variances expressed by GxE. DO was the 

only fertilty traits with no significant quote of GxE. However, we believe this non-significance is 

due to poor convergence of gibbs sampling due to the small number of samples rather than a 

biological reason. Negative correlation between slope and intercept was identify in all fertility 

traits, as in (Zhang et al., 2019; Shi et al., 2021). DO,CI and CFI have a average correlation of 

-0.5 while N_INS presented higher correlations values (-0.89), similar trends are reported in 

(Zhang et al., 2019), where year production has been also used as environmental gradient. 

Despite this, the latter study presented a higher overall negative correlation, which could 

potentially mean that Reggiana exhibited greater phenotypic plasticity for fertility than Danish 

Holstein cattle. However, many factors may have influenced this discrepancy, starting with the 

sample size and different number of class used for heterogenous variances.  

Figure 1. Bar plot described the ration between 𝜎𝜎02, 𝜌𝜌0,1,𝜎𝜎12 and phenotypic variance. Reduced 
models (NO_GxE) and Reaction Norm (GxE) models were compared, standard deviation of 
estimation has also been reported as black bar. 
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Milk yields (MILK_y), percentage of fat (FAT_p) and protein (PRT_p), Fat yields (FAT_y); Protein yields (PRT_y); 
somatic cells score (SCS); Days open (DO); Calving Interval (CI) ; Calving First Insemination (CFI); number of 
insemination (N_INS ) 

The positive correlation between interception for milk traits means that animals allocated in 

more productive environments can better express their genetic potential for milk, protein, and 

fat production, while it appears not to affect the percentage of protein and fat in milk. and 

SCS.Same trends have been observed for fertility traits where more productive environment 

presented shorter interval and lesser number of insemination events. This apparent 

contradiction has been explain in (Toledo-Alvarado et al., 2017), which demonstrated that a 

more productive herd means a more favorable environment ,with greater technological input, 

where animals are able to best express the genetic potential of animals. Compared to the 

other studies (Mwansa and Peterson, 1998; Wallenbeck et al., 2009; Rauw and Gomez-Raya, 

2015; Zhang et al., 2019; Schmid et al., 2021) only 3 classes of heterogeneous residues were 

used here , this is due to a smaller number of heads and herd (environmental gradient)This 

caused in a more discontinuous estimates of heritability between herd groups Figure 2. As in 

(Zhang et al., 2019) residual variance components did not increase along with the quantile of 

herd effects production. The highest hereditability values are identified in the middle quantile 

for milk traits traits, while no clear patterns have been observed for fertility. On this point Calus 

et al. (2006) suggested that a higher-order RNM and alternative heteroskedastic error 

specifications might be used in analysis of G × E interactions in other studies (Cardoso and 

Tempelman 2012), however it was out of the aim of the current work. 
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Figure 2. Hereditability of the intercept of reaction norm, for milk traits (A) and fertility traits 

(B), calculated in the different quantiles. Bar plot are the standard error of estimation 

 

Milk yields (MILK_y), percentage of fat (FAT_p) and protein (PRT_p), Fat yields (FAT_y); Protein yields (PRT_y); 
somatic cells score (SCS); Days open (DO); Calving Interval (CI) ; Calving First Insemination (CFI); number of 
insemination (N_INS ) 

Table 4 Variances components estimated under RNN models, number between bracket are 
the HPD-5 and HPD-95 interval, bold number in the  corr column indicated a significant 
correlation 

TRAITS ga0 covga01 ga1 pe res* corr 
MILK_y 3.035 

(2.398 3.628) 
1.115 

(0.805 1.386) 
1.724 

(1.383 2.003) 
7.3370 

(6.781 7.720) 
13.626 

(13.520 13.707) 
0.4931 

(0.3590 0.5837) 

FAT_y 0.444 
(0.357 0.524) 

0.1522 
(0.110 0.185) 

0.110 
(0.073 0.144) 

0.9674 
(0.895 1.020) 

3.951 
(3.920 3.975) 

0.701 
(0.527 0.795) 

PRT_y 0.2661 
(0.207 0.320) 

0.1034 
(0.072 0.128) 

0.1511 
(0.118 0.177) 

0.7579 
(0.704 0.796) 

1.558 
(1.54 1.567) 

0.5193 
(0.372 0.614) 

FAT_P 0.0926 
(0.082 0.100) 

0.0118 
(0.0084 0.0145) 

0.004 
(0.002 0.006) 

0.0408 
(0.0350 0.0459) 

0.4592 
(0.4557 0.4618) 

0.6069 
(0.4158 0.7569) 

PRT_P 0.023 
(0.0205 0.0256) 

0.000 
(-0.0010 0.0005) 

0.002 
(0.001 0.003) 

0.0129 
(0.0113 0.0143) 

0.0504 
(0.0501 0.0507) 

-0.0185 
(-0.1359 0.0740) 

SCS 0.1941 
(0.1394 0.2401) 

0.005 
(-0.0173 0.0237) 

0.053 
(0.0323 0.073) 

0.756 
(0.700 0.793) 

1.786 
(1.773 1.796) 

0.0530 
(-0.1775 0.2381) 

DO 49.60 
(28.513 73.506) 

-7.865 
(-20.155 2.643) 

6.454 
(1.160 17.297) 

186.45 
(1396. 225.5) 

2806. 
(2746 2856) 

-0.577 
(-0.9107 0.1193) 

CI 36.055 
(19.179 55.20) 

-8.557 
(-17.101 -1.604) 

51.101 
(27.601 74.732)  

147.250 
(99.986 185.210) 

2613 
(2549 2662) 

-0.4183 
(-0.732 -0.0812) 

CFI 24.425 
(15.375 33.937) 

-9.5465 
(-16.345 -4.352) 

15.2900 
(2.812 24.143) 

52.8550 
(32.145 67.460) 

1078 
(1055. 1099) 

-0.5486 
(-0.8239 -0.2578) 

N_INS* 0.0153 
(0.0068 0.0263) 

-0.0016  
(-0.0035 -0.0006) 

0.0002 
(0.0001 0.0005) 

0.0568  
(0.0383 0.0730) 

1.0443  
(0.9626 1.1527) 

-0.8921 
(-0.9551 -0.6956) 

*N_INS expressed a liability scale; Milk yields (MILK_y), percentage of fat (FAT_p) and protein (PRT_p), Fat yields (FAT_y); Protein yields 

(PRT_y); somatic cells score (SCS); Days open (DO); Calving Interval (CI) ; Calving First Insemination (CFI); number of insemination (N_INS ). 

Additive variance intercept (ga0); covariance between intercept and slope (covga01) slope (ga1), permanent environment (Pe); residual (res); 

correlation between ga0 and ga1 (cor) 
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Reaction norm vs Single traits: bulls-ranking and improvement of accuracy: 

The spearman correlation of bulls’ breeding values (re-ranking) obtained with and without 

GxE interaction common criterion to establish the necessity to use RNN in common evaluation 

practice. In our work, only bulls with an accuracy over 0.5 was considered (n=84). Non 

substantial re-ranking has been observed for milk traits, the highest reranking values was 

observed for MILK_y and PRT_y and PRT_p with values of 0.95, while FAT_y/p presented a 

spearman correlation of 0.97 and 0.99 respectability. SCS has an intermediate value of 0.96. 

No substantial values were also observed for fertility traits with values ranging from 0.97-0.99. 

Bulls re-ranking were plotted on figure 3, in those cases only young bulls (born after 2010) 

with at least two dams with two phenotypes was considered, the number of bulls differs 

according to the different dataset. Other studies investigated the impact of RNN models in 

bulls re-ranking, despite the variety number of environmental descriptor used and the majority 

did found any significant bulls-ranking for productive and reproductive traits, for example 

(Kearney et al.,2004; Craig et al., 2018)). Nevertheless a slight bulls re-rank for fertility traits 

was observed on (Ismael et al., 2016), however bit-traits models has been used. 
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Figure 3 Bulls re-ranking using reduced models (NO_GxE) and using reaction norm models 

(GxE),for milk (A) and fertility(B) traits. 

 

Milk yields (MILK_y), percentage of fat (FAT_p) and protein (PRT_p), Fat yields (FAT_y); Protein yields (PRT_y); 

somatic cells score (SCS); Days open (DO); Calving Interval (CI) ; Calving First Insemination (CFI); number of 

insemination (N_INS ). 

All RNN regression models presented a significative reduction DIC values compared with 

reduced models, with means that RNN presented better models fitting. Despite this, an 

approach to verify if this increase in model fitting presented a better EBV estimation was 

needed. On this point LR cross validation models were used.  LR is a straightforward cross 

validation strategy and it provided bias dispersion and accuracy of the different prediction. The 

performance of genetic evaluations is inferred on a target group of animals, as in this case 

young bulls born after 2008 (n = 70). Slight increase of accuracy has been observed for yields 

traits (MILK_Y, PRT_Y and FAT_Y), a noticeable augment of accuracy has been observed for 

SCS. Models that do not account for GxE presented a slight overdispersion of breeding values 

prediction, especially from SCS, RNN on the other had seem to slight improve this dispersion 

close to an optimal value of one, especially for SCS, on the contrary reaction norm models 
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presented generally higher bias, farther to the optimum values of one. For what concerned 

fertility traits no substantial increment has been identify, it is interesting to note that RNN lead 

a deterioration of overall performance in CFI. However not clear reason responsible of this 

trend has been identify it may connect to the non-homogeneous number of daughters per 

environment of the bulls belonged to the validation cohort. 

Figure 4. LR cross validation using reduced models (NO_GxE) and using reaction norm 
models (GxE),for milk (A) and fertility(B) traits. 

 

 Milk yields (MILK_y), percentage of fat (FAT_p) and protein (PRT_p), Fat yields (FAT_y); Protein yields (PRT_y); somatic 
cells score (SCS); Days open (DO); Calving Interval (CI) ; Calving First Insemination (CFI); number of insemination (N_INS ). 

CONCLUSION: 

The current study constitutes a preliminary point for the adoption of adequate selection 

plans for the Reggiana breed, however it is of great interest for the genetic and phenotypic 

characterization of this breed since the genetic parameters (heritability and correlation) have 

never been estimated. The Reggiana had a lower heritability for milk traits, while the genetic 

correlation and fertility traits are in line with the other breeds. Interestingly, a modest GxE rate 

was observed for milk but also for fertility traits. However, we identify small impacts of GxE on 

model’s accuracy and bulls re-ranking. The Reggiana like other more productive breeds 

seems to better express their genetic potential in more productive herds. However, the 
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Reggiana appears to be less influenced by GxE than other breeds however this could be due 

to too many factors despite the breed type. 
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Genomic prediction in local breeds: the Rendena cattle as a case study 

Enrico Mancin*, Beniamino Tuliozi, Cristina Sartori, Nadia Guzzo and Roberto Mantovani  

ABSTRACT 

The maintenance of local cattle breeds is key to select for efficient food production, 

landscape protection, and for conservation of biodiversity and local cultural heritage. Rendena is 

an indigenous cattle breed from the alpine North-East of Italy, selected for dual purpose, but with 

lesser emphasis to beef traits. In this situation, increasing accuracy for beef trait could prevent 

detrimental effect due to the antagonism with milk production. Our study assessed the impact of 

genomic information on Estimated Breeding Values (EBVs) in Rendena performance tested bulls. 

Traits considered were average daily gain, in vivo EUROP score, and in vivo estimate of dressing 

percentage. The final dataset contained 1,691 individuals with phenotypes, and 8372 animals in 

pedigree, 1743 of which genotyped. Using cross validation method three models were compared: 

i) Pedigree-BLUP (PBLUP); ii) single-step GBLUP (ssGBLUP), and iii) Weighted single-step 

GBLUP (WssGBLUP). Models including genomic information presented higher accuracy, 

especially WssGBLUP. However, the model with the best overall properties was the ssGBLUP, 

showing higher accuracy than PBLUP, and optimal value of bias and dispersion parameters. Our 

study demonstrated that integrating phenotypes for beef traits with genomic data can be helpful to 

estimate EBVs even in a small local breed. 

INTRODUCTION 

Rendena is dual-purpose cattle breed indigenous of the North-East of Italy. This breed is 

included within the “European Federation of Cattle Breeds of the Alpine System” (FERBA), an 

organization whose main purpose consists in the preservation and promotion of local cattle breeds 

of the alpine system (http://www.ferba.info, 20 April 2021). As it is the case with many indigenous 

breeds, a greater genetic diversity than specialized and cosmopolitan breeds is expected also for 

the Rendena [1]. This remarkable biodiversity is of great ecological importance and can be a 

beneficial factor for the survival of local population. Moreover, traditional breeds like Rendena 

provide additional benefits to local human population like economic advantages, ecosystem 
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services and also cultural benefits, such as preservation of cultural heritage and tradition of a 

specific area [1]. Rendena cattle shows also excellent values for traits concerning fertility and 

longevity, maintains a median milk production (5000 kg per lactation) and possesses a fairly good 

beef conformation [2]. Rendena cows are selected for both milk and meat, but with more emphasis 

on dairy production in the selection index [3], with dairy accounting for 65% and beef traits for 35% 

[4] Although beef attitude plays a less important role than milk in the selection index, an increase 

in the accuracy of the selection for this feature over time could prevent its detriment due to the 

antagonism with milk production [3]. Estimations of breeding values (EBVs) have until now mostly 

taken place using classical animal model analysis in Rendena through best linear unbiased 

predictor (BLUP;[3]). for traits related to milk, meat production and linear type traits However, 

several studies have shown how the use of genomic data can lead to an increase in prediction 

accuracy compared to using only pedigree information [5]. 

For a long time, two major limitations to the genomic selection approach on small 

populations such as Rendena have been the prohibitive cost of genotyping a sufficient number of 

Single Nucleotide Polymorphism (SNPs) per individual and the equations for EBVs’ estimation, 

which were based on a multistep approach [6]. In fact, the drawback of the multistep approach in 

small populations is the scarce number of genotyped animals with phenotype to be used as 

reference population to ensure a good accuracy of prediction [6]. This is even more noticeable 

when sex-limited traits are considered [7]. To overcome this problem, methods such as the use of 

de-regressed proof [8,9] have been developed to allow the inclusion of animals whose only 

genotype is known, using progeny yield deviation adjusted for mates as pseudo-phenotype. 

However, this method presented some biases and lower accuracy whenever animals have few 

progenies with phenotype [10,11]. 

However, in the last few years both limitations preventing the use of the genomic selection 

approach in small breeds with limited diffusion such as Rendena have subsided. Firstly, the 

constant decline in prices of SNP platforms has allowed genomic selection to become much more 

cost-efficient. Secondly, equations such as the single step Genomic Best Linear Unbiased 
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Prediction (ssGBLUP) have been developed and found out to be suitable even in small-breed 

contexts [12]. The ssGBLUP evaluates simultaneously genotyped and non-genotyped animals by 

substituting the pedigree-based relationship matrix (A) present on BLUP, with a relationship matrix 

that combines pedigree and genomic information, usually called H [13]. Single step GBLUP 

represents a simple alternative to de-regressed proofs. Moreover, ssGBLUP offers the advantage 

of avoiding double counting contributions and it implicitly limits the bias of preselection for 

genotyped animals without phenotype [14–16]. Several studies have shown that ssGBLUP 

outperformed other methods in different livestock species in the context of genomic selection [17]. 

On the other hand, ssGBLUP might have its own drawback: genomic relationship matrix (G) 

included in single step assume that all SNPs explain the same amount of variance [18]. This may 

be a limit in the presence of traits influenced by many quantitative traits loci (QTL), such as some 

beef related traits like carcass weight and daily gain [19,20]. Indeed, some studies reported that 

SNP regression equations, in which prior assumption of SNPs effect and variance are modeled 

with different a priori assumption, outperformed the prediction of ssGBLUP [21]. On this point 

Zhang et al. [22] proposed to “relax” the assumption of the G matrix in which all SNPs equally 

contribute to the genomic variance of the traits, by adding specific SNPs weights. These methods 

are called weighted single step GBLUP (WssGBLUP), and in recent research it has shown to be 

effective by increasing the accuracy with respect to ssGBLUP for phenotypes like those related to 

the beef attitude [23]. In this study we investigated if the inclusion of genomic data in the estimate 

of breeding values for three key beef traits measured during performance tests in Rendena might 

increase their predictive accuracy with respect to traditional pedigree BLUP (PBLUP). In particular, 

the objective of this study was both to test different single-step GBLUP methods for beef traits and 

to measure their difference in accuracy using alternative weighting strategies, i.e., among different 

weighted single-step GBLUPs. 
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MATERIALS AND METHODS 

Data availability 

Phenotypic and pedigree data 

Phenotypic and pedigree information were provided by the National Breeder Association of 

Rendena Cattle (www.anare.it). The phenotypes consisted in data recorded on Rendena young 

bulls during performance tests conducted from 1985 to the present. The phenotype used were the 

average daily gain (ADG) obtained by linear regression of weight on age recorded at least 11 

times during the stay of bulls at the test performance test station, the mean in vivo fleshiness 

score (EUROP grade) and the mean in vivo estimate of dressing percentage (DP) evaluated by 3 

skilled classifiers at the end of test, i.e., about 11 months of age. In vivo fleshiness score (EUROP 

grade) was linearly transformed as previously reported [4]. In the final dataset 1691 animals and 

as many phenotypes were present. The animals present in this dataset were born between 1985 

and 2020. In addition, 8372 animals in pedigree were retrieved tracing back up to the 10th 

generation. 

Table 1. Descriptive statistics of the target phenotypic data obtained from Rendena young bulls 
under performance test. 

Taits1 
 
Number2 Mean CV % Min Max 

ADG (kg/d) 
 
1691 (690) 1024.00 12.06 474.00 1562 

EUROP (points) 
 
1691 (690) 99.05 3,84 80.00 111.10 

DP (points) 
 
1691 (690) 54.18 1.74 50.00 57.70 

1 ADG= Average daily gain; EUROP = in vivo fleshiness score, DP = in vivo estimate of dressing percentage. 2 
Number of animals with records and (genotype) 

Genotype Data 

Two genotyping platforms were used in this study, Illumina Bovine LD GGP v3, including 26 

497 SNP markers (LD; no. = 1427) and Bovine 150K Array GGPv3 Bead Chip, comprising 138 

974 SNPs (HD; no. = 554; Illumina Inc., San Diego, CA, USA). The higher density panel was used 
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only in 554 males whereas the remaining males (no; =174) and all the females (no. = 1253) were 

genotyped with the LD platform. Males genotyped with LD chips were all animals with at least one 

father and one full sib genotyped with the HD chip. The two panels shared about 60% of markers. 

Females with a call rate (CR) lower than 95% and male with a CR lower than 90% were discarded 

before the analysis. In addition, for both platforms SNPs with a minor allele frequency (MAF) 

<0.01 and call rate lower than 0.90 were removed with plink program [24]. Before genomic 

imputation, possible progeny conflicts were corrected with seekparentsf90 program [25]. The 

imputation of LD samples to HD density was performed with AlphaImpute2 program [26], that 

combines algorithms of population imputation with the use of imputation from pedigree information 

utilizing a sort of multi-locus iterative peeling [26]. To avoid excessive computational demand, we 

imputed one chromosome at each time. Threshold of loci inclusion to HD panels was set to 0.90 

and a conservative genotype threshold for imputation of 0.99 was chosen. A further genomic 

quality control was then made for whole imputed panels (1953 individuals): SNPs with MAF lower 

than 0.05, with Hardy-Weinberg equilibrium lower than 0.15, and a call-rate under 0.90 were 

removed from dataset. In addition, animals with a call-rate under 0.90 were removed, in this case 

using preGSf90 program [25]. At the end of genotype editing, 1743 animals were retained for 

further analysis, 690 of which with both phenotype and genotype. The genotyped female are 

closed relatives with the male in the performances test, i.e, dams, or grad-dams.  
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Figure 1. Number of animals with phenotype (above) and number of animals with genotype 
(bottom) for all animals used in genetic or genomic prediction. X-axes represent the birth years 
and y-axis the number of animals per year. 

 

 

Prediction Model 

Pedigree Best Linear Unbiased Prediction (PBLUP): 

The same fixed and random effects were used for all analyzed traits with the following 
model: 

y = Xb + Za + e [1] 

Where y is the vector of phenotypes, X represents the incident matrix for systematic fixed 

effects, b is the vector of fixed effects. Two cross-classified effects were used as in [4]: the 

contemporary group (142 levels), and the parity order of the cow (four classes: first parity; second 

parity; third to seventh parity; above the eighth parity included). Z is the incident matrix of random 

genetic additive effects, while 𝑎𝑎 represents the vector of the additive genetic effects (EBVs) and 𝑒𝑒 

is the vector of residuals sampled from a distribution 𝑁𝑁(0, 𝐼𝐼𝜎𝜎𝑒𝑒2), where 𝜎𝜎𝑒𝑒2 is the residual variance. 

The additive genetic effect was sampled form a normal distribution with mean zero and variance 
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𝜎𝜎𝑎𝑎2, and a covariance structure depending to the model used. In the PBLUP, model covariance of 

random genetic effect was sampled form a distribution 𝑁𝑁(0,𝐴𝐴𝜎𝜎𝑎𝑎2), with A that represents the 

Identical by Descendent (IBD) matrix constructed from pedigree information. All genetic and 

genomic prediction models were carried out with the blupf90 suite of programs [27]. 

The variance components used in all prediction scenarios were estimated under this model 

by univariate approach. In additions, genetic and residual correlation among traits was estimated 

with multi-traits models. Covariances’ structures were G⊗A, and R⊗I, with G, and R that are 3x3 

matrices respectively including the additive genetic and the residual (co)variances matrices, ⊗ is 

the Kronecker product, and A and I the additive relationships matrix and an identity matrix, 

respectively. Prior distributions for G and R matrices were independent inverse Wishart. Genetic 

and residual correlations (ra) were calculated between trait pairs as ratio of the covariance on the 

square root of the product of the respective variances. Variances were estimated using Gibbs’s 

sampling algorithm with gibbs3f90 program [27]. A chain of 200 000 iterations was used in both 

models. The first 5000 samples were discarded as burn-in. Samples were stored every 100 

iterations to leave 1950 samples for inference.  

Genomic Best Linear Unbiased Prediction (PBLUP): 

In ssGBLUP inverse of the IBS matrix 𝐴𝐴−1 was replaced by the 𝐻𝐻−1 matrix as follows: 

𝐻𝐻−1 = 𝐴𝐴−1 + �
0 0
0 (𝛼𝛼𝛼𝛼 + 𝛽𝛽𝐴𝐴22)−1 − A22

−1� [2] 

where 𝐴𝐴−1 and A22
−1 represent the inverses of the IBD matrix for all individuals and only 

genotyped animals, respectively. To avoid singularity problems the bending coefficient α and β, 

were set to 0.95 and 0.05, respectively. 𝐴𝐴−1 was computed accounting for inbreeding to avoid 

inflation (bias) and to reduce distance between the two matrix as suggested elsewhere [28]. 𝛼𝛼 is 

the genomic relationship matrix, built using the first method proposed in [18]: 

𝛼𝛼 = 𝑀𝑀𝑀𝑀′

2∑𝑝𝑝𝑖𝑖(1−𝑝𝑝𝑖𝑖)
 [3] 
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where M is a matrix of SNP content centered by twice the current allele frequencies, and pi 

is the allele frequency for the ith SNP. In addition, variance components were re-estimated under 

this model, to evaluate variances changes by inclusion of genomic data. Therefore, G in ssGWAS 

is adjusted so the average diagonal and off-diagonal matches the averages of A22. 

Weighted Single Step Genomic Best Linear Unbiased Prediction (WssGBLUP): 

One The last method used for genetic prediction was WssGBLUP, that differs from 

ssGBLUP in the construction of G. Particularly, Gw matrix was build using the following method 

[17]  

𝛼𝛼𝑤𝑤 = 𝑀𝑀𝑀𝑀𝑀𝑀′

2∑𝑝𝑝𝑖𝑖(1−𝑝𝑝𝑖𝑖)
 [4] 

Where 𝐷𝐷 is a diagonal matrix in which the elements of the diagonal correspond to the 

weight or effect of each SNP. Generally, SNPs’ effects (𝑢𝑢) (are obtained as a function of the 

SNPs effect through a back-solving procedure from the EBVs solution obtained iteratively with the 

(W)ssGBLUP [29] as follows: 

𝑢𝑢 = δ𝛼𝛼 1
2∑𝑝𝑝(1−𝑝𝑝)

𝐷𝐷𝐷𝐷′[𝐷𝐷𝐷𝐷𝐷𝐷′]−1𝑎𝑎 [5] 

Where 𝑎𝑎 is the vector of solutions of the genomic breeding values of the genotyped 

animals, and δ accounts for the difference in genetic base between the pedigree and genomic 

relationship. 

An iterative algorithm following what reported in [16] was used. This algorithm consists in 

the subsequent steps: 

1. Initial parameters are set 𝑡𝑡 = 1,𝐷𝐷(𝑡𝑡) = 𝐼𝐼,𝛼𝛼(𝑡𝑡) = 𝑀𝑀𝑀𝑀(𝑡𝑡)𝑀𝑀′

2∑𝑝𝑝𝑖𝑖(1−𝑝𝑝𝑖𝑖)
. 

2. GEBV (𝑎𝑎) are obtained using ssGBLUP algorithm. 

3. Allele substitution effects for each SNP (𝑢𝑢) is reported in [5] with postGSf90 [22]. 
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4. Each 𝑑𝑑𝑖𝑖(𝑡𝑡+1) element of 𝐷𝐷(𝑡𝑡+1), as 𝐶𝐶𝐶𝐶
��̂�𝑢𝑖𝑖�
𝑠𝑠𝑠𝑠(�̂�𝑢)−2 is then calculated as in [18], where CT is 

a shrinkage factor determining how much the distribution of SNP effects departs from normality. 

5. SNP weight are normalized by keeping genetic variance constant among iteration: 

𝐷𝐷(𝑡𝑡+1) =
𝑡𝑡𝑡𝑡�𝐷𝐷(1)�
𝑡𝑡𝑡𝑡�𝐷𝐷(𝑡𝑡+1)�

𝑡𝑡𝑡𝑡�𝐷𝐷(𝑡𝑡+1)�. 

6. G is then re-built with the new obtained weights as: 𝛼𝛼(𝑡𝑡+1) = 𝑀𝑀𝑀𝑀(𝑡𝑡+1)𝑀𝑀′

2∑𝑝𝑝𝑖𝑖(1−𝑝𝑝𝑖𝑖)
. 

7. Further iterations are carried out up to convergence using WssGBLUP. 

2.2.4. Weighted strategies 

A further aim of this study was to identify optimal weight strategies to achieve higher 

accuracy and less biased genomic prediction. NonlinearA methods [18,30] was used as the 

weighting strategies. We focus on the effect of variance limitations (limit), and the shrinkage factor 

(CT). Other strategies, as linear weight [22,31] or Bayesian variable selection methods [32] were 

not applied on this study because of its excessive shrinkage that led to high biased prediction and 

incompatibility between A and G matrix, as reported in supplementary material S1. 

Three values of CT were used in this study (1.105, 1.125 and 1.250), considering that 

values greater than one deviate proportionally from a normal distribution and exhibit grater 

shrinkage. By default, postGSf90 program set maximum change in SNPs variance equal to 

𝐶𝐶𝐶𝐶(5−2), thus default limitations for the three parameters were automatically set to 1.350, 1.424 

and 1.953 for CT equal to 1.105, 1.125 and 1.250. Other scenarios have been explored setting 

the maximum change on variance equal to 5. 

LR cross validations 

Estimators of bias, dispersion and accuracy were adopted to evaluate the different 

prediction models. LR cross-validation method was used on this behalf [33]. In this approach two 
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datasets (whole and partial) are used, and parameters described above are estimated in a set of 

focal individuals. The whole dataset contains all populations information while partial dataset 

includes a subset of phenotypic data up to a given date. In this study the 2015 was set as cut-off 

year and the focal individuals are the younger bulls with only genotype information (i.e., born after 

2015; 109 animals). The focal individuals represented the young animals of interest for selection 

and in most of the cases they represented young “genomic” candidate to selection [33]. Simply 

speaking, focal individuals are the animals for which accuracy of prediction is of greater interest 

for selection. LR defined bias as: 𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏 = 𝑢𝑢�𝑝𝑝��� −  𝑢𝑢�𝑤𝑤����  , where 𝑢𝑢𝑝𝑝 is the estimate of individual EBV in 

the partial dataset and 𝑢𝑢𝑤𝑤 is the estimate of individual EBV in the whole dataset. Bias equal to 0 

stands for unbiased prediction. Due to different magnitudes of each trait, bias was also 

standardized by the genetic standard deviation of each trait analyzed. Dispersion was described 

by the slope of the regression between EBVs in whole dataset to EBVs in the partial one, i.e., 

𝑑𝑑𝑏𝑏𝑏𝑏𝑑𝑑 = 𝑐𝑐𝑐𝑐𝑐𝑐��̂�𝑢𝑤𝑤,�̂�𝑢𝑝𝑝�
𝑐𝑐𝑎𝑎𝑣𝑣��̂�𝑢𝑝𝑝�

, with an expectation of 1, i.e., disp <1 designate over-dispersion while disp>1 

indicates an under-dispersion. In this study, we refer as accuracy (acc) the correlation of breeding 

values estimated in the two datasets [33]: 𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑐𝑐𝑐𝑐𝑐𝑐��̂�𝑢𝑤𝑤,�̂�𝑢𝑝𝑝�

�𝑐𝑐𝑎𝑎𝑣𝑣��̂�𝑢𝑝𝑝�𝑐𝑐𝑎𝑎𝑣𝑣(�̂�𝑢𝑤𝑤)
. This estimator stands for the 

inverse of accuracy gain when the phenotype was added moving from partial dataset to the whole 

one. Low values of the "acc" estimator mean that the EBV estimate of focal group is mainly 

influenced by the addition of new phenotypic information as respect to the conditional kinship 

information. Thus, 𝐸𝐸(𝑎𝑎𝑎𝑎𝑎𝑎) ≈ 𝑎𝑎𝑐𝑐𝑐𝑐𝑝𝑝
𝑎𝑎𝑐𝑐𝑐𝑐𝑤𝑤

 . Furthermore, reliability, the squared accuracy, was obtained 

through the following approximated expression: 𝑡𝑡𝑒𝑒𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑐𝑐��̂�𝑢𝑤𝑤,�̂�𝑢𝑝𝑝�
(1−𝐹𝐹)𝜎𝜎𝑢𝑢2

, where 𝐹𝐹 is the average 

population inbreeding coefficient and 𝜎𝜎𝑢𝑢2 is the genetic variance estimated in the whole dataset. 

The expected value for 𝑡𝑡𝑒𝑒𝑟𝑟 is equal to 𝑎𝑎𝑎𝑎𝑎𝑎2, and the adequacy of this estimator was proofed on 

appendix 1 in [34]. Note that no differences were observed in terms of variance components 

between the whole dataset and the focal groups thus for that reason adjustment by selected 

reliability proposed in [35] was not applied. In addition, according to [34], the increase in accuracy 

when genomic data are introduced was estimated as 𝑏𝑏𝑖𝑖𝑎𝑎 = 𝜌𝜌𝐴𝐴,𝐺𝐺
−1 − 1, where 𝜌𝜌𝐴𝐴,𝐺𝐺 =
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𝑐𝑐𝑐𝑐𝑐𝑐��̂�𝑢𝐴𝐴,�̂�𝑢𝐺𝐺�
�𝑐𝑐𝑎𝑎𝑣𝑣(�̂�𝑢𝐴𝐴)𝑐𝑐𝑎𝑎𝑣𝑣(�̂�𝑢𝐺𝐺)

, 𝑢𝑢𝐴𝐴 is the EBV estimated with PBLUP in the partial dataset and 𝑢𝑢𝐺𝐺 is EBV estimated 

using genomic information in the partial dataset. In fact, using the same reasoning done for acc, 

𝜌𝜌𝐴𝐴,𝐺𝐺 quantifies the increase of the inverse of accuracy when genomic data are added because his 

expected valued is 𝑎𝑎𝑐𝑐𝑐𝑐𝐴𝐴
𝑎𝑎𝑐𝑐𝑐𝑐𝐺𝐺

. A further evaluation of the increase in accuracy due to genomic data was 

also obtained following [34], that suggested to adjust the increase in accuracy for the ratio of 

genetic variances of two models accounting or not for genomic information, i.e., 𝑏𝑏𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜎𝜎𝐴𝐴
2

𝜎𝜎𝐺𝐺
2 𝑏𝑏𝑖𝑖𝑎𝑎, 

where 𝜎𝜎𝐴𝐴2 is the genetic variance estimated with only pedigree information and 𝜎𝜎𝐺𝐺2is the variance 

when genomic information is included. For matter of simplicity, only inc_adj has been reported as 

parameter that identify the increase of accuracy. Note that EBV in the focal populations are 

normally distributed, thus condition under LR assumption were not violated. 

RESULTS 

Variance components 

Heritability (h2), genetic and residual correlations estimated using PBLUP are reported on 

table 2. All traits presented a medium to high heritability. EUROP was the trait with lowest 

heritability, 0.304, while ADG and DP showed a h2 of 0.335 and 0.392, respectively. In addition, 

all traits’ pairs, as expected, presented medium to high genetic and residual correlations. ADG 

presented a medium positive genetic correlation with the other two traits (0.38 on average), while 

DP and EUROP resulted strongly correlated (0.981) to be considered a unique trait. 
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Table 2. Mean of genetic (upper diagonal) and residual (lower diagonal) correlations and 
heritability (diagonal) between traits in Rendena population, estimated with PBLUP. Number in 
parenthesis are the lower and the upper 95% highest posterior density. 

 ADG EUROP DP 

ADG 0.335 
(0.204 ± 0.335) 

0.364 
(0.100 ± 0.597) 

0.398 
(0.148± 0.6315) 

EUROP 0.572 
(0.660 ± 0.742) 

0.304 
(0.174 ± 0.446) 

0.981 
(0.962 ± 0.997) 

DP 0.613 
(0.517 ± 0.702) 

0.792 
(0.753 ± 0.836) 

0.392 
(0.248 ± 0.541) 

ADG= Average daily gain, EUROP =and in vivo fleshiness score CY, DP = in vivo estimate 
of dressing percentage.  

Table 3 reported estimated heritability, genetic and residual correlations using ssGBLUP. In 

this case both h2 and correlations resulted similar to those estimated with the PBLUP. For what 

concerns h2, ADG decreased of about 0.02, while EUROP increased of about 0.04 in ssGBLUP as 

compared to PBLUP. On the other hand, DP remained basically unchanged comparing the two 

approaches. Correlations presented almost the same values in both analyses, with the only 

exceptions of the genetic and residual correlations between ADG and EUROP that resulted 

increased in ssGBLUP of about 0.02 and 0.08, respectively. 

Table 3. Mean of genetic (upper diagonal) and residual (lower diagonal) correlation and heritability 
(diagonal) between traits in Rendena population, estimated with ssGBLUP. Number in parenthesis 
are the lower and the upper 95% highest posterior density. 

 ADG EUROP DP 

ADG 0.313 
(0.223± 0.489) 

0.385 
(0.153 ± 0.597) 

0.392 
(0.160± 0.622) 

EUROP 0.651 
(0.651 ± 0.718) 

0.345 
(0.216 ± 0.487) 

0.985 
(0.961± 0.999) 

CY 0.616 
(0.530 ± 0.671) 

0.790 
(0.753 ± 0.826) 

0.396 
(0.250 ± 0.530) 

ADG= Average daily gain, EUROP =and in vivo fleshiness score CY, DP = in vivo estimate of dressing 
percentage  

Weighting strategies 

Figure 2 shows how different values of CT and the limitation of SNPs’ variance can affect genomic 
prediction. 
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Figure 2. Accuracy (A), dispersion (B) and bias corrected by genetic standard deviations (C) of 
breeding value estimated using different weighting strategies along the 10 iterations process of the 
algorithm used in WssGBLUP. Dotted line in graph B and C represents the expected value.  

 

As expected, higher accuracy (Figure 2 A) was reached in the WssGBLUP analyses with 

the increase of the number of iterations, although in most cases the asymptote was reached at the 

2nd iteration, with the only exception of the CT 1.25 with the limit of maximum variance 

established at 5, that reached the maximum accuracy after 3-4 iterations. Variance limits did not 

affected accuracy using a CT of 1.105 or 1.125. 

Bias (Figure 2 C) followed the same trends in all phenotypes; at first iteration bias was even 

lower than with ssGBLUP, but when iterations increased, bias rapidly increased. ADG presented 

higher biases, even if difference in magnitude was considered by standardizing values obtained. 

Even dispersion (spread; Figure 2 B) followed the same trends as accuracy with an increase after 

2/4 iterations depending mainly on the value attributed to CT. For all traits, as the interactions 

increased, dispersion departed from the expected value of 1, although for EUROP the use of CT 

at 1.125 was maintained steadily close to 1. 
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In general, higher CT values (that is, greater departures from normality) presented better 

accuracy but more under-dispersion and biases. When CT changed from 1.105 to 1.125 accuracy 

increase of 2% in all phenotypes, and substantial increase of accuracy was observed moving to a 

CT value of 1.250 (+20 % on average). When the threshold for maximum SNPs variance was 

raised up to 5, accuracy increased slightly, especially from the 3rd to 10th iteration. 

Figures 3, 4, and 5 show the percentage of variance explained by a sliding window of 20 

non overlapping SNPs. These plots show how the different values of CT and limit influenced the 

shrinkage SNPs. Furthermore, observing the peaks in the Manhattan plots, it can be seen how 

these traits are potentially controlled by few QTLs. The high peak found on chromosome 22 for 

EUROP and DP can explain why these traits are highly genetically correlated. 
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Figure 3. Manhattan plots for Average Daily Gain (ADG) using different WssGBLUP strategies in iteration equal to 10; y-axes 
represent the percentage explained by each SNPs. Variance explained were calculated with sliding window approach. 
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Figure 4. Manhattan plots for fleshiness score (EUROP) using different WssGBLUP strategies in iteration equal to 10; y-axes 
represent the percentage explained by each SNPs. Variance explained were calculated with sliding window approach. 
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Figure 5. Manhattan plots for dressing percentage (DP) using different WssGBLUP strategies in iteration equal to 10; y-axes 
represent the percentage explained by each SNPs. Variance explained were calculated with sliding window approach. 
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Model comparison 

From the previous analysis, for each phenotype, two weighting strategies were 

retrieved: the one presenting a value of bias close to the optimal value (WssGBLUP_1) and 

the one with highest accuracy (WssGBLUP_2) The weighting strategies that produced the 

lowest bias were associated with a CT = 1.105, default value for limit and iteration 1. On the 

other hand, as reported previously, CT = 1.250 and limit equal to 5 produced the best results in 

terms accuracy of prediction. For ADG and DP maximum accuracy value was found on 

iteration 4, while for EUROP iteration 7 was most successful (Figure 2). Table 4 shows the 

different performances of prediction of PBLUP, ssGBLUP and the two selected WssGBLUP 

obtained under the LR cross-validation method. EUROP presented the highest accuracy in all 

models considered, followed by DP and ADG. All traits presented bias value close to 0, 

although DP presented a slightly positive bias of about 0.02 on average. Generally, all models 

except WssGBLUP_2 showed very low biased prediction, also considering that estimated 

genetic progress per years is consistent, being positive and equivalent to 0.58, 0.42, and 0.33 

standard deviations for ADG, EUROP and DP, respectively (Figure 6). 

Figure 6. Standardize genetic progress per each year: x-axis indicates birth year of animals 
and y-axis the standardize EBV, from 1985 (when performance test stared) to 2020 (current 
data). 
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For what concerned dispersion parameter, in this study we found that ADG and DP were 

slightly under-dispersed, while EUROP was a little over-dispersed for PBLUP and 

WssGBLUP_1, showing values of dispersion < 1. 

When only pedigree information was used, lower accuracy was observed for all traits: 

ADG presented a value of 0.366, EUROP of 0.464, and DP of 0.506. Lower reliability values 

were also found in this model. Interesting, PBLUP is the only prediction model in which a 

marginally negative bias was observed. PBLUP presented similarly biased values as 

WssGBLUP_1 and ssGBLUP for EUROP and DP (same absolute value but opposite sign), 

while for ADG it presented a greater absolute value of bias than for the other two methods. 

When genomic information was added, a global increase in accuracy and reliability was 

observed. In ssGBLUP models an increase of accuracy of 0.106, 0.087, and 0.064 was 

observed for ADG, EUROP and DP, respectively. Reliability estimators showed the same 

trend. The ssGBLUP had higher accuracy values with respect to PBLUP, and it also presented 

bias and dispersion closest to optimal value. As it can be seen from Figure 2 and Table 4, 

higher accuracy and reliability values were observed as SNPs shrinkage increased (that is, for 

higher values of CT): however, in parallel, more under-dispersion and biased predictions were 

found. 

The inc_adj estimator represents the increase of accuracy when genomic models were 

used. ADG is the trait that was most favored from the introduction of genomic data, with a 

value of 45% and DP is the one with lower benefits (26.7%). WssGBLUP_1 presents similar 

inc_adj value than ssGBLUP, while in WssGBLUP_2 value rises to 4 percentage points in 

ADG as well as to 5 and 7 percentage points in EUROP and DP. 
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Table 4. Accuracy, bias, dispersion (Disp.) and reliability (Rel.) and adjusted increased of 
accuracy (Incr_adj) of estimated breeding values under different models: pedigree BLUP 
(PBLUP), single step genomic BLUP (ssGBLUP) and weight single step with bias value closet 
to optimal value (WssGBLUP_1) and weight single step with highest accuracy; for average 
daily gain (ADG), EUROP and dressing percentage (DP). 

Trait Model Accuracy Bias Disp. Rel. Incr_adj 
       

ADG 

PBLUP 0.366 -0.040 1.140 0.060 - 
ssGBLUP 0.472 0.010 1.045 0.117 45.10% 
WssGBLUP_1 0.551 0.003 1.182 0.127 45.10% 
WssGBLUP_2 0.693 0.020 1.562 0.206 49.21% 

       

EUROP 

PBLUP 0.509 -0.009 0.902 0.081 - 
ssGBLUP 0.596 0.009 1.100 0.124 39.98% 
WssGBLUP_1 0.653 0.004 0.958 0.135 39.98% 
WssGBLUP_2 0.749 0.014 1.165 0.192 45.17% 

       

DP 

PBLUP 0.464 -0.021 1.114 0.114 - 
ssGBLUP 0.528 0.021 1.056 0.158 26.70% 
WssGBLUP_1 0.600 0.017 1.156 0.184 27.40% 
WssGBLUP_2 0.727 0.025 1.468 0.277 33.90% 

       

DISCUSSION 

In this study we evaluated how the use of genomic data can improve the estimates of 

breeding values in the local dual purpose Rendena cattle. We used data relative to beef traits 

collected in performance test of young bulls both because these traits are accounted for in the 

selection index, and also because of the smaller number of genotyped individuals needed with 

respect to traits such as milk production. In addition, this was the first approach to apply 

genomic selection in a small local cattle breed. 

The three performance test phenotypes i.e., ADG, EUROP and DP, presented medium 

to high heritability, ranging from 0.30 to 0.40. We recorded little difference from the study of [4] 

even if our dataset was greater by an amount of about 40%. The heritabilities of these traits 

were similar to the ones observed in other dual-purpose (i.e., Alpine Grey; [36] or beef 
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specialized breeds [37–39]). All traits appeared highly genetically correlated, especially 

EUROP and DP, as expected and widely reported in literature [38,40,41]. Interestingly, after 

we introduced genomic data, we did not observe many discrepancies in terms of genetic 

(co)variance(s) with respect to those estimated with PBLUP. This is in agreement with what 

was reported in [42], i.e., that even for non-random genotyping strategies, the population 

variances in ssGBLUP are not influenced by the selective genotyping strategies as much as 

they are with GBLUP [43]. In fact, thanks to the contribution of non-genotyped animals present 

in the pedigree, the bias due to the preselection of genotyped animals in ssGBLUP is reduced. 

Furthermore, the genotypes resulted homogeneously distributed over years and this factor 

may have undoubtedly contributed to reducing discrepancy in terms of variance estimates. 

The usefulness of genomic selection was assessed using LR as a cross-validation 

method, which provided accuracies, bias, and dispersion of the genetic evaluations. LR 

presents several advantages [33]: the robustness of genetic evaluations is inferred on a target 

group of animals, i.e., accuracy can be evaluated at the level of the preferred sub-group of the 

population. In our study our focus was on young bulls and close relatives, the sub-group in 

which phenotypic data were collected. In addition, another advantage consists in the fact that 

LR does not require the precorrection of phenotypes, thus avoiding potentially biased 

prediction due the heterogeneity of contemporary group (number of animals range from 4 to 

20 animals per group [33]). 

Results confirmed that when genomic data were integrated with pedigree there was a 

substantial increase in the accuracy of (G)EBVs prediction. Accuracy increases of about 30% 

on average when switching from BLUP to ssGBLUP. Moreover, an additional increase of 

accuracy was observed when weighting strategies were applied, i.e., from 0.366 to 0.472 for 

ADG, from 0.509 to 0.569 for EUROP, and from 0.464 to 0.528 for DP, respectively. These 

outcomes suggest that the genomic information can potentially capture variation in Mendelian 

sampling and thus leading to a greater accuracy of prediction when only kinship information is 

used [44]. A similar impact of ssGBLUP on the accuracy of performance test traits has been 

observed in Hanwoo beef cattle [45], in which the same number of phenotypes and genotypes 

were used; however, results cannot be compared numerically due to different cross-validation 

strategies implemented. 
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The findings of previous studies report that the ssGBLUP led to more accurate 

predictions than the BLUP. Other research conducted on a different type of beef-related traits 

presented a substantial increase in breeding value prediction when ssGBLUP was used. 

However, those investigations were conducted with breeds with much larger population sizes 

and results were expressed in terms of reliability [46–48]. Interestingly, Cesarani et al. [49] an 

analogous number of animals was used and results in terms of bias and dispersion agree with 

results obtained in this manuscript, with a similar influence of weighting strategies, although 

the number of animals with genotype in their study is much lower than ours. While generally 

different weighting strategies have led to different increases in the accuracy of the breeding 

value predictions [21], extreme shrinkage strategies (i.e., quadratic weight) can lead rapidly to 

a decline in accuracy as the interactions increase and generally present greater biased 

prediction [23]. These weighting strategies have thus been discarded from this study due to 

the excessive shrinkage caused by the influence of major QTLs (supplementary material). In 

addition, an extreme shrinkage can lead to an incompatibility between G and A matrix, 

consequently losing some properties of the single step such as unbiasedness of selection. 

To that reason, nonlinearA methods were chosen over the other weighting strategies. 

The consistency of nonlinearA methods in a single step framework has been reported by [30]. 

The augment of accuracy of weighting strategies is particularly relevant when small datasets 

are used, such as in the present study [50]; moreover, the use of heterogeneous SNP 

weighting is useful when the number of SNPs exceed the number of animals [50]. This point 

could be relevant for our study since redundant information can be produced also by the 

genomic imputation [51]. In fact, according with [52] when the trait is controlled by a few QLTs 

and few genotyped animals are present, the information relative to the trait in the genome is 

usually divided in few blocks and consequently most of the SNPs information is considered 

redundant. Assigning different values to SNPs or to chromosome segments can remove 

redundant SNPs information [53]. The presence of major QTLs has a positive impact on 

WssGBLUP because the relationships between animals are focused on SNPs which are 

clearly linked to the QTLs [54]. 

Despite this, LR cross validation methods pointed out that major under-dispersion and 

bias is observed by applying WssGBLUP. In our study population proven and/or young 

animals are evaluated with the rest of performance test animals. The higher bias present in 

some of the weighting models led to an inaccurate estimation of genetic trends than in turn 
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lead a potentially biased selection decision, i.e., selecting only young animals as respect the 

older ones [35]. Because of that, the bias and dispersion parameters must be considered 

alongside the accuracy of selection [55]. For this reason, models over 2nd iteration can be 

discarded from the choice of model with “best” properties, due to the lack of mean’s exact 

estimation in selected animals [33]. Interestingly, decline of biases was observed in 1st 

iteration for all phenotypes. Conversely, PBLUP and ssGBLUP confirmed their unbiasedness 

prediction and ability to account implicitly for selection [17]. In addition, ssGBLUP presented 

dispersion parameters closest to the optimal value of one and it demonstrated the consistency 

of this estimator of this type of model. Indeed, dispersion represents regression of EBV from 

whole to partial data, thus making the model less affected by the addition/subtraction of 

information, and therefore the best model to be applied.  

Our finding supports the use of genomic data, and in particular the use of ssGBLUP, as 

the new model for the routinary genetic evaluation on selected bulls of a local breed, the 

Rendena cattle. In local breeds genomic information has mainly been used to assess genetic 

variability or to study specific biological pathways underscoring peculiar traits such as [56]. As 

mentioned above, this is a first study investigating the impact of genomic information on 

selection in indigenous breeds [57]. We focused on performance test traits because of the 

antagonistic relation to milk traits, but genomic selection can be successfully applied also for 

other traits, depending on the amount of phenotypic and genomic information available. 

Notably, the increase in the accuracy of selection can impact the economic value of the breed 

[58], which is a pragmatic and effective strategy to guarantee the conservation of local breeds. 

The present study shows that genomic imputation and the combination of genotyped 

and non-genotyped data through ssGBLUP could be a cost-efficiency strategy, compensating 

the limited genotype information available on local breeds. This could make genomic selection 

for limited populations an appealing strategy, as it already is in more cosmopolite breeds like 

Holstein [59] However, the LR cross-validation demonstrated that accuracy increased only in 

young bulls with genotypes, while the accuracy of non-genotyped animals was only marginally 

higher than that obtained with the PBLUP, in the subgroups of individuals with a genotyped 

close. For this reason, we would recommend, to keep increasing selection accuracy, that a 

majority of animals for each performance test cycle should still continue to be genotyped. 
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CONCLUSIONS 

All models that included genomic data presented higher accuracy and reliability than the 

ones using only kinship information. These two estimators were particularly higher in models 

in which high heterogeneous variances among SNPs had been assumed; however, the same 

models presented under-dispersion and higher bias, and for that reason they can be 

discarded as models to be used in the selection. Models with “best properties” can be 

identified in the ssGBLUP or in the WssGBLUP, in which weighting strategies presented less 

shrinkage. Although these two models presented similar proprieties, ssGBLUP could be 

chosen as “best” model because it was neither under nor over-dispersed, presenting 

appropriate properties for long-term selection. In conclusion, the present study demonstrated 

how the use of genomic data in addition to ssGBLUP can lead to a better prediction of genetic 

effects even with a modest amount of molecular data, as typically happens in local 

populations. Therefore, we demonstrated how genomic data can be a suitable tool for 

breeding selection scenarios in local cattle breeds, as Rendena, guaranteeing the 

competitiveness and thus the conservation of the breed through its improvement of selection's 

accuracy. 

Supplementary Materials: Supplementary material 1. Value of Accuracy, Dispersion 

and Bias divided by the genetic standard deviations (bias_std) for Average Daily Gain. (1) 

Models presented are Pedigree BLUP (PBLUP), single step genomic BLUP (ssGBLUP) and 

different weighting single step described as follow: non_linear is referred to the nonlinear 

weighting strategies presented in the manuscript with the respective CT value, limit_5 is 

referred when variance was set up to a maximum of 5. While quadratic referred to the 

quadratic weight applied to the SNP solutions, sliding stands for the quadratic weight applied 

to a window of sliding SNPs. iter stands for the number of iterations, NA values means that it 

was not possible to obtain the solution due to blending problem between between A-1 and G- 

Supplementary material 2. Value of Accuracy, Dispersion and Bias divided by the 

genetic standard deviations (bias_std) for EUROP (1) Models presented are Pedigree BLUP 

(PBLUP), single step genomic BLUP (ssGBLUP) and different weighting single step described 

as follow: non_linear is referred to the nonlinear weighting strategies presented in the 

manuscript with the respective CT value, limit_5 is referred when variance was set up to a 

maximum of 5. While quadratic referred to the quadratic weight applied to the SNP solutions, 
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sliding stands for the quadratic weight applied to a window of sliding SNPs. iter stands for the 

number of iterations, NA values means that it was not possible to obtain the solution due to 

blending problem between between A-1 and G-1 

Supplementary material 3. Value of Accuracy, Dispersion and Bias divided by the 

genetic standard deviations (bias_std) for Dressing Percentage (DP). Models presented are 

Pedigree BLUP (PBLUP), single step genomic BLUP (ssGBLUP) and different weighting 

single step described as follow: non_linear is referred to the nonlinear weighting strategies 

presented in the manuscript with the respective CT value, limit_5 is referred when variance 

was set up to a maximum of 5. While quadratic referred to the quadratic weight applied to the 

SNP solutions, sliding stands for the quadratic weight applied to a window of sliding SNPs. iter 

stands for the number of iterations, NA values means that it was not possible to obtain the 

solution due to blending problem between A-1 and G- 
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ABSTRACT 

Genomic selection has been increasingly implemented in the animal breeding industry, 

and it is starting to become a routinary method in many livestock breeding contexts. However, 

its use is still limited in several small-population local breeds, which are nonetheless an 

important source of genetic variability of great economic value. A major roadblock for their 

genomic selection is the accuracy when population size is limited: for this reason, to improve 

the accuracy of breeding values, variable selections models that assume heterogeneous 

variance have been proposed over the last few years. However, while these models might 

outperform traditional and genomic predictions in terms of accuracy, they also carry a 

proportional increase of breeding values bias and dispersion. These mutual increases are 

especially striking when genomic selection is performed with a low number of phenotypes and 

high shrinkage value – which is precisely the type of situation that happens with small local 

breeds. In our study, we investigate several alternative methods to improve the accuracy of 

genomic selection in a small population. We investigated the impact of using only a subset of 

informative markers regarding accuracy of prediction, bias, and dispersion. We tested different 

machine learning variable selection algorithms to select them as recursive feature 

eliminations, penalized regression and XGboost. We compared our results with the predictions 

of pedigree based BLUP, single step genomic BLUP and weighted single step genomic BLUP 

in different simulated populations obtained by combining different parameters in terms of 

number of QTL and effective population size. We also investigated these approaches on a 

dataset belonging to the small local Rendena breed. Our results show that the accuracy of 

GBLUP in small sized populations increased when performed with SNPs selected via variable 

selection methods both in simulated and actual datasets. In addition, the use of variable 

selection models – especially those using XGboost – in our actual dataset did not impact bias 

and the dispersion of estimated breeding values. We discuss possible explanations for our 

results and how our study can help estimate breeding values for future genomic selection in 

small breeds. 
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INTRODUCTION 

Genomic information has been successfully implemented in animal breeding due to its 

effectiveness in bringing significant improvements in accuracy (Blasco and Toro, 2014). These 

improvements in accuracy can lead to an increase in the rate of genetic gains and have 

reduced the cost of progeny testing by allowing to pre-select animals with great genetic merit 

early (Meuwissen et al., 2001). Combining these advances with the progressively reduced 

cost of genotyping makes Single Nucleotide Polymorphism (SNP) panels a promising tool to 

be used even in the selection of small local breeds (Biscarini et al., 2015). 

SNP markers information allow for better modelling of the Mendelian Sampling 

compared to the traditional pedigree-based approach Best Linear Unbiased Prediction 

(PBLUP) (VanRaden, 2008a), which used only pedigree information. The genomic BLUP 

(GBLUP) method was developed to replace the pedigree-based relationships for genomic 

relationships estimated from SNP markers, which captured the genomic similarity between 

animals but are limited to the use of only genotyped animals (Habier et al., 2013). In addition, 

Legarra et al. (2009) proposed a naive method, single-step GBLUP (ssGBLUP), in which 

genotyped and non-genotyped animals are jointly combined under the assumption that the 

genomic and pedigree relationship matrixes are multivariate-normally distributed. Due to its 

straightforward computational approach (Misztal et al., 2013) and to its unbiased breeding 

values predictions compared to the GBLUP with its multi-step approach (Masuda et al., 2018), 

the ssGBLUP has become a routinary method for genomic evaluations in many livestock 

breeds and species (Aguilar et al., 2010; Christensen and Lund, 2010).  

However, one major challenge in using (ss)GBLUP remains the accuracy of estimation 

when phenotyped animals are limited in number, such as in local breeds (Meuwissen et al., 

2001). For example, Karaman et al. (2016) reported that GBLUP showed lower performance 

than models using only SNPs selected through Bayesian hierarchical model as Bayes B and 

C, but only when phenotyped animals were few. Indeed, when presented with a small number 

of animals and many SNP markers (n < p), models that select a number of priority SNPs 

(variable selection models) and models that assume heterogeneous variance can lead to 

improvements in EBVs’ accuracy. These models can accomplish this by reducing the number 

of variables to estimate and by preventing the over-fitting linked to high-dimensional data 

(Gianola 2013). Frouin et al. (2020) went as far as deriving prediction accuracy of GBLUP as a 
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function of the ratio n/p, while Pocrnic et al. (2019) regarded the accuracy of GBLUP as not 

only dependent on the number of SNPs but also on the number of independent chromosome 

segments. 

Several studies thus focused on relaxing the assumption of ssGBLUP that all SNPs 

must show a common variance, by applying different weights to the SNPs when the G matrix 

is calculated. Methods such as weighted ssGBLUP (WssGBLUP; Wang et al., 2014) were 

widely reported to outperform ssGBLUP accuracy of prediction (Gualdrón Duarte et al., 2020; 

Mehrban et al., 2021; Ren et al., 2021), but their use led to a proportional increase of breeding 

values bias and dispersion (Botelho et al., 2021; Cesarani et al., 2021; Mancin et al., 2021; 

Mehrban et al., 2021).  

Moreover, it is not clear how models considering heterogeneous variances account for 

selection, since usually only k-folds cross validation is applied (Zhu et al., 2021). In real-life 

breeding scenarios time-cross validation should be taken into account (Liu, 2010) as this 

validation method mimics the true accumulation of information across time. The estimated 

breeding values (EBVs) are in fact used to select young bulls and after 3-5 years the bulls will 

receive daughter information and it is thus desirable that EBVs would highly correlate to the 

final EBVs. However, the few studies that evaluated the impact of WssGBLUP using time 

cross-validation with small samples of individuals (e.g., Cesarani et al., 2021) found higher 

bias and overdispersion. These mutual increases are relevant when a low number of 

phenotypes and high shrinkage values are present, and the reasons behind the loss of these 

unbiased properties in heterogenous SNP regression or GBLUP are still not entirely clear. 

This issue is not trivial, as the bias and the slope of the regression (dispersion) need to 

be taken into account especially when proven and young animals are mixed in the population, 

as young candidates will have unfairly high EBVs (Legarra, Reverter, 2017). 

Thus, the abovementioned issues of lack of accuracy of ssGBLUP when used in 

contexts with a low number of animals have not yet been conclusively resolved. For this 

reason, in the present study, we intend to explore alternative methods to improve accuracy in 

small populations within a single step framework. A possible solution could come from 

implementing a naïve approach, where instead of giving to each SNP a specific weight we 

removed the non-informative ones, or variable selection models. 
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We thus aim to investigate the impact, in terms of accuracy of predictions, but also of 

dispersion and bias, of reducing the dimensionality of G through the construction of this matrix 
using only a subset of informative markers.  

Because of this, we tried different machine learning and variables selection algorithms 

with the aim to identify the most informative SNPs by indirect prediction. These algorithms are: 

least absolute shrinkage and selection operator (LASSO), Spike and Slab Lasso (SSLASSO), 

Recursive Feature Elimination using Ridge Regression (RfeRR), Recursive Feature 

Elimination using Support Vector Machine regression (RfeSVM) and Extreme Gradient Boost 

(XGboost). 

Our aim was to test suitable procedures for genomic estimation by considering both the 

abovementioned variable selection models ssGBLUP with the predictions of BLUP, classical 

ssGBLUP, and WssGBLUP. In order to do that we created different simulated populations and 

also considered a local population, the Rendena cattle. We then employed different cross-

validation methods to assess our results.  

  



 

166 
 

 

MATERIALS AND METHODS 

Graphical representation of our methodology for testing BLUP models see Figure 1. 

Figure 1 Graphical representation of our methodology 

 

Datasets 

Simulated datasets 

Simulations were performed with QMSim simulation program (Sargolzaei and 

Schenkel, 2009). Four different populations were simulated based on different combinations of 

quantitative trait loci (QTL) number and effective population size (Ne). Each simulation was 

replicated five times. 
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All simulations were generated starting from the historical population using a similar 

structure to Pocrnic et al. (2019): an initial bottleneck was generated contracting the historical 

population size from 5,000 to 1,000 animals in 1,250 generations, then expanded to 25,000. In 

the first generation, 10 bovine autosomes were simulated, placing evenly spaced 80,000 ca. 

biallelic SNPs with equal allele frequencies and a recurrent mutation rate of 2.5e-5 per 

generation. The number of SNPs per chromosome was set to 8000, while QTL number 

changed according to different simulation strategies. In two of the four simulations, one 

biallelic and randomly distributed QTL per chromosome was sampled from a gamma 

distribution with a shape parameter equal to 0.4 (oligogenic scenarios). In the other two 

simulations, 100 QTL per chromosome were generated using the same parameter (polygenic 

scenarios). In all these simulations, 10 discrete generations were created randomly mating 

750 females and different number of sires according to the simulation strategies. In two 

scenarios, one oligogenic and one polygenic, we assumed a large Ne, with 100 males per 

generation used as sires, while in simulations with a low Ne only 10 males per generation 

were used as sires. The following four populations were thus created by mixing the different 

numbers of QTL and different Ne values, and five replicates for each population were 

generated: 

SIM1 polygenic population with small Ne 

SIM2 polygenic population with large Ne 

SIM3 oligogenic population with small Ne 

SIM4 oligogenic population with large Ne 

The effective population size and number of QTL in the four different simulated 

populations are reported in Table 1 and numbers of genotyped animals are reported in Table 

2 (2,250 animals). As a phenotype, a single trait with heritability of 0.3 was simulated, thus 

obtaining a single phenotype record per animal by adding an overall mean of 1.0 to the sum of 

the QTL effects plus a residual effect. As in Pocrnic et al. (2019), only phenotypes from 

generations 8 to 9 were retrieved, and genomic information of animals belonging to 

generations 8 to 10 was used for further analysis. The structure of simulated populations is 

reported in Table 2. Before proceeding with genomic prediction, SNPs with a minor allele 
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frequency (MAF < 0.01) and with high linkage disequilibrium (LD > 80) were removed. 

SNPrune was used to this purpose (Calus and Vandenplas, 2018). 

Table 1 Effective population size and number of QTL in the four different simulated 
populations 

 QTN Ne 

SIM1 1000 40 

SIM2 10 350 

SIM3 1000 40 

SIM4 10 350 

 

Actual dataset 

An actual dataset containing information from the performance test evaluations of 

young bulls belonging to the Rendena cattle breed, was provided by the National Breeding 

Association (ANARE). ANARE also provided Herd Book information of the whole population 

traced back to the 1950s, whereas genomic data of bulls were in part provided by ANARE 

(PSRN DualBreeding, www.dualbreeding.it) and in part obtained under academic funding (SID 

Project, BIRD183281). Rendena is a small local population (6,384 heads for 249 breeding 

males and 6,135 breeding females belonging to 202 herds censed at 31.12.2020; 

fao/dad.is.org) bred for the dual-purpose attitude of milk and meat. Rendena is native of the 

North-East Alps in Italy and spread in the adjacent territory (Guzzo et al., 2018), and is thus 

now present in two characteristic locations, i.e., the origin mountain area and the plain dairy 

area located on the right side of the Brenta river in the Veneto Region (Po Valley). 

Phenotypes considered in this study included single records per individual collected in 

the years 1985-2020 and are: Average Daily Gain (ADG), in vivo estimates of Carcass 

fleshiness (CF) and Dressing percentage (DP). These traits have been extensively described 

in Guzzo et al. (2019) and Mancin et al. (2021b). The Illumina Bovine LD GGP v3, comprising 

26,497 SNP markers and Bovine 150K Array GGPv3 Bead Chip, including 138,974 SNPs 

(Illumina Inc., San Diego, CA, USA) was used for genotyping the Rendena cattle.  
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The LD panels belonging to 1,416 individuals were imputed on HD panels belonging to 

554 bulls. The overlap between the two panels was about 60%. Information about data quality 

control and imputation are reported in greater detail in Mancin et al. (2022). In addition to the 

previous study, further quality control was performed by removing SNPs with high linkage 

disequilibrium > 80, using SNPrune (Calus and Vandenplas, 2018), that removed a total of 

28,049 SNPs. A final amount of 85,331 SNPs was finally retained for analysis. Overall, the 

study considered 1,691 young bulls with only phenotypic information, 1,739 animals with only 

genotypic information, and 687 animals with both phenotypic and genotypic information. The 

data structure of the actual dataset used for genomic prediction is reported in Table 2. 

Table 2 Population structure of simulated and actual data set 

 SIMULATED 
ACTUAL 

 SIM1-SIM31 SIM2-SIM41 

Number of records 1500 1500 1691 

Number of animals in the pedigree 3413 3794 6926 

Number of genotyped animals 2250 2250 1739 

Number of genotyped animals with records 1500 1500 687 

Inbreeding from Pedigree 0.0126 0.0009 0.0316 
1 Since population structure is the same for SIM1 and SIM3, and for SIM2 and SIM4, populations were grouped 
together in pairs in the table 

 

Prediction models 

The breeding values for the single trait of the four simulated populations and the three 

performance test traits of the actual Rendena dataset were estimated using several BLUP 

models. Firstly, we used four ‘classical’ BLUP models: 

1) standard Pedigree Best Linear Unbiased Prediction (PBLUP, described in section 

2.2.1); 

2) single step Genomic BLUP (ssGBLUP, described in section 2.2.2); 

3) small shrinkage Weighted single-step Genomic BLUP (WssGBLUP1, described in 

section 2.2.3);  
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4) high shrinkage Weighted single-step Genomic BLUP (WssGBLUP2, described in 

section 2.2.3). 

 

Then, we performed five ssGBLUP with preselected SNPs (described in 2.3.4). SNP 

selection was performed through different algorithms: 

 

5a) Least absolute shrinkage and selection operator (LASSO, described in section 2.4.1) 

5b) Spike-and-Slab LASSO (SSLASSO, described in section 2.4.2);  

5c) Recursive Feature Elimination using Ridge Regression (RfeRR, described in section 

2.4.3);  

5d) Recursive Feature Elimination using Support Vector Machine (RfeSVM, described in 

section 2.4.4);  

5e) Extreme Gradient Boosting (XGboost, described in section 2.4.5). 

 

Pedigree Best Linear Unbiased Predictor 

The PBLUP was the first method that has been applied, described by the following 

equation (Henderson, 1975): 

�
𝑿𝑿′X 𝑿𝑿′Z

𝐙𝐙′X 𝐙𝐙′Z+𝐀𝐀−1
𝜎𝜎𝑒𝑒2

𝜎𝜎𝑎𝑎2
� ��̂�𝜇
𝒂𝒂�
�= �𝑿𝑿

′𝒚𝒚
𝐙𝐙′𝒚𝒚� 

Where y is the vector of phenotypic observations, while X is the matrix of incidence of 

fixed effect and, b is the vector of these effects. In the actual dataset, fixed effects are 

represented by contemporary group (young bulls tested at the same period in the same pen; 

142 levels) and parity group of dams in four classes (Guzzo et al., 2019). Whereas for 

simulated dataset X was substituted by a vector of 1’s, consequently b stands for the mean of 

the models. Matrix Z represents the incidence matrix that relates the random genetic additive 

effect, included in vector 𝒂𝒂, to the phenotype. The random residual error was included in a 

vector e showing a normal distribution 𝑁𝑁(0, 𝐼𝐼𝜎𝜎𝑒𝑒2), where 𝜎𝜎𝑒𝑒2 is the residual variance. The vector 

of additive genetic effects is distributed as 𝑁𝑁(0,𝐴𝐴𝜎𝜎𝑎𝑎2), where 𝜎𝜎𝑎𝑎2 is the genetic variances and A 

is the Identical by Descent (IBD) relationship matrix constructed from pedigree data. 

Single Step Genomic Best Linear Unbiased Predictor 
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The ssGBLUP was considered as a benchmark to evaluate the impact of the other 

models (see further, WssGBLUP and ssGBLUP with selected SNPs). The ssGBLUP presents 

the same structure of equation in 2.2.1.,  except for the co-variance matrix of random genetic 

effect, which is substituted by H, as described in Aguilar et al. (2010): 

𝐇𝐇−𝟏𝟏 =  𝐀𝐀−𝟏𝟏 + �
𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐆𝐆−𝟏𝟏 − A𝟐𝟐𝟐𝟐

−𝟏𝟏� 

where 𝐀𝐀 and 𝐀𝐀𝟐𝟐𝟐𝟐
−𝟏𝟏 are the reverse of IBD matrix for all animals and for only genotyped 

animals, respectively, and G was the genomic matrix including the genomic relationships 

among animals.  

The G matrix was built using the first methods proposed by (VanRaden, 2008b): 

𝐆𝐆𝟎𝟎 =
𝐌𝐌𝐌𝐌′

𝟐𝟐 ∑𝒑𝒑𝒊𝒊 (𝟏𝟏 − 𝒑𝒑𝒊𝒊 )
 

Where p is the allele frequency of ith locus, M is a matrix of SNP content centered by 

twice the current allele frequencies. Since the frequencies of the current genotyped population 

are used to center G, pedigree and genomic matrices have different bases, thus G was 

adjusted so the average diagonal and off-diagonal matched the averages of diagonal and off-

diagonal in A22 as described in Vitezica et al. (2011).  

Weighted Single Step Genomic Best Linear Unbiased Predictor 

The WssGBLUP is the third method we employed (two models, each with a different 

CT value, as explained below). This approach is equal to model 2.2.2, except for matrix G 

which has been built following the second method of VanRaden (2008), as: 

𝐆𝐆𝟎𝟎 =
𝐌𝐌𝐌𝐌𝐌𝐌′

2 ∑𝑝𝑝𝑖𝑖 (1 − 𝑝𝑝𝑖𝑖 )
 

Where p is the allele frequency of ith locus, M is a matrix of SNP content centered by 

twice the current allele frequencies, and D is the diagonal matrix in which SNP specific 

weights have been contained. The iterative algorithm reported in Zhang et al. (2016) has been 

used as weighting strategy. The SNPs weights presented in D were obtained as a function of 

the estimated SNP effect (𝒖𝒖�). The weighting function used in this study was the one called 
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NonlinearA, as reported in Fragomeni et al. (2019). This method was preferred over other 

weighting strategies due to its stability among the iterations. The iterative algorithm applied 

followed the steps reported below: 

1. Set the initial parameter t = 1,𝐌𝐌(t) = 𝐈𝐈,  G(t) = 𝐌𝐌𝐌𝐌(𝐭𝐭)𝐌𝐌′

2 ∑pi(1−pi)
, where I is an identity 

matrix; 

2. Obtain GEBV (𝒂𝒂�) , where 𝒂𝒂� is the vector of solutions of additive genomic 

breeding value, using ssGBLUP algorithm; 

3. Obtain SNP effect (𝒖𝒖�) as in (Gualdrón Duarte et al., 2014): 

𝑢𝑢� =
1

2∑𝑝𝑝(1 − 𝑝𝑝)
𝐌𝐌𝐌𝐌′[𝐌𝐌𝐌𝐌𝐌𝐌′]−1𝑎𝑎� 

4. Transform 𝑑𝑑𝑖𝑖(𝑡𝑡+1) as in Fragomeni 2019, in CT
�𝒖𝒖�𝒊𝒊�
𝑠𝑠𝑠𝑠(𝒖𝒖�)−2, where CT is a shrinkage 

factor determining how much the SNP effects distribution deviates from 

normality; 

5. Standardize the weight of SNPs by maintaining a constant genetic variance 

among iteration: 

D(t+1) =
tr�𝐌𝐌(1)�

tr�𝐌𝐌(t+1)�
tr�𝐌𝐌(t+1)�; 

6. Matrix G is then recreated including the new weights: 𝐺𝐺(𝑡𝑡+1) = 𝐌𝐌𝐌𝐌(t+1)𝐌𝐌′

2 ∑pi(1−pi)
; 

7. Set 𝑡𝑡 = 𝑡𝑡 + 1, and go to point 2 for a new iteration. 

We created two different WssGBLUP models, with two different CT values: 

WssGBLUP1 had CT value of 1.105 while WssGBLUP2 had CT value of 1.250. This was 

done to grant WssGBLUP1 the lowest possible shrinkage effect and WssGBLUP2 the highest 

possible shrinkage effect. For both models the maximum number of iterations was set to 5. 

For a matter of simplicity, we report only two WssGBLUP predictions instead of the ten 

analysed in this study (combination of two CT values and five iterations). Thus, we retained 

two opposite WssGBLUP scenarios: WssGBLUP1, which presents the lowest SNPs shrinkage 

effect, and WssGBLUP2, which presents the highest shrinkage effect 
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Single Step Linear Unbiased Predictor with only informative SNPs 

The last group of models (five models) consisted in ssGBLUP in which the G matrix of 

2.2.2 was constructed using SNPs obtained after the application of the different variable 

selection algorithms (described below, section 2.4). The number of columns of Z are thus 

different for each trait and each dataset. 

Models’ computations 

In all models, A was built with the pedigree information tracking back up to 3 

generations. In addition, according to what was reported in Cesarani et al. (2019), the 

variance components of each dataset were estimated under PBLUP models by tracing back of 

all animals in the pedigree. Variance components were estimated using the AIReml algorithm 

(Gilmour et al., 1995). All genetic and genomic prediction analyses were performed using the 

BLUPF90 family of programs (Aguilar et al., 2018b). The consistency of all this information is 

reported in Table 2. Preliminary analysis such as LD calculations was conducted using 

preGSf90 (Aguilar et al., 2018b, belonging to BLUPF90 family of programs). 

Featured selection algorithms 

The EBVs of the target trait were used to map the major SNP markers associated with 

the trait, using five different statistical approaches. The genome content was considered as a 

covariance matrix, while EBVs of genotyped animals (𝑎𝑎�) (estimated using models in 2.2.2). 

were considered as the observed variable. The genome content was scaled in advance. 

Hyperparameters search and the choice of best models was performed by dividing the dataset 

in two parts: a training group and a test group. In the actual dataset young animals born after 

2015 belong to the test group while older animals belong to the training group. In the 

simulation, animals of 8-9th generations were part of training group while animals of 10th 

generation belonged to test group 

Least absolute shrinkage and selection operator (LASSO) 

In high-dimensional information literature a large number of penalized likelihood 

approach was proposed. Given the baseline 𝑦𝑦𝑖𝑖 =  𝛽𝛽0 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖
𝑝𝑝
𝑖𝑖=1 + 𝑒𝑒𝑖𝑖; a variant of penalized 

likelihood approach can be described as: 
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�̂�𝛽 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥 −
1
2
�� {

𝑁𝑁

𝑖𝑖=1

𝑦𝑦𝑖𝑖 −  (𝛽𝛽0 + �𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

)�

2

2

+ 𝑝𝑝𝑒𝑒𝑝𝑝𝜆𝜆(𝛽𝛽) 

Where: 𝑁𝑁 is the number of animals for each trait, 𝛽𝛽0 is model mean, 𝛽𝛽𝑖𝑖 is the SNPs 

contribution p are the number of columns in x; N number of data and λ is the regularization 

parameters; and 𝑝𝑝𝑒𝑒𝑝𝑝𝜆𝜆(𝛽𝛽) is a penalty function. In LASSO (Tibshirani, 1996), penalty is:  

𝑝𝑝𝑒𝑒𝑝𝑝𝜆𝜆(𝛽𝛽) = − λ��𝛽𝛽𝑖𝑖  �
𝑝𝑝

𝑖𝑖=1

 

A grid search was performed to find the optimal values for the was obtained testing 

values from 0 to 20 in increments of 0.1. These values were used to maximize the LASSO 

model performance, based on the highest coefficient of determination and the lowest Mean 

Squared Error (MSE) in the training set. To do this we used glmet R package (Friedman et al., 

2010) 

Spike-and-Slab LASSO 

The Spike-and-Slab LASSO (SSLASSO) was proposed by Ročková and George 

(2018). It was based on the idea that every penalized likelihood has a Bayesian interpretations 

(Bai et al., 2021). For instance, the LASSO penalization is equivalent to a Laplace distribution 

regulated by hyperparameter λ, where posterior mode of 𝛽𝛽 are: 

𝑝𝑝(𝛽𝛽|λ) =  �
λ
2
𝑒𝑒−λ|𝛽𝛽𝑗𝑗|

𝑝𝑝

𝑖𝑖=1

 

The SSLASSO is the equivalent to a two-point mixtures of Laplace distributions defined 

as: 

𝑝𝑝(𝛽𝛽|λ) = ���1 − 𝛾𝛾𝑖𝑖� �
λ
2
𝑒𝑒−λ0�𝛽𝛽𝑗𝑗�� + 𝛾𝛾𝑖𝑖 �

λ
2
𝑒𝑒−λ1�𝛽𝛽𝑗𝑗���

𝑝𝑝

𝑖𝑖=1

  

Where:  
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𝑝𝑝(𝛾𝛾|𝜃𝜃) = ∏ [𝜃𝜃𝛾𝛾𝑗𝑗(1 − 𝜃𝜃)1−𝛾𝛾𝑗𝑗]𝑝𝑝
𝑖𝑖=1  and 𝑝𝑝(𝜃𝜃) ~ 𝐵𝐵𝑒𝑒𝑡𝑡𝑎𝑎[𝑎𝑎, 𝑏𝑏] 

The Bayesian prior can be re-arranged in an penalized likelihood context by took his 

marginal logarithm prior (Bai et al., 2021); after some derivation is possible to obtain: 

λ𝜃𝜃�𝛽𝛽𝑖𝑖� =  λ1𝑝𝑝𝜃𝜃�𝛽𝛽𝑖𝑖� + λ0[1 − 𝑝𝑝𝜃𝜃�𝛽𝛽𝑖𝑖�] 

Where: 

𝑝𝑝𝜃𝜃�𝛽𝛽𝑖𝑖� =
1

1 +
�1 − 𝜃𝜃��

𝜃𝜃�
λ0
λ1

exp�−�𝛽𝛽𝑖𝑖�(λ0 − λ1)�
 

SSLASSO was computed using SSLASSO R packages (Ročková and George, 2018), 

error variances was assumed to be unknown and self-adaptivity penalty was set. This means 

that 𝜃𝜃 was assumed to be random and applied different shrink to each 𝛽𝛽𝑖𝑖. 

Recursive Feature Elimination using Ridge Regression (RfeRR) 

Similar to LASSO, the Ridge Regression is based on a principle of penalized likelihood, 

with penalty equal to λ∑ 𝛽𝛽𝑖𝑖
2𝑝𝑝

𝑖𝑖=1 . Before we proceeded with recursive feature elimination, the 

optimal values of λ were obtained as in LASSO section. glmet R package was used (Friedman 

et al., 2010). After that recursive feature elimination using penalized Ridge Regression was 

performed as follow. In each of iteration, SNP effect 𝛽𝛽𝑖𝑖were estimated on training data. Then 

10% of variable with lowest was removed form next iterations. Variable (SNP) present in the 

iteration with lowest |𝛽𝛽| mean squared error (MSE) was considered for following prediction. 

MSE was calculate as where 𝑦𝑦𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡 is the EBV belong to test database and 𝑦𝑦𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡is the predicted 

ones. 

Recursive Feature Elimination using Support Vector Machine (RfeSVM) 

The SVM is a kernel-based supervised learning technique, often used for regression 

analysis SVM can map linear or nonlinear relationships between phenotypes and SNP 

markers depending on the kernel function considered. The best kernel function to map 

genotype to phenotype was determined in different training subsets: a 5-folds split was used 

to determine the kernel function, which adjusted better to the data, either linear, polynomial, or 
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radial basis. We found that performing the SVM with a linear basis function outperformed the 

polynomial and radial basis function of about 12.5% in predictive ability. 

The general model for SVM (Evgeniou and Pontil, 2005; Hastie et al., 2009) can be 

described as: 

𝒚𝒚𝒊𝒊∗ = 𝒃𝒃 + 𝒉𝒉(𝒎𝒎) ∗ 𝒘𝒘 + 𝒆𝒆 

where ℎ(𝑎𝑎) represents the linear kernel basis function (ℎ(𝑎𝑎) = 𝑎𝑎′𝑎𝑎) used to transform 

the original predictor variables (i.e., SNP markers information (𝑎𝑎)), 𝑏𝑏 denotes the model bias, 

and 𝑤𝑤 represents the unknown weight vector. In the SVM model, the learn function ℎ(𝑎𝑎) was 

given by minimizing the loss function as follows: 𝐶𝐶 ∑ 𝐿𝐿𝑁𝑁
𝑖𝑖=1 (𝑦𝑦𝑖𝑖∗ − 𝑦𝑦�𝑖𝑖∗) + 1

2
‖𝑤𝑤‖2. The 𝐶𝐶 represents 

a regularization parameter which controls the trade-off between predictor error and model 

complexity, and ‖. ‖2 denotes the squared norm under a Hilbert space. The SVM model was 

fitted using a epsilon-support vector regression that ignores residuals absolute value (|𝑦𝑦𝑖𝑖∗ −

𝑦𝑦�𝑖𝑖∗|) smaller than some constant (ε) and penalize larger residuals (Vapnik, 2000). The 

parameters 𝐶𝐶 and 𝜖𝜖 were defined using the training data set as proposed by Cherkasky & Ma 

(Cherkassky and Ma, 2004): 𝐶𝐶 = max��𝑦𝑦∗��� + 3𝜎𝜎𝑦𝑦∗�, �𝑦𝑦∗��� − 3𝜎𝜎𝑦𝑦∗�� and 𝜖𝜖 = 3𝜎𝜎𝑦𝑦∗ ��ln(𝑝𝑝) 𝑝𝑝⁄ �, in 

which the 𝑦𝑦∗��� and 𝜎𝜎𝑦𝑦∗ are the mean and the standard deviation of the target EBV for the traits 

on the training population and n represents the number of animals in the training set. The 

SVM was performed with the e1071 R package (Meyer et al., 2020). 

After that, recursive feature elimination using SVM was performed using same 

procedure described for RfeRR in Sanz et al. (2018).  

Boosting ensemble 

The Boosting approach (xGBoost) is an ensemble technique that combines gradient 

descent error minimization with boosting, aiming to convert weak regression tree models into 

strong learners (Hastie et al., 2009; Natekin and Knoll, 2013). This ensemble process 

combines different predictor variables sequentially in the regression tree model, using 

regularization via selection and shrinkage of the predictors to control the residual from the 

previous model (Friedman, 2002). The xGBoost can employ parallel computation to use more 
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regularized models to control the model over-fitting. The xGBoost approach can be described 

as follows: 

𝒚𝒚 = �𝜷𝜷𝒘𝒘𝒉𝒉(𝒙𝒙,𝛄𝛄𝒘𝒘)
𝑾𝑾

𝒘𝒘=𝟏𝟏

+ 𝒆𝒆  

where 𝑦𝑦 is the vector of the target EBV, 𝑊𝑊 is the numbers of iterations (expansion 

coefficients), 𝛽𝛽𝑤𝑤 is the shrinkage factor, also known as the “boost”, and ℎ(𝑥𝑥, γ𝑤𝑤) is the base 

learner, a function of the multivariate argument 𝑥𝑥 with a set of parameters γ𝑤𝑤 = {γ1, γ2, … , γ𝑤𝑤}, 

and 𝑒𝑒 is the vector of the residuals. Expansions of the coefficients {𝛽𝛽𝑤𝑤}1𝑊𝑊 and parameters 

{γ𝑤𝑤}1𝑊𝑊 are used to map the predictor variables (𝑥𝑥), i.e., SNP markers, to the target EBV (𝑦𝑦) 

considering the joint distribution of all values (𝑦𝑦, 𝑥𝑥) minimizing the loss function 𝐿𝐿{𝑦𝑦𝑖𝑖 ,𝐹𝐹(𝑥𝑥)} 

given [𝑦𝑦,𝐹𝐹𝑤𝑤−1(𝑥𝑥𝑖𝑖) + ℎ(𝑦𝑦𝑖𝑖; 𝑥𝑥𝑖𝑖 ,𝑝𝑝𝑤𝑤)], where 𝑝𝑝𝑤𝑤 is the predictor to minimize ∑ 𝐿𝐿𝑛𝑛
𝑖𝑖=1 [𝑦𝑦,𝐹𝐹𝑚𝑚−1(𝑥𝑥𝑖𝑖) +

ℎ(𝑦𝑦𝑖𝑖; 𝑥𝑥𝑖𝑖 ,𝑝𝑝𝑚𝑚)]. The xGBoost follows the algorithm specified by Chen and Guestri (2016). In the 

xGBoost method, a regularization term is added in the loss function, representing the weight 

vectors learned in the loss function and penalizes ponderation of large weights. This 

regularization term is represented as follows: ∑ 𝐿𝐿𝑛𝑛
𝑖𝑖=1 [𝑦𝑦,𝐹𝐹𝑚𝑚−1(𝑥𝑥𝑖𝑖) + ℎ(𝑦𝑦𝑖𝑖; 𝑥𝑥𝑖𝑖 ,𝑝𝑝𝑚𝑚)] + ∑ Ω(𝑓𝑓𝑛𝑛)𝑛𝑛 , 

where the L is the error between the true value of the target trait and the predicted value, and 

Ω(𝑓𝑓𝑛𝑛) is the regularization function used to prevent overfitting: Ω(𝑓𝑓𝑛𝑛) =  𝛾𝛾𝛾𝛾 + 0.5𝜆𝜆‖𝜔𝜔‖2, where 

T is the number of leaves in the regression tree 𝑓𝑓𝑛𝑛 and 𝜔𝜔 represents the weight for the leave in 

each tree (i.e. the predicted values stored at the leaf nodes). Including Ω(𝑓𝑓𝑛𝑛) in the objective 

function makes the tree less complex, which minimizes the loss function and helps reduce 

overfitting; 𝛾𝛾𝛾𝛾 is a constant penalty for each additional tree leaf and 𝜆𝜆‖𝜔𝜔‖2 penalizes extreme 

weights. The 𝛾𝛾 and 𝜆𝜆 are the regularization terms L1 and L2 (Mitchell and Frank, 2017). The 

random search for xGBoost was performed considering the four most important parameters 

able to increase prediction accuracy and minimize the prediction error. These 

hyperparameters were Ntree (total number of trees in the sequence used in the model), 

learning rate (determines the contribution of each tree to the final model and performs 

shrinkage to avoid variable overfitting), maximum tree depth (controls the depth of the 

individual trees to be considered in the model), and minimum samples per leaf (controls the 

complexity of each tree). The Ntree values ranged from 600 to 5,000 in intervals of 200; the 

learning rate was in the range of 0.05 to 1 in intervals of 0.05; maximum tree depth was 

determined with a value ranging from 5 to 80 in intervals of 5; minimum samples per leaf was 
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determined from 5 to 100 in intervals of 5 and considering lambda and alpha regularization 

values ranging from 0 to 1 in intervals of 0.05. The random grid search xGBoost was 

performed using the h2o.grid function of the h2o R package (https://cran.r-

project.org/web/packages/h2o), considering as fixed parameters a maximum of 150 models 

with random combinations of the hyperparameters over 60 min. 

1.5 Effective population size calculations 

In order to have a proper comparison between actual and simulated data, the effective 

population size (Ne) has been computed from the individual increase in inbreeding (∆𝐹𝐹) 

(Falconer and Mackay, 1996). Individual ΔF has been computed as: 

 

∆𝐹𝐹 =
𝐹𝐹𝑛𝑛 − 𝐹𝐹𝑛𝑛−1
1 − 𝐹𝐹𝑛𝑛−1

 

𝑁𝑁𝑒𝑒 =
1

2∆𝐹𝐹
 

where 𝐹𝐹𝑛𝑛 is the inbreeding in the nth generation. Ne was calculated using purge R 

package (https://cran.r-project.org/web/packages/purgeR). 

Validation 

Simulated dataset 

Quality of prediction was measured as the correlation and MSE between the genomic 

breeding values estimated under different models and the true breeding values for animals 

belonging to the 10th generation, that is the last generation of animals, including individuals 

without phenotypes but with genotype.  

Actual dataset 

In the actual dataset, two different cross-validation methods were applied. The first 

method that we used to cross-validate predictive ability was to calculate both the correlation 

and the MSE between predicted and observed phenotype. In this case five-fold cross 

validation with 10 iterations were performed. Since not all animals were genotyped in each 

https://cran.r-project.org/web/packages/purgeR
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iteration 1/5 of non-genotype and 1/5 genotype animal were masked. In the current 

manuscript we reported predicted ability metrics only for genotyped animals; result about non-

genotype animals was reported on Supplementary materials Figure S1. 

Linear regression (LR) (Legarra and Reverter, 2018) was used as the second cross-

validation method. It compares the prediction performances of different models on groups of 

focal individuals born after a given date, in this case the young bulls. LR is particularly suited 

to the specific needs of Rendena population since predicting the future performance of young 

bulls without phenotype is one of the main objectives of the breeding plans for performance 

tests (Mancin 2021b). 

The LR method evaluates the goodness of a model by comparing its performance in a 

complete dataset and a partial dataset. With complete dataset we refer to the dataset 

containing the whole amount of information, or the dataset used for prediction. Partial dataset 

is referred to the complete dataset with some animals with phenotype removed, usually young 

animals known as candidates to selection. According to Macedo et al. (2020) we built partial 

datasets by excluding phenotypes since a target recent birth year of young bulls (since 2012 

to 2020; since 2014 to 2020; … since 2017 to 2020) to describe possible variations and 

random deviations of the estimator, consistencies are reported on Table 3. LR considered 

three parameters: bias, dispersion, and accuracy. Bias is the difference between the expected 

breeding values estimated under the complete vs. the partial datasets. The dispersion was 

estimated as the regression coefficient considering the breeding values from the complete 

dataset on the ones estimated from partial data and the accuracy as correlations between the 

two breeding values.  

Table 3: Description of the different validation set used in cross-validation, first and last years 
of born and number of animals used in the validation cohort are reported. 

Since Last Number 
2012 2020 178 
2013 2020 154 
2014 2020 130 
2015 2020 109 
2016 2020 106 
2017 2020 72 
2018 2020 45 
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RESULTS 

Genomic structure 

Simulated datasets 

Figure 1 highlights the different genomic assets of small Ne populations (SIM1 and 

SIM3; 10 sires per generation) and large Ne populations (SIM2 and SIM4; 200 sires per 

generation). Since the different number of QTL assumed for the populations with the same Ne 

(that is, 10 vs. 1000 QTL) did not have an impact on G matrix dimensionality, only SIM1 and 

SIM2 were plotted for a matter of simplicity. In SIM1, 193 eigenvalues were necessary to 

explain 98% of G matrix variance, while in SIM2 795 eigenvalues were necessary to explain 

98% of G matrix variance. When only ten sires per generation were used, it was possible to 

observe different sub-populations (Figure 1A); however, no population structure was found 

when plotting the first two eigenvalues (Supplementary Material, Figure S2. On the other 

hand, SIM2 appeared homogenous, and individuals appeared almost unrelated to each other. 

In addition, when LD per chromosome was also calculated, a greater value was observed in 

SIM1 (0.161 ± 0.076) than in SIM2 (0.067 ± 0.054; data not shown). A Ne value of 

respectively 81.18 ± 4 and 1869± 546 was also determined for SIM1 and SIM2. 

Figure 2 Cumulative explained variance of all eigenvalues of genomic relationship matrix of 
two simulated populations   
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Actual dataset 

We also investigated G's dimensionality on the actual dataset of Rendena cattle 

population (Figure 2). The actual dataset presented a situation closer to SIM2 than to SIM1. In 

fact, it presented an average Ne value of 108.2 ± 0.74 calculated from pedigree data. It is 

possible to observe a few clusters in the genomic relationship matrix (Figure 2), however, they 

are not as clear as in SIM1; we therefore can observe that no population structure is present 

in Rendena breed, which is in line with previous research (Mancin et al., 2022). The 98% of G 

variance was explained by only 633 eigenvalues, thus the scenario was closer to SIM1 than 

SIM2. In addition, we observed for LD an average value of 0.187 ± 0.107 per chromosome 

(Mancin et al., 2022). 

Figure 3 Cumulative explained variance of all eigenvalues of genomic relationship matrix of 
Rendena populations   

 

SNPs retained by variable selection models  

 SNPs retained in simulated datasets 

The impact of the different algorithms was appraised in terms of the number of 

informative markers retained, as reported in Figure 3. Specifically, we were interested in 

identifying the impact that different G matrixes’ dimensionality and QTL had on the number of 

SNPs considered informative. In all simulations, LASSO and SSLASSO retained the lowest 
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number of SNPs (roughly 2,000 SNPs averaged across simulations) and they presented lower 

intra and between scenarios variability. On the contrary, RfeSVM and RfeRR algorithms 

retained higher numbers of SNPs on average 12,000 for RfeRR and 7,000 for RfeSVM . 

RfeSVM presented also an extreme variability across scenarios (Figure 3). XGboost retained 

an intermediate number of SNPs, with an average of 3,000 SNPs retained across simulations. 

As we show in Figure 3, different numbers of QTL did not affect the number of SNPs retained 

by each algorithm. In fact, no difference was observed between respectively SIM1 and SIM3, 

and SIM2 and SIM4; only LASSO and SSLASSO algorithms seem to be slightly affected by 

number of QTL. Interestingly, dimensionality of G matrix seems to be more influential, as 

scenarios with higher Ne presented a higher number of SNPs (SIM1-SIM2). The XGboost is 

the only algorithm where this trend has not been seen. In addition it was also interesting to 

observe that the negative gap in models accuracy present in simulations with lower QTL 

(SIM3-4) fades when variable selection models is introduced. 

Figure 3 Bar plot representing representing number of SNPs retained by each algorithms on 
the four simulated population, error bar rappresent the standard deviation 
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SNPs retained in real Dataset 

We show the impact of variable selection methods in terms of the number of 

informative markers retained in the Rendena population in Figure 4. Although the number of 

initial SNPs was similar to the simulated populations, in general in the actual dataset a higher 

number of SNPs were retained by the algorithms. Similarly, to what was reported in the 

simulated data, LASSO and SSLASSO were the most restrictive algorithms of SNP selection 

with an average of 2,000 SNPs retained across the simulations. XGboost was the second 

most restrictive algorithm in terms of SNPs retained by the models about 3,000 on average. 

RfeSVM and RfeRR algorithms retained about on half of the SNPs presented in the panels. 

No clear patterns were identified across different phenotypes: some algorithms found greater 

number of SNPs in certain traits and some in others. For example, the lowest number of 

informative markers retained by RFE algorithms was identified on DP trait, but the opposite 

situation occurred for XGboost where the algorithm presented almost twice the number of 

informative SNPs for DP. 

Figure 5 Bar plot representing number of SNPs retained by each algorithm on the three 

phenotype of the Rendena population 
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Breeding values prediction 

We compared the prediction accuracy of four ‘classical’ models for BLUP and 

ssGBLUP with five different SNP pre-selection strategies. The models were 1) PBLUP; 2) 

single ssGBLUP; 3) WssGBLUP1; 4) WssGBLUP2; 5a) ssGBLUP with SNPs preselected via 

LASSO; 5b) ssGBLUP with SNPs preselected via SSLASSO; 5c) ssGBLUP with SNPs 

preselected via RfeRR; 5d) ssGBLUP with SNPs preselected via RfeSVM; 5e) and ssGBLUP 

with SNPs preselected via XGboost. 

Breeding values prediction in simulated datasets 

Results of different prediction models' accuracy are reported in figure 5, with correlation 

and MSE as metrics of comparison. MSE values were comparable to those obtained for 

correlations. Standard BLUP models achieved lowest accuracy. A substantial increase in 

accuracy was observed in ssGBLUP models (Figure 5), i.e., when genomic data were 

integrated: this increase of accuracy was more relevant for populations with small Ne (SIM1, 

SIM3). 

A slight increase of accuracy with respect to ssGBLUP was observed when a 

heterogeneous distribution of SNPs was considered within the matrix G (WssGBLUP). The 

gap in accuracy was greater in the populations with few QTL (SIM3, SIM4), especially for 

WssGBLUP2: on the other hand, the increase in accuracy for SIM1-2 under WssGBLUP was 

almost close to zero. A substantial variation in accuracy values was observed when ssGBLUP 

was performed with G matrixes constructed with selected SNPs; however, the accuracy of the 

prediction performance of each variable selection model changed according to the simulation 

structure. Generally, SSLASSO presented the highest increase in accuracy among the genetic 

models in all simulations, with the exception of SIM2 where we observed a dramatic drop of 

accuracy. LASSO on the other hand, achieved greater accuracy on both SIM1 and 2. Other 

algorithms presented an intermediate increase in accuracy among the genetic models in all 

simulations, namely (RfeRR, RfeSVM and XGboost), with different ranking the different 

scenarios.  
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Figure 6: Bar plot representing correlation (corr)and mean squared error (mse) between 
predicted and true breeding values on the four different simulation, error bar represent the 
standard deviation.
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Breeding values prediction in actual dataset 

With our real datasets we were interested at first in evaluating the performance of these 

models in terms of prediction; and then we wanted to evaluate the feasibility of introducing 

them in real breeding plans scenario. This point was achieved by using LR cross validation 

methods (Legarra and Reverter, 2018). Figure 6 represents the results of repeated five folds 

cross validation. The integrations of genomic data led again to a substantial increase in 

accuracy: the PBLUP presented the overall lowest correlation values (r from 0.36 to 0.53). The 

ssGBLUP presented the lowest correlation values among genomic models (r from 0.46 to 

0.62), while a slight increment observed for WssGBLUP1 (from 0.55 to 0.67) and in 

WssGBLUP2 (from 0.67 to 0.75). As with simulated data, variables selection models improved 

models’ accuracy substantially. Again, highest correlation was found for LASSO and 

SSLASSO, with values of r ranging from 0.83 to 0.92, while other algorithms presented 

intermediate values (r around 0.70). This pattern was observed across all traits. MSE reflected 

the results obtained with correlations.  

Figure 7 Box plot representing correlation (corr)and mean squared error (mse) between 
predicted and true breeding values phenotype of Rendena performance test. Target 
phenotype are ADG: Average Daily Gain; CF: in vivo Carcass Fleshiness; DP: in vivo 
Dressing Percentage 
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LR methods considered in addition to accuracy, also dispersion and bias. Figure 7 

represents the different results obtained through LR cross-validation methods in the various 

validation sets of 2015-2020. This set of years was chosen as representative of all seven 

validation cohorts. Figure 8 reports the summary statistic of all seven validation cohorts.  

Figure 7 Bar plot representing accuracy, dispersion and bias of Rendena Dataset estimated 
using LR cross validation, in the validation cohort of 2015-2020. Dispersion was represented 
as 1-absolute values of dispersion while bias as absolute values of bias. This allowed a better 
models ranking while horizontal lines represented the values of ssGBLUP this allowed better 
comparison among models, only genotyped animals were considered in the validation. 

 

Accuracy trends of the actual dataset measured with LR method were similar to 

accuracy obtained with five-fold cross validation. However, looking at the other statistics 

(slope and bias) we can observe that LASSO, SSLASSO RfeRR and RfeSVM cannot be 

considered suitable variable selection approaches in real breeding plans, due to their higher 

bias and dispersion values, especially if compared with ssGBLUP. XGboost was the only 

model that presented similar or even lower bias and dispersion values than ssGBLUP but 
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greater accuracy. As seen in Figure 8, we demonstrate that these trend is consistent over the 

different validation cohort.  

Figure 9: line plot representing accuracy, dispersion and bias of Rendena Dataset estimated 
using LR cross validation, in all validation cohort. Dispersion was represented as 1-absolute 
values of dispersion while bias as absolute values of bias. 

 

DISCUSSION 

The present study had two objectives: testing if reducing the number of SNPs used to 

construct G could lead to an increase in the accuracy of (ss)GBLUP, and whether this method 

could be introduced in genomic evaluations of the Rendena breed. 

In our study, using both simulated and actual datasets, we demonstrated that the 

accuracy of (ss)GBLUP increases when it is performed with SNPs selected via variable 
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selection methods. This is in agreement with the extensive literature supporting the increased 

accuracy of Bayesian variable selection models in many different species (Lourenco et al., 

2014; Mehrban et al., 2017; Yoshida et al., 2018; Zhu et al., 2021). However, few studies until 

now had investigated the impact of SNP preselection on G matrix using ad hoc algorithms. 

Akbarzadeh et al. (2021) integrated in a GBLUP framework only a subset of chosen SNPs 

based on classical GWAS analysis (i.e., 1%, 5%, 10%, 50% of significant SNPs). A slight 

increase in accuracy with respect to the canonical GBLUP was observed when G was 

constructed using only the best 10% and 50% SNPs; contrariwise, models using the 1% and 

5% of the SNPs prediction underperformed. Furthermore, Akbarzadeh et al. (2021) reported a 

dramatic decline in performance when the same percentage of SNPs was randomly chosen. 

Preliminary tests of a similar approach – construction of the G matrix using the top 500, 1000, 

50000 SNPs ranked by their absolute SNP effect values calculated through back solutions – 

have been tried in Rendena. However, we immediately discarded this approach because of 

the extreme bias and inflated breeding values predictions (these findings are reported in 

Mancin et al 2022 in press). In addition, choosing so few and unrepresentative SNPs greatly 

reduced the compatibility between the two matrices, and thus ssGBLUP properties were 

affected (Misztal et al., 2017). 

Li et al. (2018) and then Piles et al. (2021) showed how the use of different methods to 

select the most informative SNPs could significantly improve the performance of the variable 

selection models. Li et al. (2018) constructed the G matrix by using the best 400, 1,000, and 

3,000 SNPs, ranking SNPs effects by three different machine learning models. As in the 

previous case, an increase in accuracy was obtained only with a certain number of selected 

SNPs (1,000 SNPs), while a decrease in accuracy with respect to canonical GBLUP was 

observed with a lower number of SNPs. Additionally, Piles et al. (2021) and Azodi et al. (2019) 

showed how by combining different variable selection algorithms with several different 

parametric and non-parametric prediction models (i.e., ensemble predictions), it is possible to 

obtain a consistent increase in accuracy compared to models without variable selection. 

However, our study has not explored these scenarios since prediction methods other than 

ssGBLUP or ssSNP-BLUP (Fernando et al., 2014) do not seem to bring any concrete 

improvement for livestock traits (Abdollahi-Arpanahi et al., 2020). Furthermore, ssGBLUP and 

ssSNP-BLUP are the only methods that allow combining straightforwardly non-genotyped 

animals with genotyped ones – a crucial feature for a real-life routine selection plan and 

something that the other algorithms cannot do. 
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Our result that reducing the number of parameters has a positive impact on accuracy is 

also supported by Frouin et al. (2020). In that study, it was demonstrated that the error of the 

prediction tends to increase linearly when n > p until to the “irreducible” error (1 −  ℎ2) that 

occur when n ≫ p. In addition, Pocrnic et al. (2019), demonstrated that accuracy of 

(ss)GBLUP is connected by the distribution of eigenvalues of G, thus “n” becomes the number 

of Me captured by SNPs (Pocrnic et al., 2016). In highly related populations (small Ne) higher 

values of accuracy can be achieved than in populations with larger Ne, because fewer 

eigenvalues and thus “n” are necessary to explain G: in large Ne populations more data are 

needed to increase accuracy. This is also intuitive since prediction error accuracy (Henderson, 

1988) is directly proportional to 𝐶𝐶𝑎𝑎𝑎𝑎, thus in highly related populations tends 𝐶𝐶𝑎𝑎𝑎𝑎 to have lower 

values. 𝐶𝐶𝑎𝑎𝑎𝑎 is the inversion of coefficient matrix of the mixed model equation where aa is the 

block referring to the genetic effect of animals. What was reported on Pocrnic et al. (2019) 

could explain the lower performance identified in Akbarzadeh et al. (2021) when 1% and 5% 

were considered (Akbarzadeh et al., 2021). Indeed, discarding too many SNPs from the 

construction of G may omit the inclusion of important eigenvalues. From another perspective, 

Fragomeni et al. (2017) demonstrated the positive impact of removing non informative SNPs 

on GBLUP. The authors demonstrated in a simulated dataset that better accuracy was found 

when the G was built by removing all SNPs outside the window where the QTL was situated 

or using only QTL information. However, a practical limit to this method is that knowing all the 

QTL within a genome is nearly impossible, especially when the population is small (Mancin et 

al., 2021a). 

Our simulated results support the abovementioned theory, as simulations with lower Ne 

presented higher accuracy of ssGBLUP (SIM1, SIM3). Furthermore, differences between 

scenarios emerge when comparing simulations differing for their number of QTL. ssGBLUP 

showed lower performance in the SIM3-4 (QTL10) than in the SIM1-2 (QTL1000); however, 

this discrepancy in accuracy decreases when variable selection is applied. This is in 

agreement with what is reported in Daetwyler et al. (2010) that demonstrated that selection of 

SNPs via BayesB presents concrete advantages when number of QTL is small compared to 

the number of independent chromosome segments (Me).  

As mentioned above Bayesian SNPs regression, or (ss)GBLUP using a weighted 

realized relationship matrix (Tiezzi and Maltecca, 2015; Zhang et al., 2016), always improve 

prediction accuracy with respect to models that assume homogenous variance among SNPs 
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(GBLUP or SNP-BLUP). However this increase of accuracy is often connected with increases 

of bias especially when time-cross validation is used (Mehrban et al., 2017) as opposed to five 

folds or leave-and-out cross validation (Zhu et al., 2021). However, when the goal is to 

achieve the “best predictor”, namely a value close as possible to real one, models assuming 

heterogeneous variances and models with variable selection can be identified as the best 

models, as they have highest MSE, intended as bias-variance trade off (Gianola et al., 2018). 

In this regard, LASSO and SSLASSO thus appeared as “best models”, for both simulated and 

real data. We showed that (SS)LASSO regression performs automatic feature selection 

especially in the presence of features that are linearly correlated, such as SIM1 and SIM3, 

since their simultaneous presence will increase the value of the cost function. Thus, Lasso 

regression will try to shrink the coefficient of the less important SNPs to 0, in order to select 

the best features.  

However, in real-life breeding scenarios time-cross validation must be taken into 

account (Liu, 2010; Legarra, A. Reverter, 2017) as this procedure simulates the natural 

accumulation of information across time. Only few studies evaluated the impact of 

heterogeneous or variable selection models using time cross-validation with small samples of 

individuals. Cesarani et al. (2021) and Mancin et al. (2021b) found higher bias and 

overdispersion values in WssGBLUP with respect to ssGBLUP.  

When we performed LR cross validation methods the same pattern emerged (Cesarani 

et al., 2021; Mancin et al., 2021b), namely that higher shrinkages or selected SNPs have high 

accuracy but carried higher bias and dispersion values. Specifically, (SS)LASSO models were 

identified as the models with best accuracy in all three traits when measured with LR. Other 

feature selection models and WssGBLUP presented lower accuracy. Among the variable 

selection models we found slightly lower values of accuracy in the XGboost; however, we 

suggest that XGboost could be regarded as the best variable selection model among those 

tested, as it is the only model that presented higher accuracy than ssGBLUP, at net of better 

bias and dispersion. 

Several questions still persist about the use of these models in routine evaluation. One 

of these concerns the implementation of pre-selected SNPs in multitraits models. However, 

this is a recurring problem not only when the G matrix is built with pre-selected SNPs, but 

more in general whenever models take into account the specific genomic architecture of traits, 
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as for example WssGBLUP does. A possible solution to bypass this issue mighet be using 

multiple G matrix prediction models, one for each trait: yet, this is not computationally 

straightforward. A more concrete approach for future studies could represented by a 

preliminary selection of SNPs by multi-objective optimization framework algorithms as in 

Garcia (2019). Another possible concern about a large-scale use of variable selection 

ssGBLUP is the fluctuations of SNPs across generations. Similarly to the issue with multitrait 

models, this regards all genomic selections (Hidalgo et al., 2020): however, it is true that with 

respect to other methods, such as Bayesian SNPs regression, generation-by-generation 

recalibration of SNPs preselection algorithms can be extremely computationally demanding, 

especially when algorithms such as XGboost are chosen. Finally, SNP preselection could be 

influence by variability in SNPs frequency across animals, or more in general in the presence 

of population structure. In our study nonetheless, the PCA plots referring to SIM1 

(Supplementary Materials S2), where some clusters are present, show that variable selection 

models overcome this issue quite handily. In future studies it would be interesting to choose 

one or more variable selection models and evaluate their impact on more stratified 

populations. 

Besides increasing the EBV’s accuracies, developing an optimal strategy for SNPs 

variable selection in high-density panels will be particularly useful in local breeds. It would in 

fact allow the use of informative but lower density and cheaper panels. Furthermore, given 

that small breeds cannot attract the same level of technological investment as their 

cosmopolitan counterparts (e.g., Holstein), decreasing the costs of genomic selection could be 

critical to help guarantee their selection, and thus their survival. 

Aside from the economic factors, the importance of developing ad hoc selection 

methods for small-population cattle, especially for local breeds, is of primary importance for 

their conservation. Maintaining genetic progress for the productive characters and at the same 

time keeping intact the genetic variability and the distinct characteristics of the breeds can be 

guaranteed through breeding plans implementing careful selection (Biscarini et al., 2015). 

These plans are needed to preserve genetic variability within livestock local populations, a 

goal which, in the medium term, is critical for the animal husbandry industry to ensure the 

conservation of native breeds, their productive and reproductive efficiency, health, survival, 

and overall resilience to future changing environmental pressures (Mastrangelo et al., 2014). 
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CONCLUSIONS 

Genomic information, especially the single-step GBLUP technique, has brought great 

improvements to selection and breeding decisions in livestock. However, these methods still 

present methodological issues when applied to populations with a small size, such as local 

and endemic cattle breeds. Our rigorous testing of different algorithms for variable selection of 

informative SNPs has highlighted that prediction accuracy of variable selection ssGBLUP 

(especially that of XGboost) was greater than that of other ssGBLUP methods, without the 

inflated bias and dispersion that accompany the Weighted ssGBLUP. Our use of machine 

learning models could thus represent a solution to the issue of genomic selection in small 

populations. Local cattle breeds are an often-untapped resource of genetic diversity and have 

great potential to adapt to varying environmental conditions; the methods presented here 

might thus be employed in their conservation, study, and increase their economic 

competitiveness. 
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association mapping for farm animals: a simulation study 

Enrico Mancin*, Daniela Lourenco, Matias Bermann, Roberto Mantovani, Ignacy Misztal 

ABSTRACT 

Population structure or genetic relatedness should be considered in genome 

association studies to avoid spurious association. The most used methods for genome-wide 

association studies (GWAS) account for population structure but are limited to genotyped 

individuals with phenotypes. Single- step GWAS (ssGWAS) can use phenotypes from non-

genotyped relatives; however, its ability to account for population structure has not been 

explored. Here we investigate the equivalence among ssGWAS, efficient mixed-model 

association expedited (EMMAX), and genomic best linear unbiased prediction GWAS 

(GBLUP-GWAS), and how they differ from the single-SNP analysis without correction for 

population structure (SSA-NoCor). We used simulated, structured populations that mimicked 

fish, beef cattle, and dairy cattle populations with 1040, 5525, and 1400 genotyped individuals, 

respectively. Larger populations were also simulated that had up to 10-fold more genotyped 

animals. The genomes were composed by 29 chromosomes, each harboring one QTN, and 

the number of simulated SNPs was 35,000 for the fish and 65,000 for the beef and dairy cattle 

populations. Males and females were genotyped in the fish and beef cattle populations, 

whereas only males had genotypes in the dairy population. Phenotypes for a trait with 

heritability varying from 0.25 to 0.35 were available in both sexes for the fish population, but 

only for females in the beef and dairy cattle populations. In the latter, phenotypes of daughters 

were projected into genotyped sires (i.e., deregressed proofs) before applying EMMAX and 

SSA-NoCor. Although SSA-NoCor had the largest number of true positive SNPs among the 

four methods, the number of false negatives was two- to five-fold that of true positives. 

GBLUP-GWAS and EMMAX had a similar number of true positives, which was slightly smaller 

than in ssGWAS, although the difference was not significant. Additionally, no significant 

differences were observed when deregressed proofs were used as pseudo-phenotypes in 

EMMAX compared to daughter phenotypes in ssGWAS for the dairy cattle population. Single-

step GWAS accounts for population structure and is a straightforward method for association 

analysis when only a fraction of the population is genotyped and/or when phenotypes are 

available on non-genotyped relatives. 
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INTRODUCTION 

Genome-wide association (GWA) aims to identify regions in the genome that are 

related to diseases or traits of interest (Begum et al., 2012). The method is most often based 

on statistical tests to determine if a single nucleotide polymorphism (SNP) is statistically 

associated with the trait, at a given probability value (p-value). If the association is significant, 

the interrogated SNP may be in high linkage disequilibrium (LD) with a causative variant, or 

the SNP itself may be a common variant that has a large effect on the trait, although having 

one or a few causative variants and validating them can be difficult (Kennedy et al., 1992). In 

fact, results from GWA study (GWAS) have confirmed that most of the complex traits in 

humans (Yang et al., 2011), animals (Oliveira Silva et al., 2017) and plants (Bian and Holland, 

2017) are polygenic. Even in such a case, the GWAS still fulfills the primary goal of helping to 

better understand the biology of a trait. 

The first GWAS was developed to understand the biology of human diseases aiming 

the prevention (Bruton et al., 2007). Although a couple of studies were published a few years 

before, the study from 2007 is considered the landmark of GWAS because it resulted from a 

well-designed, large- scale study (Visscher et al., 2012). After that, GWAS was also adopted 

in livestock and plants. The very first studies were based on single-SNP analysis where each 

SNP is tested independently (Baling, 2006). However, this approach assumes SNPs are 

identically and independently distributed, which is only true when a population is comprised of 

unrelated individuals (Risch and Merikangas, 1996). As populations contain related 

individuals, not considering population structure or genetic relatedness in GWAS can result in 

spurious associations (Sul et al., 2018) To resolve the problem with population structure, the 

use of principal components (PC) to model relationships have been suggested (Price et al., 

2006). Still, the level of confounding in GWAS was considerable when 100 PC were fit into the 

model or when highly related individuals were removed from a human population (Sul et al., 

2018). 

A well-known approach among animal breeders, the mixed linear models (Henderson, 

1975), was then adopted for human GWAS showing to be a reasonable approach to take 

population structure into account (Kang et al., 2008; Kang et al., 2010). In this method, known 

as efficient mixed-model association expedited (EMMAX), one SNP is fit in the model as a 
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fixed covariate and, at the same time, a relationship matrix corrects for population structure. 

However, EMMAX-based methods consider only genotyped individuals with phenotypes. 

However, only a fraction of individuals in a population are genotyped, particularly in livestock 

and aquaculture. Because of that, the original mixed linear models were extended to account 

for genotyped and non-genotyped individuals in prediction analysis (Aguilar et al., 2010; 

Christensen and Lund 2010). This method is called single- step genomic best linear unbiased 

prediction (ssGBLUP) and is widely adopted for genomic predictions in livestock (Legarra et 

al., 2014; Misztal et al., 2020) and plants (Cappa et al., 2019), and was recently applied to 

predict polygenic risk score in humans (Truong et al., 2020). The popularity of ssGBLUP is 

due to the added value of phenotypes for relatives that are not genotyped, and the simplicity 

when combining information from genotyped and non-genotyped individuals (Legarra et al., 

2014). 

The usefulness of ssGBLUP to GWAS in a procedure called single-step GWAS 

(ssGWAS) was subsequently extended (Wang et al., 2012). In this method, SNP effects and 

variance explained by SNPs are computed simultaneously for all SNPs while accounting 

pedigree and genomic relationships in addition to all phenotypes available. However, no 

statistical significance test was available under the ssGWAS framework. Later it has been 

shown that the statistical test used in EMMAX has a mathematical equivalent that can be used 

in GBLUP-based methods (Gualdrón Duarte et al., 2014; Bernal Rubio et al.; 2016) even 

though SNPs are considered fixed in the former and random in the latter. This equivalent 

statistical test was then implemented in ssGWAS (Aguilar et al., 2019) so that p-values are 

computed based on prediction error variance of SNP effects. Because of the mathematical 

equivalence, results from ssGWAS are expected to be similar to the ones from EMMAX. Here 

we use different simulated, structured populations (i.e., beef cattle, dairy cattle, and fish) to 

investigate the equivalence among EMMAX, ssGWAS, and GBLUP-GWAS, and how they 

differ from single-SNP analysis. We also evaluate whether the population structure is fully 

considered by the mixed linear models, and when ssGWAS should be the method of choice 

for association studies in related populations. We demonstrate ssGWAS performs similarly to 

EMMAX and GBLUP-GWAS when genotyped animals have their own phenotypes or when 

only progeny phenotypes are available, so deregressed proofs must be used for EMMAX and 

GBLUP- GWAS. 
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MATERIALS AND METHODS 

Although the main objective here was to demonstrate the equivalence of EMMAX and 

ssGWAS, we also compared those two methods against the single-SNP analysis without 

correction for population structure (SSA-NoCor) and the GBLUP-based GWAS (GBLUP-

GWAS) that uses only genotyped individuals with phenotypes. 

Methods and Computations 

Single-SNP Analysis without Correction for Population Structure (SSA-NoCor): 

To estimate allele substitution effect of the ith SNP with SSA-NoCor, the following model was 

used: 

𝑦𝑦 = 1𝜇𝜇 + x𝑖𝑖𝑎𝑎𝑖𝑖 + 𝑒𝑒 (1) 

where 𝑦𝑦 is the vector of phenotypes, 𝜇𝜇 is the mean, x𝑖𝑖 is a vector that contains the genotype 

for the ith SNP for each animal, 𝑎𝑎𝑖𝑖 is the ith allele substitution effect, and 𝑒𝑒~N(0, I𝜎𝜎𝑒𝑒2) is the 

residual. The estimate of 𝑎𝑎𝑖𝑖 and its variance was obtained by least squares. 

Single-SNP Analysis with Correction for Population Structure Using a Genomic Relationship 

Matrix (EMMAX): 

For the EMMAX method, the estimated allele substitution effect and its variance were obtained 

from the BLUE of the following linear mixed model: 

𝑦𝑦 = 1𝜇𝜇 + x𝑖𝑖𝑎𝑎𝑖𝑖 + Z𝑎𝑎 + 𝑒𝑒 (2) 

where Z is a design matrix, 𝑎𝑎~N(0, G𝜎𝜎𝑎𝑎2) is the vector of breeding values (i.e., animal effect), G 

is the genomic relationship matrix, and the rest of the components were previously defined. 

The G matrix was calculated as first method following literature (Zhou and Stephens, 2012): 

𝐺𝐺 =  1
𝑝𝑝

  ∑ (𝑥𝑥𝑖𝑖 − 1𝑛𝑛x̅𝑖𝑖)(𝑥𝑥𝑖𝑖 − 1𝑛𝑛x̅𝑖𝑖)𝑇𝑇
𝑝𝑝
𝑖𝑖=1  (3) 

where 𝑥𝑥𝑖𝑖 stands for ith SNP locus column and x̅𝑖𝑖 represented the mean of ith locus, n is the 

number of samples. 
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GBLUP Association (GBLUP-GWAS): 

For the GBLUP-GWAS, the vector of estimated allele substitution effects 𝑎𝑎� was obtained from 

a linear transformation of the BLUP of 𝑎𝑎 under a GBLUP model: 

𝑦𝑦 = 1𝜇𝜇 + Z𝑎𝑎 + 𝑒𝑒 (4) 

of which the mixed model equations can be represented by: 

�
1′1 1′Z
Z′1 Z′Z+G−1 𝜎𝜎𝑒𝑒

2

𝜎𝜎𝑎𝑎2
� ��̂�𝜇𝑎𝑎�

�= �1
′𝑦𝑦

Z′𝑦𝑦� (5) 

In this method, G0 was estimated by the second method based on [26]: 

G0 = MM′

2 ∑𝑝𝑝𝑖𝑖 (1−𝑝𝑝𝑖𝑖 )
 (6) 

where M is a matrix of SNP content centered by twice the current allele frequencies, and pi is 

the allele frequency for the ith SNP (VanRaden, 2008). Additionally, to avoid singularity 

problems, the final G was computed as 

G = 𝜆𝜆G0 + 𝛽𝛽I  (7) 

with λ=0.95 and β=0.05. 

Afterwards, the vector of allele substitution effects (𝑎𝑎�) was calculated for all SNPs 

simultaneously (Wang et al. 2012): 

𝑎𝑎� = 𝜆𝜆 1
2∑𝑝𝑝𝑝𝑝

M′G−1𝑎𝑎�   (8) 

with 𝑞𝑞 = 1 − 𝑝𝑝. 

The variance of SNP effects, which is needed to compute p-values when SNPs are considered 

random was calculated following as (Gualdrón Duarte et al., 2014): 

𝑉𝑉𝑎𝑎𝑎𝑎(𝑎𝑎�) = 𝜆𝜆 1
2∑𝑝𝑝𝑝𝑝

Z′G−1(G𝜎𝜎�𝑎𝑎2 − C22)G−1Z 𝜆𝜆 1
2∑𝑝𝑝𝑝𝑝

 (9) 
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where C22 is the block of the inverse of the MME corresponding to the animal effect. The p-

value for each SNP effect was then computed with the formula (Gualdrón Duarte et al., 2014): 

𝑝𝑝 − 𝑣𝑣𝑎𝑎𝑣𝑣𝑢𝑢𝑒𝑒𝑖𝑖 = 2�1 − 𝛷𝛷 �� 𝑔𝑔�𝑖𝑖
𝑡𝑡𝑠𝑠(𝑔𝑔�𝑖𝑖)

��� (10) 

where 𝑠𝑠𝑑𝑑(𝑎𝑎�𝑖𝑖) is the standard error of the SNP effect or simply 𝑠𝑠𝑑𝑑(𝑎𝑎�𝑖𝑖) = �𝑉𝑉𝑎𝑎𝑎𝑎(𝑎𝑎�𝑖𝑖); 𝛷𝛷(∙) is the 

cumulative density function (CDF) of the standard normal distribution. For a justification of 

using 𝑠𝑠𝑑𝑑(𝑎𝑎�𝑖𝑖) = �𝑉𝑉𝑎𝑎𝑎𝑎(𝑎𝑎�𝑖𝑖) in the denominator instead of �𝑉𝑉𝑎𝑎𝑎𝑎(𝑎𝑎𝑖𝑖) − 𝑉𝑉𝑎𝑎𝑎𝑎(𝑎𝑎�𝑖𝑖) (Gualdrón Duarte 

et al., 2014): 

 

Single-Step GBLUP association (ssGWAS): 

This method differs from GBLUP-GWAS in the sense that all animals in the pedigree can be 

used, not only genotyped animals with phenotypes. Therefore, G−1 is replaced by H−1 in (5), 

and the latter combines pedigree and genomic relationships (Aguilar et al., 2010): 

H−1 =  A−1 + �
0 0
0 G−1 − A22

−1� (11) 

where A−1 and A22
−1 are the inverses of the pedigree relationship matrix for all animals and only 

genotyped animals, respectively. Pedigree and genomic relationships have different genetic 

base because allele frequencies from the current genotyped population are used to center G. 

Therefore, G in ssGWAS is adjusted so the average diagonal and off-diagonal matches the 

averages of A22. Because of this adjustment, (8) and (9) were modified to: 

𝑎𝑎� = 𝜆𝜆𝜆𝜆 1
2∑𝑝𝑝𝑝𝑝

M′G−1𝑎𝑎�22 (12) 

and 

𝑉𝑉𝑎𝑎𝑎𝑎(𝑎𝑎�) = 𝜆𝜆𝜆𝜆 1
2∑𝑝𝑝𝑝𝑝

Z′G−1(G𝜎𝜎�𝑎𝑎2 − C22)G−1Z 𝜆𝜆𝜆𝜆 1
2∑𝑝𝑝𝑝𝑝

 (13) 



 

208 
 

where 𝑎𝑎�22 is a vector of genomic estimated breeding values (GEBV) for genotyped animals; 𝜆𝜆 

accounts for the difference in genetic base between the pedigree and genomic relationship 

matrices, and was calculated as (Vitezica et al., 2011): 

𝜆𝜆 = 1 − 0.5
𝑛𝑛2

(∑ ∑ A22(i,j)𝑖𝑖𝑖𝑖 −  ∑ ∑ Gi,j𝑖𝑖𝑖𝑖 ) (14) 

with n the number of genotyped animals. After the modification, P-values in ssGWAS were 

obtained as in (10) and previously suggested (Aguilar et al., 2019). 

Note that the dimension of ssGWAS system of equations is greater than the dimension of 

GBLUP-GWAS because of the inclusion of non-genotyped animals.  

 

Computations: 

The allele substitution effects were estimated with different software: (i) SSA-NoCor solutions 

were computed with GASTON R-package (Dandine-Roulland and Perdry, 2018) , (ii) EMMAX 

solutions were obtained with GEMMA software (Zhou, 2016), (iii) GBLUP-GWAS and (iv) 

ssGWAS were computed using the BLUPF90 software suite (Misztal et al., 2015). 

Overview of Data Simulation 

We used different simulated datasets to investigate the equivalence between EMMAX and 

ssGWAS, and to explore the usefulness of each method compared to SSA-NoCor and 

GBLUP-GWAS. A fish, a beef cattle, and two dairy cattle populations were simulated using 

QMSim (Sargolzaei and Schenkel, 2009), with five replicates for each. The general parameters 

for each population such as the number of genotyped animals, effective population size, type 

of trait, and heritability are reported in Table 1. 
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Table 1. Simulated population structure 

 Simulated population 
 Fish Beef Dairy 

Number of records 2040 5088 70,000 
Number of animals in the pedigree 2040 10,000 140,000 

Number of genotyped animals 1040 5525 1400 
Number of genotyped animals with 

records 1040 3039 14001 
    

Type of trait 
Both 

sex 
Sex-

limited Sex-limited 
Heritability 0.25 0.30 0.30 

1 Number of genotyped animals with projected phenotypes of progeny (i.e., deregressed proofs) 

Fish Population 

The historical population began with 5000 animals and decreased to 3100 after 200 non-

overlapping generations, that were carried out to generate linkage disequilibrium (LD) and 

mutation-drift equilibrium. The proportion of males in the historical population was 31%. Aiming 

to mimic a real fish selection scheme (Garcia et al., 2018), a recent population was created by 

randomly selecting 20 sires and 20 dams. The recent population was subject to random mating 

for five generations. In every generation, each female had 2 offspring. After the fifth 

generation, a new line was created by mating 20 males and 20 females randomly. For this line, 

the litter size was set to 100 offspring per dam. Sire and dam culling rates were set to 0.5 and 

0.2, respectively. Phenotypes and pedigree of the animals in the new line, together with their 

parents, were considered for the association analysis.  

The genome was composed of 29 chromosomes with a length of approximately 100 cM each, 

35,000 evenly spaced SNPs, and one QTN per chromosome. Each QTN was placed in the 

middle of its respective chromosome. Although this number of QTN is not the reality of most of 

the traits of interest (i.e., complex traits), this assumption was made to facilitates the QTN 

discovery in the association analysis. Altogether, the QTNs accounted for the total of the 

genetic variation and their effects were assumed to follow a gamma distribution with shape 

parameter equal to 0.40. The allele frequencies for SNPs and QTNs in the first historical 
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generation were 0.5, and a recurrent mutation rate of 2.5e-5 per locus per generation was 

assumed. A single trait with heritability of 0.25 was simulated, and a single phenotype per 

animal was obtained by adding an overall mean of 1.0, the sum of the QTN effects, and a 

residual effect.  

Beef Cattle Population 

In this dataset, the historical population began with 1000 animals and steadily increased to 

50,000 after 1000 generations of random mating. Then, a decrease in number of individuals 

followed for another 1000 generations. After 2000 generations, the historical population was 

composed by 23,000 animals, of which 3000 were males. The recent beef cattle population 

was created by randomly selecting 10000 dams and 200 sire and allowing them to mate 

randomly for five discrete generations. Afterwards, five groups of 10 sires and 500 dams each 

were selected based on TBV to create five different lines. With the aim of maximizing the 

difference between the five lines, selection based on TBV was used in each of them. Finally, 

10 sires and 500 dams from each of the five lines were pooled in one single line and 

underwent random mating for five generations. This process was designed to create an 

intricate population structure. For the present population, a sex-limited trait was simulated so 

that only females had a phenotype for a trait with heritability of 0.30. 

Genotypes were simulated for males and females from the last generation of the population 

and their parents (nbeef = 5525). The parameters to simulate the beef cattle genome were the 

same as in the fish population except for the number of SNPs, which for the beef cattle 

population was equal to 65,000. 

Dairy Cattle Population 

The parameters for the simulation of the dairy historical population were the same as those in 

beef cattle. A total of 1000 sires and 20,000 were chosen as founders of the recent population. 

This population was subject to selection based on estimated breeding values (EBV) for 10 

generations and assortative mating based on inbreeding (Sonesson and Meuwissen, 2000). In 

this simulation, an Ne between 100-150 was maintained. The Ne was calculated as the 

change in inbreeding (∆𝐹𝐹) from one generation to the next using the following formula 

(Falconer and Mackay, 1996): 
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∆𝐹𝐹 = 𝐹𝐹𝑛𝑛−𝐹𝐹𝑛𝑛−1
1−𝐹𝐹𝑛𝑛−1

 (15) 

𝑁𝑁𝑒𝑒 = 1
2∆𝐹𝐹

 (16) 

where 𝐹𝐹𝑛𝑛 is the inbreeding in the nth generation. 

All the parameters for the genome simulation were similar to the ones in the beef cattle 

population. The only difference was the genotyping strategy that included only sires of the 

seventh generation (ndairy = 1400). Phenotypes for a trait of heritability 0.3 were available only 

on females (Table 1). On average, each genotyped sire in this population had 10 daughters 

with records, and dairy_10d will be used to refer to this dataset. A second dairy cattle 

population was generated with the same parameters, but with five daughters with records per 

sire. This population will be referred to as dairy_5d and was created to mimic a situation where 

deregressed proofs (DP) of sires have lower reliability. 

Deregressed Proofs (DRP) 

One requirement in association analysis is that individuals should have both genotypes and 

phenotypes. In some livestock populations, genotypes may be available for males and 

phenotypes for females (e.g., milk production in dairy cattle). In such a case, DRP are needed 

as an input for SSA-NoCor, EMMAX, or GBLUP-GWAS. The DRP are projections of female 

phenotypes into their relatives’ genotypes. Because sex-limited traits were simulated for the 

beef and dairy cattle populations, DRP were computed for sires in both populations following 

(VanRaden and Sullivan, 2010; Wiggans et al., 2011). 

𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐷𝐷𝐴𝐴 + 𝐸𝐸𝐸𝐸𝐸𝐸−𝑃𝑃𝑃𝑃
𝐷𝐷𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝐷𝐷𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝐷𝐷𝐸𝐸𝑃𝑃𝑃𝑃+1)⁄

  (17) 

𝑤𝑤here 𝐷𝐷𝐴𝐴 is parent average; 𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑔𝑔 = � 𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑒𝑒𝑟𝑟
(1−𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑒𝑒𝑟𝑟)

� − 𝐷𝐷𝐷𝐷𝑃𝑃𝑃𝑃 and is the daughter equivalent from 

progeny information; and 𝐷𝐷𝐷𝐷𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑝𝑝𝑒𝑒𝑟𝑟
(1−𝑃𝑃𝑃𝑃𝑝𝑝𝑒𝑒𝑟𝑟)

  is the daughter equivalent from PA. The EBVrel and 

PArel are reliabilities of parent average and EBV, respectively. All EBV, PA, and reliabilities 

used in the DRP formula were computed using the BLUPF90 software suite (Misztal et al., 

2015). The DRP were used for the association analysis of dairy cattle datasets under SSA-
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NoCor, EMMAX, and GBLUP-GWAS. As ssGWAS uses all phenotypes, genotypes, and 

pedigree information available, it does not rely on DP. 

Quality Control Prior to the Association Analysis 

Quality control of genomic data removed monomorphic SNPs, SNPs with minor allele 

frequency (MAF) lower than 0.05, and with deviation between observed and expected allele 

frequencies greater than 0.15. After quality control, and average of 35,000, 58,000, and 58,00 

SNPs were kept for the analysis in the fish, beef cattle, and dairy cattle population, 

respectively. 

Significance and Concordance Tests 

A single SNP was considered significantly associated with the considered trait when its p-value 

was smaller than a certain significance level, which was 0.05 with a Bonferroni correction for 

multiple testing, i.e., 0.05⁄(number of SNPs). Additionally, true positive (TP) and false positive 

(FP) rates were computed for each scenario using a window size of ± 2 cM, which is 

equivalent to 20-30 markers (Toosi et al., 2018) 

RESULT AND DISCUSION 

Population Structure 

Figures 1 and 2 show plots with the first (PC1) and second (PC2) principal components 

of G for small and large populations, respectively. PC1 and PC2 represent the two largest 

sources of variation in the data, and are often used to investigate population structure, which 

was deemed important in our study. The level of population stratification differed among the 

simulated populations because of the different selection and mating strategies. For the small 

populations, distinct family groups (full-sibs) were observed for the fish population, with 

variable size and impact on the model (extreme clusters farther from PC1=PC2=0); however, 

the PC scores were of small magnitude. No distinct clustering was detected in the beef cattle 

population, although a level of variability was observed. Overall, it was not possible to 

discriminate different groups of individuals but some of them appear more genetically different 

than others. In fact, animals belonging to five different lines were randomly mated for ten 

generations, and only genotypes for animals in the 7th generation were retained. Therefore, 

less genetic distance among animals was created. Still, the largest graphical distance was 
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observed in the dairy cattle population, with a large cluster centered in zero and a few animals 

genetically distant from the main cluster; however, the amount of variation explained by PC1 

and PC2 was small. Possibly, this pattern resulted from non- overlapping generations that 

created extra genetic distance among some animals. These distant animals were sires that 

had EBV departing from the population mean. For the large populations, no clustering was 

observed for the fish and beef populations, whereas the same pattern was observed for dairy 

cattle in both populations. 
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Figure 1. Linkage disequilibrium (r2) decay for the small populations of fish (A), beef (B), and dairy 

cattle (C). 
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Figure 2. Linkage disequilibrium (r2) decay for the large populations of fish (A), beef (B), and dairy 

cattle (C).  
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Figure 3. First and second principal components of the genomic relationship matrices for the 
small populations of fish, beef, and dairy cattle. 
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Figure 4. First and second principal components of the genomic relationship matrices for the 

large populations of fish, beef, and dairy cattle 
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Association Analysis 

Manhattan plots with p-values for the fish, beef cattle, and dairy cattle populations using 

SSA- NoCor, EMMAX, and ssGWAS, and GBLUP-GWAS are in Figures 5-10. Although one 

QTN was simulated in each chromosome, the signals were not equally strong because of the 

assumption of a Gamma distribution, and the selection that the populations underwent. 

Overall, selection caused fixation for 5 to 6% of the QTN. To better access the information in 

the Manhattan plots, the average number of true and false positive SNPs were computed and 

placed in Table 2. Although the number of TP and FP differed among EMMAX, ssGWAS, and 

GBLUP-GWAS, the differences were not statistically significant (p-value > 0.05). 

Table 2. Average number (± SE) of true positive (TP) and false positive (FP) SNPs for all 

the simulated populations 

Population Association SSA_NoCor EMMAX ssGWAS GBLUP-GWAS 

Fish 
TP 68.4 ± 7.50 16.2 ± 7.85 16.8 ± 11.70 13.6 ± 7.85 
FP 155 ± 99.90 0.4 ± 0.54 0.2 ± 0.45 0.0 ± 0.00 

      

Beef 
TP 16.2 ± 11.2 5.6 ± 4.10 7.6 ± 3.78 5.6 ± 4.10 
FP 64.8 ± 56.5 0.0 ± 0.00 0.2 ± 0.44 0 ± 0.00 

      

Dairy_10d 
TP 13.5 ± 3.11 8.75 ± 5.91 13.2 ± 0.50 8.75 ± 5.12 
FP 24.5 ± 8.8 0.0 ± 0.00 0.25 ± 0.50 0.0 ± 0.00 

      

Dairy_5d 
TP 18 ± 4.20 10 ± 2.45 13 ± 1.87 5.6 ± 0.89 
FP 51.6 ± 25.6 0.0 ± 0.00 0.4 ± 0.55 0 ± 0.00 

 

For all the simulated populations, the greatest number of false positive SNPs was 

observed for SSA- NoCor. These results agree with those from previous studies (e.g. Yang et 

al., 2014), which showed that the number of false positives drastically decreased when 

correcting for population structure. For the small populations, the number of false positive 

SNPs in SSA-NoCor for the dairy dataset was the smallest one compared to the other 

simulated populations, whereas for the large populations, the smallest number of false 

positive SNPs occurred in the beef population. In both cases, the fish population had the 

greatest number of false positive signals. Since this population had a strong structure (e.g., 

several separate clusters), it can be concluded that the population structure is related to the 
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number of false positive signals captured by SSA-NoCor. False positive associations capture 

SNPs that relate to the genetic differences between sub-populations and also with the trait 

considered (Sul et al., 2018). These spurious signals can also be interpreted as a wrong prior 

assumption of marker effects in the SSA-NoCor model. In such a model, markers are 

considered independently distributed, which implicitly means linkage disequilibrium among 

SNPs is neglected (Sul et al., 2018; Finno et al., 2014). The effect of population structure is 

even more evident when small sample size and high-density panels are used in association 

analyses (Finno et al., 2014). Furthermore, when traits are polygenic or have low heritability, 

signals deriving from population structure can completely override those deriving from true 

QTNs (Toosi et al., 2018; Atwell et al., 2010). 

In terms of true positives, two situations were observed. First, SSA-NoCor detected 

significantly more true positives than the other methods in the fish and large dairy cattle 

simulated populations. However, the number of false positives was sometimes 3-fold greater 

than that of true positives. The identification of false and true positives is straightforward in 

simulated data but not in real data. Second, no significant differences were observed among 

methods for the beef and the small dairy population. Based on the results from the dairy 

population, it can be concluded that the use of DRP for bulls in EMMAX and GBLUP-GWAS, 

compared to the raw phenotypes in ssGWAS, did not promote a loss in GWA resolution. The 

loss in the ability to correctly detect QTNs when using DRP is expected in complex models 

when the estimation of fixed and random effects is not very accurate. According to Aguilar et 

al. (2019), information can be lost in the deregression process, which may result in spurious 

signals in GWA. Although DRP were used in the dairy population, no significant differences in 

TP and FP were observed between EMMAX and ssGWAS because the model was simple 

and included only a general mean as fixed effect and the additive genetic as random. 

The methods in our study were used as binary classifiers when trying to identify true 

and false positives. The quality of a binary classifier can be evaluated from the degree of 

randomness of the decisions of that classifier. A perfect classifier is not random, whereas the 

worst classifier would determine whether a signal is true or false with a probability equal to 0.5 

(Agresti, 2013). To compare the methods in our study as binary classifiers, Receiver 

Operating Characteristic (ROC) curves were provided for each simulated population in 

Figures 11 and 12. Among the plots, it can be observed that the curve corresponding to SSA-

NoCor is the lowest one. Therefore, as a binary classifier, SSA-NoCor performs worse than 
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the rest of the methods. The classifier ability of the models improved in the large populations, 

but SSA-NoCor still had poorer performance compared to other methods. The fact large data 

improves the resolution of GWAS is well documented in the literature. 

Overall, we observed the size of the populations (e.g., small and large) did not change 

the outcome of our study, and we confirmed, using simulated populations with intricate 

structure, that EMMAX, GBLUP-GWAS, and ssGBLUP account for population structure. The 

equivalence between p-values obtained in EMMAX and GBLUP-GWAS has been analytically 

demonstrated (Bernal Rubio et al., 2016), although the former considers SNPs as fixed effects 

and the latter as random. Lu et al. (2018) extended this idea to single-step and implemented it 

with the addition of p-values for ssGWAS in the BLUPF90 software suite (Aguilar et al., 2019; 

Misztal et al., 2015). This methodology was successfully applied to a beef cattle population 

with almost 2 million animals in the pedigree, 1 million birth weight records, and a little over 

1400 genotyped sires (Aguilar et al., 2019). In our study, we confirmed that ssGWAS can 

account for population structure as EMMAX or GBLUP- GWAS. 

Recently, single-step was applied for predicting polygenic risk score in humans using 

phenotypes from related individuals that were not genotyped (Truong et al., 2020). In this 

study, authors observed an increase in prediction accuracy when raw phenotypes of non-

genotyped relatives were included in the model, which is only possible with single-step 

method. As the number of genotyped individuals in (Truong et al., 2020) was 288k, the 

authors complained about the computing cost of single step, which is mainly due to the 

inverse of G. An efficient algorithm to compute G-1 without having to directly invert G –the 

Algorithm for Proven and Young (APY)– is also available (Misztal et al., 2014). With the APY 

algorithm, animals are designated as core or noncore, and recursion are done on core 

animals, whereas predictions for noncore animals are functions of the information for core 

animals. This is possible because of the assumption that core animals carry all the information 

about the independent chromosome segments segregating in the population (Misztal et al., 

2016). In addition, it was found (Pocrnic et al., 2016) that the number of largest eigenvalues 

explaining 98% of the variance in G approaches the number of independent chromosome 

segments (Stam, 1980) and can be used as the number of core animals in APY. This 

algorithm enables the computation of genomic predictions for millions of genotyped individuals 

with much less memory usage and computing time. Indeed, a successful computation of 

genomic predictions for 13.5 million animals in the pedigree, of which 2.3 million were 
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genotyped, using the BLUPF90 software suite has recently been shown to be feasible 

(Tsuruta et al., 2020). Although the computation of genomic predictions (GEBV), SNP effects, 

and variance explained by SNPs can be done efficiently with APY in ssGBLUP, the same 

does not apply to the computation of p-values in ssGWAS. This is because the formula for p-

values (10) relies on the standard error of SNP effects (i.e., square root of prediction error 

variance), which is currently obtained based on the prediction error variance of GEBV. The 

latter requires the inverse of the left-hand-side of the single-step mixed model equations, and 

the computation of inverses of large matrices is extremely expensive. Therefore, the use of 

ssGWAS may be limited to samples of about 20k genotyped individuals, given the number of 

total animals in the pedigree is less than 500k. Approximating the prediction error variance of 

GEBV or SNPs directly may be a way to overcome this limitation, and research on the issue is 

currently undergoing. 

Figure 5. Manhattan plots for the small population of fish using single-SNP analysis without 
correction for population structure (SSA-NoCor), efficient mixed-model association expedited 
(EMMAX), single-step GWAS (ssGWAS), and genomic best linear unbiased prediction GWAS 
(GBLUP-GWAS). Significant SNPs are indicated in red, whereas vertical bars indicate the 
position of the simulated quantitative trait nucleotide (QTN). The darker the vertical bar, the 
stronger QTN effect. The blue horizontal line corresponds to the rejection threshold based on 
a significance level of 0.05 with a Bonferroni correction for multiple testing. 
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Figure 6. Manhattan plots for the small population of beef cattle using single-SNP analysis 
without correction for population structure (SSA-NoCor), efficient mixed-model association 
expedited (EMMAX), single-step GWAS (ssGWAS), and genomic best linear unbiased 
prediction GWAS (GBLUP-GWAS). Significant SNPs are indicated in red, whereas vertical 
bars indicate the position of the simulated quantitative trait nucleotide (QTN). The darker the 
vertical bar, the stronger QTN effect. The blue horizontal line corresponds to the rejection 
threshold based on a significance level of 0.05 with a Bonferroni correction for multiple testing. 
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Figure 7. Manhattan plots for the small population of dairy cattle when sires had an average 
of ten daughters. The association methods used were single-SNP analysis without correction 
for population structure (SSA-NoCor), efficient mixed-model association expedited (EMMAX), 
single-step GWAS (ssGWAS), and genomic best linear unbiased prediction GWAS (GBLUP-
GWAS). Significant SNPs are indicated in red, whereas vertical bars indicate the position of 
the simulated quantitative trait nucleotide (QTN). The darker the vertical bar, the stronger QTN 
effect. The blue horizontal line corresponds to the rejection threshold based on a significance 
level of 0.05 with a Bonferroni correction for multiple testing. 
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Figure 8. Manhattan plots for the large population of fish using single-SNP analysis without 
correction for population structure (SSA-NoCor), efficient mixed-model association expedited 
(EMMAX), single-step GWAS (ssGWAS), and genomic best linear unbiased prediction GWAS 
(GBLUP-GWAS). Significant SNPs are indicated in red, whereas vertical bars indicate the 
position of the simulated quantitative trait nucleotide (QTN). The darker the vertical bar, the 
stronger QTN effect. The blue horizontal line corresponds to the rejection threshold based on 
a significance level of 0.05 with a Bonferroni correction for multiple testing. 
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Figure 9. Manhattan plots for the large population of beef cattle using single-SNP analysis 
without correction for population structure (SSA-NoCor), efficient mixed-model association 
expedited (EMMAX), single-step GWAS (ssGWAS), and genomic best linear unbiased 
prediction GWAS (GBLUP-GWAS). Significant SNPs are indicated in red, whereas vertical 
bars indicate the position of the simulated quantitative trait nucleotide (QTN). The darker the 
vertical bar, the stronger QTN effect. The blue horizontal line corresponds to the rejection 
threshold based on a significance level of 0.05 with a Bonferroni correction for multiple testing. 
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Figure 10. Manhattan plots for the large population of dairy cattle when sires had an average 
of ten daughters. The association methods used were single-SNP analysis without correction 
for population structure (SSA-NoCor), efficient mixed-model association expedited (EMMAX), 
single-step GWAS (ssGWAS), and genomic best linear unbiased prediction GWAS (GBLUP-
GWAS). Significant SNPs are indicated in red, whereas vertical bars indicate the position of 
the simulated quantitative trait nucleotide (QTN). The darker the vertical bar, the stronger QTN 
effect. The blue horizontal line corresponds to the rejection threshold based on a significance 
level of 0.05 with a Bonferroni correction for multiple testing. 
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Figure 11. Receiver operating characteristic (ROC) curves for GWAS results for the small 
populations of fish (A), beef cattle (B), dairy cattle with ten daughters per sire. The association 
methods used were single- SNP analysis without correction for population structure (SSA-
NoCor), efficient mixed-model association expedited (EMMAX), single-step GWAS (ssGWAS), 
and genomic best linear unbiased prediction GWAS (GBLUP-GWAS). The dashed line has 
slope equal to one and null intercept. 
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Figure 12. Receiver operating characteristic (ROC) curves for GWAS results for the large 
populations of fish, beef cattle, dairy cattle with ten daughters per sire. The association 
methods used were single-SNP analysis without correction for population structure (SSA-
NoCor), efficient mixed-model association expedited (EMMAX), single-step GWAS (ssGWAS), 
and genomic best linear unbiased prediction GWAS (GBLUP-GWAS). The dashed line has 
slope equal to one and null intercept. 

 

 

 

 

CONCLUSION 

Genome-wide association studies in related populations require the correction for 

population structure to avoid false positive statistical associations between SNPs and trait 

phenotypes. Several classes of mixed linear models as EMMAX, GBLUP-GWAS, and 

ssGWAS can take care of this issue by fitting a random effect whose covariance matrix is 

proportional to a relationship matrix. We demonstrate the three methods did not significantly 



 

229 
 

differ across association studies in several simulated populations, regardless of if deregressed 

proofs or phenotypes from non-genotyped animals are used in the statistical analysis. Further 

studies are needed to investigate the repeatability of those results in real populations under 

complex models. Single-step GWAS accounts for population structure as EMMAX or GBLUP-

GWAS and allows for the inclusion of phenotypes from non- genotyped relatives 
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collected at different times 
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ABSTRACT 

Knowledge of the genetic architecture of key growth and beef traits in livestock species 

has greatly improved worldwide thanks to genome-wide association studies (GWAS), which 

allow to link target phenotypes to Single Nucleotide Polymorphisms (SNPs) across the genome. 

Local dual- purpose breeds have rarely been the focus of such studies; recently, however, their 

value as a possible alternative to intensively farmed breeds has become clear, especially for 

their greater adaptability to environmental change and potential for survival in less productive 

areas. We performed single-step GWAS and post-GWAS analysis for body weight (BW), 

average daily gain (ADG), carcass fleshiness (CF) and dressing percentage (DP) in 1690 

individuals of local alpine cattle breed, Rendena. This breed is typical of alpine pastures, with a 

marked dual-purpose attitude and good genetic diversity. Moreover, we considered two of the 

target phenotypes (BW and ADG) at different times in the individuals’ life, a potentially important 

aspect in the study of the traits’ genetic architecture. We identified 8 significant and 47 

suggestively associated SNPs, located in 14 autosomal chromosomes (BTA). Among the 

strongest signals, 3 significant and 16 suggestive SNPs were associated with ADG and were 

located on BTA10 (50-60 Mb), while the hotspot associated with CF and DP was on BTA18 (55-

62 MB). Among the significant SNPs some were mapped within genes, such as SLC12A1, 

CGNL1, PRTG (ADG), LOC513941 (CF), NLRP2 (CF and DP), 

CDC155 (DP). Pathway analysis showed great diversity in the biological pathways linked 

to the different traits; several were associated with neurogenesis and synaptic transmission, but 

actin- related and transmembrane transport pathways were also represented. Time-stratification 

highlighted how the genetic architectures of the same traits were markedly different between 

different ages. The results from our GWAS of beef traits in Rendena led to the detection of a 

variety of genes both well-known and novel. We argue that our results show that expanding 

genomic research to local breeds can reveal hitherto undetected genetic architectures in 
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livestock worldwide. This could greatly help efforts to map genomic complexity of the traits of 

interest and to make appropriate breeding decisions. 

INTRODUCTION 

 

Genome-wide association is a powerful analysis that allows to identify genomic regions 

associated with phenotype variations in a target population to understand better the genetic 

architecture of the phenotype (Begum et al., 2012); such analysis has proved to be invaluable in 

the study of the genetic architecture of livestock species traits, especially cattle (Schmid and 

Bennewitz, 2017). 

Most of the target traits in livestock are polygenic phenotypes (de Oliveira Silva et al., 

2017), which are suitable for investigation with robust GWAS. However, the GWAS is only the 

start of the investigation of the target traits genetic architecture (Atwell et al., 2010). Weaker 

signals that would be missed by GWAS analysis can be identified and described via pathways 

enrichment analysis, under the assumption that these signals are related to genes involved in 

complex pathways and biological processes (Buitenhuis et al., 2014; Pegolo et al., 2020). In 

beef cattle, traits such as growth or carcass conformation are critical to the profitability of meat 

production since greater growth means a shorter fattening period, and more conformed animals 

have higher economic value (Samorè et al., 2016). GWAS analysis in different species 

highlighted the strongly polygenic nature of these traits (Mateescu et al., 2017; Huang et al., 

2018; Falker-Gieske et al., 2019; Gershoni et al., 2021). 

In recent years, many studies have proposed more advanced approaches to investigate 

these phenotypes, such as the inclusion of whole genome sequences (Mao et al., 2016) or the 

analysis of growth traits in a longitudinal perspective (Yin and König, 2019). This latter approach 

has been scarcely used in beef cattle breeding (Yin and König, 2019; Gershoni et al., 2021), but 

there are dramatic differences in the functional elements involved in determining morphological 

traits at different ages (Helgeland et al., 2019): these differences could be investigated by 

separate analyses of the same trait collected at various ages. Investigations on beef traits 

(Mudadu et al., 2016) have been extensively performed in cattle, but most studies have regarded 

few cosmopolitan, specialized breeds. Dual-purpose breeds, which consist of local populations 

apart from a few exceptions (such as Simmental cattle), have rarely been the target of GWAS. 
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Local breeds are genetically more diverse than the cosmopolitan ones and have generally better 

health parameters and fitness due to a much-reduced specialization (Biscarini et al., 2015). Also, 

the negative genetic correlations occurring between dairy and beef traits make the genetic 

improvement of both aptitudes in dual- purpose populations far from its optimum (Frigo et al., 

2013; Mazza et al., 2016; Sartori et al., 2018). Moreover, such breeds often present unique 

characteristics that allow them to adapt to harsher conditions (Krupová et al., 2016; Sutera et al., 

2021) and better respond to environmental shifts or challenges (Biscarini et al., 2015). Thus, 

these dual-purpose local breeds represent an unexploited source of diversity for the animal 

breeding sector and a rare opportunity to conduct GWAS on key economic traits that have not 

been under excessive specialization. 

Rendena is an autochthonous breed from Alpine regions of North-East of Italy with a dual-

purpose aptitude for meat and milk still maintained through the current selection scheme, 

assigning 65% of the economic weight to milk and 35% to meat (Guzzo et al., 2019; for further 

details on the selection scheme see Mantovani et al., 1997; and Supplementary Material, Figure 

S1). 

The dual-purpose aptitude also allows to counteract inbreeding erosion and maintain 

good genetic variability despite the small population size (the current number of animals is 

around 7,000 of which 4,000 are cows). Rendena also presents good fertility and longevity 

parameters and excellent adaptability to local environments, ranging from plains to Alpine 

pastures (Ovaska and Soini, 2017; Guzzo et al., 2018). As in various other local breeds, genomic 

information of Rendena has started to be available just recently, after implementing a routine 

activity of genotyping. This information might allow identifying and describing genes and 

functional pathways involved in the genomic architecture of traits of economic or functional 

interest (Senczuk et al., 2020). Moreover, as genomic selection has just been implemented in 

Rendena (Mancin et al., 2021a), investigating these traits could also be helpful to increase the 

prediction accuracy (see Tiezzi and Maltecca, 2015). 

In this study, we performed a single-step GWAS and pathway analysis in Rendena cattle 

to investigate the genetic architecture of growth and carcass conformation traits, i.e., body 

weight, average daily gain, in vivo dressing percentage, and in vivo fleshiness (SEUROP grade). 
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Additionally, body weight and average daily gain were analyzed using records taken at 

different ages, to study possible temporal variation in the genetic architecture of growth at the 

early stages. 
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MATERIALS AND METHODS 

Animals and Phenotypes: 

All phenotypic records were collected at the performance test (PT) station of the National 

Breeders Association of Rendena cattle - ANARE, Trento Italy (www.ANARE.it). All phenotypes 

belonged to young (on average of one month of age) candidate bulls. About 60 young bulls are 

tested every year at the PT station for a total period of 11 months, following the criteria reported 

in Mantovani et al. (1997). Records have been collected since 1985, when PT started, until 

present times. The phenotypes collected during the PT are body weight (BW), average daily 

gain (ADG), carcass fleshiness (CF) and dressing percentage (DP). Both CF and DP are 

evaluated in vivo by 3 skilled operators at the end of the PT period and averaged to obtain the 

final score. The CF evaluation applies the same scores of post-mortem carcass appraisal 

established by the European Union Council (SEUROP), where the middle class (R) is equal to 

100 points and other classes (upper or lower classes) correspond to 10-points-variations. 

Furthermore, the evaluation also considers sub- classes (e.g., R+ and R- for the middle class) 

that are spaced 3.33 points from the class score. DP is a visual prediction of the post-mortem 

measure of DP: the operator makes a visual appraisal of the individual at the end of the 

performance test, offering an estimate of the expected DP – i.e., conformation – at slaughter 

(Mantovani et al., 1997). Average daily gain (ADG) is calculated as the linear regression of 

weight (BW) on age. For this study, ADG and BW were collected at different stages of PT. ADG 

has been divided into ADG_i and ADG_f: ADG_i covers the daily gain of the first half of the 

testing period (since entering the PT station until the 6th month), while ADG_f covers the daily 

gain of the second half (from the 6th month to the end of the period). ADG covering the entire PT 

test was labeled as ADG_tot. BW was split along the same timeline as ADG: body weight at the 

entrance to the station (BW_i), at six months (BW_m) and at the end of PT (BW_f). Data 

cleaning consisted of removing animals with a regression of weight on age showing a coefficient 

of determination below 0.9 (for further details, see Guzzo et al., 2019). 

Genomic data and quality control 

The biological material of the animals chosen for the genotyping resulted from salivary 

swab, hair (at least 30 bulbs), or ear tissue from biopsy brand, collected by ANARE on females 

and young candidate bulls at PT, as well as from semen of proven bulls, already subjected in the 

past to PT and progeny test for milk and to a large extent now eliminated. The Bovine 150K 
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Array GGPv3 Bead Chip (HD, 138,974 SNPs), and Illumina Bovine LD GGPv3 (LD, 26,497 

SNPs), were used for genotyping (Illumina, Illumina Inc., San Diego, CA, USA). The overlapping 

between the two panels is about 60%. The HD platform was used for 554 young bulls, while 

1,416 individuals (174 males and 1,242 females) were genotyped with LD chips. To achieve a 

reliable genomic imputation accuracy, the 174 males were animals with at least one parent and 

one half-sib genotyped with HD chips. The genotyped females were individuals with a kinship of 

at least 0.2 with phenotyped animals. Before proceeding with imputation, we performed a 

preliminary quality control removing SNPs with a minor allele frequency (MAF) < 0.01 and call 

rate lower than 0.90, using Plink program (Purcell et al., 2007). Only the 29 autosomal 

chromosomes (BTA) were used for association, and progeny conflicts were fixed using the 

seekparentsf90 program (Aguilar et al., 2018). 

AlphaImpute2 was used for imputation (Whalen and Hickey, 2020), as it combines a 

population imputation algorithm (Positional Burrows Wheeler Transform) with pedigree-based 

imputation (iterative peeling); we used the same parameters as in Mancin et al. (2021a). The 

accuracy of the imputations was roughly estimated as a correlation between true and imputed 

SNPs. To this aim, ten rounds of cross-validation were performed: in each round the overlapping 

SNPs between the two panels were removed in ten animals and then imputed using the HD 

panel from young bulls as reference population (Supplementary Material, Table S1). 

Subsequently, the correlation between the true and the imputed genotypes was calculated on 

these animals. 

After imputation, we performed a second genomic quality control with the preGSf90 

program (Aguilar et al., 2018): the SNPs with MAF lower than 0.05 and SNPs that deviated too 

much for the expected value of heterozygosis (i.e., Hardy-Weinberg Equilibrium) were removed. 

In accordance  

Single step genome-wide association (ssGWAS) 

Single step genome-wide association (ssGWAS) models were used to estimate allele 

substitution effect. In ssGWAS, the estimation of allele substitution effects was obtained from 

a linear transformation of the BLUP of breeding value under ssGBLUP model (Aguilar et al., 

2019). Mancin et al. (2021b) showed the advantages of this method in terms of QTL 

detection and control of populations structure over two-step methods in which de-regression 
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of breeding value as pseudo phenotype is required. This issue is particularly evident in the 

presence of unbalanced data (i.e., sex-limited traits). In fact, the ssGWAS allows the use of 

both male and female genomes even when analyzing a phenotype collected only in 

individuals of one sex.   

The ssGBLUP model used in this analysis, written in matrix form, is the following: 

�
𝑋𝑋′X 𝑋𝑋′Z
Z′X Z′Z+H−1 𝜎𝜎𝑒𝑒

2

𝜎𝜎𝑎𝑎2
� �𝑏𝑏�
𝑎𝑎�
�= �𝑋𝑋

′𝑦𝑦
Z′𝑦𝑦� [1] 

Where phenotypes are included in vector y, X is the incidence matrix of fixed effects 

(group of contemporaries, cow parity class and months of birth), b is the vector of these 

effects. The contemporary group has 147 levels, with each level consisting of bulls grouped 

together at the Performance Test because homogeneous by age (i.e., born within 1 month of 

each other; 82 

 animals per group on average, minimum 5 and maximum 142). The parity order of 

cow has four classes (first parity; second parity; third to seventh parity; above the eighth 

parity), and the classes of months of birth correspond to the single months, as in Guzzo et 

al. (2019).  

Z represents the incident matrix that relates the random genetic additive effects to the 

phenotype, with effects represented by vector 𝑎𝑎. The vector of random residual error (e) has 

a normal distribution 𝑁𝑁(0, 𝐼𝐼𝜎𝜎𝑒𝑒2), where 𝜎𝜎𝑒𝑒2 is the residual variance. In the ssGBLUP vector of 

additive genetic effects is distributed as 𝑁𝑁(0,𝐻𝐻𝜎𝜎𝑎𝑎2), where 𝜎𝜎𝑎𝑎2 is the additive genetic variance 

and H is the (co)variances structure which combines pedigree and genomic relationships 

(Aguilar et al., 2010). Its inverse, used in equation [1] is described as: 

H−1 =  A−1 +  �
0 0
0 G−1 − A22

−1� [2] 

where 𝐴𝐴−1 and 𝐴𝐴22−1 are the inverse of the pedigree kindship matrix respectively for all 

animals and for only genotyped animals. Since the frequencies of current genotyped 

population are used to center G and pedigree and genomic matrices have different bases, G 
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was adjusted so the average diagonal and off-diagonal matches the averages of A22. 

Pedigree kinship (sub) matrix was estimated tracing back the pedigree up to 7 generations, 

i.e., 6,644 animals. G matrix was built using the methods proposed by VanRaden (2008), as 

follows: 

𝐺𝐺0  = MM′

2 ∑𝑝𝑝𝑖𝑖 (1−𝑝𝑝𝑖𝑖 )
 [3] 

where M is a matrix of SNP content centered by twice the current allele frequencies, 

and 𝑝𝑝𝑖𝑖  is the allele frequency for the ith SNP (VanRaden, 2008).  

Additionally, to avoid singularity problems, the final G was computed as 

G = 𝜆𝜆G0 + 𝛽𝛽I  [4] 

Where G is the matrix present in the equations [2], I is an identity matrix of the same 

dimensions, λ and β are two weighting coefficients, with λ=0.99 and β=0.01. These values 

were chosen due to their influence on the power of signal detection of the GWAS, and 

because they resulted in inflation close to optimum values. In addition, G was adjusted to a 

better blending with diagonal and off-diagonal of A22 as described in Vitezica et al. (2011): 

𝛿𝛿 = 1 − 0.5
𝑛𝑛2

(∑ ∑ A22(i,j)𝑗𝑗𝑖𝑖 −  ∑ ∑ Gi,j𝑗𝑗𝑖𝑖 ) [5] 

Then, the vector of estimated breeding values was obtained as: 

𝑔𝑔� = 𝜆𝜆𝛿𝛿 1
2∑𝑝𝑝𝑝𝑝

M′G−1𝑎𝑎�22 [6]. 

Where 𝑎𝑎�22is the vector of estimated breeding values of genotyped animals. The 

prediction error variances 𝑔𝑔�, necessary to calculate the p-values, were calculated following 

Gualdrón Duarte et al. (2014) and computed as in Aguilar et al. (2019), where: 

𝑉𝑉𝑎𝑎𝑉𝑉(𝑔𝑔�) = 𝑉𝑉𝑎𝑎𝑉𝑉(𝜆𝜆𝛿𝛿 1
2∑𝑝𝑝𝑝𝑝

M′G−1𝑎𝑎�22) [7] 

𝑉𝑉𝑎𝑎𝑉𝑉(𝑔𝑔�) = 𝜆𝜆𝛿𝛿 1
2∑𝑝𝑝𝑝𝑝

M′G−1𝑉𝑉𝑎𝑎𝑉𝑉(𝑎𝑎�22)G−1M 𝜆𝜆𝛿𝛿 1
2∑𝑝𝑝𝑝𝑝

 [8] 
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Since 𝑉𝑉𝑎𝑎𝑉𝑉(𝑎𝑎�22) is equal to PEV (𝑎𝑎�22) – Var(𝑎𝑎22); thus 𝑉𝑉𝑎𝑎𝑉𝑉(𝑎𝑎�22) = G𝜎𝜎�𝑎𝑎2 − C22. It follows 

that formula [8] becomes: 

𝑉𝑉𝑎𝑎𝑉𝑉(𝑔𝑔�) = 𝜆𝜆𝛿𝛿 1
2∑𝑝𝑝𝑝𝑝

M′G−1(G𝜎𝜎�𝑎𝑎2 − C22)G−1M 𝜆𝜆𝛿𝛿 1
2∑𝑝𝑝𝑝𝑝

 [9] 

C22 is a submatrix of C belonging to the genotyped animals and represents the 

prediction error variances of 𝑎𝑎�22. The p-values are then calculated as 

𝑝𝑝 − 𝑣𝑣𝑎𝑎𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 = 2�1 − 𝛷𝛷 �� 𝑔𝑔�𝑖𝑖
𝑠𝑠𝑠𝑠(𝑔𝑔�𝑖𝑖)

��� [10] 

Where 𝑔𝑔�𝑖𝑖 is the allele substitution effect of SNP i and 𝑠𝑠𝑑𝑑(𝑔𝑔�𝑖𝑖) represents the square 

root of [9], Φ (∙) is the cumulative density function (CDF) of the normal distribution. Two 

thresholds were used for the association tests: a genome-wide 5% significant level of -

log10(p) = 5.55 (0.05/17,766) and a suggestive association with -log10(p) = 4.29 

(0.1/17,766). These are the thresholds corrected for multiple tests i.e., 𝑝𝑝
𝑛𝑛
where p is the 

probability level of significance and n is the corresponding number of independent SNPs (n = 

17,766) calculated using the ‘poolR’ R package (https://cran.r-

project.org/web/packages/poolr; R Core Team, 2021), according to Li and Ji (2005). The 

number of independent tests was calculated based on the number of eigenvalues. Instead of 

the standard approach of Cheverud (2001), we used the approach by Li and Ji (2005), a 

function that decomposes the eigenvalues in the integral part (Effective Number 

Independent Test) and the nonintegral part. 

The (co)variance components have been estimated with REML using Average-

Information algorithm (Gilmour et al., 1995). Approximate standard error of (co)variance 

components has also been estimated through Monte Carlo sampling as in Houle and Meyer 

(2015), in which standard deviations were calculated from Monte Carlo chains sampled from 

multinormal distribution with covariance being the inverse of the Average Information Matrix 

and the estimated variances as the expectation. Then the heritability for the 3 phenotypes 

was calculated under single trait models as in equation [1]. Heritability was calculated as: 
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ℎ2 =  𝜎𝜎𝑎𝑎2

(𝜎𝜎𝑎𝑎2+𝜎𝜎𝑒𝑒2)
 ; where 𝜎𝜎𝑎𝑎2 and 𝜎𝜎𝑒𝑒2 are, respectively, the additive genetic and the residual 

variances. 

Genetic and phenotypic correlations were estimated with bi-traits models, which are 

equivalent to equation [1] except for the animal additive genetic and residual variance, 

assumed to follow a multivariate normal distribution with mean 0 and variances G ⊗ H, and 

R ⊗ I, where 

G = �
σa12 σa1a2
σa1a2 σa22

�; R � σe1
2 σe1e2

σe2e1 σe22
�; [6] 

where G is the matrix of additive genetic (co)variances σ2a1, σ2a2, σa1a2 of traits 1 and 

2, R the matrix of residual (co)variances σ2e1, σ2e2 and σe1e2 of traits 1 and 2. The correlation 

was estimated as: 𝑐𝑐𝑐𝑐𝑣𝑣 =  𝜎𝜎𝑖𝑖1𝑖𝑖2
(𝜎𝜎𝑖𝑖,1  𝜎𝜎𝑖𝑖,2)

 where i stands for the genetic and phenotypic correlation; 

1 and 2 refer to the different performance test traits, and  𝜎𝜎𝑖𝑖1𝑖𝑖2is the covariance between 

traits 1 and traits 2, off diagonal of [6]. For phenotypic (co)variance, we mean the sum of the 

genetic and the phenotypic (co)variances. Traits that do not include zero in their correlations 

Higher Posterior Density Interval (HPD) were declared significantly correlated. All the 

genomic analyses were carried out with BLUPF90 family software (Aguilar et al., 2018) 

following the procedure described in Lourenco et al. (2020). Manhattan plots were drawn 

using ‘ggplot’ R package (Wickham, 2016), as were the LD graphs. 

1.6 Pathway analysis 

Pathway’s enrichment analysis was conducted to identify which biological pathways 

and functional elements were enriched for the investigated traits. From GWAS results, we 

selected SNPs with nominal P-values of < 0.01 which were mapped to genes based on a 

distance of 15 kb from the coding region using the ‘biomaRt’ R package (Drost and 

Paszkowski, 2017) and Bos taurus UMD3.1 assembly as in Pegolo et al. (2020). Functional 

enrichment analysis was carried out on the list of significant genes using the Cytoscape 

plugin ClueGo (Bindea et al., 2009). As functional categories, we used cellular component, 

biological process, and molecular functions within the Gene Ontology (GO, 
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http://geneontology.org) database and the Kyoto Encyclopedia of Genes and Genomes 

(KEGG, http://genome.jp/kegg/). The Benjamini-Hochberg correction was applied to declare 

significant pathways: only pathways showing FDR < 0.05 were retained. The minimum 

number of genes in the pathway was set to 3; the minimum percentage of genes present in 

the pathway was set to 4%. To simplify the redundance of GO terms we provide figures with 

similar terms grouped based on their semantic similarity using the R packages ‘rrvgo’ 

(Sayols, 2020). In addition, we investigated if the candidate regions declared as significant 

by our GWAS overlapped with QTL in animal QTLdb, identified with R package ‘GALLO’ 

(Fonseca et al., 2021).  

RESULTS AND DISCUSSION 

Heritability and genetic correlations 

Descriptive statistics after data editing of the phenotypes are shown in Table 1. 

Phenotypic and genetic correlations and the heritability (h2) for the analyzed traits are 

reported in Table 2. Body weight traits presented an average value of h2 lower than other 

traits: BW_i showed the lower heritability (0.130), while BW_m and BW_f had heritability of 

0.220. In fact, as reported in literature, a large discrepancy of values has been observed for 

heritability of body weights, and generally, traits similar to birth weight or weaning weight 

have a slightly lower heritability than weight measured in more advanced stages (Yin and 

König, 2018). Average daily gain (ADG_tot) presented an intermediate heritability of 0.322 

partitioned into 0.164 and 0.220 for ADG in the first and last period. As for body weight, ADG 

presents lower h2 in first stages of the performance test, and h2 values agree with what has 

been found in the literature (Yin and König, 2018). The highest heritabilities were found for 

the traits related to the carcass conformation, with a value of 0.45 and 0.47 respectively for 

CF and DP, close to what was observed in other local dual-purpose or beef cattle (Albera et 

al., 2001; Sbarra et al., 2013; Mancin et al., 2021c). These traits also appeared highly 

genetic correlated. All ADG traits were moderately genetically correlated with them, with a 

value of 0.5 on average. On the contrary, body weight measured at the beginning of the 

performance test was not significantly correlated with CF and DP. Interestingly, the weights 

measured in more advanced periods showed an increase of genetic correlation with a value 

close to 0.7. Body weight and ADG also presented a strong genetic correlation with body 
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weight traits, especially for the traits measured at the final stages of the performance test. In 

terms of genetic correlations, the results agree with what was found in other local dual-

purpose or beef breeds (Veselá et al., 2011; Filipčík et al., 2020). Phenotypic correlation 

followed the same trends of genetic correlation but with a lower magnitude (Table 2, under 

diagonal). 

Table 1: Summary statistics for phenotypic data of animals with both genotypic and phenotypic 
information (n = 689). 

Traits Mean SD Min. Max. 
BW_i (kg) 65.72 14.64 37 139.0 

BW_m (kg) 183.40 30.53 83 317.0 
BW_f (kg) 376.20 43.60 203 576.0 

ADG_i (g/d) 939.20 167.90 138 1388 
ADG_f (g/d) 1082 157.30 365 1756 

ADG_tot (g/d) 1024 124.2 474 1562 
CF (score) 99.05 3.80 80 111 
DP (score) 54.18 0.94 50 57 

BW_i, body weight at the entrance at performance test stations; BW_m, body weight at six months; BW_f, at the 
end of performance test; ADG_i, average daily gains covering the first half of the period (since entering into the PT 
station until the 6th month); ADG_f, average daily gain covering the daily gain of the second half (since the 6th 
month to the end of the period), ADG_tot average daily gain covering the entire period; DP, Dressing Percentage; 
CF, Carcass Fleshiness; cSD Standard deviation, bMin minimum, cMax maximum 

Table 2. Mean of genetic (over diagonal) and phenotypic (under diagonal) correlations, and 
heritability (diagonal) with the respective standard deviations in target traits in Rendena 
population, estimated under ssGBLUP models. (NS) stands for non-significant correlations. 
 

 BW_i BW_m BW_f ADG_i ADG_f ADG_tot CF DP 

BW_i 0.13 ± 0.08 0.99 ± 0.17 0.80 ± 0.10 0.52 ± 0.96 0.44 ± 0.85 0.50 ± 0.60NS 0.33 ± 0.71 0.53 ± 0.80 

BW_m 0.41 ± 0.05 0.22 ± 0.09 0.87 ± 0.11 0.81 ± 0.41 0.68 ± 0.36 0.78 ± 0.59 0.69 ± 0.58 0.73 ± 0.44 

BW_f 0.29 ± 0.07 0.79 ± 0.03 0.22 ± 0.09 0.78 ± 0.43 0.97 ± 0.17 0.97 ± 0.28 0.62 ± 0.21 0.63 ± 0.23 

ADG_i 0.17 ± 0.07 0.77 ± 0.03 0.86 ± 0.02 0.16 ± 0.10 0.64 ± 0.12 0.81 ± 0.21 0.62 ± 0.43 0.67 ± 0.25 

ADG_f -0.04 ± 0.08 0.09 ± 0.08 0.68 ± 0.04 0.14 ± 0.08 0.23 ± 0.08 0.97 ± 0.1 0.43 ± 0.23 0.47 ± 0.22 

ADG_tot 0.11 ± 0.08 0.47 ± 0.06 0.84 ± 0.02 0.68 ± 0.04 0.80 ± 0.03 0.32 ± 0.09 0.55 ± 0.16 0.6 ± 0.15 

CF 0.14 ± 0.08 0.4 ± 0.07 0.49 ± 0.09 0.3 ± 0.08 0.37 ± 0.08 0.42 ± 0.08 0.46 ±0.09 0.98 ± 0.02 

DP 0.05 ± 0.09 0.35 ± 0.08 0.51 ± 0.07 0.26 ± 0.09 0.38 ± 0.08 0.98 ± 0.02 0.73 ± 0.05 0.46 ±0.09 

BW_i, body weight at the entrance at performance test stations; BW_m, body weight at six months; BW_f, at the end of 

performance test; ADG_i, average daily gains covering the first half of the period (since entering into the PT station until the 6th month); 
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ADG_f, average daily gain covering the daily gain of the second half (since the 6th month to the end of the period), ADG_tot average daily 

gain covering the entire period; DP, Dressing Percentage; CF, Carcass Fleshiness 

 

Genomic architecture and imputation 

A homogeneous density distribution (number of SNPs per Mb) was found throughout 

the genome, apart from few relatively small blank areas in 12 chromosomes. For further 

details on SNP density on each chromosome after imputation and quality control, see 

Supplementary Material, Figure S2. The new imputed panel had a SNPs density close to the 

one found in the young bulls genotyped with HD platforms. A value of imputation accuracy of 

0.95 ± 0.05 was observed via cross-validation in the HD males (Supplementary Material, 

Figure S2). Combined with the high correlation between the A and G matrix, these results 

confirm the reliability of the new Alphaimpute2 algorithm for this population. 

Figure 1: Scatter plot of first and second principal components of the genomic relationship 

matrix (the G matrix) used in the ssGBLUP. A total of 113,279 SNPs and 1,690 cattle were 

used to perform the principal component analysis. 
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The PCA scatterplots (Figure 1) illustrate a homogenous distribution of allele 

frequencies in individuals that comprised our study population. No stratification has been 

observed in the first two components, suggesting that most G matrix variance is explained 

by many eigenvalues with small effect. Genome-wide linkage disequilibrium and MAF have 

also been explored since the availability of high-density SNP platforms permits to explore the 

LD decay at an unprecedented resolution. In addition, MAF and LD are useful for 

understanding differences in population history and demography and for its impacts for 

genome-wide mapping studies. LD decay per each chromosome is reported in 

Supplementary Material, Figure S3. As expected, most tightly linked SNPs presented strong 

levels of LD while it rapidly declines when the distance increases. A within-chromosome LD 

average value of 0.19 ± 0.12 has been observed. When the distance between markers is 

lower than 1 Mb, the LD squared correlation between pairs of loci across autosomes (r2) (Hill 

and Robertson, 1968) reached an average value of 0.17 ± 0.27, and when the distance was 

> 1 Mb LD decreased to 0.04 ± 0.09 (Figure S3). Larger levels of LD have been observed for 

chromosome 6 (0.20), while lower levels of LD were observed for chromosome 28 (0.18). An 

average value of 0.29 ± 0.12 was observed for minor allele frequency; no noticeable 

difference has been observed along the 29 chromosomes, with MAF values ranging from 

0.28 ± 0.12 (chromosome 12) to 0.30 ± 0.12 (chromosome 19). With respect to the other 

local Italian breeds (i.e., Fabbri et al., 2020), Rendena presents a lower level of LD. This 

issue implicitly underlines the reassuring demographic situation of Rendena compared with 

other indigenous cattle of Italy, as it demonstrates a lower risk of inbreeding depression. 

Heritability and genetic correlations 

Descriptive statistics after data editing of the phenotypes are shown in Table 1. 

Phenotypic and genetic correlations and the heritability (h2) for the analyzed traits are reported in 

Table 2. Body weight traits presented an average value of h2 lower than other traits: BW_i 

showed the lower heritability (0.130), while BW_m and BW_f had heritability of 0.220. In fact, as 

reported in literature, a large discrepancy of values has been observed for heritability of body 

weights, and generally, traits similar to birth weight or weaning weight have a slightly lower 

heritability than weight measured in more advanced stages (Yin and König, 2018). Average daily 

gain (ADG_tot) presented an intermediate heritability of 0.322 partitioned into 0.164 and 0.220 

for ADG in the first and last period. As for body weight, ADG presents lower h2 in first stages of 



 

250 
 

the performance test, and h2 values agree with what has been found in the literature (Yin and 

König, 2018). The highest heritabilities were found for the traits related to the carcass 

conformation, with a value of 0.45 and 

0.47 respectively for CF and DP, close to what was observed in other local dual-purpose 

or beef cattle (Albera et al., 2001; Sbarra et al., 2013; Mancin et al., 2021c). These traits also 

appeared highly genetic correlated. All ADG traits were moderately genetically correlated with 

them, with a value of 0.5 on average. On the contrary, body weight measured at the beginning of 

the performance test was not significantly correlated with CF and DP. Interestingly, the weights 

measured in more advanced periods showed an increase of genetic correlation with a value 

close to 

0.7. Body weight and ADG also presented a strong genetic correlation with body weight 

traits, especially for the traits measured at the final stages of the performance test. In terms of 

genetic correlations, the results agree with what was found in other local dual-purpose or beef 

breeds (Veselá et al., 2011; Filipčík et al., 2020). Phenotypic correlation followed the same 

trends of genetic correlation but with a lower magnitude (Table 2, under diagonal). 

Genomic architecture and imputation 

A homogeneous density distribution (number of SNPs per Mb) was found throughout the 

genome, apart from few relatively small blank areas in 12 chromosomes. For further details on 

SNP density on each chromosome after imputation and quality control, see Supplementary 

Material, Figure S2. The new imputed panel had a SNPs density close to the one found in the 

young bulls genotyped with HD platforms. A value of imputation accuracy of 0.95 ± 0.05 was 

observed via cross- validation in the HD males (Supplementary Material, Figure S2). Combined 

with the high correlation between the A and G matrix, these results confirm the reliability of the 

new Alphaimpute2 algorithm for this population. 

The PCA scatterplots (Figure 1) illustrate a homogenous distribution of allele frequencies 

in individuals that comprised our study population. No stratification has been observed in the first 

two components, suggesting that most G matrix variance is explained by many eigenvalues with 

small effect. Genome-wide linkage disequilibrium and MAF have also been explored since the 

availability of high-density SNP platforms permits to explore the LD decay at an unprecedented 

resolution. In addition, MAF and LD are useful for understanding differences in population history 
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and demography and for its impacts for genome-wide mapping studies. LD decay per each 

chromosome is reported in Supplementary Material, Figure S3. As expected, most tightly linked 

SNPs presented strong levels of LD while it rapidly declines when the distance increases. A 

within- chromosome LD average value of 0.19 ± 0.12 has been observed. When the distance 

between markers is lower than 1 Mb, the LD squared correlation between pairs of loci across 

autosomes (r2) (Hill and Robertson, 1968) reached an average value of 0.17 ± 0.27, and when 

the distance was > 1 Mb LD decreased to 0.04 ± 0.09 (Figure S3). Larger levels of LD have been 

observed for chromosome 6 (0.20), while lower levels of LD were observed for chromosome 28 

(0.18). An average value of 0.29 ± 0.12 was observed for minor allele frequency; no noticeable 

difference has been observed along the 29 chromosomes, with MAF values ranging from 0.28 ± 

0.12 (chromosome 12) to 0.30 ± 0.12 (chromosome 19). With respect to the other local Italian 

breeds (i.e., Fabbri et al., 2020), Rendena presents a lower level of LD. This issue implicitly 

underlines the reassuring demographic situation of Rendena compared with other indigenous 

cattle of Italy, as it demonstrates a lower risk of inbreeding depression. 

GWAS and pathway analysis  

The full results of GWAS are reported in Table 3. We found a total of 8 SNP significantly 

associated with 5 of the investigated traits, and 47 SNPs suggestively associated with all 7 

investigated traits (Figure 2). Pathway analysis revealed that out of 113,279 SNPs, 77,506 were 

located within a 15 kb window of annotated genes; in the end, 14,380 annotated genes were 

used as a background for each trait. On average, 628 genes near significant SNPs (< 0.01) were 

identified and subsequently used for pathway analysis of each trait. All traits presented an 

inflation factor close to optimum values of 1 (Figure 2) calculated based on the median chi-

squared test. In addition, analysis on localized linkage disequilibrium (0.5 Mb form significant 

SNP), has been carried out (Figure 3-7), and results indicated that all significant candidate 

genes are extremely close to the significant SNPs, except for candidate gene ZNF784, which is 

situated between two significant SNP (Figure 6). 
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Figure 2. Manhattan and Q-Q plots of BW_i: body weight at the entrance at performance test 
stations; BW_m: body weight at six months; BW_f: body weight at the end of performance test. 
Average daily gain: ADG_i, covers of the first half of the period (since entering into the PT 
station until the 6th month); ADG_f, covers the daily gain of the second half (from the 6th month 
to the end of the period); ADG_tot is the average daily gain throughout the entire period. DP, 
Dressing Percentage; CF, Carcass Fleshiness. Dotted lines represent the suggestive and the 
significant threshold. Red dot represented the significant SNPs and neighboring SNPs (± 1 Mb) 
while green dots are the SNPs and neighboring SNPs (± 1 Mb). Q-Q plots are displayed as 
scatter plots of observed and expected –log10 (p-values) (right). Values of inflation are reported 
within the QQplots. 
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Body weight 

Significant SNPs contributing to the genetic effect of body weight are listed in Table 3. 

Body weight measured at first stage was the only BW trait in which significant SNPs were 

identified, while body weight measured at the half of the performance test period presented the 

lowest number of suggestive SNPs and biological pathways enriched. The significant peak for 

BW_i was located at 64 Mb on BTA9, in the vicinity of gene TBX18 (Table 3; Figure 3). This gene 

is mainly involved in controlling the first stages of embryonic development and in the 

morphogeny of the embryonic epithelium (Consortium, 2021). To our knowledge, no previous 

connection with body weight had ever been found for TBX18; however, a study found an 

association between this gene and development in dual-purpose Simmental breed but not in 

other specialized breeds (Doyle et al., 2020a). We hypothesize that a possible mechanism for 

the connection between TBX18 and body weight could lie in the fact that it is a strict paralogue 

of TBX15, a gene linked to obesity-related traits in humans and mice (Ejarque et al., 2019; Sun 

et al., 2019); it is demonstrated that TBX15 regulates processes related to the skeletal muscles 

metabolism, which is in turn linked to animals’ body size (Lee et al., 2015). However, studies on 

the relationship between TBX15 and TBX18 in cattle and the impact of TBX15/18 on the 

regulation of muscle metabolism are needed to validate this hypothesis. We identified several 

known cattle QTLs in QTLdb overlapping with our candidate region (Supplementary Material 

Table S2a): the majority of these QTLs were linked to morphology (47.5%), followed by beef 

production (22.5%). 

MYO5B is a candidate gene for both BW_m and BW_i (Table 3), identified by the 

presence of two suggestively associated SNPs located on chromosome 24. MYO5B is related to 

the development of skeletal muscle for what concerns actin and myosin organization and with the 

binding of ATP (Consortium, 2021). Interestingly, this gene was also identified in GWAS 

conducted on dual- purpose Simmental breeds (Doyle et al., 2020b). 

The analysis of the enriched pathways, represented in Figure 8, reinforced what has been 

mentioned for the single genes, namely that in our study the mechanisms regulating body weight 

were mainly those linked to the development of muscle masses. Among the GO terms enriched 

(Figure 8 and S4a-b), there were: organization of cytoskeleton (GO:0007010), actomyosin 

structure (GO:0031032), actin filament bundle (GO:0061572), and contractile actin filament 

bundle assembly (GO:0051017). The pathways analysis revealed a further biological process 
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related to the metabolism of lipids on skeletal muscles (GO:0055088, GO:0055092, 

GO:0042632). Regulation of the selection of appropriate nutrients by the skeletal muscle is 

essential both in terms of muscle energy metabolism and in terms of general regulation of 

whole-body supply and use of fuel (Hocquette et al., 1998): again, this enriched pathway was 

also found in Srivastava et al. (2020). 

Aside from the already mentioned MYOB5, two candidate genes within suggestively 

associated SNPs were identified for BW_m: CPEB1 and DIRC2, found on BTA1 and 21, 

respectively (Table 3). While these genes are not directly involved with body weight, we found 

them related to factors with a potential secondary impact on growth. For example, the CPEB1 

gene is involved in the regulation of mRNA translation and cell proliferation, with an influence on 

the molecular mechanisms associated with superior resilience to heat stress in cattle (Livernois 

et al., 2021). Moreover, CPEB1 was also detected by other GWAS studies in cattle in which the 

target phenotype was residual feed intake (Lapierre et al., 1995). DIRC2 has been associated 

with lipid storage in geese's (Anser anser domesticus) liver (Yang et al., 2020), given its role as a 

substrate carrier. 

In BW_f, as in the other phenotypes, several genes identified by suggestively associated 

SNPs (Table 3) had never been associated before with body size traits. Moreover, connections 

between such candidate genes and body weight were not straightforward. One suggestively 

associated gene for BW_f, CCDC178, was identified in some GWA studies on disease 

resistance in local cattle (Kosińska-Selbi et al. 2020). The MBL2 gene, a candidate gene 

suggestively associated to BW_f (and almost suggestive for ADG_tot), also seems to have an 

indirect connection with body weight: MBL2 plays a central role in the activation of the mannose-

binding lectin or mannose-binding protein; this protein is involved in processes that regulate the 

immune system, preventing infection from bacteria, virus, and yeast (Consortium, 2021). 

No biological process strictly related to muscle mass development was identified (Figure 

8 and S4c), but many processes related to other aspects of growth and body weight have been 

found. Several pathways were involved in GABA processes (Figure 8 and S4a-c): GABA is 

actively involved in regulating leptin, the satiety hormone, which has an essential role in nutrient 

intake and feeding motivation (Miller 2017). Some pathways also appear to be associated with 

processes such as morphogenesis of the epithelium (GO:0048791, GO:0007492, GO:0048332, 

GO:0001707 GO:0035987; mesoderm morphogenesis in Figure 8), which has a connection with 
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body weight (increased paracellular permeability for the absorption of nutrients leads to 

augmented energy intake (Vanvanhossou et al., 2020). 

Finally, many enriched terms were related to neuronal aspects (i.e., GO:0043005 

GO:0097060, GO:0099537; Figure 8 and S4a-c): this may find justification in the many studies 

underlining how these pathways are linked to the complex interaction between physio- and 

behavioral components that control the intake of food and energy expenditure (Martinez, 2000). 

Figure 3 (A) Localized linkage disequilibrium analysis of BW_i. Manhattan plots displaying the 
level of significance (y-axis) over genomic positions (x-axis) in a window of 0.5 Mb upstream and 
downstream of the most significantly SNP. Vertical line represents the position of candidate 
gene TBX18. Different colors are used to represent the pairwise LD with the closest significant 
SNPs: blue < 0.2; light blue < 0.4; green < 0.6; yellow < 0.8 and red > 0.8. (B) Represents 
linkage disequilibrium of that area. 

Average Daily Gain 
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Both GWAS and pathway analyses of Average Daily Gain showed different results 

depending on the age at which the trait was recorded, similarly to what resulted from our 

analysis of BW. In particular, the only GO terms in common between ADG_i and ADG_f were 

GO:0031175 (neuron projection development) and its associated terms; all the other 105 GO, 

and KEGG terms were not (Figure S4d). The result of the GWAS also highlighted SNPs present 

in wholly different BTAs (Table 3). ADG_i had only one significant SNP (also suggestively 

associated with BW_m) situated on BTA1 (Figure 4), 0.2 Mb away from gene DIRC2 (also 

associated with BW_m) and 1.1 Mb away from gene HSPBAP. Both loci can be in some ways 

considered candidate genes for growth, as also HSPBAP has already been associated with 

residual feed intake from birth to 12 months(Cohen-Zinder et al., 2016). One suggestively 

associated SNP for ADG_i on BTA4 (Table 3) was within candidate gene GRM8, associated with 

body size in cattle (Chen et al., 2020) and eating behavior in other mammals (Gast et al., 2013). 

Again, in agreement with what was found for BW_m (the measure of ADG_i is based on the 

difference between BW_m and BW_i measurement), the results of the pathway analysis for 

ADG_i were less extensive than for other ADG traits (Figure 9 and S4d-f); moreover, out of 20 

pathways (Figure S4d), those readily associable with ADG were GO:0004629 phospholipase 

activity (crucial for lipid metabolism) and GO:0043124, responsible for negative regulation of l-kB 

kinase/NF-κB signaling (involved with metabolic regulation, especially in cases of overnutrition; 

Kracht et al., 2020). 

The same trait recorded at a later age, ADG_f, showed a much greater number of results, 

similarly to what transpired with BW_f (Table 3; Figure 9 and S4e). For trait ADG_f the region 

with the greatest number of signals was on BTA10, roughly between 50 and 60 Mb (Table 3; 

Figure 5). This region contains a QTL that has already been associated to growth in cattle (Mao 

et al., 2016), although not in the present study. The three significant SNPs and 14 out of 16 

suggestively associated SNPs were found in this region. Significant SNPs were situated within 

SLC12A1, CGNL1 and PRTG genes (Figure 5). While the latter two have already been 

associated respectively with growth (Londoño-Gil et al., 2021) and backfat thickness in cattle 

(Júnior et al., 2016), SLC12A1, to our knowledge, has never been associated with growth or 

weight traits in cattle (but see Kemter et al., 2014, for evidence in mice). However, among the 

suggestively associated SNPs on BTA10 (Table 3), several were within or close genes highly 

important for ADG, such as ALDH1A2, FBN1, and AQP9 (Hirano et al., 2012; Liu et al., 2019; 

Londoño-Gil et al., 2021; Zhang et al., 2021). Figure 9 shows that enriched pathways spanned 
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several macro-categories (Figure 9 and S4e): these results suggest that, as for BW, during the 

late months of the first year, a complex interplay of different biological processes takes place in 

growing bulls. For what concerned the overlapping of our QTLs associated with ADG_f with the 

animal QTLdb, we identified QTLs from several studies: 28.77% associated with morphology, 

21.92% associated with beef production, 19.18% associated with milk, and 8.22% associated 

with meat and carcass (Supplementary Material, Table S2b). 

Finally, for the total ADG, ADG_tot, the results obtained mirrored those obtained with final 

ADG, both in terms of significant and suggestive SNPs (on BTA10 and BTA26; Table 3) and in 

terms of GO terms (Figure 9 and S4f) and candidate genes, such as SLC12A1. Interestingly, 

one signal reported in ADG_tot was not present in ADG_f: on BTA11, one single suggestively 

associated SNP was located close to two genes well known for their effect on feed intake and 

weight (CDKL4 and MAP4K3; Edea et al., 2020). Apart from this exception, our results show 

conclusively that total average daily gain mirrored the final part of the daily gain, i.e., that the last 

months were decisive in shaping the total weight gain trajectory of the bulls.  
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Figure 5 (A) Localized linkage disequilibrium analysis of ADG_f. Manhattan plots displaying the 
level of significance (y-axis) over genomic positions (x-axis) in a window of 0.5 Mb upstream and 
downstream of the most significantly SNP. Vertical line represents the position of candidate 
genes CGNL1, PRTG, UNC13C and SLC12A1. Different colors are used to represent the 
pairwise LD with the closest significant SNPs: blue< 0.2; light blue < 0.4; green < 0.6; yellow < 
0.8 and red > 0.8. (B) the represents Linkage disequilibrium present of that area. 
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Carcass Traits 

The main region of interest for both CF and DP traits was situated on a gene-rich region 

of BTA18, between 55 Mb and 62 Mb, where 3 significant and 9 suggestively associated SNPs 

allowed to locate several candidate genes (Table 3; Figure 6). The QTL with the highest 

significance for CF (suggestively associated for DP) was located within candidate gene 

LOC513941 (Figure 7), translating into a cationic amino acid transporter 3-like. This type of 

transporters regulates the metabolism of cationic amino acids, a key factor for growth and beef 

characteristics in cattle (Liao et al., 2009). Further corroboration of the importance of this 

metabolic pathway for CF was the enrichment of 10 GO terms (Figure 10 and S4h), within the 

group of ‘amino acid transport’, such as ammino acid transmembrane transporter activity 

(GO:0015171), and amino acid transmembrane transport (GO:0003333). 

A second SNP in the same region (significant for DP and suggestively associated for CF; 

Table 3) was located within gene CCDC155 (Coiled-coil domain containing 155). This gene 

encodes for a protein involved in dynein complex binding and actin filament organization and it 

has been associated with beef conformation (Lemos et al., 2016; Hardie et al., 2017). Apart from 

being the main component of the cytoskeleton, actin constitutes together with myosin the 

myofilaments, which grant muscle cells their mobility and thus ultimately their organization and 

dynamics. The association of actin filaments and carcass traits was again made apparent also 

by the number (more than 30) and diversity of enriched GO terms related to actin (Figure 10 and 

S4g-h): for example, those related to GO:0098858 (CF), actin-based cell projection; 

GO:0030048 (CF and DP), actin filament-based movement; GO:0070161 (CF and DP), 

anchoring junction; GO:0030833 regulation of actin filament polymerization; GO:0005912 (CF 

and DP), adherens junction (Londoño-Gil et al., 2021). Similarly, for DP 20 terms were enriched 

for pathways associated with actin filament-based GO terms (Figure S4g). 

In the same region of BTA18, our analysis found two more candidate genes with a known 

association with size and growth traits, all with one or more suggestively associated SNPs for 

CF. Siglec-5 is a gene commonly found in GWAS concerning cattle size and growth traits; its 

over- expression indicates a deficiency of leptin, and thus longer gestation time and bigger 

fetuses (Hardie et al., 2017). KLK12 is a kallikrein gene, a serin protease associated with food 

intake and feed efficiency at the transcript level in backfat and rumen (Kern et al., 2016). 
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LOC101904435 and ZNF784 are zinc-finger proteins: the former is suggestively associated with 

both CF and DP; the latter only with CF but is linked to food intake in cattle (Oliviera et al., 2016). 

Finally, three more SNPs (one significant both for CF and DP and two SNPs suggestively 

associated for DP) were situated within NLRP2 gene (NACHT, LRR and PYD domains-

containing protein 2), a key player in early embryogenesis, maternal effects, immune response, 

and inflammasome (Peng et al., 2012). Taken together, these results about carcass traits have 

numerous substantial implications. Firstly, we highlight how the 57-62 Mb region on BTA18 can 

truly be considered a hotspot of genetic diversity in this breed (as it is for several others; 

Grigoletto et al., 2020; Purfield et al., 2020). Secondly, as expected with strongly correlated 

traits, CF and DP shared part of their genetic architecture, as significant SNPs for the two traits 

are mostly in the same region. Only another region was shared, as both traits reported two 

suggestively associated SNPs close to each other on BTA28 (Table 3)  

The region encompasses the PHYHIPL gene, which influences feed efficiency (Abo-

Ismail et al., 2018), whose link with carcass traits has recently been established (Seabury et al., 

2017). CF was associated only with two more SNPs, one on BTA12 and the other on BTA14 

(Table 3). While the former was more than 1 Mb far away from any annotated functional 

element, the latter fell within SAMD12, a gene already found to have a significant dominance 

signal to chuck roll and be associated with 18-months weight in Simmental (Zhuang et al., 2020). 

On the other hand, DP had an almost significant signal on BTA1: the gene closest to the SNP 

was SIM2, already known to be associated with carcass quality, differentiation of longissimus, 

and semimembranosus muscle (De Las Heras-Saldana et al., 2019; Edea et al., 2020). To 

conclude, the strongest of the remaining suggestively associated signals for DP came from 

BTA4, within LOC112446424, a non-coding RNA close to candidate gene SLC13A4, a cationic 

canal important both for muscle traits in sheep and growth and development in cattle (Carvalho 

et al., 2020; Kaur et al., 2020). 

While, as we mentioned, results from pathway analyses (represented in Figure 10 and 

figure S4g-h), and GWAS were often complementary, pathway analyses for both CF and DP 

resulted in the enrichment of a robust number of pathways related to neuron activity, not really 

pointed out by GWAS results. Such pathways referred to the regulation of neuroblast 

proliferation (GO:1902692 for CF), chemical synaptic transmission (GO:0007268 for CF), 

neurogenesis (GO:0022008 for CF and DP), neuron projection (GO:0043005 for DP), synapse 
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(GO:0045202 for DP) and especially synaptic transmission, glutamatergic (GO:0035249 for DP 

and, to a lesser extent, CF). Glutamatergic synapses guide the development of growth neurons 

and regulate feeding motivation in the hippocampus (Huang et al., 2017). The relation between 

feeding motivation and nutrient intake is crucial to maintaining energy intake and storage (Illius 

et al., 2002). Such relationship is complex, involving leptin (see above-mentioned gene Siglec-

5), and the NPY/AgRP system, which makes food intake-stimulating peptides, which can 

dramatically influence metabolism and consequently carcass traits (Seabury et al., 2017; Ruud 

et al., 2020). Among the genes more often represented in the glutamatergic synapse network 

enriched in our analysis, several were linked with food intake and metabolism (for example, 

GRM8), eating behavior (GRIK3), insulin secretion, and lipolysis (ADCY1, Olivieri et al. 2016). In 

support of this hypothesis, we also found out that the enriched KEGG term for DP Glutamatergic 

synapse (KEGG:04724) belonged to the same group of Circadian entrainments (KEGG:04713) 

and Apelin signaling pathway (KEGG:04371), both also enriched. Circadian rhythm has a strong 

connection with feeding behavior (Mrode et al., 2019), and apelin is a peptide connected with 

food intake and lipid metabolism (Bertrand et al., 2015). The same was true also for CF, with 

KEGG term Hippo signaling pathway (KEGG:04390) appearing multiple times (Figure S4h). This 

might reflect a greater role of regulatory systems of feeding motivation, nutrient intake, and 

storage in shaping the variability of these traits. On the other hand, glutamatergic synapses are 

also involved in physiological responses to stressors and environmental changes. QTLs from the 

QTLdb associated to our candidate regions for these two traits are reported in Supplementary 

Material, Table S2c-d. 
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Figure 4 (A) Localized linkage disequilibrium analysis of ADG_i. Manhattan plots displaying the 
level of significance (y-axis) over genomic positions (x-axis) in a window of 0.5 Mb upstream and 
downstream of the most significantly SNP. Vertical line represents the position of candidate 
gene DIRC2. Different colors are used to represent the pairwise LD with the closest significant 
SNPs: blue < 0.2; light blue < 0.4; green < 0.6; yellow < 0.8 and red > 0.8. (B) Represents 
linkage disequilibrium of that area. 
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Table 3 Significant and suggestively SNPs found on the GWAS study. Significant SNPs are 

reported in bold. Gene with * were just outside suggestive association range for one trait; it 

was retained in the table because significant for another trait. 

Trait BT
A 

Position of 
the SNP 
(bp) 

Significan
ce of the 
SNP (-
log(p-
value)) 

Nearest 
gene(s)  

Distance 
to nearest 
gene (kb) 

Other 
traits 
associate
d 

Variance 
explaine
d (%) 

Body 
Weight  

       

BW_i 9 64611352 3.04E-06 TBX18 0.589  0.22 % 
BW_i 9 64599056 2.37E-05 TBX18 12.885   
BW_i 9 64557321 2.81E-05 TBX18 54.620   
BW_i 24 49394386 3.43E-05 ACAA2 48.389   
BW_i 24 49493559 4.43E-05 MYO5B within   
BW_m 7 32306269 8.65E-06 FTMT 321.80 BW_f; 

ADG_i 
 

BW_m 1 67212088 3.27E-05 DIRC2 2.783 ADG_i  
BW_m 21 22956171 5.11E-05 CPEB1 within   
BW_m 24 49735783 5.55E-05 MYO5B within   
BW_f 26 6437290 7.50E-06 MBL2 3.483 ADG_tot  
BW_f 7 32306269 8.39E-06 FTMT 321.80 BW_m, 

ADG_i 
 

BW_f 21 17568377 3.44E-05 AGBL1 within   
BW_f 24 24130452 4.56E-05 CCDC178 within   
BW_f 14 60644816 4.62E-05 RIMS2 within   
        
Average 
Daily 
Gain 

       

ADG_i 1 67212088 2.84E-06 DIRC2 2.783 BW_m 0.441 % 
ADG_i 7 32306269 1.99E-05 FTMT 321.80 BW_m; 

BW_f 
 

ADG_i 7 32009625 3.03E-05 FTMT 25.152   
ADG_i 4 91417417 3.11E-05 GRM8 within   
ADG_f 10 62113751 1.81E-07 SLC12A1 within ADG_tot 0.073 % 
ADG_f 10 52785760 1.29E-06 CGNL1 within  0.203 % 
ADG_f 10 54787499 1.75E-06 PRTG within  0.435 % 
ADG_f 10 55502036 3.42E-06 UNC13C 135.046   
ADG_f 10 55510249 3.56E-06 UNC13C 126.833   
ADG_f 10 55535781 4.35E-06 UNC13C 101.301   
ADG_f 10 57348706 6.68E-06 LOC101904374 248.031   
ADG_f 26 8564813 5.92E-06 A1CF;    ASAH2 17.739; 

32.479 
ADG_tot  

ADG_f 10 52777666 9.27E-06 CGNL1 within   
ADG_f 10 57311183 9.77E-06 LOC101904374 285.554   
ADG_f 10 52023061 1.35E-05 AQP9 65.881   
ADG_f 10 56585283 1.56E-05 WDR72 within   
ADG_f 10 61604387 2.24E-05 LOC104973175; 

FBN1 
20.944; 
51.118 
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ADG_f 10 58180258  MYO5C;  GNB5 1.494; 
11.943 

  

ADG_f 10 63669471 3.56E-05 -    
ADG_f 10 52284899 4.06E-05 ALDH1A2 within   
ADG_f 10 57890651 4.13E-05 MYO5A within   
ADG_f 11 78877665 4.48E-05 WDR35 within   
ADG_f 10 55830543 4.90E-05 UNC13C within   
ADG_f 10 57048787 4.98E-05 LOC101904374 547.950   
ADG_tot 10 62113571 2.07E-06 SLC12A1 within ADG_f 0.501 % 
ADG_tot 26 8564813 1.66E-05 A1CF;     

ASAH2 
17.739; 
32.479 

ADG_f  

ADG_tot 11 21542682 3.41E-05 CDKL4; 
MAP4K3 

7.971; 
11.618 

  

ADG_tot 26 6437290 6.03E-05* MBL2 3.483 BW_f  
        
Dressing 
Percenta
ge  

       

DP 18 62412976 4.51E-07 NLRP2 within CF 0.640 % 
DP 18 55878286 2.40E-06 CDC155 within CF 0.731 % 
DP 1 148893434 8.77E-06 SIM2 80.004   
DP 18 58645859 1.06E-05 LOC101904435 within CF  
DP 18 61137684 1.15E-05 LOC513941 within CF  
DP 4 99574406 2.34E-05 LOC112446424 within   
DP 18 57735853 3.03E-05 LOC787554 within CF  
DP 18 62427814 4.49E-05 NLRP2 within   
DP 18 63362491 4.97E-05 LOC107131476 560   
DP 17 72055006 5.07E-05 YPEL1 23.650   
DP 18 62428754 5.25E-05 NLRP2 within   
Carcass 
Fleshine
ss 

       

CF 18 61137684 5.62E-08 LOC513941 within DP 0.450% 
CF 18 62412976 9.40E-07 NLRP2 within DP 0.670 % 
CF 18 58645859 4.71E-06 LOC101904435 within DP  
CF 18 55878286 7.67E-06 CCDC155 within DP  
CF 18 61920892 9.57E-06 ZNF784 895   
CF 18 57735853 1.05E-05 LOC787554 within DP  
CF 18 57516245 1.66E-05 LOC618268 within   
CF 14 45804718 2.30E-05 SAMD12 within   
CF 28 14722675 2.48E-05 LOC101906006 within   
CF 18 57565406 3.23E-05 SIGLEC5 within   
CF 12 27043078 3.38E-05 -    
CF 18 57008781 4.83E-05 KLK12 within   
CF 28 14788560 5.31E-05 PHYHIPL within   
The threshold of significance chosen for our analysis was p = 3.162 * 10-6, obtained through Bonferroni correction, while threshold for 

Bonferroni suggestive p-values was p = 5.629 
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Traits and Time Stratification 

The results of our study can help frame the genetic architecture of our between-traits 

correlation, including such traits that are measures of the same trait in different time points or 

intervals (the three BW and the three ADG). Within BW, we demonstrated how also from the 

genomic point of view the weight at the half of the PT was underlined by a mixture of QTLs that 

were also found either at the start or at the end of the PT. On the other hand, no common SNPs 

resulted significant both for BW_i and BW_f, and the number of enriched pathways in common 

was very low (Table 3; Figure S4a-c). For what concerns ADG, there was also a deep difference 

between the signals found for ADG_i and ADG_f, with the latter reflecting much more closely the 

total ADG, and again no SNPs were shared by ADG_i and ADG_f (Table 3). Moreover, the 

lowest number of significant SNPs and pathways for BW was at BW_m, and for ADG was 

ADG_i, with these two traits sharing a temporal correspondence. 

Interestingly, we found many genes in common between measures of different traits taken at the 

same time. For example, both SNPs on BTA7 and BTA1 were significant both for BW_m and 

ADG_i. Also, one SNP on BTA26 was suggestively associated both for BW_f and ADG_f (Table 

3). These results have several implications: firstly, from an economic point of view, they show 

that the timing of the trait measurement is crucial. Different life stages can result in different 

genetic signals; if used for a selection program, this can have an economic and conservation 

impact. While this is of course expected, given the succession of different biological processes 

during development, very few studies include such a time stratification in their analysis of 

productive traits. Even if such a process is difficult to infer, our results show that complexity – 

intended as the number of functional elements, their diversity, and pathways involved – might 

increase with age.  
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Figure 8. Scatter plot representing the main groups of biological pathways enriched for Body 
Weight traits measured at first, half and final period of performance test (BW_i, BW_m, BW_f); 
the area represents the number of pathways in that group, among the total. For a detailed list of 
the pathways enriched by these traits see Supplementary Material, figure S4a-c 
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Figure 9. Scatter plot representing the main groups of biological pathways enriched for average 
daily gain traits measured at first, half and total period of performance test (ADG_i, ADG_f, 
ADG_tot); the area represents the number of pathways in that group, among the total. For a 
detailed list of the pathways enriched by these traits see Supplementary Material, figure S4d-f. 
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Figure 10. Scatter plot representing the main groups of biological pathways enriched for carcass 
traits (carcass fleshiness and dressing percentage). For a detailed list of the pathways enriched 
by these traits see Supplementary Material, figure S4g-h. 
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CONCLUSIONS AND IMPLICATIONS FOR LOCAL BREEDS 

There are four main takeaways that could be extracted from our study. Firstly, our 

analysis detected a significant signal for body weight (recorded when bulls were one month 

old) on BTA9; a significant signal of average daily gain (recorded at seven months of age) on 

BTA1 and three significant signals of average daily gain (recorded at one year of age) on 

BTA10. Three significant signals for carcass traits (one signal each for dressing percentage 

and carcass fleshiness, plus one in common between the two) were all situated on BTA18. 

Secondly, the variety of GO terms and functional elements involved in the beef-related 

traits under study was staggering. We could detect in multiple traits key roles of pathways 

related to actin, lipid transport, and several types of channels. Moreover, our analysis detected 

– alongside many genes often found in relation to the investigated traits – multiple pathways, 

genes, and functional elements of unclear attribution, for example with links to early 

development and maternal effect (such as TBX18, NLRP2, SLCA12), or to pathogen 

resistance (MBL2). This issue underlines how even research of well-studied traits can turn out 

unexpected results, especially if performed in rarely investigated breeds. In additions, the fact 

that Rendena has been bred not only for the considered traits, but also for antagonistic could 

have added a layer of complexity to our results. 

Thirdly, we detected for almost all traits several pathways and genes linked with 

neuroblast development and synaptic transmission, especially (but not exclusively) 

glutamatergic, which added to the the intricacy of the gene networks involved in these traits. 

Pathways linked to both neuroblast proliferation and synaptic communication have been tied in 

recent years to selection for environmental condition (Rowan et al., 2020) differences in 

behavioral temperament (Gutiérrez-Gil et al., 2008) and adaptability (Taye et al., 2017). 

Finally, as discussed above, we found that even when focusing on widely investigated 

traits the influence of time stratification was fundamental. We argue that future studies on this 

issue should include an analysis of time stratification of their trait to fully report their complexity 

during development. 

A greater diffusion of adaptable and diversified local breeds, with characteristics 

allowing for lower environmental impact, better survival and greater production in challenging 

environments might be crucial in staving off the negative effects of intensive beef farming. To 
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achieve this, however, there is urgent need for further studies of the genetic basis of 

productive and life-history trait, which are still lacking. Moreover, these studies could help 

uncovering several novel gene networks associations and pathways, thanks to the less 

intensive selection for production occurring in local breed. Finally, they would help to map the 

diversity of such breeds, in an unvaluable help for their conservation. 
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SUPPLEMENTARY MATERIALS 

TABLE S1. Accuracy of imputation over the 5 iterations of cross validation. 

TABLE S2. Table representing the overlapping of our candidate region with QTL in 

animal QTLdb (animal QTL database), i.e., QTLs discovered in the other studies and 

summarized within the QTL database. (a) BW_i; body weight at first stage of performance 

test; (b) ADG_f; average daily gain from intermediate to final weighing (c) CF; In vivo Carcass 

Fleshiness; (f) DP; in vivo Dressing Percentage. 
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FIGURE S1. Diagram representing the Rendena selection scheme; young bulls are 

constantly used (80%) as sires of bulls, while in other breeds only proven bulls are used to 

father bulls. 

FIGURE S2. Bar plot representing the density of genomic data after quality control and 

imputation for the 1,690 animals, divided in the 29 autosomes. Density is represented as 

number of SNPs within 1Mb, representing indirectly the performance of imputations. 

FIGURE S3. Linkage disequilibrium decay for the genomic dataset for each of the 29 

chromosomes. Red lines represent the regression of LD and distance. Differences in LD can 

be due to various factors, among them chromosome length. 

FIGURE S4: Bar plot representing the significantly enriched GO terms and KEGG 

pathways for the investigated traits. (a) Body weight at first stages of performance test; (b) 

body weight at intermediate period of performance test; (c) body weight at final period of 

performance test; (d) average daily gain to entrance to intermediate period of performance 

test; (e) average daily gain from intermediate period to final; (f) average daily gain in the whole 

performance test; (g) in vivo Carcass Fleshiness; (h) in vivo Dressing Percentage.  
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12. GENERAL CONCLUSION 

The current studies covered some possible enhancement of selection plans in local 

breeds through genetic and genomic selection and characterization. Following this general 

objective, a first suitable selection approach has been conducted on Reggiana and Alpine Grey 

cattle breeds by the implementation of classical selection indexed accounting for several 

antagonistic traits. The specific chapter of the thesis on this topic demonstrated that a genetic 

selection that considered functional, morphological, beef traits besides milk production is 

feasible and allows the preservation of the breed identity. Indeed, using the restriction selection 

index is a good trade-off that guarantees the selection of economically important traits, the 

preservation of “peculiar” traits belonging to the local breeds appreciated by breeders. In 

Reggiana, we also demonstrated the feasibility to account for GxE in routinary selection plans. 

Further studies included in the present thesis demonstrated the possibility to improve EBVs’ 

accuracy through the uses of genomic data in Rendena breeds, despite the reduced size of 

genotyped animals. We demonstrated that the integrations of different sources of 

genomic/phenotype information (animals with performance test data and their relatives) can 

considerably increase the accuracy of EBVs for young proven bulls. However, it must be pointed 

out that to preserve this accuracy gap it is necessary to continuously genotype animals over 

years. 

Additionally, we provided an ad-hoc/naïve approach that constructed a G matrix using 

only the most informative SNPs. This has ensured a further increase of EBVs’ accuracy, 

especially when Elastic Net algorithms were used. Identifying new strategies that increase 

EBVs’accuracy in local breeds is a necessity as these breeds are small populations with 

potentially large numbers of traits to include in the breeding index. 

In the last chapter, we demonstrated that single-step GWAS can be a suitable strategy 

that can account for population structure and could be considered a straightforward method for 

an association analysis when only a fraction of the population is genotyped and/or when 

phenotypes are available on non-genotyped relatives. The results of this ssGWAS led to the 

detection of a variety of both known and new genes. These can broaden characteristics allowing 

for lower environmental impact, better survival, and higher production in harsh environments. 

Such aspects are crucial to avoid the negative effects of intensive beef farming on a world scale. 

Furthermore, theese knowledges can greatly aid efforts to map the genomic complexity of traits 
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of interest and to make appropriate breeding decisions. Additionally, such studies could help 

uncover several novel genes and pathways associated with beef traits measured at different 

times that are due to the less intensive selection, as occurred for other breeds. In general, both 

classical genetic approach and genomic information have been proven to be useful tools in 

understanding the genetic architecture of many traits belonging to dual-purpose cattle breeds 

and all these strategies could become interesting approaches for a continuous selection process 

of these small cattle populations, allowing their maintenance and the maintenance of all cultural 

traditions and history linked to them. 
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