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ABSTRACT

We characterise stochastic systems by studying their variances. In partic-
ular, we tackle this topic from two points of view, by elaborating on the
subject of stochastic uncertainty relations and by discussing a novel result
that we term the variance sum rule for Langevin systems.
Stochastic uncertainty relations are inequalities that usually involve a sig-
nal to noise ratio gggO, which can be regarded as a measure of the precision
associated to the observable O, and a cost function C such that gggO ≤ C. The
thermodynamic uncertainty relation is one of the first examples of these
stochastic inequalities and considers the average total entropy production
〈Σtot〉 in the cost function, thus refining the second law of thermodynam-
ics. By means of an information-theoretic approach, we provide a new un-
certainty relation for a system modelled by a linear generalised Langevin
equation along with a novel kinetic uncertainty relation, where the upper
bound to the precision is given by the mean dynamical activity, which quan-
tifies the degree of agitation of a discrete system. We also show how the lat-
ter is often the main limiting factor for the precision in far-from-equilibrium
conditions.
In the second part of the thesis we introduce some variance sum rules,
which can be used to infer relevant dynamical parameters also for regimes
far from equilibrium. We test our method on experimental data whose
model parameters are known a priori, finding very good agreement be-
tween the results of the estimation procedure and the true values of the pa-
rameters. A specific sum rule for non-Markovian systems also shows good
performances in estimating the memory kernel of complex fluids. More-
over, the same approach yields a solid formula for estimating the amount of
entropy production. All of this shows that the indetermination of stochas-
tic motion is a resource that we should continue to understand and exploit
for measuring physical quantities.
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CHAPTER 1

INTRODUCTION

Statistical mechanics is the field of physics whose aim is to characterise complex
and chaotic systems, where many degrees are involved, by means of statistics and
probability theory. Indeed, because a detailed description of these systems is often
both theoretically and computationally impossible to tackle, one may resort to a
coarse graining procedure where most of the microscopic degrees of freedom are
eliminated and leading to a more simple yet at the same time effective model for
the system in exam. This is often referred to as a mesoscopic level of description
and, as consequence of the reduction of the degrees of freedom, the observable
quantities exhibit a fluctuating behavior. For an observable O, the magnitude of
these fluctuations can be quantified by the variance 〈∆O2〉 and its study can help
to get a better insight into the microscopic structure of the system and the source of
randomness.

Arguably the most important example of how the study of variances can be im-
portant dates back to the beginning of the XX century, when Einstein [1] managed
to find a connection between the variance of the position of a Brownian particle and
the microscopic proprieties of the fluid in which the colloidal particle is bathed.
Because this variance is an easily measurable quantity, the aforementioned link be-
tween the microscopic world and the mesoscopic scale resulted in the first ever
measure of the Boltzmann constant kB and, as a consequence, led to final proof of
the existence of atoms and molecules. Inspired by this remarkable result, the study
of variances has evolved in parallel to technical developments until the present day
where it is used, for example, to study the performances and efficiency of micro-
scopic biological processes characterised by the presence of randomness [2, 3]. By
following this path, in the present work we will deal with this issue of character-
ising stochastic systems by means of the study of variances. In particular, we will
tackle this topic from the point of view of stochastic uncertainty relations, whose
first example can be traced back to [4], and from the point of view of our novel
result, i.e. the variance sum rule (VSR) for Langevin systems.

Stochastic uncertainty relations are inequalities that usually involve a signal to
noise ratio (SNR) gggO, which can be regarded as a measure of the precision asso-
ciated to the observable O, and a cost function C such that gggO ≤ C. These in-
equalities can be simultaneously regarded as an upper bound to the SNR, iden-
tifying C as a minimal cost to reach a certain precision, and as a lower bound to
the cost function, which may be some quantity of interest to be minimised. In [4]
the authors consider the average total entropy production 〈Σtot〉 (divided by two)
as a cost function, hence making these thermodynamic uncertainty relation (TUR) a
refinement of the second law of thermodynamics. Furthermore, for an appropri-
ate (in a sense that must be specified) observable O, the SNR takes the form of
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a squared average divided by its variance, i.e. gggO = 〈O〉2/〈∆O2〉. Indeed, it
is rather intuitive to realise that, at fixed average, a higher variance, leading to a
lower SNR, in turn corresponds to a lower precision. For example, if the observable
O is the relative displacement of a molecular motor on a microtubule, one read-
ily sees that this biological system may be interested in minimising the variance
of such displacement, hence maximising gO, in order to increase its performances
and precision. As a consequence of the TUR, the SNR is bounded from above by
the total entropy production which in turn implies that a certain precision may be
reached at a minimal cost given by this upper bound. However, the TUR has a
limited validity in the form presented above, i.e. discrete Markovian systems and
continuous time and overdamped Langevin systems, both in a steady state and
for observables O that are integrated currents. Indeed, since it was proposed, the
original TUR has been further generalised leading to a plethora of different TURs
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. In this context, we con-
tribute by deriving a novel example of a TUR for a linear non Markovian system,
presented in Section 5.5 and based on the analytical calculations depicted in 3 and
using an information theoretic approach, briefly discussed in Chapter 4. In this case,
we manage to show that, in a steady state, the cost function becomes proportional
to the entropy production rate hence providing an entropic bound for the SNR.

Furthermore, we also manage to derive a different stochastic bound which we
call the kinetic uncertainty relation (KUR), generalising previously obtained results
[22, 23, 24] and valid for Markovian jump systems with constant rates and arbitrary
regimes and observables. In this case, the cost function is given by the mean dy-
namical activity 〈K〉t, which averages to the total number of jumps that the system
performs in a certain time interval. Differently from entropy production, which
can be linked to the amount of time symmetry breaking in a non equilibrium sys-
tem [25, 26, 27, 28], the dynamical activity is a time symmetric quantity which, as a
rich line of research [29, 30, 31, 32, 33, 34, 35] shows, plays an important role along
with other time symmetric observables for the characterisation of non-equilibrium
states. Indeed, we will show how, for some relevant examples such as the above-
mentioned case of a molecular motor on a microtubule, it is the kinetic bound that
gives the tightest constraint to the SNR of the observables in a far from equilibrium
regime. This analysis in terms of uncertainty relation will hence add further in-
sights into the role of such time symmetric, or frenetic, quantities for the description
of non-equilibrium regimes.

The second part of this thesis, presented in Chapters 7 and 8, is again centred
on the study of variances but this time in terms of a summation rule. Indeed,
we will show how, at equilibrium, the behaviour of the sum of the variance of
the relative displacement Var(xt − x0) and the variance of the integrated forces
Var(

∫ t
0 dt′ F(xt′ , t′)) for Markovian (Chapter 7) and non-Markovian (Chapters 8)

Langevin systems is solely determined by the nature of the stochastic noise. Fur-
thermore, we will show how, for Markovian systems in a non-equilibrium steady
state (NESS), there is a finite correction to this sum rule which can be linked to the
violation factor discussed in [36] and quantifying the amount of violation of the
fluctuation-dissipation theorem (FDT) [37]. From this identification we will also be
able to find a novel formula for the entropy production rate (Section 7.3.2.1) which
may also be used in practical situation for entropy estimation.

The variance sum rule (VSR) may also be used for model parameter estimation.
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For example, for a unidimensional Langevin system we will show how the VSR
depends, in addition to the variances, on relevant system parameters as the fric-
tion coefficient or, in a non-Markovian setting, on the memory kernel of the system.
Indeed, by computing the above-mentioned variances from experimental data com-
ing from optical tweezers, we will show how the VSR can be used to estimate these
dynamical parameters and to get further insight on the nature of the noise acting
on the probe particle. In particular, for a simple Brownian particle trapped in an
harmonic potential, the VSR offers an alternative procedure to estimate the friction
coefficient γ and trap stiffness κ while for a DNA hairpin, briefly described in Sec-
tion 8.3, we will propose a new method to extract the parameters of an effective
non-Markovian memory kernel describing the zipping/unzipping equilibrium dy-
namics of these DNA hairpins. Finally, we will show how the non-Markovian VSR
naturally leads to a reversed TUR for the thermodynamic work along with a lower
bound to the Fano factor of the latter observable. We would also like to add that the
results presented in this thesis regarding the VSR are not the whole story. Indeed,
we are still working, at the time of writing this thesis, on further applications of our
VSR which will be presented, along with the results shown here, in future papers
written in collaboration with Marta Gironella, Marco Baiesi and Felix Ritort.

1.1 Outline of the thesis

This thesis is structured as follows. In 2 we briefly review basic concepts regarding
the thermodynamics of mesoscopic systems along with the mathematical founda-
tions of the most frequently employed models for the description of non-equilibrium
phenomena and based on the theory of stochastic processes. We then focus in Chap-
ter 3 on the specific non-Markovian stochastic process modelled by a linear gener-
alised Langevin equation (GLE), which will be solved by means of our modified
version of Laplace transforms. These results will be then used for the discussion
of the non-Markovian TUR and VSR in Chapter 5 and 8, respectively. In Chapter
4 we will review some basic concepts of information geometry that prepares the
discussion of stochastic uncertainty relations, which can be found in Chapter 5. In
Chapter 6 we will solve some linear non-equilibrium models which will then be
used in Chapter 7 to test the performances of the Markovian VSR. Finally, in Chap-
ter 8, we will derive and discuss the non-Markovian VSR by highlighting its role in
practical applications to experimental data.



CHAPTER 2

THERMODYNAMICS AND
STOCHASTIC PROCESSES

2.1 Introduction: equilibrium statistical Physics

Since its early days, statistical physics has emerged as an extremely powerful and
versatile theoretical framework for the description and characterisation of very com-
plex and chaotic systems, where exact solutions of the underlying dynamical equa-
tions are unreachable. Arguably one of the most important and early accomplish-
ments of statistical mechanics for equilibrium systems, was to find a connection
between the macroscopic laws of thermodynamics, which fuelled the technological
advancements that took place during the first industrial revolution, and the micro-
scopic description of the individual atoms composing the system. Since then, what
we now also call statistical thermodynamics has evolved into a comprehensive the-
oretical framework that describes classical thermodynamics as a set of emergent
macroscopic phenomena arising from the microscopic properties of the individual
components of the system.

The historical roots of this way of conceiving thermodynamics can be found in
the second half of the nineteenth century when Ludwig Boltzmann, who can ar-
guably be considered as the father of statistical mechanics, managed to find a sta-
tistical explanation to the second law of thermodynamics [38, 39]. His argument
was based on an atomistic view of matter, which was not a well accepted idea at
the time, and relied on the distinction between macrostates, i.e. states determined
by macroscopic and experimentally accessible quantities, and microstates, i.e. those
containing the whole information about the system and its single components. In
formulae, Boltzmann described an isolated system, more precisely an ideal gas, at
equilibrium and at a fixed energy E as being made of N particles, each characterised
by its position qi and momentum pi leading to the microstate ω = {x1, x2, . . . , xN},
with xi = {qi, pi}. On the other hand, a macrostate M, or macroscopic configura-
tion, describes the system in terms of a few macroscopic quantities such as number
of particles N, total energy E and volume V, and depends at any moment on the
microstate ω. The connection between microscopic and macroscopic properties can
be found by considering some observable O, whose value in the microstate ω is
O(ω), and the probability p(ω) that the system is in that microstate ω. Then, one
can think of the measured value of Omeas in the macrostate as the average over the
probability distribution p(ω) of the microstates, often referred to as ensemble, that
is Omeas = 〈O〉 = ∑ω p(ω)O(ω). Of course, if N is very large, a single macrostate
may correspond to many different microstates. This means that one can partition
the set Ω of all possible microstates into subsets Ωm of microstates that lead to the
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same macrostate M. By postulating that, at equilibrium, every allowed microstate
is equally probable, i.e. p(ω) = const, one immediately sees that the probability pm
for a given microstate ω to be in Ωm is equal to the ratio |Ωm|/|Ω|, where | · | denotes
the cardinality, or size, of the set. Under these hypothesis Boltzmann managed to
show that, if the number N of particles composing the system is very large (such
as for usual macroscopic systems where N ∝ 1023), then there is a Ωm̃ whose size,
or volume, is overwhelmingly larger then any other Ωm, implying that pm̃ ≈ 1 and
pm 6=m̃ ≈ 0. As a consequence, there is a certain macrostate M̃ which is extremely
more likely to be observed and hence the measured value of some observable O in
the macroscopic state becomes

Omeas = 〈O〉 = ∑
ω

p(ω)O(ω) = ∑
m

pmOm ≈ Om̃ . (2.1)

One can also show that the fluctuations around this average are of order N−1 jus-
tifying why, as a matter of fact, the outcome of a macroscopic experiment always
gives the same result.

The link with thermodynamics can be made by means of Boltzmann’s postulate
of entropy, stating that the entropy S of an isolated system at equilibrium, with set
of all possible macrostates given byM = {M}, is proportional to the logarithm of
the volume of microscopic configurations Ω compatible withM, i.e.

Seq = kB ln |Ω| ≈ kB ln |Ωm̃| ≡ SM̃ (2.2)

where kB is a constant bearing the name of Boltzmann itself and SM̃ is the entropy
associated to the macrostate M̃. This also explains why, classically, an isolated
systems prepared in a certain macrostate M, corresponding to a set of microstates
Ωm and with entropy SM = ln |Ωm|, will evolve and explore all the available mi-
crostates with an equal a priori probability (Liouville’s theorem) implying that,
after some typical relaxation time, it will reach an equilibrium condition where,
as a matter of fact, the system will spend most its time in the microstates corre-
sponding to the most probable macrostate M̃. As a consequence, the variation
of entropy Σ, or entropy production, associated to this relaxation process, will be
Σ ≡ ∆S = Seq− SM ≈ SM̃− SM ≥ 0 that is nothing else then the second law of ther-
modynamics, stating that an isolated system always evolves from a (macro)state
with lower entropy to one of higher entropy. Indeed, from a statistical point of view,
this just corresponds to the evolution of the system from a less probable state to a
much more probable macrostates. The latter is exactly M̃, the one that maximises
the entropy and corresponding to thermodynamic equilibrium. One can also verify
that equation (2.2) has all the proprieties expected from entropy like exstensivity,
i.e. S(N, E) ∝ N, and ∂S(N, E)/∂E = 1/T, i.e. one recovers one of the Maxwell’s
relations in thermodynamics.

This is a groundbreaking result by Boltzmann. Even if its validity is limited to
the framework of the kinetic theory of ideal gases, it embodies a very deep mean-
ing. First of all, it implies the existence of atoms and molecules, something that
was never really accepted until 1905 when Einstein proposed a method to measure
the Boltzmann’s constant using Brownian motion. Moreover, the laws of thermo-
dynamics can be deduced by applying probability theory to the microscopic com-
ponents of the system and their deterministic behaviour is just a consequence of
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the law of large numbers. This in turn opens the door to the discussion of the laws
of thermodynamics in a stochastic framework, concerning the regime of N not so
large and where the usual thermodynamic laws are only valid on average.

For the sake of completeness, we also present the generalisation of Boltzmann’s
entropy formula (2.2), whose derivation is attributed to Willard Gibbs [40] and stat-
ing that the entropy of a system with a generic distribution of microstates , or en-
semble, p(ω) is equal to

S = −kB ∑
ω

p(ω) ln p(ω) . (2.3)

The relevant ensembles for the description of equilibrium systems, which can be re-
garded as a set of several copies ω of a system corresponding to all possible achiev-
able microstates, each with a probability p(ω) of being realised, were first discussed
by Gibbs and are as follows:

• for the scenario studied by Boltzmann, also known as microcanonical ensem-
ble, one considers a system with a fixed number of particles N and a fixed
energy E, corresponding to an isolated system, along with an equal a priori
probability of being in a given microstate, i.e. p(ω) = 1/|Ω| = const. One
immediately sees that, in this case, equation (2.3) trivially reduces to (2.2).

• If the system is closed, implying that no particle exchange is allowed while
energy transfer with a heat bath at temperature T is, then one can show that
the right choice for the distribution of the microstates is

p(ω) =
1
Z exp

(
−E(ω)

kBT

)
, (2.4)

where E(ω) is the energy associated to the microstate ω and Z is a normal-
isation factor also called partition function. This ensemble is also known as
canonical ensemble and the corresponding distribution p(ω) is called the canon-
ical distribution.

• Last but not least, the grand canonical ensemble deals with systems that can also
exchange particles with a reservoir of heat and particles at a fixed tempera-
ture T and, moreover, at a fixed chemical potential µ. For the grand canonical
distribution one finds that

p(ω) =
1
Z exp

(
−E(ω)− µN(ω)

kBT

)
, (2.5)

where E(ω) and N(ω) are respectively the energy and the number of particles
associated to ω.

The ensembles listed above form the building blocks of equilibrium statistical physics
and, indeed, one can derive the laws of thermodynamics from the basic principles
discussed in this introduction. For example, combining equation (2.4) and (2.3) one
immediately sees that

S = lnZ +
1
T ∑

ω

p(ω)E(ω) = lnZ +
1
T
〈E〉 . (2.6)
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By identifying the free energy F with −kBT lnZ and the average of the energy
as the experimentally measured value in the sense shown in (2.1), one obtains the
famous formula

F = Emeas − TS (2.7)

relating the energy available for thermodynamic work to the difference between the
total amount of energy and the entropic forces, quantified by TS and whose effect
is to lower the amount of "useful energy" of the system. With similar arguments,
one can indeed derive a plethora of already known thermodynamic relation that are
equivalent the the already known classical ones on average. Moreover, for macro-
scopic systems where the number of particles N involved is huge, these averages
behave deterministically hence hiding the microscopic and probabilistic features on
which the macroscopic averages rely on.

Even though the results presented above are in fact extraordinary, the idea of
a world made of atoms found many difficulties in being accepted by the scientific
community of the time also because, with what we have shown until now, no practi-
cal method to measure the Boltzmann’s constant was provided. This can be instead
achieved by studying another fundamental phenomenon in statistical physics, that
is Brownian motion, first observed at the beginning of the eighteenth century by
Robert Brown and modelled by Einstein in 1905. Einstein’s model heavily relied on
the atomistic hypothesis and by using it, he managed to connect a macroscopically
observable quantity, i.e. the diffusion constant (estimated by measuring the vari-
ance of the displacement of a Brownian particle), to the microscopic Boltzmann’s
constant. A more detailed discussion of Brownian motion in the framework of
Langevin dynamics and its implications is postponed to next sections, where a brief
review on the thermodynamics of mesoscopic systems is also presented.

2.2 Non-equilibrium statistical physics

In the context of equilibrium systems, the main purpose of statistical physics is
the deduction of thermodynamic proprieties of a system starting from its micro-
scopic description. Nevertheless, during the last decades, statistical physics has be-
come more and more an interdisciplinary area of research with applications ranging
from pure physics to computer sciences, from chemistry to biology and from eco-
nomics to logistics where, most of the times, interesting phenomena take place in
a non-equilibrium regime. The latter is radically different from equilibrium situa-
tions mostly because of the breaking of time–reversal invariance, quantified by en-
tropy production and determining the irreversible nature of non-equilibrium pro-
cesses. For example, the relaxation process described in the previous section, where
an isolated system evolves from a less probable macrostate to the most probable
one such as the case depicted in Figure 2.1, exhibits a positive entropy production
Σ = SM̃ − SM ≥ 0 implying that it is an irreversible and spontaneous process. We
further point out that, for macroscopic systems, irreversibility arises from the deter-
ministic and reversible microscopic equations of motion as a statistical phenomenon
explained by Boltzmann’s argument. In addition to relaxation towards equilibrium,
an important class of non-equilibrium systems are those that are driven out of equi-
librium from an external or internal force, coming from example form a temper-
ature gradient, a chemical potential or an external mechanical force. These could
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Figure 2.1: Free diffusing gas of N particles diffusing in an isolated environment.
In (a), the gas is confined in the left region of the container with a gate separat-
ing it from the right one. As regards to (b) instead, the gate is opened and the
gas can freely diffuse in both chambers. The evolution starts from a macrostate
Min coinciding with the microstate where all gas particles are in the left cham-
ber. Using the binomial distribution with parameter p = 1/2 (chambers with
equal volume), one sees that this microstate has a probability of occurring equal to
p(nl = N, nr = 0) = 2−N

(
N
0

)
= 2−N, where nl and nr are the number

of particles in the left and right chambers respectively. As regards to the final
macrostate Mfin at equilibrium, a certain number n < N of particles will be in
the left part of the container while N − n particle will be on the right. The prob-
ability of such a configuration is again obtained from the binomial distribution, i.e.
peq(n) ≡ p(nl = n, nr = N− n) = 2−N

(
N

N−n

)
with moments equal to 〈n〉eq = N/2

and 〈∆n2〉eq = N/4. If N � 0, this distribution becomes a Gaussian whose width is
quantified by the ratio σ = 〈∆n2〉eq/(〈n〉eq)2 ≈ N−1. Hence, for N ≈ 1023 p(n) is a
very peaked distribution around its mean value implying that states corresponding
to microstates having n extremely close to the mean value 〈n〉eq = N/2 are the only
ones to be observed. This example illustrates the statistical nature of irreversibility
and explains why one will never see a spontaneous return to the initial state, i.e. the
one having less entropy.

be the cases for example of two heat baths with different temperatures exchanging
heat, an internal combustion engine or the mechanical compression of a gas exerted
through a piston, respectively. It can be verified that for all these processes the total
entropy production of system and environment is again strictly greater than zero.

As one could easily guess, non-equilibrium is much more complicated then equi-
librium also because the statistical ensembles listed in the previous section can not
be used anymore and, moreover, few universal results exist for non-equilibrium dy-
namics, at least until the present day. Indeed, it is often impossible to identify the
density of microstates needed, for example, to calculate the entropy (2.3) which in
turn makes it very difficult to derive a macroscopic description of the system from
its microscopic structure. Moreover, even if an effective macroscopic description,
given by a set of differential equations, is available, the solution of these equation is
most of the time unreachable. Suffice it to say that finding a general solution to the
Navier-Stokes equations, governing the dynamics of Newtonian fluids and which
can be obtained from a coarse-graining procedure carried out on the microscopic
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Figure 2.2: Graphical visualisation of a mesoscopic particle undergoing Brownian
motion due to the temporary imbalances of forces caused by the components of the
surrounding fluid.

components of the fluid, would win you one million dollars. More generally and as
a matter of fact, what one usually does is to analyse case by case the system one is
interested in by using ad hoc methods and few general principles.

The discussion on macroscopic non-equilibrium systems could of course con-
tinue for a plethora of more pages, but this is not the scope of this thesis. Instead,
what we are more focused on is a mesoscopic level of description, where some
coarse graining procedure has been carried out but until a certain level where sta-
tistical fluctuations are still relevant, in contrast to what happens on a macroscopic
scale where fluctuations are negligible. Arguably one of the most important exam-
ples of this kind of systems is the one of a mesoscopic particle bathed in a fluid
at thermal equilibrium at time T. This phenomenon is also called Brownian motion
in honour of botanist Robert Brown who first described it in 1827 while studying
pollen grains. Because the particle is mesoscopic, meaning that its mass is much
larger then the mass of the particles composing the fluid but small enough that
temporary imbalances of the forces due to the hits from the surrounding fluid’s
molecules are possible, one can integrate out the degrees of freedom relative to the
particles of the fluid in order to obtain an effective equation of motion, based on
Newton’s second law and equal to

mẍ(t) = −γẋ(t) + F(xt, t) + γ
√

2D ξ(t) . (2.8)

Here, x(t) and m are the position and mass of the mesoscopic particle, γ is its fric-
tion coefficient arising from the Stokes approximation which, in the small velocity
regime, is the only source of dissipation in the system and F(xt, t) are some other
non dissipative forces acting on the particle. Moreover, ξ(t) is some Gaussian white
noise such that 〈ξ(t)〉 = 0 and 〈ξ(t′)ξ(t′′)〉 = δ(t′ − t′′). The diffusion constant D
instead, determines the strength of the random force and, as it will be shown in
few lines, it is related to the Boltzmann’s constant. This equation is named after
Paul Langevin, which first proposed it to describe Brownian motion [41], originally
not including the F(xt, t) term. Because of the stochasticity intrinsic to (2.8), if one
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prepares say N different particles in the same initial position x0, they will all dif-
fuse and evolve in different ways performing a random erratic motion. Neverthe-
less, one can study the probability density function (PDF) p(xt, t) of the particle’s
position at time t which, for F(xt, t) = 0, is a Gaussian. In this case, as we will
discuss more in detail in the next chapter, the first moment of the distribution be-
comes 〈xt〉 =

∫
dxt xt p(xt, t) = x0 while for its second moment, corresponding to

the mean squared displacement of N → ∞ different Brownian particles at time t
starting at the same initial condition x0 at time t = 0, one finds that

lim
t→∞
〈∆x2

t 〉 = lim
t→∞

∫
dxt (xt − 〈xt〉)2 p(xt, t) = 2Dt . (2.9)

This result was first obtained by Einstein in 1905 without relying on the Langevin
equation but rather by finding a connection between the density of Brownian par-
ticles p(xt, t) and the diffusion equation

∂t p(xt, t) = D∂2
x p(xt, t) , (2.10)

whose solution is a Gaussian distribution with second moment given by
〈∆x2

t 〉 = 2Dt and where D is the same diffusion constant as before. Note that,
in this context, the relation between the mean squared displacement and the diffu-
sion constant holds at all times, this is due to the fact in its original work Einstein
neglected inertial effects, corresponding to m � γ in (2.8). The crucial feature of
this result is that, by observing the diffusion of a sample of Brownian particles, one
can experimentally measure the diffusion constant. Moreover, by considering a sus-
pension of particles in a viscous fluid and in a gravitational field (see Figure 2.3),
Einstein also managed to show that the diffusion constant is equal to

D =
kBT

γ
. (2.11)

This in turn has huge implications. Indeed, apart from the Boltzmann’s constant,
every quantity in (2.11) is experimentally accessible hence offering, for the first time
in history, an experimental setup to estimate the Boltzmann’s constant and, as a
consequence, the Avogadro number NA, i.e. the number of particles corresponding
to a mole of a certain substance. This can be indeed considered the very first proof
of the existence of atoms and molecules and it is needless to underline how much
this is important.

Fuelled by these astonishing results, the study of mesoscopic systems has quickly
developed into a rich and rapidly growing field of physics aimed to the description,
for example, of the functioning of microscopic biological systems or the dynamics
of chemical reactions when small quantities of reagents are involved [42]. Within
this framework, one usually relies on the theory of stochastic processes of which the
Langevin dynamics governed by (2.8) is just a particular example. A stochastic pro-
cess is nothing else then a collection of random variables X = {Xi}i=1,...,N linked
by some temporal causal relation, as it can be the sequence of the positions of a
colloidal particle undergoing Brownian motion. Indeed, the latter is the prototype
of a process taking values in a continuous set (R in this case) and with a continu-
ous time parameter. After equation (2.8) was first proposed, researchers have been
able to generalise it to what is now commonly referred to as the Langevin equa-
tion(s). Especially recently, where very precise experiments on colloidal particles
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Figure 2.3: A collection of Brownian particles immersed in a fluid and in a gravi-
tational field. The density density of particles ρ(z) is the standard barometric dis-
tribution ρ(z) = ρ0 exp

[
−mgz

kBT

]
, with m the mass of the colloidal particles, g the

gravitational acceleration and z the height.
In a condition of dynamical equilibrium, the currents due to concentration gradi-
ents are quantified by Fick’s law, i.e. Jdiff = −D ∂zρ(z) = mgD

kBT ρ(z), and compete
with the currents generated by the gravitational forces which are Jgrav = −mg

γ ρ(z),
where γ is the friction coefficient of the particles, estimated through Stoke’s ap-
proximation. If dynamical equilibrium holds, then Jdiff + Jgrav = 0, implying that
D = kBT/γ.

are possible thanks to optical tweezers, the Langevin equation has proven itself as an
extremely powerful and versatile tool to model these experiments. Indeed, we will
make large use of these equations in Chapter 7 with an eye to experimental appli-
cations. Another class of important stochastic processes are those still depending
on a continuous time parameter but taking values in a discrete and numerable set.
These states could stand, to give some examples, for the position of a reaction co-
ordinate in a chemical network, for the chemo-mechanical state of a molecule or
for the occupation number of some discrete energy levels, and so on. These kind
of processes are often referred to as continuous time Markov chains or jump processes
and they will be discussed in more detail in the next sections along with the above
mentioned generalisation of equation (2.8).

The two classes of models cited above fall into the category of Markovian, or mem-
oryless, processes meaning that every update of the process only depends on the
previous step and not on the whole history of the system. Markovian processes are
indeed a very powerful tool for the modelling of physical systems and, moreover,
there are many mathematical theorems available which in turn help out in carry-
ing out the calculations. Nevertheless, the Markovianity hypothesis is not always
applicable on a certain mesoscopic scale of description, as for example in the case
of a Brownian particle immersed in a solution of water and macro-molecules. In-
deed, because the latter have a much larger mass then that of the water molecules,
a net separation between the typical time scales of the Brownian particle and that
of the components of the solution is no longer possible. This would imply that the
noise appearing in the Langevin equation (2.8) can not be considered white, i.e.
delta correlated, anymore and Markovianity is lost as a consequence. The study
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of non-Markovian systems is hence of fundamental importance but much less is
known about them from a mathematical point of view. In this thesis, we scratch the
surface of the topic relative to non-Markovian dynamics by considering the gen-
eralised Langevin equation (GLE) (as the name suggests, it is the non-Markovian
generalisation of the Langevin equation) with coloured noise, which will be widely
used throughout the next sections and chapters.

2.3 Stochastic processes

Stochastic processes have been widely used in the last decades to model systems
on a mesoscopic scale such as biological systems, molecular motors or chemical
reaction networks. This has also been enormously fuelled by the technological ad-
vances carried out in this century, through which one is now able to manipulate
and resolve the evolution and configurations of microscopic systems in unprece-
dented ways and precision. Because the systems listed above of course operate on
a non equilibrium regime, they are characterised by some kind of dissipation or en-
tropy production. For this reason, a lot of effort has been done in order to build a
theory of stochastic thermodynamics in such a way that classical thermodynamics
is obtained after the thermodynamic limit (in some sense that must be specified)
is taken. Indeed, for some paradigmatic cases such as the motion of a colloidal
particle modelled by (2.8) and for some sub-classes of jump processes, one is able
to obtain the stochastic analogous of the usual laws of thermodynamics. In this
context, thermodynamic quantities become stochastic, i.e. their value depends on
the particular realisation of the dynamics of the system. This in turn implies that,
for example, for one particular trajectory a Brownian particle in a non-conservative
field, one could observe a negative variation of total entropy, which seems to be in
contrast the second law of thermodynamics. Nevertheless, the latter can be recov-
ered after performing an averaging procedure over all possible realisation of the
dynamics, hence leading to 〈Σ〉 ≥ 0. Because of what has been shown in (2.1), in
the thermodynamic limit the probability distribution of the macrostates become so
sharp that, as a matter of fact, the averages start behaving deterministically.

As for macroscopic systems, the distance from equilibrium of a given stochas-
tic process is quantified by the breaking of time-reversal invariance which can be
linked, in some cases, to entropy production [25, 26, 27, 28]. As a consequence, it is
clear how thermodynamic quantities play a prominent role in the characterisation
of non-equilibrium processes. However, a recently emerged body of work puts a
strong accent on the role played in non-equilibrium by time symmetric quantities
[29, 30, 31, 32, 33, 34, 35], also referred to as frenetic quantities. The latter encode
the information about the kinetic features of the dynamic and are complementary
to thermodynamic aspects in which, by definition, thermodynamics is usually in-
terested. For example, in Chapter 5 we will show how the maximum precision,
in a sense that will be specified later, associated to a given process is both deter-
mined by thermodynamic and kinetic aspects. This behaviour will be quantified
by the thermodynamic uncertainty relation and the kinetic uncertainty relation (one of
the main original results of this thesis), the first one being more relevant close to
equilibrium while the second one being often more important far from equilib-
rium. Moreover, the fact that kinetic aspects become relevant for the latter case
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is not new, as it can be deduced the rich literature regarding far from equilibrium
response theory [43, 44, 45, 46, 47, 48, 49, 50, 51, 33, 34]. Indeed, in this context the
authors show how entropy production and time-invariance symmetry breaking are
the only quantities determining the response of a system close to equilibrium but
again, time-symmetric quantities start to arise while moving further and further
into non-equilibrium. A more detailed and comprehensive treatment of frenetic
aspects of stochastic processes can be found for example in [52, 53].

To conclude, in the next sections we will discuss some fundamental models used
in non-equilibrium statistical physics by putting an accent on thermodynamic and
kinetic aspects of the dynamics. These concepts will then be employed in Chapter
3, 5, 6, 7 and 8, where the original work of the author of this thesis is presented.

2.3.1 Jump processes

A jump process Xt, or continuous time Markov chain, is an ordered collection of
random variables Xt = {Xtn}0≤tn≤t characterised by a continuous time parameter t
and a numerable state space S such that Xtn ∈ S for every index n. In other words,
a jump process is a stochastic process that performs NJ random transitions among
discrete states at exponentially distributed times and one of its possible realisation
is depicted in Figure 2.4. The fact of the jump times being exponentially distributed
is necessary and sufficient condition for the process to be Markovian and this can
be put in formulae in the following way

P (Xt+dt = i|Xt = k) = Wik(t)dt for i 6= k (2.12)

P (Xt0+t = k|Xt0 = k) = exp
[ ∫ t0+t

t0

dt′Wkk(t′)
]

, (2.13)

where dt is an arbitrary infinitesimal time such that the probability of two jumps
occurring in this time interval in negligible and Wik(t) is the transition rate matrix
which determines the dynamics of the system. The latter is such that each one of
its non diagonal elements is larger or equal then zero while its diagonal elements,
denoted by −λk(t), are negative. Moreover, for each column of the matrix, the sum
of all its elements is equal to 0 so that

∑
i

Wik(t) = 0 λk(t) = −Wkk(t) = ∑
i 6=k

Wik(t) , (2.14)

meaning that λk(t) is equal to the sum of the positive transition rates in its column.
This propriety is crucial for the conservation of probability which in turn can be
obtained from the master equation

∂t pi(t) = ∑
k

Jik(t) Jik(t) = Wik(t) pk(t)−Wki(t) pi(t) , (2.15)

where pi(t) is the probability of the of state i of being occupied at time t. Clearly,
it also holds that ∑i pi(t) = 1. Moreover, the probability currents Jik(t) can be re-
garded as expected directed current from state k to state i. These currents are such
that they are anti-symmetric with respect to the flipping of the state indexes, i.e.
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Figure 2.4: Example of a particular realisation of the jump process Xt up to time t
and jumping times {t1, t2, . . . , TNJ}

Jik(t) = −Jki(t), which is feature of time anti-symmetric quantities, as it will be
clear at the end of this section. In addition, these flows are also deeply related to en-
tropy production as it can indeed be seen by studying the equilibrium and station-
ary solution associated to (2.15), corresponding to time independent probabilities
pi =⇒ ∂t pi = ∑k Jik(t) = 0. This can happen in two ways:

• each of the probability currents Jik = 0 at all times, which is only possible for
time independent transition rates. This condition is referred to as equilibrium
and corresponds to the absence of net flows among each bond between state i
and k.

• The sum ∑k Jik(t) being equal to zero along with at least two non zero cur-
rents, compensating each other. This would correspond to a non-equilibrium
steady state where net currents are present along with, because it is not equi-
librium, some form of entropy production. The latter statement is also true
for arbitrary non-equilibrium states.

This implies that entropy production is equal to zero, i.e. the system is in an equi-
librium state, if and only if all the currents Jeq

ik are zero at all times. This will be also
made clear by equation (2.24).

Before going on, we recall the fundamental propriety of Markov processes which
can be expressed in terms of conditional probabilities. To do so, we define a path
probability density function associated to the probability of observing a particular
realisation of the process Xt = {Xtn}0≤n≤N=t/dt as

P(ωt) = P(XtN = iN, XtN−1 = iN−1, . . . , X0 = i0) , (2.16)

where in is the state at time tn and dt can be interpreted, in a physical flavour, as
some small characteristic time on which an underlying microscopic process, deter-
mining the behaviour of the system on a mesoscopic scale, is taking place. On the
other hand and from a mathematical point of view, the right hand side of (2.16) is
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the joint PDF of N dependent random variables. This in turn implies that (2.16) can
be rewritten in terms of conditional probabilities, i.e.

P(ωt) = P(XtN = iN, . . . , XtM+1 = iM+1|XtM = iM, . . . , X0 = i0)·
· P(XtM = iM, . . . , X0 = i0)

(2.17)

for any 0 ≤ M < N. For a Markov processes, for which the dynamics starting
from from some initial state in only depends on the initial state itself (memoryless
propriety), equation (2.17) becomes

P(ωt) = P(XtN = iN, . . . , XtM+1 = iM+1|XtM = iM)P(XtM = iM, . . . , X0 = i0) ,
(2.18)

that is the well known Markov propriety. By iterating this procedure for all values
0 ≤ n < N, and by defining

pik(t, t0) ≡ P(Xt = i|Xt0 = k) , (2.19)

also called transition probabilities, one can readily obtain from (2.16)

P(ωt) = pi0(t0)
n=N−1

∏
n=0

pin+1 in(tn + dt, tn) . (2.20)

We mention that the transition probabilities are also governed by the master equa-
tion (2.15), i.e.

∂t pi i0(t, t0) = ∑
k

(
Wik(t) pk i0(t, t0)−Wki(t) pi i0(t, t0)

)
, (2.21)

and that they are time independent at equilibrium or in a steady state. For the
special case of continuous time Markov chain, whose transition probabilities are
(2.12) and (2.13), one can also easily see that equation (2.20) becomes

P(ωt) = pi0(t0) exp
(
−
∫ t

0
dt′ λit′ (t

′)
)NJ−1

∏
n=0

Win+1 in(tn) dt , (2.22)

where NJ is the number of jumps performed up to time t. This result will be useful
later on in Chapter 5.

With everything that was shown above, one is able to evaluate the average en-
tropy production associated to an arbitrary dynamics. To do so, one uses a gener-
alisation of (2.3) given by the Shannon’s entropy which, for a stochastic process, is
equal to

〈Σtot〉t = −
∫

dωt P(ωt) ln P(ωt) , (2.23)

where the role of the subscript "tot" will be clarified later on and dωt stands for
an infinitesimal "path volume". More in general, this is valid for every probability
distribution. Indeed, except for Boltzmann’s constant, one sees that (2.3) can be
obtained from (2.23) in the case of statistical ensembles. Finally, by combining (2.22),
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(2.21) for a steady state and (2.23), one is able to get a standard result for the average
entropy production associated to the steady state dynamics of a jump process, i.e.

〈Σtot〉st
t =

∫ t

0
dt′ ∑

ik

Wik(t′) pk, st ln
(

Wik(t′) pk, st

Wki(t′) pi, st

)
=

=
1
2

∫ t

0
dt′ ∑

ik

Jik, st(t′) ln
(

Wik(t′) pk, st

Wki(t′) pi, st

)
≥ 0 ,

(2.24)

which is only defined under the assumption of microscopic reversibility, namely, if
Wik(t) 6= 0 for some (i, k), then also Wki(t) 6= 0. This is also a necessary condition to
compare a trajectory with its time reversal in order to obtain the famous fluctuation
theorem [54, 55]

〈Σtot〉st =
∫

dω P(ωt) ln

(
P(ωt)

P†(ωt)

)
, (2.25)

where P(ωt) is given by (2.22) and P†(ωt) = P(θωt), with θωt standing for the time
reversed trajectory and with inverted velocities.

It is clear that, for the special case of equilibrium dynamics where all the net cur-
rents Jik are equal to zero, the average entropy production becomes zero itself, as
expected. To make the role of these net flows even clearer, we define the number
of jumps nik(ωt) that the system performs between state k and i during the evolu-
tion of the path ωt in the time interval [0, t]. We also present its infinitesimal form
dnik(ωt), corresponding to the number of jumps the the systems makes during the
interval [t, t + dt], and whose average equals

〈dnik〉t = Wik(t) pk(t)dt . (2.26)

By using this, one can introduce the class of integrated currents defined as

R(ωt, t) =
∫ t

0
∑
ik

(
dnik(ωt′)− dnki(ωt′)

)
gik(t′) , (2.27)

where gik(t) is some state bond dependent function and whose average can be read-
ily computed as

〈R〉t =
∫ t

0
dt′∑

ik

(
Wik(t′) pk(t′)−Wki(t′) pi(t′)

)
gik(t′) =

∫ t

0
dt′∑

ik

Jik(t′)gik(t′) .

(2.28)
The latter vanishes of course at equilibrium, where all probability currents are equal
to zero. These observables are often referred to as irreversible or dissipative inte-
grated currents, because they do not average to zero only in presence of dissipation.
Moreover, entropy production is itself an irreversible current, as it can be seen from
(2.24), and also the directed flow from state m to state n can be obtained from (2.27)
by choosing gik(t) = δniδmk. In addition, many quantities of experimental interest
fall in this class of observables while modelling a mesoscopic system using stochas-
tic jump processes. Some examples could be the amount of some product of interest
created by some chemical reaction network or the displacement of a molecular mo-
tor on a microtubule. For all these reasons, one is interested in the characterisation
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of these observables in order to study, for example, the efficiency and precision of
some biological process. The latter is a very active line of research and many ways
of defining the efficiency and precision of a process exist. Without going to much
into detail, in Chapter 5 we will consider the signal to noise ratio (SNR)

gggR
t ≡

〈R〉2t
〈∆R2〉t

(2.29)

as the quantity encoding the precision associated to the observable R(ωt, t). Here,
〈∆R2〉t = 〈R2〉t − 〈R〉2t is the variance of the observable. We will show how, in a
steady state, this precision is bounded from above by the entropy production (ther-
modynamic uncertainty relation), which is trivially true at equilibrium where both
quantities are equal to zero. As a consequence, it will be clear how, in the vicin-
ity of equilibrium, entropy production plays a prominent role in determining the
magnitude and precision of irreversible current. This also resembles what happens
in the case of response theory where the response of a system near equilibrium is
solely determined by entropy production. But this is not the whole story. Indeed, as
briefly discussed in the previous section, time-symmetric quantities must be taken
into account to properly characterise non-equilibrium regimes. We will add further
empirical evidences to this argument by showing how, far from equilibrium and for
some relevant examples, the SNR (2.29) is more tightly bounded by the average of
the time symmetric quantity

K(ωt) = ∑
k, i 6=k

nik(t) =
1
2

∫ t

0

(
∑

k, i 6=k

dnik(ωt′) + ∑
k, i 6=k

dnki(ωt′)

)
, (2.30)

counting the jumps of the system. Hence,

〈K〉t = ∑
k, i 6=k
〈nik〉t =

1
2 ∑

k, i 6=k
τik(t) , (2.31)

is the total average number of jumps that the system performs up to time t. In the
literature, this quantity is often referred to as mean dynamical activity. We also point
out that, as it will explained later in Chapter 5, this quantity provides an upper
bound to the SNR only for jump processes defined by time independent transition
rates Wik. Furthermore, we introduced the traffic τik(t) defined as

τik(t) = Wik(t) pk(t) + Wki(t) pi(t) (2.32)

and quantifying the "activity" of the bond (i, k). By comparing equation (2.30) and
(2.31)with (2.27) and (2.28), one notes that the symmetric traffic τik(t) plays the same
role in the averaging of K(ωt) as the probability current Jik(t) does for the irre-
versible integrated current R(ωt, t). Indeed, the dynamical activity K is an example
of reversible integrated quantity (with gij(t) = 1/2) which, perhaps surprisingly,
often gives the tightest bound to the precision of irreversible currents in a regime
far from equilibrium. To conclude this short preview of what we called the kinetic
uncertainty relation (KUR), whose derivation ad discussion is postponed to Section
5.3, we also point out that, differently from the thermodynamic uncertainty relation
(TUR) for jump processes, the KUR is also valid for arbitrary non equilibrium states
and all kind of observables, not only dissipative currents.
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Until now, the results presented in this section were given without any thermo-
dynamic interpretation. This can be done by using a standard parametrisation
[3, 52] for the transition rates, valid in the case of microscopic reversibility (i.e.
Wik(t) 6= 0 =⇒ Wik(t) 6= 0 for each (i, k)) and given by

Wik(t) =
√

Wik(t)Wki(t)

√
Wik(t)
Wki(t)

≡ aik(t)e sik(t)/2 , (2.33)

aik(t) ≡
√

Wik(t)Wki(t) = aki(t) sik(t) ≡ ln
(

Wik(t)
Wki(t)

)
= −ski(t) . (2.34)

In analogy to the arguments presented in the previous pages, we identify the sym-
metric part aik(t) of the rates with those determining kinetic aspects of the dynam-
ics and the anti-symmetric ones sik(t) with those governing the behaviour of ther-
modynamic quantities. Indeed, as it has been known for a while in the literature
[56, 57, 58, 59], by imagining the system to be in contact with an environment con-
sisting of many equilibrium baths (of heat, particles, ecc..) one can interpret the
sik(t) with the local variation of entropy (per kB) of the environment during the
transition k → i. If the bath is a heat reservoir, then this entropy change is due to
the heat injected into the environment during the latter transition. Moreover, for
time independent transition rates and by using the parametrisation (2.33) in equa-
tion (2.24) (and taking the average away) one easily sees that

Σst
tot(ωt) =

1
2

∫ t

0
∑
ik

(
dnik(ωt′)− dnki(ωt′)

)
ln
(

Wik pk, st

Wki pi, st

)
=

=∑
ik

nik(ωt) (sik − ∆ik ln p) ,
(2.35)

where between the first and second line we used the anti-symmetry of the indexes
of the logarithmic term appearing in the first line and, moreover, we also defined
∆ik ln p = ln pi, st − ln pk, st. By noting that the sum over all states of the number of
jumps can be seen as the sum over all jumping times NJ , one can further manipulate
equation (2.35) to get

Σst
tot(ωt) =

NJ−1

∑
n=0

(
sin+1 in + ∆in+1 in ln p

)
=

NJ−1

∑
n=0

sin+1 in − ∆iNJ , i0 ln p =

=Σst
env(ωt) + Σst

sys(ωt) .

(2.36)

One can hence identify two contributions to the entropy production, which justifies
a posteriori its "tot" subscript. The first one, i.e. Σst

env(ωt), comes from the sum
over all jump times of all local entropy variations of the environment sik. If the
environment consists in a unique thermal bath at temperature T, then one finds that
Σst

env(ωt) = ∆Q/kBT, where ∆Q is the heat injected into the environment during the
non-equilibrium process. The second contribution to the total entropy production,
instead, stems from the system’s internal entropy variation Σst

sys(ωt) = −∆iNJ , i0 ln p,
i.e. the difference in Shannon entropy between the final and initial state. This term
has of course zero average in a steady state, hence implying that

〈Σtot〉st
t = 〈Σenv〉st

t . (2.37)
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The anti-symmetric parameters sik are hence the only ones involved in determining
the amount of entropy production and, moreover, one can prove that the equilib-
rium state distribution pi, eq also depends uniquely on these parameters. This is
of course not true outside equilibrium, where kinetic coefficients aik highly influ-
ence the dynamics of the system. Again, for a more detailed and comprehensive
treatment of how this happens we refer to [52].

We conclude this section on Markov jump processes by briefly anticipating some
of the topics of Chapter 5, where one of the main focuses will be the calculation of
the Fisher information

I(α) =
∫

dω pα (ω)
(

∂α ln pα (ω)
)2

, (2.38)

where pα(ω) is some probability density function obtained from p(ω) by modifying
the original dynamics via an α-dependent perturbation, where α is some parameter
such that for α = 0 one recovers the original dynamics. For each different pertur-
bation, one gets a different result for the Fisher information. We will hence apply
(2.38) to (2.22) by first perturbing the dynamics through a modification of the transi-
tion rates Wik(t)→ Wα

ik(t). Indeed, in section 5.2.2 we will see how, for a particular
modification influencing only the sik(t) parameters in the rates, one gets that the
Fisher information leads to the total entropy production and, as a consequence, to
the thermodynamic uncertainty relation. Instead, for an alternative modification
presented in section 5.3, this time influencing the symmetric parameters aik(t), the
Fisher information happens to be proportional to the average dynamical activity
(2.31) hence leading to the kinetic uncertainty relation.

2.3.2 Langevin dynamics

In the previous section we discussed the case of Markov jump processes with con-
tinuous time and discrete states. This class of stochastic systems is particularly
useful to model coarse-grained dynamics, taking place on some mesoscopic scale,
where the set of states of interest can be efficiently approximated to be discrete. Of
course, there are many cases where this is not the best path to follow, as it is the case
of Brownian motion discussed in (2.2). In this context, we presented an effective
stochastic differential equation (2.8) which, in the limit of large friction m/γ � 1,
can be recast into

ẋ(t) = µ F(xt, t) +
√

2D ξ(t) , (2.39)

where µ = γ−1 is the mobility, D = µ kBT and ξ(t), as usual, stands for a Gaussian
white noise of average zero and normalised variance. This limit is also referred
to as the overdamped limit and, for a constant force F(xt, t) = F, it is known that the
probability distribution for the position of the particle, starting at position x0 at time
t = 0, is equal to

p(xt, t) =
1√

4πDt
exp

[
− (xt − x0 − vdt)2

4Dt

]
, (2.40)

where we introduced the drift velocity vd = µF. This corresponds to the solution of
the diffusion equation

∂t p(xt, t) = −vd ∂x p(xt, t) + D∂2
x p(xt, t) (2.41)
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Figure 2.5: Biased random walk on a lattice with sites labelled by the index n. The
spacing dx and microscopic time dt are taken such that the experimental resolution
∆t is much larger then dt, i.e. N = ∆t/dt� 0.

for the initial condition p(xt, t = 0) = δ(xt − x0) and clearly coinciding with (2.10)
for vd = 0, hence recovering standard non-driven Brownian motion. These results,
first proposed at the beginning of the XX century, were however more based on
phenomenological arguments rather then on more rigorous justifications. Indeed,
a more "microscopic" (not in the strict sense) approach can be used by means of
discrete time Markov processes. The latter are similar to the processes presented in
the previous section but of course, there are some differences. Without going too
much into detail and by knowing that, from a microscopical and classical point of
view, the system made of the Brownian particle and water molecules is discrete,
one could imagine that the particle "lives" on a one dimensional lattice, depicted in
Figure 2.5, with the probabilities of jumping to the right or the left being equal to
p+ and p− (whit these probabilities finding a physical meaning only a posteriori).
The next step consists in choosing the lattice spacing to be some microscopical char-
acteristic length dx and in imagining the process as updating itself every time after
a time interval dt has passed, the latter also being some microscopic characteristic
time. Under these hypothesis and by defining the "continuous variables" x = n dx
and t = NJ dt, where n is the lattice index and NJ is the number of times the pro-
cess has updated itself, one can use the discrete time master equation to show that
the probability distribution p(xt, t) satisfies a partial differential equation equal to
(2.41) in the limit of dx, dt → 0. This also leads to the identification of D = dx2/2dt
and v = (p+ − p−)dx/dt, meaning that the limits above must be taken carefully.
This link between discrete and continuous dynamics can be further generalised by
means of the so called Kramers–Moyal expansion of the Master equation [60, 61],
which is applied to arbitrary transition probabilities on a d dimensional lattice. This
procedure, which is treated in detail for example in [62, 63], leads to the famous
Fokker-Plank equation which reads

∂t p(xxxt, t) = −
d

∑
i=1

∂xi
t
(Ai(xxxt, t)p(xxxt, t)) +

d

∑
ik=1

∂xi
t
∂xk

t
(Dik(xxxt, t)p(xxxt, t)) , (2.42)

where xi
t and Ai(xxxt, t), the drift vector, are d dimensional vectors while Dik(xxxt, t) is

the state and time dependent d × d dimensional diffusion matrix. Moreover, it is
clear that (2.41) is just a special case of the Fokker-Plank equation in one dimension
with Ai(xxxt, t) = vd and Dik(xxxt, t) = D. It can be shown that the solution p(xxxt, t)
of equation (2.42) is the same as the PDF associated to the stochastic differential
equation

ẋxx(t) = AAA(xxxt, t) +
√

2DDD(xxxt, t) · ξξξ(t) , (2.43)
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which is the d dimensional generalisation of (2.39) and where we used vector no-
tation instead of index notation. We mention that this equation can model a large
number of systems, not only the motion of a Brownian particle in some force field,
although we will always have in mind the latter case throughout this thesis. More-
over, from now on we will refer to (2.43) as the Langevin equation (LE) and all the
variables denoted by xt will be considered to be even, i.e. symmetric with respect
to time reversal. This hypothesis will make many of the calculation presented later
on in this section more simple and streamlined. Instead, a paradigmatic example
of dynamics entailing odd variables will be discussed in detailed in the next chap-
ter, where the complete Langevin equation, involving the mass of the Brownian
particle, will be considered.

The last term in (2.43) is defined via the Ito product meaning that√
2DDD(xxxt, t) · ξξξ(t)dt =

√
2DDD(xxxt, t) · dBBBt , (2.44)

where dBBBt = BBBt+dt−BBBt ∼ N (0, 1d×d dt) is the multidimensional Wiener process. We
point out that (2.44), also known as Ito prescription and leading to Ito stochastic
calculus (where the chain rule does not hold anymore), corresponds to a particu-
lar interpretation of the underlying discrete dynamics, with characteristic time dt,
from which the continuous stochastic PDE (2.43) are derived once the limit dt → 0
is taken. Indeed, as it is known from the literature, the LE is not mathematically
well defined in the strict sense and hence, one should always have in mind that the
real dynamical equations are the discrete ones. We further add that the Ito prescrip-
tion is particularly popular in applied mathematics and economics because of its
averaging propriety, i.e. 〈g(xxxt, t) · dBBBt〉 = 0 for g(xxxt, t) a non anticipating function (to
know more about this topic we refer again to [63]). Instead, physicist usually pre-
fer another prescription defined via the Stratonovich product which, for a generic
matrix function ggg(xxxt, t), would lead to

ggg(xxxt, t) ◦ ξξξ(t)dt =
ggg(xxxt+dt, t + dt) + ggg(xxxt, t)

2
dBBBt . (2.45)

For obvious reasons, this is also called mid-point prescription, leading to the
Stratonovich stochastic calculus where the ordinary chain rule still holds. The rea-
son why physicist often prefer the Stratonovich prescription, in addition to the pro-
priety of preserving the chain rule, descends from the interpretation of the white
noise as the limit of some coloured noise with characteristic time much smaller
then the typical time on which the mesoscopic dynamics is taking place. Indeed,
because the memory effects embodied by the coloured noise are symmetric in time,
the Stratonovich interpretation (2.45) often becomes the most reasonable and phys-
ically funded choice.

The profound differences between the two prescriptions depicted above and their
use are the subject of a wide and complex sub-field of stochastic calculus and their
rigorous treatment is beyond the scope of this thesis (one can find more for example
in [63]). Instead, we limit ourselves to showing the Langevin equation (2.43) using
the Stratonovich prescription, that is

ẋi(t) = Ai(xxxt, t)−
d

∑
kj=1

√
Dkj(xxxt, t) ∂xk

t

√
Dik(xxxt, t) +

d

∑
k=1

√
2Dik(xxxt, t) ◦ ξk(t) (2.46)
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and leading to the same Fokker-Plank equation depicted in (2.42). Note that for
state independent diffusion matrix DDD(t) the two equations (2.43) and (2.46) coin-
cide.

Lets reconsider for a moment the Fokker-Plank (FP) equation (2.42) using vector
notation. One can see that it can be rewritten as

∂t p(xxxt, t) = −∇ · JJJ(xxxt, t) = −∇ · (ννν(xxxt, t)p(xxxt, t)) , (2.47)

with
ννν(xxxt, t) = AAA(xxxt, t)−

(
∇TDDD(xxxt, t)

)T
−DDD(xxxt, t) ∇ ln

(
p(xxxt, t)

)
, (2.48)

meaning that the FP equation can be recast into a continuity equation, implying
the conservation of probability. Moreover, for future convenience we defined the
mean local velocity ννν(xxxt, t) while the the probability current JJJ(xxxt, t) appearing in the
continuity equation (2.47) plays the same role as the currents Jik(t) did in the master
equation (2.15). Indeed, the case of a time independent position PDF
p(xxxt) =⇒ ∂t p(xxxt) = 0 corresponds to two different cases:

• JJJ(xxxt, t) = ννν(xxxt, t) = 0, meaning that the system is at equilibrium and implying
that, as it will be clear from (2.52), there is no net entropy production during
the evolution of the system.

• ∇ · JJJ(xxxt, t) = 0, i.e. the probability current has zero divergence, meaning that
the system is in a steady state. As always, because it is non-equilibrium, there
is some form of entropy production involved in the dynamics of the system.

In analogy with what has been done in the previous section, one can define the tran-
sition probability p(xxxt, t|xxx0, t0), standing for the probability of observing the colloidal
particle at the position xxxt at time t given that it was at xxx0 at time t = 0 and governed
by the same FP equation as (2.42), i.e.

∂t p(xxxt, t|xxx0, 0) =−
d

∑
i=1

∂xi
t
(Ai(xxxt, t)p(xxxt, t|xxx0, 0)) +

+
d

∑
ik=1

∂xi
t
∂xk

t
(Dik(xxxt, t)p(xxxt, t|xxx0, 0)) .

(2.49)

The transition probabilities also obey the so called Einstein-Smoluchowski-Chapman
–Kolmogorov (ESCK) relation

p(xxxt, t|xxx0, 0) =
∫

dxxxt′ p(xxxt, t|xxx′t, t′) p(xxx′t, t′|xxx0, 0) , (2.50)

a result that embodies the Markovian nature of the Langevin systems we are con-
sidering. By means of this, one can express the path probability P(ωt) associated
to the trajectory ωt = {xn dt}0≤n≤t/dt , where dt is some characteristic microscopic
time at which the process is taking place, that is

P(ωt) = p(xxx0, 0)
n=t/dt−1

∏
n=0

p(xxx(n+1) dt, (n + 1)dt|xxxn dt, ndt) . (2.51)
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Again, this can be used along with (2.23) to calculate the total average entropy as-
sociated to a given Langevin process [42, 64], that is

〈Σtot〉t = −
∫

dωt P(ωt) ln P(ωt) =

∫ t

0
dt′
〈
ννν DDD−1ννν

〉
t′ . (2.52)

From this one immediately sees that, for JJJ(xxxt, t) = 0 implying ννν(xxxt, t) = 0, the total
average entropy production vanishes, as expected for an equilibrium state. We also
add that, in general, one can again decompose the total entropy production into a
component accounting for the entropy injected into the environment and a second
piece corresponding to the variation in entropy of the system, that is

Σtot(ωt) = Σenv(ωt) + Σsys(ωt) (2.53)

with
Σsys(ωt) = − ln p(xxxt, t) + ln p(xxx0, 0) (2.54)

the difference of Shannon entropy between the initial and the final state and p(xxxt, t)
the solution of equation (2.47). Clearly, for a steady state or equilibrium, equation
(2.54) averages to 0. Moreover, for the simple case of a Brownian particle in contact
with a heat bath with temperature T, described by the multidimensional generali-
sation of (2.39), the entropy produced in the environment can be identified with the
heat injected into the thermal bath, i.e.

Σenv(ωt) =
∆Q
kBT

= β
∫ t

0
dt′ FFFT(xxxt′ , t′) ◦ ẋxx(t′) , (2.55)

where β = 1/kBT and ◦ stands for the Stratonovich product (2.45). The latter is an
example of the continuum analogous of (2.27), namely it is an irreversible integrated
current which in general can be defined as

R(ωt, t) =
∫ t

0
dt′ ggg(xxxt′ , t′) ◦ ẋxx(t′) (2.56)

for some state and time dependent matrix ggg(xxxt, t) (of which the vector FFF(xxxt, t) is
just an example). It can be also shown that (see [42] for example) these observables
average to

〈R〉t =
∫ t

0
dt′ 〈 ggg · ννν〉t′ , (2.57)

meaning that, indeed, these can be again identified with dissipative currents be-
cause at equilibrium, where no probability flow is present, their average becomes
zero. Moreover, by choosing ggg(xxxt, t) = ννν(xxxt, t)DDD−1(xxxt, t), one easily recovers (2.52)
from (2.57), meaning that entropy production itself can be regarded as a dissipative
integrated current. Because of this, and also because many other important and
experimentally accessible quantities of interest fall into this class of observables, it
is interesting to study the general behaviour of these currents. Indeed, in Chapter
5 we will study the precision associated to these observables, which again is upper
bounded by entropy production. Sadly, a continuum generalisation of the kinetic
uncertainty relation is still lacking and, as a consequence, the performances of the
entropic bound can not be compared with any sort of kinetic bound.
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2.3.2.1 Thermodynamics of a one dimensional Brownian particle in
homogeneous media

As anticipated in equation (2.8), the unidimensional motion of a colloidal particle
in an homogeneous fluid can be described by means of

mẍ(t) = −γẋ(t) + F(xt, t) + γ
√

2D ξ(t) , (2.58)

often referred to as the underdamped Langevin equation and where, as usual,
D = kBT/γ. With this paradigmatic example one can efficiently introduce and
explore some of the main features and concepts of stochastic thermodynamics, but
before doing so we express equation (2.58) in terms of a set of coupled stochastic
equations

ẋ(t) = v(t)

v̇(t) = − γ

m
v(t) +

1
m

F(xt, t) +
γ

m

√
2D ξ(t) ,

(2.59)

where v(t) is the velocity of the particle. Equation (2.59) can be regarded as a special
case of (2.43) when the degrees of freedom xxx(t) are allowed to be odd variables too,
such as the case of the velocity variables. Indeed, by setting

AAA(xt, vt, t) =

(
v(t)

− γ
m v(t) + 1

m F(xt, t)

)
DDD(xt, vt, t) =

(
0 0

0 γ2D
m2

)
(2.60)

one readily obtains (2.59) from (2.43). As a consequence, one can see that the transi-
tion probabilities p(xt, vt, t|xt0 , vt0 , t0) obey the FP equation, in this case also known
as Kramer’s equation, given by

∂t p(xt, vt, t|xt0 , vt0 , t0) =− ∂xt (vt p(xt, vt, t|xt0 , vt0 , t0)) +

+
1
m

∂vt [(γvt − F(xt, t)) p(xt, vt, t|xt0 , vt0 , t0)] +

+
γ2D
m2 ∂2

vt
p(xt, vt, t|xt0 , vt0 , t0)

(2.61)

with initial condition given by p(xt, vt, t0|xt0 , vt0 , t0) = δ(xt − xt0)δ(vt − vt0). The
joint PDF for position and velocity (xt, vt) at time t can be readily obtained from the
transition probability by integrating over the distribution of the initial conditions
(xt0 , vt0), i.e.

p(xt, vt, t) =
∫

dxt0dvt0 p(xt, vt, t|xt0 , vt0 , t0)p(xt0 , vt0 , t0) . (2.62)

To study the equilibrium and non-equilibrium dynamics of this system, we use the
standard procedure of dividing the total force applied on the Brownian particle
into a component arising from some externally controlled potential U(xt, λt), with
λt being the time dependent control parameter, and a part corresponding to some
non conservative force f (xt), i.e.

F(xt, t) = −∂xtU(xt, λt) + f (xt) . (2.63)
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By means of this, one can prove that for a confining potential U(xt, λt), for time
independent control parameter λt = λ and in the absence on non-conservative
forces f (xt) = 0, one recovers the standard Boltzmann distribution

p(xt, vt) = exp
[
− mv2

t
2kBT

− U(xt, λ)

kBT

]
/Z (2.64)

where one also uses that D = kBT/γ and where

Z =
∫

dxtdvt exp
[
− mv2

t
2kBT

− U(xt, λ)

kBT

]
(2.65)

is the partition function by means of which one can define the free energy
F = −kBT lnZ .

Instead, if the external control parameter depends explicitly on time or a non-
conservative force is acting on the colloidal particle (or both), then the system will
be in a non-equilibrium state. As usual, this implies that there is some form of non
zero entropy production which can be divided into an environmental contribution
Σenv and into a component accounting for the variation of the Shannon entropy of
the system Σsys. As regards the first one, because the environment serves as a ther-
mal bath of temperature T and by following Sekimoto’s interpretation of stochastic
energetics [65], one can see that the environmental contribution can be considered
as the heat injected into the system, i.e. the amount of work done by the particle on
the bath, that is

Σenv(ωt) = β∆Q(ωt) = β
∫ t

0
dt′ Fbath(xt′ , t′) ◦ ẋ(t′) , (2.66)

where
Fbath(xt, t) = γ

(
vt −
√

2Dξ(t)
)
= F(xt, t)−mv̇(t) (2.67)

can be obtained from the underdamped equation (2.59). Moreover, by combining
equation (2.66) and (2.67) one obtains

∆Q(ωt) =
∫ t

0
dt′ F(xt′ , t′) ◦ ẋ(t′)− m

2

(
v2(t)− v2(0)

)
, (2.68)

where in order to obtain the last term on the right hand side one uses that, for the
proprieties of Stratonovich stochastic calculus, it holds that ◦ẋ(t′)dt′ = dxt′ hence
leading to the usual rules of calculus. Note that (2.68) coincides with (2.55) in the
overdamped limit. By further noting that the system’s entropy production equals

Σsys = − ln p(xt, vt, t) + ln p(xt, vt, t0) , (2.69)

one finally gets an expression for the total entropy production

Σtot = Σenv + Σsys =
∫ t

0
dt′ F(xt′ , t′) ◦ ẋ(t′)− m

2

(
v2(t)− v2(0)

)
+

− ln
(

p(xt, vt, t)
p(xt0 , vt0 , t0)

)
,

(2.70)

which can be shown averages to zero at equilibrium. By using this same procedure,
in the next chapter we will show how this result is also valid for the non-Markovian
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Langevin equation. In this context, we will also be interested in characterising the
thermodynamic work W(ωt) done on the particle, which can be found by means
of the stochastic first law of thermodynamics. Indeed, by defining the change in
internal energy of the system as the sum of the variations of potential and kinetic
energy

∆E(ωt) = U(xt, λt)−U(x0, λ0) +
m
2

(
v2(t)− v2(0)

)
, (2.71)

one can use the first law to get the thermodynamic work

W(ωt) = ∆Q(ωt)+∆E(ωt) =
∫ t

0
dλt′ ∂λt′

U(x′t, λt′)+
∫ t

0
dt′ f (xt′ , t′) ◦ ẋ(t′) , (2.72)

where we used (2.68) along with (2.71) and that

U(xt, λt)−U(x0, λ0) =
∫ t

0
dU(x′t, λt′) =

=
∫ t

0
dxt′ ∂xt′U(x′t, λt′) +

∫ t

0
dλt′ ∂λt′

U(x′t, λt′)

(2.73)

along with ◦ẋ(t′)dt′ = dxt′ . We will show how all these these arguments are still
applicable for the generalised Langevin equation (GLE), i.e. the non-Markovian
version of (2.58) which reads

mẍ(t) = −
∫ t

tm
dt′Γ(t− t′)ẋ(t′)− ∂xtU(xt, t) + f (xt) + η(t) , (2.74)

where Γ(t) is some memory kernel that, as it can be deduced from its name, is ac-
countable for the memory effects. As for the random force η(t), it is a Gaussian
distributed coloured noise such that 〈η(t)〉 = 0 and 〈η(t′)η(t′′)〉 = kBTΓ(|t′ − t′′|),
the latter propriety being called the second fluctuation-dissipation theorem [37].
Note that, for Γ(|t′ − t′′|) = 2 γ δ(t′ − t′′) one recovers (2.59) from (2.74). We will
explicitly solve the GLE for the simple case of a parabolic potential of the form
U(xt, λt) = κ(xt − λt)2/2 by introducing a generalisation of the Laplace transform
which becomes particularly useful to evaluate the large time limit of the dynamics
of the system. By means of this we will also be able to explicitly evaluate many
of the thermodynamic quantities presented in this section along with their aver-
ages and variances. These will be in turn used to discuss the performances of the
non-Markovian uncertainty relation, presented in 5.5, and to test the validity of the
non-Markovian variance sum rule (VSR) in Chapter 8.



CHAPTER 3

GENERALISED LANGEVIN EQUATION
AND LAPLACE TRANSFORMS

3.1 Introduction

In this rather technical section, we discuss the method based on Laplace transforms
to solve linear stochastic differential equations, which is particularly useful when
memory effects, determined by the convolution of some memory kernel with the
dynamical variables, are included. In particular, we will dedicate many pages to
the solution of the generalised Langevin equation (2.74) for a moving parabolic po-
tential. Because generating an initial condition for a Langevin equation with mem-
ory is a non-trivial issue, we introduce a generalisation of the Laplace transform
as a useful tool for solving this problem, in which a limit procedure tm → ∞ may
send the extension of memory effects to arbitrary times in the past. This method
also allows us to compute average position, work, their variances and the entropy
production rate of a particle dragged in a complex fluid by an harmonic potential,
which could represent the effect of moving optical tweezers. For initial conditions
in equilibrium we generalise the results by van Zon and Cohen [66], finding the
variance of the work for generic protocols of the trap. In addition, we study a par-
ticle dragged for a long time captured in an optical trap with constant velocity in a
steady state. Our formulas open the door to thermodynamic uncertainty relations
in systems with memory, presented in Section (5.5).

3.2 Generalised Langevin equation

The driven diffusion process of a colloidal particle or bead immersed in a fluid has
become a paradigm of non-equilibrium physics [28, 66, 67, 68, 65, 42, 69]. Fluc-
tuations play a prominent role for this mesoscopic system due to the multitude
of random hits on the particle by the molecules of the surrounding fluid. If these
molecules are tinier and faster than the colloidal particle, a net separation of
timescales between fast and slow degrees of freedom occurs and the colloidal par-
ticle undergoes Markovian dynamics. In this case, the motion of the particle can
be equivalently described by using the Langevin equation (2.58), path integrals and
the Fokker-Plank equation (2.61), see [62] for a (very) detailed treatment of this
topic. Instead, if the particle is immersed in a solution containing for example long
and complex polymers [70, 71], the above-mentioned separation of time scales is
no longer possible and memory effects occur. In order to describe such kind of
non-Markovian systems, one may then consider a generalised Langevin equation
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Figure 3.1: Brownian particle in a bath of polymers and trapped by optical tweezers.

(GLE) with constant diffusion coefficient, whose formal derivation can be found in
[72, 73, 74]. For t ≥ 0 this equation reads

mẍ(t) = −
∫ t

tm
dt′Γ(t− t′)ẋ(t′)− ∂xtU(xt, t) + f (xt) + η(t) , (3.1)

where Γ(t) is the memory kernel, tm ≤ 0 is the time to which the memory ef-
fects extend and η(t) is a coloured Gaussian noise obeying 〈η(t)〉 = 0. The GLE
could also describe the motion of a particle under the effect of hydrodynamic back-
flow [75]. The fluctuation-dissipation relation [37] is still valid in the more gen-
eral form 〈η(t′)η(t′′)〉 = kBTΓ(|t′ − t′′|): thermodynamic equilibrium is present in
the medium if its two effects (dissipation and noise) are proportional at all times.
Note that a Markovian memory kernel ΓMark(t) = 2γ0 δ(t) would lead to the usual
fluctuation-dissipation theorem while the consistency, instead, of equation (3.1)
with the Markovian Langevin equation, is guaranteed by the Stratonovich conven-
tion for the integrals of delta functions, i.e.

∫ t
tm

dt′ f (t′)δ(t′ − t) = f (t)/2 (see [63]
for a formal justification of this result). Indeed, because in this section we will deal
with coloured noise and memory effects, the Markovian memory kernel must be
regarded as the limit of some non-Markovian memory kernel whose characteristic
time tends to zero, that is for example

ΓMark(|t|) = lim
τ→0

γ0

τ
e−|t|/τ = 2γ0 δ(t) . (3.2)

As discussed in the previous section after equation (2.45), this interpretation of the
white noise implies the Stratonovich prescription for the GLE. Moreover, the 2 fac-
tor on the right hand side of equation (3.2) is necessary as it can be readily seen
from∫ ∞

−∞
dt′ΓMark(|t′|) = lim

τ→0

∫ ∞

−∞
dt′

γ0

τ
e−|t

′|/τ = 2γ0 =⇒
∫ ∞

0
dt′ΓMark(t′) = γ0 ,

(3.3)
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i.e. everything is consistent if a two factor is included in front of the Dirac delta
in the Markovian memory kernel and if the integral of the delta centred on one of
the integration boundaries gives an extra 1/2 factor. We also add that, the gener-
alisation of the FP equation to non-Markovian context is still an open problem and
hence, determining the PDF associated to the GLE must be worked out case by case
and by using ad hoc approaches.

The aim of this chapter is to solve the GLE with a parabolic confinement potential
U(xt, t) = κ

2(xt − λt)2 and without non-conservatives forces, obtained for instance
by using optical tweezers centred on a moving coordinate λt,

mẍ(t) = −
∫ t

tm
dt′ Γ(t− t′)ẋ(t′)− κ[x(t)− λ(t)] + η(t) . (3.4)

The non-dynamical case was already discussed for example in [76]. Moreover, we
will restrict ourselves to the case of a non-divergent time dependent effective fric-

tion coefficient γ̂(t), i.e. such that γ̂ = lim
t→∞

γ̂(t) = lim
t→∞

∫ t

0
dt′ Γ(t′) < ∞, which is a

sensible physical requirement [77, 78].
One of the first analytical solutions for the GLE with κ = 0 and no external force

can be found in [79]. It is obtained through the use of Laplace transforms and it is
expressed in terms of the velocity susceptibility χv(t), a key quantity discussed in
the next sections. In the paper [80], on which this chapter is based on, we obtain a
more general solution in terms of the susceptibility and its integrals. This enables
us to calculate averages and variances of relevant quantities such as position, ther-
modynamic work and entropy production, with a dynamics starting from different
initial conditions. Some of these results are already known in the literature, espe-
cially for equilibrium initial conditions, see for example [81]. However, imposing
a non-equilibrium steady state as initial condition is not trivial for the GLE, due to
its memory. A scheme for achieving an initial condition with memory requires ex-
tending it far into the past. To this end, we introduce a modified version of Laplace
transforms with arbitrary initial time tm, which is then shifted back to minus in-
finity by taking an appropriate limit. The explicit dependence of the solution on
tm along with the well-defined limits of susceptibilities will make the procedure
straightforward.

The following section introduces the technical details of the modified Laplace
transform. In Sec. 3.4 we discuss the solution of the GLE and in Sec. 3.5 we show
how to use the solution for computing relevant thermodynamic quantities. We
show that the entropy production rate can be expressed in terms of a retarded ve-
locity, which is equal to the usual velocity of the particle in the Markovian case,
see (3.54). In section 3.6 we briefly discuss the overdamped case, corresponding to
m = 0. Moreover, in Sec. 3.7, we apply the obtained results to the dynamics starting
from equilibrium and to the case where initial conditions are taken in the infinite
past, i.e. tm → −∞, which can be seen as a generalised stationary state, in the sense
that memory of initial conditions is lost. For the latter case we manage to show that
the variance of the thermodynamic work is equal to that of a system prepared in
equilibrium initial conditions for every driving protocol λ(t) (see equation (3.89)),
thus generalising the results by van Zon and Cohen [66]. Finally we consider the
special case of a linear dragging protocol λ(t) = vt with tm → −∞, also discussed
in [82], which can be considered as a steady state in the usual sense. For this sce-
nario we show that quantities such as average position, velocity, work and entropy
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production rate have the same structure as for Markov dynamics. The variances,
however, are different.

3.3 Modified Laplace transform

A standard way of dealing with the linear GLE uses Laplace transforms. This tech-
nique is particularly useful when dealing with an initial condition at finite times,
for instance when the system starts from equilibrium at time t = 0. If the initial
time is rather taken infinitely back in the past, traditional Laplace transforms are
no longer suitable to find a solution for the GLE. However, it is well known that,
for Markovian dynamics, non-equilibrium steady states can be obtained from this
limit. Hence, we would find it useful to have a framework in which Laplace trans-
forms are available and steady states may be considered.

Our way to tackle this problem is to introduce a modified Laplace transform with
an arbitrary initial time tm ≤ 0 that acts on a given function g(t) as follows

ĝ tm(k) = L tm
k [g(t)] =

∫ ∞

tm
dt e−kt g(t) . (3.5)

The standard Laplace transform of course is recovered for tm ↗ 0.
The aim is to solve the GLE finding the explicit dependence of the solution on tm

and then, if interested in steady states, eventually take the limit tm → −∞. For our
purposes, we just need to know the effect of such modified transform on first and
second derivatives of a function. They can be readily expressed as

L tm
k [ġ(t)] = k ĝ tm(k)− gtme−ktm ,

L tm
k [g̈(t)] = k2 ĝ tm(k)− k gtme−ktm − ġtme−ktm .

(3.6)

Note that ĝ tm(k) stands for the modified Laplace transform of the function g(t)
while gtm ≡ g(tm) and ġtm ≡ ∂t g(t)|t=tm are the function and its time derivative
evaluated at time tm .

Furthermore, it is not hard to show that the action of the modified Laplace trans-
form on integrals is equal to the action of the standard transform, namely

L tm
k

[∫ t

tm
dt′ g(t′)

]
=

ĝ tm(k)
k

. (3.7)

We also need to know the effect of such transform on the convolution of a causal
function G(t), i.e such that G(t < 0) = 0 (like the memory kernel Γ(t) in our case),
with an arbitrary g(t)

L tm
k

[∫ t

tm
dt′G(t− t′)g(t′)

]
=
∫ ∞

tm
dt
∫ t

tm
dt′e−ktG(t− t′)g(t′) . (3.8)

First, to compute an explicit version of this equation, we note that∫ ∞

tm
dt
∫ t

tm
dt′ =

∫ ∞

tm
dt′
∫ ∞

t′
dt (3.9)
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i.e. these integrals define the same region of integration so that (3.8) becomes

L tm
k

[∫ t

tm
dt′G(t− t′)g(t′)

]
=
∫ ∞

tm
dt′
∫ ∞

t′
dt e−ktG(t− t′)g(t′) =

u=t−t′
=

∫ ∞

tm
dt′
∫ ∞

0
du e−ku e−kt′ Γ(u)g(t′) =

=
∫ ∞

tm
dt′e−kt′g(t′)

∫ ∞

0
du e−kuG(u) =

=L tm
k [g(t)]Lk [G(t)] = ĝtm(k) Ĝ(k)

(3.10)

which is a generalisation of the convolution theorem. It states that the modified
Laplace transform of the convolution of a causal function G(t) with an arbitrary
function g(t) is equal to the product of the standard Laplace transform of the causal
function, i.e. Ĝ(k), and the modified Laplace transform of g(t), that is ĝtm(k).

We conclude this section by remarking that, of course, the modified Laplace trans-
form of a causal function is equal to the standard Laplace transform of that function.

3.4 GLE solution

By applying the modified Laplace transform (3.5) to the GLE (3.4) and by using the
results obtained above

L tm
k [mẍ(t)] = L tm

k

[
−
∫ t

tm
dt′ Γ(t− t′) ẋ(t′)− κ(x(t)− λ(t)) + η(t)

]
(3.11)

we get

m
(

k2 x̂tm(k)−k xtm e−ktm − vtm e−ktm

)
=

= −Γ̂(k)
[
k x̂ tm(k)− xtm e−ktm

]
− κ x̂tm(k) + κλ̂tm(k) + η̂tm(k) .

(3.12)

Furthermore, with a bit of algebra one can isolate the position x from the other
quantities obtaining

x̂ tm(k) = xtm

e−ktm

k
(1− κ χ̂x(k)) + mvtm e−ktm χ̂x(k) + (κλ̂ tm(k) + η̂ tm(k))χ̂x(k) ,

(3.13)
where we introduced the "position susceptibility” χx(t) defined via its Laplace
transform

χ̂x(k) = [mk2 + k Γ̂(k) + κ]−1 . (3.14)

In the following we will also use its integral χ(t) and its derivative χv(t) (“velocity
susceptibility”)

χ(t) ≡
∫ t

0
dt′χx(t′) , (3.15)

χv(t) ≡ ∂t χx(t) . (3.16)
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Figure 3.2: Underdamped (m 6= 0) susceptibilities for (a) Markovian memory ker-
nel ΓMark(t) = 2γ0δ(t) and (b) for non-Markovian memory kernel of the form
Γexp(t) = (γ/τ) exp[−t/τ]θ(t), where θ(t) is the Heaviside step function. In both
cases we see that lim

t→0
χv(t) = 1/m, lim

t→∞
χv(t) = 0, lim

t→0
χx(t) = 0, lim

t→∞
χx(t) = 0,

lim
t→0

χ(t) = 0 and lim
t→∞

χ(t) = 1/κ. In this underdamped case, all the mentioned

limits remain valid for all memory kernels, see Appendix A.1.

In Appendix A.1 we discuss the limits of these susceptibilities for t→ 0 and t→ ∞.
Two examples are shown in figure 3.2. We also stress that all the susceptibilities are
of course causal functions, i.e. χ∗(t < 0) = 0.

By defining the inverse of the modified Laplace transform through the usual
Bromwich integral

g(t) =
1

2πi

∫ α+i∞

α−i∞
dk e kt ĝtm(s) , (3.17)

where α is such that the chosen vertical contour in the complex plane has all the
singularities of g(s) on its left, we see that L−1, tm

k

[
e−ktm

]
= 2δ(t− tm) (the factor 2

is needed for consistency) and L−1, tm
k

[
e−ktm

k

]
= θ(t− tm), where θ(t) is the Heav-

iside step function. Transforming back equation (3.12) to real time we obtain, for
t > 0 ≥ tm,

x(t) =xtm

(
θ(t− tm)− κ

∫ t

tm
dt′χx(t− t′)θ(t′ − tm)

)
+

+ 2mvtm

∫ t

tm
dt′χx(t− t′)δ(t′ − tm) +

∫ t

tm
dt′χx(t− t′)

[
κλ(t′) + η(t′)

]
=

=xtm (1− κχ(t− tm)) + mvtm χx(t− tm) +
∫ t

tm
dt′χx(t− t′)

[
κλ(t′) + η(t′)

]
,

(3.18)

that is the solution to the generalised Langevin equation. The velocity can be readily
obtained by simply taking its time derivative:

v(t) = −κ xtm χx(t− tm) + mvtm χv(t− tm) +
∫ t

tm
dt′χv(t− t′)

[
κλ(t′) + η(t′)

]
(3.19)
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where we used that for underdamped dynamics χx(0) = 0, see Appendix A.1.
Taking the averages of the above expressions and using that 〈η(t)〉 = 0, we get

〈x〉tm, t = 〈xtm〉(1− κχ(t− tm)) + m〈vtm〉χx(t− tm) + κ
∫ t

tm
dt′χx(t− t′)λ(t′)

(3.20)

〈v〉tm, t = −κ〈xtm〉χx(t− tm) + m〈vtm〉χv(t− tm) + κ
∫ t

tm
dt′χv(t− t′)λ(t′) , (3.21)

with the notation 〈·〉tm, t meaning that initial conditions are taken at time tm while
the observation time is taken at time t.

3.4.1 Variance of the position and correlations

Another important quantity we are interested in is the variance of the position at
time t. Given that the system started at time tm with position xtm and velocity vtm ,
we have that

〈∆x2〉tm, t = 〈(xt − 〈x〉tm, t)
2〉tm, t . (3.22)

Using the previously obtained expression for the position (3.18) and defining

φ(t) =
∫ t

tm
dt′χx(t− t′)η(t′) , (3.23)

we find that (3.22) becomes

〈∆x2〉tm, t =〈φ2(t)〉+ 〈∆x2
tm〉(1− κχ(t− tm))

2 + m2〈∆v2
tm〉χ

2
x(t− tm)

+ 2mCov(xtm , vtm)χx(t− tm)(1− κχ(t− tm)) ,
(3.24)

where Cov(a, b) = 〈ab〉 − 〈a〉〈b〉 is the covariance between the random variables a
and b. Focusing on the the first term on the right hand side of (3.24), we further
define the following quantity (also for future convenience):

C(t′, t′′) = 〈φ(t′)φ(t′′)〉 =
∫ t′

tm
ds′

∫ t′′

tm
ds′′χx(t′ − s′)χx

(
t′′ − s′′

)
〈η(s′)η

(
s′′
)
〉 ,

(3.25)

which in Appendix A.2 we show to be equal to

C(t′, t′′) = kBT
[
χ(t′ − tm) + χ(t′′ − tm)− θ(t′ − t′′)χ(t′ − t′′)+

− θ(t′′ − t′)χ(t′′ − t′)− κχ(t′ − tm)χ(t′′ − tm)−mχx(t′ − tm)χx(t′′ − tm)
]

.

(3.26)

The variance of the position can be obtained by evaluating this quantity at equal
times (i.e. t = t′ = t′′) and then by plugging it into equation (3.24). From its defini-
tion (3.15), one immediately sees that χ(0) = 0 so that

〈φ2(t)〉 = C(t, t) = kBT
[
2χ(t− tm)− κχ2(t− tm)−mχ2

x(t− tm)
]

. (3.27)
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Finally, by using (3.24), we obtain an expression for the variance of the position
from arbitrary initial conditions

〈∆x2〉tm, t =kBT
[
2χ(t− tm)−mχ2

x(t− tm)− κχ2(t− tm)
]
+

+ 〈∆x2
tm〉(1− κχ(t− tm))

2 + m2〈∆v2
tm〉χ

2
x(t− tm)+

+ 2mCov(xtm , vtm)χx(t− tm)(1− κχ(t− tm)) .

(3.28)

Note that, from (3.18) and (3.19) one sees that the stochastic behaviour of x(t) and
v(t) is determined by the initial distribution of xtm and vtm and by a convolution
involving the coloured noise η(t). The latter is nothing else then a (continuous)
sum of Gaussian random variables and hence it is Gaussianly distributed itself.
This is a consequence of the GLE being linear, implying that if the initial probability
distribution function (PDF) p(xtm , vtm , tm) is a (bivariate) Gaussian, so will be the
ptm(xt, vt, t) at time t > tm. This also happens if arbitrary initial conditions are
taken in the infinite past, i.e. if tm → −∞. In fact, if a sufficiently large time has
passed between the initial preparation of the system and the observation time t,
which can be taken positive without loss of generality, the PDF regains its Gaussian
character and can hence be written as

ptm(xt, vt, t) =
1√

(2π)2|Stm, t|
exp

[
−1

2
(xxxt − 〈xxx〉tm, t)S−1

tm, t(xxxt − 〈xxx〉tm, t)

]
, (3.29)

with xxxt = (xt, vt), 〈xxx〉tm, t = (〈x〉tm, t, 〈v〉tm, t) and Stm, t the covariance matrix

Stm, t =

(
〈∆x2〉tm, t Covtm(xt, vt)

Covtm(xt, vt) 〈∆v2〉tm, t ,

)
(3.30)

whose components are the variances of position and velocity along with their co-
variances. We are hence interested in obtaining an expression for the missing com-
ponents of the covariance matrix:

〈∆v2〉tm, t =〈(vt − 〈v〉tm, t)
2〉tm, t =

=∂t′ ∂t′′〈(xt′ − 〈x〉tm, t′) (xt′′ − 〈x〉tm, t′′)〉tm, t′, t′′
∣∣
t′=t′′=t ,

(3.31)

Covtm(xt, vt) =〈xt vt〉tm, t − 〈x〉tm, t〈v〉tm, t =

=∂t′〈(xt − 〈x〉tm, t) (xt′ − 〈x〉tm, t′)〉tm, t, t′
∣∣
t′=t ,

(3.32)

where we used that 〈v〉tm, t = ∂t〈x〉tm, t because of the linearity of the GLE. More-
over, of course it holds that Covtm(xt, vt) = Covtm(vt, xt). (3.31) and (3.32) can be
computed similarly to the variance of the position (3.28):

〈∆v2〉tm, t =kBT
[
1/m−mχ2

v(t− tm)− κχ2
x(t− tm)

]
+ κ2〈∆x2

tm〉χ
2
x(t− tm)+

+ m2〈∆v2
tm〉χ

2
v(t− tm)− 2κ mCov(xtm , vtm)χv(t− tm)χx(t− tm) ,

(3.33)

Covtm(xt, vt) =kBT
[
χx(t− tm)−mχv(t− tm)χx(t− tm)− κχx(t− tm)χ(t− tm)

]
+

− κ〈∆x2
tm〉χx(t− tm)(1− κχ(t− tm))+

+ m2〈∆v2
tm〉χx(t− tm)χv(t− tm)+

+ mCov(xtm , vtm)
(
χv(t− tm)(1− κχ(t− tm))− κχ2

x(t− tm)
)

,
(3.34)
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where we used the convention for the Heaviside step function for which θ(0) = 1/2
as well as χv(0) = 1/m. Hence, equations (3.28), (3.33) and (3.34) are the explicit
expressions of the components of the covariance matrix.

3.5 Thermodynamic quantities

This section is devoted to the analysis of relevant thermodynamic quantities such
as entropy production, entropy production rate and thermodynamic work.

3.5.1 Entropy production and entropy production rate

Entropy production, plays a crucial role in non-equilibrium dynamics and its pro-
prieties have been already briefly discussed in the previous chapter in the context
of Markovian dynamics. It encodes the information about the irreversibility of a
given process and the same thing happens for systems with memory. Indeed, for a
colloidal particle in contact with a non-Markovian heat bath, the entropy produc-
tion for a stochastic trajectory ωt during a time interval [0, t] can be again split into
two parts

Σtot(ωt) = Σenv(ωt) + Σsys(ωt) (3.35)
with

Σenv(ωt) = β∆Q(ωt) ,
Σsys(ωt) = − ln ptm(xt, vt, t) + ln ptm(x0, v0, 0) ,

(3.36)

where ∆Q(ωt, t) is the heat injected into the heat reservoir, β is the inverse temper-
ature (hence Σenv(x, t) is the entropy change in the reservoir) and Σsys(x, t) is the
difference between the Shannon entropy of the final and initial states of the system.
In particular, for Gaussian PDFs, it holds that

Σsys(ωt, t) =
1
2

ln
[
|Stm, t|
|Stm, 0|

]
, (3.37)

where |Stm, t| is the determinant of the covariance matrix (3.30) at time t.
In analogy to (2.66), we can define the heat absorbed from the bath by means of

∆Q(ωt) =
∫ t

0
dt′Fbath(ωt, t′) ◦ ẋ(t′) , (3.38)

where Fbath(ωt, t) is the force exerted from the particle on the bath, i.e., using the
GLE (3.1),

Fbath(ωt, t) =
∫ t

tm
dt′Γ(t− t′)ẋ(t′)− η(t)

= κλ(t)−mẍ(t)− κx(t) . (3.39)

Equation (3.38) thus becomes

∆Q(ωt) =
∫ t

0
dt′
[
κλ(t′)−mẍ(t′)− κx(t′)

]
◦ ẋ(t′) =

= κ
∫ t

0
dt′λ(t′)ẋ(t′)− m

2
[ẋ2(t)− ẋ2(0)]− κ

2
[x2(t)− x2(0)] =

= W(ωt)− ∆E(ωt) , (3.40)
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where

W(ωt) = −
∫ t

0
dλt′ ∂λt′

U(xt′ , λt′) = −κ
∫ t

0
dλt′ (x(t′)− λ(t′)) , (3.41)

∆E(ωt) =
m
2
[v2(t)− v2(0)] +

κ

2
[(x(t)− λ(t))2 − x2(0)] , (3.42)

again in analogy to (2.71) and (2.72) and hence recovering the first law of thermo-
dynamics at a stochastic level [65, 42].

Taking the average of (3.38), as 〈r2〉 = 〈∆r2〉+ 〈r〉2 for any stochastic variable r
and since for underdamped dynamics ẋ(t) = v(t), we get

〈Σenv〉tm, t = β〈∆Q〉tm, t =βκ
∫ t

0
dt′λ(t′)〈v〉tm, t′+

− βm
2

(〈v〉2tm, t − 〈v〉2tm, 0 + 〈∆v2〉tm, t − 〈∆v2〉tm, 0)+

− βκ

2
(〈x〉2tm, t − 〈x〉2tm, 0 + 〈∆x2〉tm, t − 〈∆x2〉tm, 0) .

(3.43)

At this stage one can not further simplify this expression for the entropy produc-
tion. On the other hand, we can obtain a much more compact form for the entropy
production rate, defined as

〈σtot〉tm, t = ∂t〈Σtot〉tm, t . (3.44)

For the system entropy production rate we immediately see from (3.37) that

〈σsys〉tm, t =
∂t|Stm, t|
2|Stm, t|

. (3.45)

From equation (3.43) instead we get that

〈σenv〉tm, t =β∂t〈x〉tm, t

[
κλ(t)−m∂2

t 〈x〉tm, t − κ〈x〉tm, t

]
+

− βκ

2
∂t〈∆x〉tm, t −

βm
2

∂t〈∆v〉tm, t ,
(3.46)

where again we used that 〈v〉tm, t = 〈ẋ〉tm, t = ∂t〈x〉tm, t. Consider now the term
between square brackets on the right hand side of equation (3.46) and name it

V(t, tm) = κλ(t)−m∂2
t 〈x〉tm, t − κ〈x〉tm, t . (3.47)

Taking its modified Laplace transform we obtain

Ltm
k [V(t, tm)] =κλ̂tm(k)− κLtm

k [〈x〉tm, t]−mk2Ltm
k [〈x〉tm, t]

+ mk〈xtm〉e−ktm + m〈vtm〉e−ktm ,
(3.48)

where we used the formula for the modified Laplace transform of a second deriva-
tive (3.6). Moreover, looking back to the expression for the average of the position
(3.20) we note that it can be effectively written as

〈x〉tm, t = I(t, tm) + κ
∫ t

tm
dt′χx(t− t′)λ(t′) , (3.49)
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where I(t, tm) = 〈xtm〉(1− κχ(t− tm)) +m〈vtm〉χx(t− tm) contains the information
relative to initial conditions, in particular I(tm, tm) = 〈xtm〉.

Going back to equation (3.48), recalling the definition of the position susceptibil-
ity via its Laplace transform ( χ̂x(k) = [m k2 + k Γ̂(k) + κ]−1) and using that for the
first term on the right hand side of equation (3.49) we have that

Î tm(k) = 〈xtm〉
e−ktm

k
(1− κχ̂x(k)) + m〈vtm〉e−ktm χ̂x(k) , (3.50)

along with the generalised convolution theorem for the second one, we get

Ltm
k [V(t, tm)] =κλ̂tm(k)− κLtm

k [〈x〉tm, t]−mk2Ltm
k [〈x〉tm, t] +

+ mk〈xtm〉e−ktm + m〈vtm〉e−ktm =

=κ
[
1− κχ̂x(k)−mk2χ̂x(k)

]
λ̂tm(k)− (mk2 + κ)Î tm(k)+

+ mk〈xtm〉e−ktm + m〈vtm〉e−ktm =

=Γ̂(k)
[
κ k χ̂x(k)λ̂tm(k) + k Î tm(k)− I(tm, tm)e−ktm

]
=

=Γ̂(k)Ltm
k [∂t〈x〉tm, t] .

(3.51)

Its inverse can be calculated using again the convolution theorem

V(t, tm) =
∫ t

tm
dt′Γ(t− t′)〈v〉tm, t′ =

∫ t−tm

0
dt′〈v〉tm, t−t′ Γ(t′) = γ̂(t− tm)〈vret〉tm, t ,

(3.52)
where

γ̂(t) =
∫ t

0
dt′Γ(t′) (3.53)

is the time dependent effective friction coefficient and γ̂ = lim
t→∞

γ̂(t) is its asymptotic

limit for long times. Moreover, we define the retarded velocity as

〈vret〉tm, t =
1

γ̂(t− tm)

∫ t−tm

0
dt′〈v〉tm, t−t′ Γ(t′) (3.54)

which can be interpreted as a quantity converging to the real velocity for t→ ∞, i.e.

lim
t→∞
〈vret〉tm, t = lim

t→∞

1
γ̂(t− tm)

∫ t−tm

0
dt′〈v〉tm, t−t′ Γ(t′) ≈

≈ lim
t→∞

〈v〉tm, t

γ̂(t− tm)

∫ t−tm

0
dt′Γ(t′) = lim

t→∞
〈v〉tm, t .

(3.55)

The same decoupling between the kernel and the average velocity can be obtained
for tm → −∞ if one is able to show that 〈v〉tm, t = 〈v〉t−tm . It will be for example
the case of a trapped particle dragged at a constant velocity, i.e. λ(t) = vt. In fact,
under these hypothesis and with a calculation analogous to that of equation (3.55),
we see that

lim
tm→−∞

〈vret〉t−tm = lim
tm→−∞

1
γ̂(t− tm)

∫ t−tm

0
dt′〈v〉t−tm−t′ Γ(t′) = lim

tm→−∞
〈v〉t−tm .

(3.56)
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Moreover, note that for Markovian dynamics defined by a memory kernel
ΓMark(t) = 2γ0δ(t) it holds that γ̂ = γ̂(t) = γ0 and 〈vret〉tm, t = 〈v〉tm, t for every
t.

Finally, putting together equation (3.46) and (3.52), we get

〈σenv〉tm, t = βγ̂(t− tm)〈v〉tm, t〈vret〉tm, t −
βκ

2
∂t〈∆x2〉tm, t −

βm
2

∂t〈∆v2〉tm, t (3.57)

while for the total entropy production rate (assuming that ptm(xt, vt, t) is Gaussian)
we have that

〈σtot〉tm, t = βγ̂(t− tm)〈v〉tm, t〈vret〉tm, t−
βκ

2
∂t〈∆x2〉tm, t−

βm
2

∂t〈∆v2〉tm, t +
∂t|Stm, t|
2|Stm, t|

.

(3.58)

3.5.2 Work

In accordance to stochastic energetics [65, 42], we consider equation (3.41) as the
work done on a particle by a time dependent external potential, harmonic in our
case, meaning that for a particular stochastic trajectory ωt taking place during the
time interval [0, t] one gets

W(ωt) =−
∫ t

0
dλt′U′(xt′ − λ(t′)) =

=− κ
∫ t

0
dλt′ (x(t′)− λ(t′)) =

κλ(t)2

2
− κ

∫ t

0
dλt′ x(t′)

(3.59)

where we restricted ourselves to the case where λ(0) = 0. We can calculate the
work as a function of the external protocol and the susceptibilities (3.14) and (3.15)
by just plugging the explicit solution for the position of the particle (3.18) into (3.59),
which reads

W(ωt) =
κλ(t)2

2
− κ

[
xtm

(
λ(t)− κ

∫ t

0
dλt′ χ(t′ − tm)

)
+

+ mvtm

∫ t

0
dλt′ χx(t′ − tm) +

∫ t

0
dλt′

∫ t′

tm
dt′′χx(t′ − t′′)

[
κλ(t′′) + η(t′′)

] ]
.

(3.60)

Its average can be obtained, again by noting that 〈η(t)〉 = 0, as

〈W〉tm, t =
κλ(t)2

2
− κ

[
〈xtm〉

(
λ(t)− κ

∫ t

0
dλt′ χ(t′ − tm)

)
+

+ m〈vtm〉
∫ t

0
dλt′ χx(t′ − tm)+

+ κ
∫ t

0
dλt′

∫ t′

tm
dt′′χx(t′ − t′′)λ(t′′)

]
.

(3.61)

It is well known that, for such linear systems, the PDF P(Wt) of the work is Gaus-
sian. In fact, differently from other quantities such as the position, the proba-
bility distribution of the work at t = 0 is always a Dirac delta centred in 0, i.e.
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P(Wt, t = 0) = δ(Wt), as it can be easily seen from (3.60). Since such distribution
is the limit of a Gaussian for a random variable with vanishing variance, and given
the linearity of the GLE, the PDF of the work stays Gaussian at all times. Hence,
in addition to the average 〈W〉tm, t , again we need its variance to completely char-
acterise the PDF. It can be calculated similarly to the variance of the position (3.22),
starting from the definition of work (3.59),

〈∆W2〉tm, t =〈(W(ωt)− 〈W〉tm, t)
2〉tm, t = κ2

〈(∫ t

0
dλt′ (xt′ − 〈x〉tm, t′)

)2〉
tm, t

=

=κ2
∫ t

0
dλt′

∫ t

0
dλt′′ C(t′, t′′) + κ2〈∆x2

tm〉
(

λ(t)− κ
∫ t

0
dλt′ χ(t′ − tm)

)2

+

+ m2 κ2 〈∆v2
tm〉
(∫ t

0
dλt′ χx(t′ − tm)

)2

+

+ 2mκ2 Cov(xtm , vtm)

(
λt − κ

∫ t

0
dλt′ χ(t′ − tm)

) ∫ t

0
dλt′ χx(t′ − tm) ,

(3.62)

where C(t′, t′′) was defined in (3.25). By computing the first term in the second line
we get

〈∆W2〉tm, t =kBTκ2
[

2λ(t)
∫ t

0
dλt′ χ(t′ − tm)− 2

∫ t

0
dλt′

∫ t′

0
dλt′′ χ(t′ − t′′)+

− κ

(∫ t

0
dλt′ χ(t′ − tm)

)2

−m
(∫ t

0
dλt′ χx(t′ − tm)

)2 ]
+

+ κ2〈∆x2
tm〉
(

λ(t)− κ
∫ t

0
dλt′ χ(t′ − tm)

)2

+

+ m2 κ2 〈∆v2
tm〉
(∫ t

0
dλt′ χx(t′ − tm)

)2

+

+ 2mκ2 Cov(xtm , vtm)

(
λ(t)− κ

∫ t

0
dλt′ χ(t′ − tm)

) ∫ t

0
dλt′ χx(t′ − tm) ,

(3.63)

that is the expression for the variance of the work for an arbitrary initial distribution
of position and velocities. Although it might look rather complicated, in the next
section we will see that the above equation simplifies significantly for some usual
initial distributions.

3.6 Overdamped dynamics

Until now we restricted our discussion to underdamped dynamics, namely consid-
ering a finite mass for the particle and hence including inertial effects in the GLE
(3.4). Instead, the overdamped case can be considered by taking m = 0, correspond-
ing to the following GLE∫ t

tm
dt′Γ(t− t′)ẋ(t′) = −κ[x(t)− λ(t)] + η(t) . (3.64)
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Its solution can be obtained with the same procedure used for the underdamped
case with the main difference consisting in a different definition of the position sus-
ceptibility

χ̂over
x (k) = [k Γ̂(k) + κ]−1 (3.65)

and, as a consequence, of the other susceptibilities

χover(t) ≡
∫ t

0
dt′χover

x (t′) , (3.66)

χover
v (t) ≡ ∂t χover

x (t) . (3.67)

It is important to underline that one can not explicitly calculate the underdamped
susceptibilities and take the massless limit m → 0 afterwards because this would
lead to inconsistencies, as it can be seen in [83]. However, the direct solution of the
overdamped dynamics (3.64) can be found (dropping the "over" superscript):

x(t) = xtm (1− κχ(t− tm)) +
∫ t

tm
dt′χx(t− t′)

[
κλ(t′) + η(t′)

]
(3.68)

with its average equal to

〈x〉tm, t = 〈xtm〉 (1− κχ(t− tm)) + κ
∫ t

tm
dt′χx(t− t′)λ(t′) (3.69)

and with variance

〈∆x2〉tm, t = kBT
[
2χ(t− tm)− κχ2(t− tm)

]
+ 〈∆x2

tm〉(1− κχ(t− tm))
2 . (3.70)

The velocity is computed by taking the derivative of (3.68),

v(t) = −κ xtm χx(t− tm) +
∫ t

tm
dt′χv(t− t′)

[
κλ(t′) + η(t′)

]
+ χx(0) [κλ(t) + η(t)] .

(3.71)
Since in the overdamped case χx(0) 6= 0 (see Appendix A.1), the velocity is propor-
tional to the noise η(t), corresponding to the well known singularity of Brownian
motion. This feature disappears once the average is taken,

〈v〉tm, t = −κ〈xtm〉χx(t− tm) + κ
∫ t

tm
dt′χv(t− t′)λ(t′) + κχx(0)λ(t′) . (3.72)

On the other hand, the variance of the velocity is not well defined as the χx(0)η(t)
term again yields some mathematical problems. Indeed, trying to calculate this
variance, one finds a term of the form χ2

x(0)〈η(t)η(t)〉 = kBTχ2
x(0)Γ(0), which is

a singular quantity (consider Markov dynamics for example), see again Appendix
A.1 for more details.

For a Gaussian PDF, obtained for example starting from equilibrium initial con-
ditions or by sending tm → −∞ and t ≥ 0, we get the following expressions for the
total entropy production rate

〈σtot〉tm, t = βγ̂(t− tm)〈v〉tm, t〈vret〉tm, t −
βκ

2
∂t〈∆x2〉tm, t +

∂t〈∆x2〉tm, t

2〈∆x2〉tm, t
. (3.73)
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As for the work and its variance, again making the same reasoning as in the previ-
ous section, we get

〈W〉tm, t =
κλ(t)2

2
− κ

[
〈xtm〉

(
λ(t)− κ

∫ t

0
dλt′ χ(t′ − tm)

)
+

+ κ
∫ t

0
dλt′

∫ t′

tm
dt′′χx(t′ − t′′)λ(t′′)

]
,

(3.74)

〈∆W2〉tm, t =kBTκ2
[

2λ(t)
∫ t

0
dλt′ χ(t′ − tm)− 2

∫ t

0
dλt′

∫ t′

0
dλt′′χ(t′ − t′′)+

− κ

(∫ t

0
dλt′ χ(t′ − tm)

)2 ]
+ κ2〈∆x2

tm〉
(

λ(t)− κ
∫ t

0
dλt′ χ(t′ − tm)

)2

.

(3.75)

3.7 Applications

In this paragraph we apply the general formulas derived in the previous sections
to specific initial conditions. In particular, we will discuss two cases:

• Dynamics starting from an equilibrium condition, generated by a trap left still
for a long time with its minimum at x = 0, implying that 〈x0〉

eq
t = 0 and

〈v0〉
eq
t = 0. The protocol starts at t = 0 and no memory with the past is

established, meaning that tm = 0.

• Dynamics starting in the infinite past, corresponding to tm → −∞, where
memory of initial conditions is lost. Moreover, we will show that for the par-
ticular case of a linear dragging protocol λ(t) = vt, the system reaches a non-
equilibrium steady state. This happens because the system can be mapped,
through a Galileian transformation, to a reference frame where an equilibrium
distribution is achieved in the limit tm → −∞.

Of course, for a given protocol, in both cases the dynamics of the system becomes
the same in the limit of large observation times t→ ∞.

Moreover, we stress that all the formulae presented in this section are both valid
for underdamped and overdamped dynamics, with the only difference that the sus-
ceptibilities must be calculated at the beginning by choosing respectively a finite or
a null mass for the particle.

3.7.1 Dynamics starting from equilibrium

For a colloidal particle trapped in a parabolic potential with stiffness κ, the equilib-
rium PDF at time tm = 0 has a Gaussian shape,

Peq(x0, v0) =
1√

(2π)2|Seq
0 |

exp
[
−1

2
(xxx0 − 〈xxx0〉eq)

(
Seq

0

)−1
(xxx0 − 〈xxx0〉eq)

]
, (3.76)

with parameters given by

〈xxx0〉eq =

(
〈x0〉eq

〈v0〉eq

)
=

(
0
0

)
, (3.77)
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S eq
0 =

(
〈∆x2

0〉eq Coveq(x0, v0)

Coveq(x0, v0) 〈∆v2
0〉eq

)
=

(
kBT/κ 0

0 kBT/m

)
. (3.78)

Using equations (3.77) and (3.78), we can evaluate the evolution of all the quantities
discussed in the previous section, starting from the probability distribution defined
above and for an arbitrary λ(t). Starting from the average of the position (3.20) and
velocity (3.21) we find that

〈xxx〉eq
t =

(
〈x〉eq

t

〈v〉eq
t

)
= κ

∫ t
0 dt′χx(t− t′)λ(t′)∫ t
0 dt′χv(t− t′)λ(t′)

 (3.79)

while for the covariance matrix, using equations (3.28), (3.33) and (3.34) we get that

S eq
t =

(
〈∆x2〉eq

t Coveq(xt, vt)

Coveq(xt, vt) 〈∆v2〉eq
t

)
=

(
kBT/κ 0

0 kBT/m

)
, (3.80)

i.e. if we start from equilibrium and the trap stiffness κ does not change, then the
covariance matrix remains constant in time for every choice of λ(t).

Going forward to the estimate of thermodynamic work, from (3.61) and (3.63)
and again using that λ(0) = 0 along with χ(t) =

∫ t
0 dt′χx(t), we get that

〈W〉eq
t = κ

(
λ(t)2

2
− κ

∫ t

0
dλt′

∫ t′

0
dλt′′χ(t′ − t′′)

)
, (3.81)

〈∆W2〉eq
t = 2kBTκ

(
λ(t)2

2
− κ

∫ t

0
dλt′

∫ t′

0
dλt′′χ(t′ − t′′)

)
, (3.82)

i.e.
〈∆W2〉eq

t = 2kBT〈W〉eq
t . (3.83)

Since the PDF of the work P(Wt) is Gaussian, an integral fluctuation theorem for
the thermodynamic work W(xt, vt, t) holds (see [81] for details) and a Jarzynski
equality would follow [84].

Finally, since the covariance matrix and its determinant are both constants, a very
simple expression can be found for the rate of entropy production

〈σenv〉eq
t =

γ̂(t)〈v〉eq
t 〈vret〉eq

t
kBT

, (3.84)

where again

〈vret〉eq
t =

1
γ̂(t)

∫ t

0
dt′〈v〉eq

t−t′ Γ(t
′) . (3.85)

3.7.2 Initial conditions in the infinite past

We discuss the evolution of all the quantities presented in the previous sections
when the initial conditions are taken in the infinite past, i.e. tm → −∞. This can be
considered as a "stationary state" in a generalised sense, meaning that memory of
initial conditions is lost and, as we will see in few lines, that the covariance matrix
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has become constant. This can be easily seen again by considering the limits of the
susceptibilities discussed in the appendix. For position and velocity, using again
equations (3.20) and (3.21), what we get is

〈xxx〉−∞, t = κ

∫ t
−∞ dt′χx(t− t′)λ(t′)∫ t
−∞ dt′χv(t− t′)λ(t′)

 . (3.86)

As for the covariance matrix, we again use the expressions for the variance of po-
sition and velocity (3.28) and (3.33) alongside with their covariance (3.34), finding
that

lim
tm→−∞

S−∞, t =

(
〈∆x2〉−∞, t Cov−∞(xt, vt)

Cov−∞(xt, vt) 〈∆v2〉−∞, t

)
=

(
kBT/κ 0

0 kBT/m

)
. (3.87)

As in the previous example starting form equilibrium, also for this sort of steady
state we have that the covariance matrix does not depend on time for every driving
protocol λ(t).

The average work can be readily calculated using that χ(∞) = 1/κ along with
χx(∞) = 0, namely

〈W〉−∞, t = κ

(
λ(t)2

2
− κ

∫ t

0
dλt′

∫ t′

−∞
dt′′χx(t′ − t′′)λ(t′′)

)
. (3.88)

As for its variance instead, we obtain that

〈∆W2〉−∞, t = 〈∆W2〉eq
t = 2kBTκ

(
λ(t)2

2
− κ

∫ t

0
dλt′

∫ t′

0
dλt′′χ(t′ − t′′)

)
(3.89)

i.e. the variance of the work in the generalised steady state is equal to the one
starting from equilibrium conditions (3.82) for every driving protocol λ(t).

Finally, for the entropy production rate we use equation (3.58) along with the fact
that the covariance matrix is constant in order to obtain

〈σtot〉−∞, t =
γ̂〈v〉−∞, t〈vret〉−∞, t

kBT
, (3.90)

with
〈vret〉−∞, t =

1
γ̂

∫ ∞

0
dt′〈v〉−∞,t−t′ Γ(t′) . (3.91)

3.7.2.1 Steady state

A particularly interesting case to consider is a linear dragging protocol of the form
λ(t) = vt, where a non-equilibrium steady state is reached in the limit tm → −∞.
To understand why this happens, we recall that one usually defines the stationary
distribution as the solution of the Fokker-Planck equation when the PDF does not
depend explicitly on time. Nevertheless, this definition becomes problematic when
the drift term or the diffusion coefficient of the associated Langevin equation de-
pend explicitly on time, as in the cases we are considering in this chapter. To tackle
this problem, first of all we note that if a sufficiently large time has passed from the
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beginning of the dynamics, i.e. if tm → −∞, the PDF ptm(xt, vt, t) at time t ≥ 0 will
be a bivariate Gaussian with the usual form

lim
t−tm→+∞

ptm(xt, vt, t) =
1√

(2π)2|Stm, t|
exp

[
−1

2
(xxxt − 〈xxx〉tm, t)S−1

tm, t(xxxt − 〈xxx〉tm, t)

]
,

(3.92)
depending on time via the averages of position and velocity and the covariance
matrix. From (3.87) we see that for initial conditions taken in the infinite past the
covariance matrix does not depend on time for every driving protocol λ(t), but this
does not happen in general for the averages of position of velocity, as it can be seen
from equation (3.86).

We outflank this problem by moving the centre of the harmonic trap at constant
speed, i.e. λ(t) = vt, so that we get the following GLE

mẍ(t) = −
∫ t

tm
dt′Γ(t− t′)ẋ(t′)− κ [x(t)− vt] + η(t) . (3.93)

Performing the change of variable y(t) = x(t)− vt, we see that the system can be
mapped through a Galilean transformation to the centre of the trap reference frame.
This is always a consistent procedure for a GLE, as shown in [85]. Moreover, note
that this transformation does not change the covariance matrix and that the new
PDF ptm(yt, ẏt, t) will be defined by the same matrix along with 〈y〉tm, t and 〈ẏ〉tm, t,
which we will be now explicitly calculated. The transformed GLE hence becomes

mÿ(t) = −
∫ t

tm
dt′Γ(t− t′)ẏ(t′)− v

∫ t

tm
dt′Γ(t− t′)− κy(t) + η(t) (3.94)

and its solution can be found similarly to that for the original GLE. In particular we
find that

〈y〉tm, t = 〈ytm〉(1− κχ(t− tm)) + m〈ẏtm〉χx(t− tm)− v
∫ t−tm

0
dt′χ(t− tm− t′)Γ(t′) .

(3.95)
Taking the limit tm → −∞ and using the limits derived in Appendix A.1, we see
that

lim
tm→−∞

〈y〉tm, t = −vχ(∞)
∫ ∞

0
dt′Γ(t′) = − γ̂v

κ
,

lim
tm→−∞

〈ẏ〉tm, t = 0 , (3.96)

which are both constant. We conclude that for a harmonic potential with constant
strength and with centre travelling at constant speed (λ(t) = vt) it is possible,
through a Galilean transformation, to map the system to another one for which an
equilibrium distribution exists. In fact, the PDF ptm(yt, ẏt, t) inherits the Gaussian
character from the PDF of the original variable x(t). Thus, the PDF for y(t) becomes
time independent because the covariance matrix and the averages of the dynami-
cal variables (3.96) are constant. In this sense we mean that ptm(xt, vt, t) becomes
stationary as tm → −∞.

Introducing now the notation 〈·〉ss, meaning that we are considering stationary
averages in the sense discussed above, we note that

〈x〉ss
t = vt + lim

tm→−∞
〈y〉tm, t = vt− γ̂v

κ
, 〈v〉ss

t = v , (3.97)
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i.e. they do not depend on the specific form of the memory kernel but only on the
limit of its time integral. Moreover, note that the expressions above exhibit the
same structure as in the usual Markov case where instead of γ̂ there appears the
conventional Stokes friction coefficient γ0.

Consider now the thermodynamic work, in particular equations (3.61) and (3.63)
for the specific case of λ(t) = vt. For the average work we find

〈W〉ss
t =

κ v2 t2

2
− κv

∫ t

0
dt′〈x〉ss

t′ = γ̂ v2t , (3.98)

that again has the same form as the well known Markov case. For the variance of
the work, instead, we use the limits of susceptibilities discussed in Appendix A.1,
hence obtaining

〈∆W2〉ss
t = kBTκ v2

(
t2 − 2κ

∫ t

0
dt′
∫ t′

0
dt′′χ(t′′)

)
. (3.99)

As for the entropy production rate we immediately see that it has the same form as
for Markov dynamics with the usual substitution γ0 → γ̂

〈σtot〉ss
t =

γ̂〈v〉ss
t 〈vret〉ss

t
kBT

= γ̂v2 , (3.100)

because
〈vret〉ss

t =
1
γ̂

∫ ∞

0
dt′〈v〉ss

t−t′ Γ(t
′) =

v
γ̂

∫ ∞

0
dt′Γ(t′) = v . (3.101)

Moreover, the constancy of the entropy production rate is another indicator that the
scenario discussed above is indeed a stationary state.

3.7.3 Example: exponentially decaying memory kernel

As a standard example for non-Markovian dynamics, we examine a GLE with ex-
ponentially decaying memory kernel, as in Maxwell model for viscoelasticity [86].
In particular, we examine two cases: underdamped dynamics and overdamped dy-
namics. For causality, in both cases it holds that the memory kernel Γexp(t < 0) = 0.

3.7.3.1 Underdamped dynamics

We first discuss the underdamped GLE with a purely exponential memory kernel

Γexp(t) =
γ

τ
exp[−t/τ] for t ≥ 0 . (3.102)

The characteristic time τ could emerge, for example, from the relaxation of the
molecules or polymers in the reservoir. In the limit τ → 0, the symmetrized mem-
ory kernel tends to twice the Dirac delta

lim
τ→0

Γexp(|t|) = 2γδ(t) (3.103)

and the Markovian limit is recovered.



GENERALISED LANGEVIN EQUATION AND LAPLACE TRANSFORMS 46

5 10 15
t

5

10

15
τ→0

5 10 15
t

5

10

15
τ=2

5 10 15
t

5

10

15
τ=10

(a)

5 10 15
t

5

10

15
τ→0

5 10 15
t

5

10

15
τ=2

5 10 15
t

5

10

15
τ=10

(b)

<x>t , <W>t , <Δ2
W>t , <σtot>tW2

Figure 3.3: Time evolution of some of the quantities discussed in the previous sec-
tions starting from equilibrium (a) and from a stationary state (b) for linear dragging
protocol λ(t) = vt. Parameters are set as m = 1, κ = 1, γ = 1 and v = 1. For (a) we
see that as τ increases oscillations arise for all quantities while for (b) oscillations
are visible only for 〈∆W2〉ss

t as it is equal to 〈∆W2〉eq
t . Moreover, note that for the

second column (i.e. τ = 2), the effects of memory are still very present even at an
observation time t equal to several multiples of τ.

For finite τ the underdamped susceptibilities display oscillations, as shown in
figure 3.2. For memory kernels that are always positive, this feature is intimately
related to the presence of a finite mass. In fact, as we will see in the next subsection,
for overdamped dynamics oscillations appear only if the memory kernel has some
negative components. This behaviour of the susceptibilities is of course reflected in
all quantities considered in the previous sections, as one can see from figure 3.3(a),
for a system starting from an equilibrium condition, even if the dragging protocol
λ(t) = vt is linear. In the stationary state, memory effects are not visible anymore in
the averages of position, work and entropy production rate (they grow linearly, see
figure 3.3(b)) but oscillations are still present in the variance of work, which we have
shown to follow the same formula for transient dynamics and for the stationary
state. The non-monotonicity with time of the work variance is clearly due to the
memory stored by the complex fluid along with inertial effects. The variance of
position and velocity are not shown in the figure as they are constant in both cases.

Finally, if we consider an intrinsically oscillating driving protocol of the form
λ(t) = A sin(ωt), the effects of memory may determine an increase of the ampli-
tude of the already present oscillations, both from equilibrium (figure 3.4(a)), and in
the steady state (figure 3.4(b)). Panels on the left in figure 3.4 represent the Marko-
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Figure 3.4: Evolution of the same thermodynamic quantities as in the previous
figure starting from equilibrium (a) and for tm → −∞ (b) for dragging protocol
λ(t) = Asin(ωt). We set m = 1, κ = 1, γ = 1, A = 1 and ω = 1. In both scenar-
ios we observe an increasing amplitude of the oscillations that are already present
because of the intrinsic oscillatory nature of the driving protocol. This is particu-
larly evident for the average of the position. Another interesting feature that can
be observed is that the entropy production rate can become negative as memory
effects arise. Note that even in this case, differences between the two columns are
still present at an observation time t much larger then τ.

vian limit while panels on the right show an example for an exponential memory
kernel with τ = 2. In the latter case, the average position fluctuates more, and the
entropy production rate can become negative (while having a positive average over
one cycle in the steady oscillatory regime).

We finish this section by noting that, even if the considered kernel is exponential,
i.e. rapidly decaying, the effect of memory can extend to times much longer then
the characteristic time τ of the kernel, as it can be seen from the figures.
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Figure 3.5: Overdamped (m = 0) susceptibilities for memory kernel of the form
given in equation (3.104). For both figures we set κ = 1 and γ0 = 1 while for the
exponential part of the kernel we chose (a) γ = 1, τ = 5 and (b) γ = −0.9, τ = 1.
The limits of the susceptibilities coincide with those calculated in Appendix A.1.
Note that oscillations only appear in the case where the exponential part of the
kernel is negative.

3.7.3.2 Overdamped dynamics

Here we consider the overdamped dynamics (3.64) with the memory kernel

Γexp(t) = 2γ0 δ(t) +
γ

τ
exp[−t/τ] for t ≥ 0 (3.104)

The Dirac delta part is necessary in the overdamped limit for reasons of mathemat-
ical consistency, as shown in Appendix A.1 and [87]. Examples of susceptibilities
for this kind of dynamics are displayed in figure 3.5. In particular, one sees that
for γ ≥ 0 the susceptibilities exhibit no oscillations, differently from the case with
γ < 0 that is more alike to the underdamped case. The similarities between the
overdamped GLE with negative memory kernels and underdamped dynamics has
already been discussed in [82]. For this reason, in the following discussion we will
mainly focus on the case with positive memory kernel.

Figure 3.6 shows the behaviour of the same quantities considered in the previous
subsection for a linear dragging protocol λ(t) = vt. The differences between the
plots for different values of τ are smaller than in the underdamped case shown in
figure 3.3. This is due to the absence of oscillations. Nevertheless, for integrated
quantities such as average work and its variance, the effect of a finite τ is evident
for every t > 0 (figure 3.7). In this case, the effects of memory determine a delay in
the accumulation of thermodynamic work and in its variance. As a consequence,
after some multiples of the characteristic time τ, we observe a constant difference
between the averages (starting from equilibrium) and variances (both from equilib-
rium and stationary state) of work for different values of τ. This difference does not
vanish in time and is also found for the entropy production (not shown). Thus, the
exponential memory kernel influences the value of integrated quantities beyond its
time scale τ even in the overdamped limit.



GENERALISED LANGEVIN EQUATION AND LAPLACE TRANSFORMS 49

5 10 15
t

5

10

15

τ→0

5 10 15
t

5

10

15

τ=2

5 10 15
t

5

10

15

τ=10

(a)

5 10 15
t

5

10

15

τ→0

5 10 15
t

5

10

15

τ=2

5 10 15
t

5

10

15

τ=10

(b)

<x>t , <W>t , <Δ2
W>t , <σtot>tW2

Figure 3.6: For the overdamped case, evolution of the same quantities considered
for the underdamped case starting (a) from equilibrium and (b) from a stationary
state, for linear dragging protocol λ(t) = vt. Parameters are set as κ = 1, γ0 = 0.5,
γ = 0.5 and v = 1. For (a) we see that the main differences between the plots are
visible for average work and its variance while for (b) this only happens for 〈∆W2〉ss

t
(that is, as we have shown in the previous sections, equal to the one starting from
equilibrium 〈∆W2〉eq

t ).
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Figure 3.7: Evolution of average work starting from equilibrium on the left panel
and variance of work (equal from equilibrium or from stationary state) on the right,
for the overdamped case (parameters as in the previous figure).
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Figure 3.8: For the overdamped case, time evolution of the already discussed ther-
modynamic quantities from equilibrium (a) and for tm → −∞ (b) for intrinsically
oscillating dragging protocol λ(t) = A sin(ωt). We chose κ = 1, γ0 = 0.5, γ = 0.5,
A = 1 and ω = 1. As before, we note important differences between the two
columns concerning integrated quantities such as average work and variance, while
average position and total entropy production rate are basically unaffected by the
presence of memory.

A similar behaviour is observed for the case of an intrinsically oscillating driving
protocol λ(t) = A sin(ωt). Indeed, figure 3.8 shows that the effects of memory
are again very evident for average work and variance, while average position and
entropy production rate are not strongly affected.

3.8 Chapter conclusions

The Gaussian process with memory is a classic in statistical mechanics. Yet, we have
shown that further results can be derived for this process realised by a generalised
Langevin equation for a particle driven by a harmonic trap with constant strength
in a complex fluid. An explicit solution of the GLE is based on computing suscepti-
bilities. In terms of these important dynamical quantities, several other expressions
are derived.

For generic protocols and initial Gaussian conditions, the quantities we com-
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puted for every time t ≥ 0 are the average particle position (3.20), its autocorre-
lation function (3.26) and hence its variance (3.28), the average work done on the
system (3.61), its variance (3.63), and the entropy production rate (3.58). These for-
mulas can be simplified in some standard scenarios, e.g. starting from equilibrium
or in steady states. Moreover, the variance of the work starting from equilibrium
is equal to that for a steady state in a generalised sense and is proportional to the
average of work starting from the same initial conditions. Since we can deal with
various dragging protocols, this means that the two cumulants for the work (3.83)
generalise formulas by van Zon and Cohen [66].

Especially aiming at dealing with steady states, everything starts by introducing
a new Laplace transform with arbitrary initial time tm. The explicit dependence of
the solution on tm along with the well-defined behaviour of the susceptibilities for
the limits t→ 0 and t→ ∞ allow us to recognise a steady state for a linear dragging
protocol λ(t) = vt as tm → −∞. More in general, for an arbitrary protocol, this
limit leads to a loss of the information about the initial state. We can interpret it as
a generalised steady state.

Going into some more details about the quantities calculated throughout the
chapter, for a steady state generated by a linear dragging protocol we recognise
the same structure of the average of position and of velocity, and of their covariance
matrix, as for usual Markov dynamics. Finally, we are able to write the entropy pro-
duction rate in terms of a quantity that we termed the retarded velocity, matching
the usual velocity if no memory effects are included in the kernel.

In conclusion, we note that this framework yields average quantities but also
their variances. Hence it is used to derive one of the first examples of thermody-
namic uncertainty relations with memory [88, 89], whose derivation and discussion
can be found in Section 5.5.



CHAPTER 4

INFORMATION GEOMETRY AND
CRAMÉR-RAO BOUND

In this chapter we briefly review some fundamental concepts of information ge-
ometry which are propaedeutic to the derivation of stochastic uncertainty relations.
This will be done by means of the Cramér-Rao bound, a fundamental result involv-
ing arguably the most important information-theoretic quantity, namely the Fisher
information. Information geometry [90] is a branch of information theory that ex-
ploits differential geometry to describe information and to study probability theory
and statistics. For this reason, we will start from the discussion of basic notions
of differential geometry, found in Section 4.1 and mainly based on the second and
third chapter of Carroll’s book on general relativity [91]. This will in turn enable
us to introduce the concept of statistical manifold in Section 4.2 and to derive the
Cramér-Rao bound in Section4.3. The latter will then serve as a starting point for
the discussion of stochastic inequalities

4.1 Basics of differential geometry

The foundation of differential geometry is mostly credited to Carl Friedrich Gauss
and Bernhard Riemann, the latter being the first one to consider and describe the
central concept of manifold. A manifold captures the idea of a space which may
be curved and may have a non trivial topology but looks just like Rn locally. Two
simple examples of manifolds are trivially Rn itself and the n-dimensional sphere
Sn that looks flat, i.e. similar to Rn, in local regions but it is curved globally. The
probably most eminent example of application of differential geometry is of course
Albert Einstein’s theory of general relativity, where space-time itself is considered
as a 4-dimensional manifold and gravity becomes the manifestation of the curva-
ture of space-time. The curvature is quantified by the metric tensor, a fundamental
mathematical object that will be discussed later, and caused is by the presence of
masses. As a consequence, a probe particle moving freely in such a curved space-
time follows a minimum length path called geodesics that is, for flat spaces for ex-
ample, nothing else then a straight line while for a sphere it would be a circle with
the same centre of the sphere.

The obvious starting point for the discussion of the proprieties of manifolds is
their definition [92]. An n-dimensional manifold is a setM that comes along with
an indexed collection A of charts (Uα, ϕα), such that:

• Uα is a subset ofM and ϕα : Uα → Rn is one-to one (or injective) C∞ map, i.e.
infinitely times differentiable, and whose image ϕα(Uα) is an open set in Rn.
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Figure 4.1: Commutative diagram showing the compatibility of the charts.

We point out that a map is a simple generalisation of a function between arbi-
trary sets and that as it holds for functions, any injective map is onto its image
and hence ϕα : Uα → ϕα(Uα) is invertible. Moreover, we require its inverse to
be a C∞ map as well, in this case the map ϕα is also called a diffeomorphism.

• The set U = {Uα}α=1,...,N is such that
N⋃

α=1

Uα =M, i.e. U coversM.

• The charts (Uα, ϕα) are smoothly sewn together, which means that if two
charts overlap Uα ∩Uα 6= ∅, then the composition map ϕα ◦ ϕ−1

β is itself C∞

from ϕβ(Uα ∩Uβ) ∈ Rn to ϕα(Uα ∩Uβ) ∈ Rn, see Figure 4.1.

With these requirements the maximum atlasA = {(Uα, ϕα)}α=1,...,N, i.e. the one con-
taining every possible compatible chart, defines the differentiable manifold along
with the setM. In other words, a chart can be regarded as what we usually con-
sider a coordinate system on the set Uα, and an atlas is a collection of charts which
are smoothly related where they overlap. Moreover, the requirement of a maxi-
mal atlas is necessary as a means to avoid that two equivalent spaces endowed
with different atlases are considered as different manifolds. Also, the fact that more
charts are required, in addition of course to their compatibility, in order to define a
manifold rather than just a single one can be easily understood as we consider the
standard coordinate system for a 1-dimensional sphere, that is θ : S1 → R. This
map associates every point of the sphere with a value between 0 and 2π starting,
for example, from the top of the circle where θ = 0 and wrapping around counter-
clockwise up to 2π. The problem is that, if we want to include either the point θ = 0
or θ = 2π in order to cover the whole circle, then the image θ(S) would not be open
and hence one would violate the definition of manifold. Otherwise, if those points
are not included, we fail to cover the whole sphere and hence we conclude that we
need at least two charts to cover the whole manifold. The same issue appears with
the 2-dimensional sphere where a canonical coordinate system called stereographic
projection is often used. Indeed, in this case, one fails again to find a single chart
covering the whole sphere for the same reasons as above. This is a common feature
of many manifolds, especially compact ones, but there are also some that can be
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Figure 4.2: Commutative diagram for a function f : M → N and its composition
with the charts defining the manifolds.

covered with a single chart, as is the case of the infinite cylinder R× S. Neverthe-
less, when a global chart is not available, one still usually works with a one single
chart and just keeps track of all the points which are not included. Finally, we point
out that the requirement of the image ϕα(Uα) associated to a given chart to be an
open set in Rn is topologically founded (its deep reasons are beyond the scope of
this work) and that the condition of the maps {ϕα} to be C∞ is not necessary (we
could replace it with C p, p ≥ 1, and nothing would change in the discussion of the
incoming lines).

The definition of manifold given above captures in formal terms the intuitive no-
tion of a set that locally looks just like Rn but is not necessarily embedded in some
higher-dimensional Euclidean space. The fundamental propriety of being similar
to Rn, guaranteed by how the charts are constructed, introduces the possibility of
doing standard calculus on manifolds, that is performing derivatives and integra-
tion. Indeed, consider a function between two manifolds f : M → N equipped
with two set of charts {(Uα, ϕα)} and {(Vα, ψα)} and of dimension m and n respec-
tively. In this case, one can not simply take the derivative of f because no notion
of differentiability is defined in this case. Instead, the functions ψα ◦ f ◦ φ−1

α are just
functions between Rm and Rm (where they are defined) and of course one can con-
sider the derivatives, for examples, with respect to the local coordinates xµ ∈ Rm (µ
is an index going from 1 to m), so that the derivative of f can be defined as

∂ f
∂xµ =

∂

∂xµ (ψα ◦ f ◦ φ−1
α )(xµ) , (4.1)

see Figure 4.2 for the complete commutative diagram. Having said this, one can
now discuss tangent spaces and vectors. Without going to much into detail, we can
say that the tangent space to a point p of a manifold M, that is TpM, is the space
of directional derivatives operators along all the curves passing by p. To make an idea of
what this means, lets consider a curve γ(λ) : R→M parametrised by a parameter
λ and such that γ(λ = 0) = p. Using (4.1) and the diagram depicted in Figure 4.3,
for some coordinate system xµ onM one finds that the tangent vector to the curve
becomes

Vγ(p) =
d

dλ
ϕ ◦ γ

∣∣
λ=0 =

dxµ

dλ

∣∣∣
λ=0

, (4.2)
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Figure 4.3: Commutative diagram for a curve γ : R → M, a function f : M → R
and their composition with the charts defining the manifoldM.

which also represent the velocity vector at which the coordinate xµ is moving along
γ (and where we have also dropped the indexes of the charts). One could say
that the tangent space is the collection of all these tangent vectors associated to
all the curves passing by p onM, but this definition would be coordinate depen-
dent, which should be clear from (4.2). Moreover, there exist infinitely many curves
passing along p that have the same tangent vector as in equation (4.2). The solution
to these issues is rather formal and passes through the definition of the equivalence
class of curves such that, if two parametrised curves γ1(λ) and γ2(λ) are such that
γ1(0) = γ2(0) = p and Vγ1(p) = Vγ2(p) for every coordinate chart ϕ, then they are
considered equivalent, i.e γ1 ≡ γ2. Using this, one can now construct a vector space
whose elements are all the tangent vectors to the point p onM, one for each rep-
resentative of the equivalence class defined above, that is the tangent space TpM.
Note that this definition is coordinate independent and the identification between
vectors and equivalence classes is unique. Actually, the elements of TpM are not
vectors in the common sense but, rather, a set of derivative operators that form a
vector space and such that, if V is an element of this vector space and f :M→ R a
differentiable function defined around p, the action of Vγ on f gives a well-defined
directional derivative along V, that is

Vγ( f ) =
d

dλ
f (γ(λ)) , (4.3)

for γ some representative of the equivalence class defined above (see again Fig-
ure 4.3 for the complete diagram). One can also indeed verify that the directional
derivative operators form a vector space since, given two elements d

dλ and d
dη , their

sum d
dλ + d

dη is still a directional derivative as it is clearly linear and, moreover, it
can be shown that it respects the Leibniz rule of derivation. To sum up, the def-
inition given above of tangent space TpM formalises the intuitive idea of a space
containing all possible directions in which one can tangentially pass through a point
p onM.
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Having this formal definition in mind, one can now proceed to construct a useful
basis for the tangent vector space. A convenient choice corresponds to take the set
of partial derivatives with respect to some coordinate chart xµ, i.e. ∂µ ≡ ∂

∂xµ . Indeed,
looking again at Figure 4.3 and using the definition of the directional derivative of
an arbitrary function f (4.3) one can immediately see that

Vγ( f ) =
d

dλ
f ◦ γ(λ) =

=
d

dλ
[( f ◦ ϕ−1) ◦ (ϕ ◦ γ(λ))] =

=
d

dλ
(ϕ ◦ γ(λ))

∂

∂xµ ( f ◦ ϕ−1) =
dxµ

dλ
∂µ f ,

(4.4)

where between the second and the third line we used the chain rule and between
the third and the last one we used the definition of the derivative of a function (4.1).
Since the function f is arbitrary, one immediately sees that every vector, i.e. the
differential operators Vγ, of the tangent space can be decomposed in a basis given
by the partial derivatives {∂µ} with coefficients dxµ

dλ . The latter are often used to
indicate the whole vector as the canonical base is implied. Moreover, from now
on we use Einstein’s notation of repeated indexes meant as summed over, as it is
the case at the end of the last line of equation (4.4). We further add that as it is
known, the position up and down of the indexes is important, as it will pointed out
later, and that summed over indexes must be in a different position (one up and
one down). Indeed, objects having components with upper indexes are called con-
travariant vectors, or just vectors, and belong to the tangent space TpM while those
having components with lower indexes are named as covariant vectors, covectors or
one-forms, which live in the cotangent space T∗pM. The latter is nothing else then
the dual space of TpM, i.e. the vector space of linear applications ω : TpM → R.
The classical example of a covector is the gradient of a function f , that is

d f
(

d
dλ

)
=

d f
dλ

. (4.5)

Just as the partial derivatives with respect to the coordinates xµ provide a conve-
nient basis for TpM, the gradients of the coordinate functions fulfil the role of being
a good basis for the cotangent space. These gradients are also called the differentials
dxµ and are such that

dxµ(∂ν) = δ
µ
ν , (4.6)

where δ
µ
ν is the Kronecker delta. As a consequence, any element ω of the cotangent

space can be decomposed in this basis and be written as ω = ωµdxµ, where ωµ are
its components with lower indexes. Its action on a vector V = Vν∂ν hence becomes

ω(V) = ωµVνdxµ(∂ν) = ωµVνδ
µ
ν = ωµVµ (4.7)

because for any vector or covector it holds that Vνδ
µ
ν = Vµ and ωµδ

µ
ν = ων respec-

tively and because summed over indexes can be arbitrarily renamed.
Before moving on to the true reason why we introduced all these concept, it is

worth mentioning one of the most important consequences of everything we have
discussed so far. One of the most basic operations one can do in geometry and
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physics is the a change of coordinates, lets say from xµ to xν. Under this transfor-
mation, the basis vectors obtained from the new coordinate system can be expressed
in terms of the old coordinates by using the chain rule, that is

∂ν =
∂xµ

∂xν
∂µ (4.8)

where Jµ
ν = ∂xµ

∂xν is the Jacobian matrix of the transformation and has two indexes
(one upper and one lower). It is straightforward now to find the law of transforma-
tion of the components of a vector in a new basis, i.e.

V = Vµ∂µ = Vν∂ν = Vν ∂xµ

∂xν
∂µ (4.9)

implying that

Vν =
∂xν

∂xµ Vµ , (4.10)

where ∂xν

∂xµ is the inverse of the Jacobian matrix. This means that the vector compo-
nents transform with the inverse of the matrix that transforms the basis vectors, this
is why they are called contravariant vectors. In a similar way one could also show
that, instead, the components of a one form transform with the Jacobian matrix as
well, i.e.

ων =
∂xµ

∂xν
ωµ . (4.11)

This is why they are called covariant vectors. As it is known, the laws of transfor-
mation of coordinates play a central role in physics and, of course, it is impossible
to summarise all the crucial consequences that derive from the proprieties depicted
above in few lines. What we will do instead, will be to just say that writing equa-
tions in terms of vectors, covectors and their generalisation, i.e. tensors, all having a
definite transformation law, is at the very least a fundamental feature of every equa-
tion relevant to physics. The last step towards the end of this short introduction to
differential geometry consists in introducing the concept of tensor, based on the no-
tion of tensor product. Given two vector spaces V ,W with elements (V, W) along
with their duals V∗,W∗ with elements (V∗, W∗), then the vector space V∗ ⊗W∗
with elements V∗ ⊗W∗ is the space of bilinear functions such that

(V∗ ⊗W∗)(V, W) = V∗(V)W∗(W) . (4.12)

One can also build arbitrarily larger vector spaces by combining with the tensor
product many different copies of vector and dual spaces. Indeed, for a given point
p on a manifoldM, one can define a rank (r, s) tensor Tr

s as an element of

Tr
s ∈ TpM⊗ · · · ⊗ TpM︸ ︷︷ ︸

r times

⊗ T∗pM⊗ · · · ⊗ T∗pM︸ ︷︷ ︸
s times

, (4.13)

which in components reads

T = Tµ1,...,µr
ν1,...,νs ∂µ1 ⊗ · · · ⊗ ∂µr ⊗ dxν1 ⊗ · · · ⊗ dxνs . (4.14)

It is convenient, as usual, to forget about the elements of the basis and just use the
components Tµ1,...,µr

ν1,...,νs . Nevertheless, for our purposes a tensor is nothing else then
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a mathematical object that it has many indexes, namely a generalisation of vector
and matrices, that transforms in a definite way, i.e.

Tµ′1,...,µ′r
ν′1,...,ν′s

=
∂xµ′1

∂xµ1
. . .

∂xµ′r

∂xµr

∂xν1

∂xν′1
. . .

∂xνs

∂xν′s
Tµ1,...,µr

ν1,...,νs . (4.15)

Again, we stress that the knowledge of transformation laws is a key feature of ten-
sors and is the main reason why they are used in physics.

Among all possible tensors that one can built starting from tangent and cotangent
spaces of a manifold, arguably the most important one is the metric tensor,

g = gµν dxµ ⊗ dxν (4.16)

that is also the main reason we introduced all the machinery of differential geome-
try. g is a (0, 2) symmetric tensor, i.e. such that gµν = gνµ, with a non-null determi-
nant |g| 6= 0. This last requirement guarantees the existence of an inverse gµν such
that

gµσ gσν = δ
µ
ν . (4.17)

Moreover, the action of the metric tensor on two vectors V = Vµ∂µ and W = Wµ∂µ

follows from the definition of the metric (4.16) , of differential (4.6) and tensor prod-
uct (4.12)

g(V, W) =gµν Vρ Wσ dxµ(∂ρ)dxν(∂σ) =

=gµν Vρ Wσ δ
µ
ρ δν

σ =

=gµν Vµ Wν .

(4.18)

The metric tensor, as well as any other quantity constructed from the tangent and
cotangent space, has coordinates which in general depend on the point p of the
manifold which actually makes it a tensor field gµν(xµ), i.e. a mathematical object
that assigns a tensor to every point of the manifold. The fact that the components
of the metric tensor are constant in at least one coordinate system assures that the
space is flat. Moreover, it can be shown that the function

gp : TpM→ T∗pM (4.19)

is an isomorphism and hence, the metric tensor and its inverse can be used to raise
and lower indexes, i.e. vµ = gµνvν and ωµ = gµνων. In flat space and in the
canonical basis, the metric tensor is just the identity and hence there is no difference
between upper and lower indexes.

Arguably the most important propriety of the metric tensor is that it induces
a scalar product on the manifold and, as a consequence, a notion of length and
distance which is not intrinsic to the manifold. Indeed, by looking at equation (4.16)
and dropping the tensor product sign, we can introduce the notion of infinitesimal
line element

ds2 = gµν dxµdxν (4.20)

which can informally be seen as the length of the infinitesimal displacement on the
manifold associated to an infinitesimal change of coordinates xµ. The length of a
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Figure 4.4: Definition of a statistical manifold.

path onM, represented by the curve γ : R →M with γ(0) = a and γ(Λ) = b can
be hence computed as

Lγ(a, b) =
∫ b

a
ds =

∫ Λ

0
dλ

√
g
(

dγ(λ)

dλ
,

dγ(λ)

dλ

)
. (4.21)

The path that minimises this length functional is called a geodesics, that also is the
trajectory of a free object moving in a curved space with a given metric. If the met-
ric tensor is positive defined, it is also called a Riemannian metric and the manifold
equipped with it is called a Riemannian manifold. This would imply that, for every
vector V = Vµ∂µ 6= 0 and using (4.18), gµν is such that g(V, V) = gµνVµVν ≥ 0
and same thing for the length functional (4.21). For a given manifold, the exis-
tence of such a metric is guaranteed by a theorem by Riemann. Otherwise, for a
n-dimensional manifold and a metric whose maximal subspace where it is positive
defined is s-dimensional, with s < n, and same thing for the maximal r-dimensional
subspace (r = n− s) where it is negative defined, one speaks then about a pseudo-
Riemannian metric, whose existence is however not guaranteed for an arbitrary
manifold. Nevertheless, if it exists, the pseudo-Riemannian metric is said to be of
signature (r, s) and the positivity of the length of every vector is not true anymore.
In general relativity, physicists are concerned with metric tensor fields, which are
the solution of Einstein’s equations for the gravitational field, that are of signature
(3,1).

To sum up, in the last pages we scratched the surface of what the field of differ-
ential geometry is concerned about and, of course, many other concepts and math-
ematical techniques arise from the principles shown above. However, even with
this basic knowledge, we will be able to tackle the issue of uncertainty relations in
the context of information geometry. Indeed, the main ingredient for the reasoning
that will follow will be the Fisher information metric, a metric that induces a notion of
distance between parametrised statistical models which, as we will show in a few
lines, can be regarded as a differentiable manifold.

4.2 Statistical manifolds and Fisher information

The starting point of this subsection is the definition of a parametrised statistical
model, or just parametric model, that is a collection of parameter dependent PDFs
p(ω|α), defined on some sample space ω ∈ Ω, and such that α ∈ A ⊂ Rn. In
formulae

S = {pα = p(ω|α) | α ∈ A} . (4.22)
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The key idea on which information geometry is based is that the set A, called the
parameter space, serves as a (possibly local) coordinate system for the statistical
manifold S , as it can be seen from Figure 4.4. This means that, for a given parameter
vector α there is a probability distribution p(ω|α), each labelled by a point s(α) in
the manifold S. Moreover, if one assumes that S is such that the support of each
PDF is invariant under arbitrarily change of parameters, then one can verify that
all parametrisations related by a diffeomorphism, i.e. a differentiable isomorphism
whose inverse is itself differentiable, can be considered to be equivalent. Because of
that and because the parametrisations are taken as the charts for S , we can indeed
consider the latter to be a differentiable manifold whose charts are compatible and
related by diffeomorphisms. A simple example of statistical manifold is the one
represented by the family of Gaussian PDFs, that is

SGauss = {pµ, σ = p(x|{µ, σ}) | {µ, σ} ∈ R× R+} , (4.23)

p(x|{µ, σ}) = 1√
2πσ2

exp
[
− (x− µ)2

2σ2

]
(4.24)

and, of course, it is 2-dimensional.
The next step consists in adding a metric to the manifold defined above. The

natural choice falls on the so called Fisher information matrix Iij(α) defined as

Iij (α) = gij (α) =
∫

dω pα (ω) ∂αi ln pα (ω) ∂αj ln pα (ω) . (4.25)

This metric, which is of course symmetric, induces a notion of distance on the man-
ifold S and makes it possible to measures the "closeness" between two distribution
functions. We can also verify that this metric is positive defined since, for every
vector V = Vi ∂αi and using (4.18), it holds that

I(V, V) = Iij (α)ViV j =

=
∫

dω pα (ω)Vi ∂αi ln pα (ω)V j ∂αj ln pα (ω) =

=
∫

dω pα (ω)
(

Vi ∂αi ln pα (ω)
)2
≥ 0 .

(4.26)

This makes it, of course, a Riemannian metric. To give an example, one can consider
the case of a Gaussian statistical manifold defined in (4.23), for which

ln pµ, σ (x) = − ln σ− ln
√

2π − (x− µ)2

2σ2 , (4.27)

one finds that

I Gauss
ij ({µ, α}) =

[
1/σ2 0

0 2/σ2

]
, (4.28)

corresponding to the infinitesimal line element

ds2 =
dµ2 + 2 dσ2

σ2 . (4.29)

The latter is very similar to another famous metric known as the Poincare metric,
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Figure 4.5: Visualisation of the Poincaré metric and its geodesics, consisting of arcs
of circles (red lines). Straight lines are instead complete half circles (green line). The
straight vertical line orthogonal to the x-axis is also considered a geodesic.

i.e. ds2 = (dx2 +dy2)/σ2, defined on the upper half plane and standard example of
a 2-dimensional hyperbolic geometry, see Figure 4.5 for a graphical visualisation.

The notion of distance induced on the statistical manifold by the Fisher informa-
tion metric can be also used to investigate classical speed limits [15, 93]. To do so,
lets consider a curve γ : A → S , where A is a one-dimensional parameter space
parametrised by α, and such that γ(α1) = pα1(ω), γ(α2) = pα2(ω). The length of
this path can be calculated by using equation (4.21)

Lγ(α1, α2) ≡ Lγ(pα1(ω), pα2(ω)) =

∫
α2

α1

dα

√
I
(

dγ(α)

dα
,

dγ(α)

dα

)
=
∫ α2

α1

dα
√
I(α) ,

(4.30)
where, of course, the result of the last integral in the previous line depends on γ,
even if it is not explicitly shown. The path γ∗ that minimises the length functional
is of course a geodesics and we indicate the length associated to it as L∗(α1, α2).
Moreover, it can be shown [94] that the latter is equal to

L∗(α1, α2) ≡ min
γ
Lγ(α1, α2) = 2 arccos

( ∫
dω
√

pα1(ω)pα2(ω)

)
. (4.31)

The latter is also known as the Bhattacharyya angle or statistical distance, which is a
distance in the strict mathematical sense, i.e it is symmetric and satisfies the triangle
inequality. Note for example that, clearly, L∗(α1, α1) = 0, i.e. the distance between a
PDF and itself is 0. The Bhattacharyya angle, as the calculations done above clearly
show, is a distance induced by the Fisher metric and, moreover, it also has a very
nice geometric interpretation. Indeed, because the PDFs are of course normalised,
their square root

√
pα(ω) can be seen as elements of an infinitely dimensional vec-

tor space whose (infinite) squared Euclidean norm is equal to one, i.e.∫
dω
√

pα(ω)
√

pα(ω) = 1 . (4.32)

This norm derives from the infinite Euclidean inner product, appearing between
parenthesis in the right hand side of (4.31). We can hence finally interpret the Bhat-
tacharyya angle as the the length of an arc of a circle with maximal circumference
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Figure 4.6: Geometrical interpretation of the Bhattacharyya angle. The green dotted
line corresponds to a generic path with length Lγ(α1, α2) while the red one corre-
sponds to a geodesics, i.e. an arc of circumference with maximal radius, with length
L∗(α1, α2).

and lying on the surface of an infinite-dimensional sphere, on which the edges of√
pα(ω) lie as well, see Figure 4.6 for a graphical intuition. We can also consider

another functional that, for reasons that will be clear soon, will be denoted as cost
function,

Cγ(α1, α2) =
1
2

∫ α2

α1

dα I(α) . (4.33)

It is worth mentioning that this functional is minimised by the same path, which is
unique because of the PDFs being normalizable, minimising the length functional
(4.30). Moreover, by applying the Cauchy-Schwarz inequality to the latter, one im-
mediately sees that(
Lγ(α1, α2)

)2
=
( ∫ α2

α1

dα
√
I(α)

)2
≤
∫ α2

α1

dα I(α)
∫ α2

α1

dα = 2(α2 − α1)Cγ(α1, α2) .

(4.34)
This implies that

α1 − α2 ≥

(
Lγ(α1, α2)

)2

2Cγ(α1, α2)
≥

(
L∗(α1, α2)

)2

2Cγ(α1, α2)
(4.35)

The last step to get an example of classical speed limit (SL), derived in [15], consists
in taking time itself as the parameter on which the PDF depends on. Indeed, for a
generic stochastic process one has that the PDF p(ωt, t) evolves from a certain time
t0 up to a time t, i.e. p(ωt, t = t0) evolves in p(ωt, t). Moreover, by following what
has been done in [15], we introduce the intrinsic velocity

vI(t) =
√
I(t) (4.36)

that can be interpreted as a velocity measuring how fast the PDF evolves from
p(ωt, t = t0) to p(ωt, t). We are also introducing the temporal Fisher information

I(t) =
∫

dωt p (ωt, t)
(

∂t ln p (ωt, t)
)2

, (4.37)
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which, as it has been shown in [15], has many interesting proprieties. However, for
the sake of simplicity, we just note that the length functional and the cost function
can be written, in terms of the intrinsic velocity and by using equations (4.21) and
(4.33), as

L(t) ≡ Lγ(t, t0) =
∫ t

t0

dt′ vI(t′) C(t) ≡ Cγ(t, t0) =
∫ t

t0

dt′ (vI(t′))2 . (4.38)

From the equation on the left, one immediately understands the naming of intrinsic
velocity for vI(t) and, as a consequence, one can interpret the cost function appear-
ing in the equation on the right as a sort of integrated kinetic energy. With this in
mind, one can finally specialise equation (4.35) to the case of time as a parameter
hence obtaining

t ≥
(
L(t)

)2

2C(t) ≥
(
L∗(t)

)2

2C(t) , (4.39)

that is the desired SL which provides a lower bound on time needed by the PDF
to travel along a path of length L(t). One also understands the naming of the cost
function for C(t), i.e. the more the system "pays" in terms of this (kinetic) cost
the lowest the time evolution from an initial to a final state may be. Many more
details on how this cost function can be linked to important thermodynamic quan-
tities, such as entropy production, can be found in the references [15, 93]. We will
instead limit ourselves to note that this bound is different with respect to the clas-
sical equivalents of the usual quantum SLs, known as the Mandelstam-Tamm and
Margolus-Levitin type, found in [95]. Moreover, it is one of the first examples of SL
entirely based on information geometric principles and gives a clear idea of how
these limits can be studied using information-theoretic concepts. Indeed, in the last
pages we have just scratched the surface of a very wide and active line of research
which was worth mentioning. However, we will not follow this path in this thesis
but, rather, we will use another fundamental result of information geometry that is
the the Cramér–Rao bound, to which the next subsection is dedicated.

To recapitulate, we have obtained a Riemannian manifold S , whose metric is
the Fisher information metric and where each point is associated to a probability
distribution on a sample space Ω. The proprieties of the geodesics on such mani-
fold can be used to study classical SLs, i.e. lower bounds setting a minimum time
needed for the evolution of the PDF from one state to another. These limits were
first discussed in the context of quantum mechanics where information theory is
used as well. Moreover, the Fisher metric is so important because it also encodes
the amount of information that the random variable ω ∈ Ω contains about the pa-
rameters α upon which the PDF depends. This statement can be quantified by the
Cramér–Rao bound, which will be the main topic of the next subsection as well as
the starting point of the discussion of uncertainty relations in the context of stochas-
tic systems.

4.3 The Cramér–Rao bound and the
fluctuation-response inequality

The Cramér–Rao (CR) bound [96, 97] is a central formula in statistics and estima-
tion theory. In these fields, one is usually interested in estimating the value of a
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given unknown parameter, such as the temperature in the case of the Ising model
or the mean and variance of a Gaussian, on which the distribution of the data points
depends on. This can be achieved through the use of estimators, which are random
variables O(ω) defined on the sample space Ω and which may possibly be unbiased,
i.e. such that their mean 〈O〉α = α is equal to the parameter one is trying to esti-
mate. Of course, the quality of an estimator can be quantified by its variance since,
the lower the variance, the lower will be the estimation error. In its most basic form
and for the case of a PDF which depends solely on one parameter, the Cramér–Rao
bound puts a lower bound to the variance of an arbitrary unbiased estimator given
by the inverse of the Fisher information (4.25) (for a unidimensional parameter),
that is

〈∆O2〉α ≥ 1
I(α) , (4.40)

I(α) =
∫

dω pα (ω)
(

∂α ln pα (ω)
)2

, (4.41)

where 〈. . . 〉α is the average taken with respect to pα (ω). As one can see from (4.40),
the higher the Fisher information I(α), namely the information encoded in the PDF
pα(x) about the parameter α, the lower will be the bound on the variance of the
unbiased estimator, thus allowing better estimates of the parameter α.

Nevertheless, the philosophy we are going to follow in this thesis, and in the next
chapter in particular, is different. Indeed, we will consider the random variables
O(ω) on Ω as observables of the system for a given stochastic process. The sample
spaces we are going to consider are of two types:

• the space of stochastic trajectories associated to a given stochastic process
X(t) = {Xi}i,...,N≤t/dt, i.e. the set of all possible realisations of the stochas-
tic process X up to time t. As usual, we introduced an infinitesimal time dt at
which the process updates itself. This definition includes the set of all paths
generated by Langevin process or Markov jump processes, we will refer to this
set as Ωt and to its elements as ωt. Important quantities that depend on the
whole path are the entropy production Σ(ωt) 2.24 and 2.52 and the dynamical
activity K(ωt) 2.30, discussed in chapter 2.

• The space of all possible outcomes that a stochastic process X(t) can give at a
given time t. Consider again the example of Langevin equation. In this case,
one could consider the PDF p(xt, t) obtained from the solution of a Fokker-
Plank equation describing the probability of finding the Brownian particle in
a certain position xt at time t. It is clear that the sample space on which this
PDF is defined is of the type as described above. We will use these kind of
PDFs in the context of generalised Langevin systems, hence allowing us to
consider any state dependent observable of the form O(xt).

Having this in mind, one can now consider the generalised Cramér-Rao bound,
whose derivation descends from the Cauchy-Schwarz inequality applied to random
variables and leading to the covariance inequality. The latter implies that, for two
random variables x1(ω) and x2(ω), it holds that

(Cov(x1, x2))
2 ≤ 〈∆x2

1〉〈∆x2
2〉 (4.42)
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and indeed, by choosing x1(ω) = O(ω) and x2(ω) = ∂α ln pα(ω), where ∂α indi-
cates the derivative with respect to the parameter α, one readily gets

(∂α〈O〉αt )2

〈∆O2〉αt
≤ It(α) , (4.43)

that is the generalised CR bound. From this, one can also note that for an unbi-
ased estimator such that 〈O〉α = α, one recovers the basic CR bound (4.40) from
(4.43). Moreover, note that we included the subscript t to the averages in (4.43) as
all systems we are going to consider evolve in time.

The generalised CR bound is an extremely useful and powerful relation that ex-
hibits a very similar structure to what one finds for the non-equilibrium inequalities.
Indeed, as it was shown in [19, 15, 98, 99, 100], it is possible to exploit this result to
derive uncertainty relations and to connect the Fisher information, a fundamental
quantity in information theory, with thermodynamically relevant quantities. To do
so, one has to parametrise the PDF p(ωt) of a given stochastic process by perform-
ing an α-dependent perturbation of the dynamic of the process itself. Later, we will
show "clever" α-perturbations that yield specific observables. Note that this pertur-
bation must not be necessarily a physically realisable one but rather a virtual one.
This can be done, for example, in the context of Langevin systems by adding a drift
with a α prefactor to the Langevin equation

ẋ(t) = A(xt, t) +
√

2D(xt, t) · ξ(t) =⇒

=⇒ ẋ(t) = A(xt, t) + αY(xt, t) +
√

2D(xt, t) · ξ(t) ,
(4.44)

which will of course modify the PDF associated to this process

p(ωt) =⇒ pα(ωt) . (4.45)

Once this parametrisation has been found, and we stress that this can be done for
every stochastic process, one can hence calculate the modified averages and vari-
ances

〈O〉αt =
∫

dωt pα (ωt)O(ω) 〈∆O2〉αt = 〈O2〉αt − (〈O〉αt )2 (4.46)

as well as the Fisher information (4.41) associated to this particular parametrisation.
Moreover, one can also require that the α-perturbation is such that for α = 0 one
recovers the original dynamics and PDF, this is trivially true for example in (4.44).
Under these hypothesis, one can expand all the terms in (4.43) around α ≈ 0 and
may only consider the leading order, i.e.

(∂α〈O〉αt |α=0)
2

〈∆O2〉t
≤ It(α)|α=0 . (4.47)

As one can easily see, the result does not depend explicitly on the perturbation pa-
rameter α even if the result itself depends on the choice of the modification induced
into the PDF. This form of the CR bound will be used in the next chapter to ob-
tain the thermodynamic uncertainty relation (TUR), as done in [19], along with our
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kinetic uncertainty relation (KUR) in the context of Markovian jump processes. Fur-
thermore, if the observable OOO is a d component vector, the CR bound (for small α)
takes the following form(

∂α〈OOO〉αt |α=0
)T ΞΞΞ−1

OOO, t ∂α〈OOO〉αt |α=0 ≤ It(α)|α=0 (4.48)

where

ΞΞΞOOO, t = 〈OOOOOOT〉t − 〈OOO〉t〈OOO〉t (4.49)

is the covariance matrix associated to the observable OOO. This result will allow us
to show the proof, given for the first time in [19], of the TUR for multidimensional
Langevin systems.

As a useful tool for the computation of stochastic uncertainty relation, we also
present an equivalent formula to the CR bound in the limit of small α-perturbations,
which was firstly derived by A. Dechant and S. Sasa in [19], i.e. the fluctuation-
response inequality (FRI). For simplicity, we restrict this discussion to scalar ob-
servables for which the FRI takes the following form (for α ≈ 0)

(〈O〉αt − 〈O〉t)2

〈∆O2〉t
≤ 2DKL(pα ‖ p) , (4.50)

where

DKL(pα ‖ p) =
∫

dω pα (ω) ln
(

pα (ω)

p (ω)

)
. (4.51)

is the Kullback–Leibler (KL) divergence, a quantity that measures the difference
between probability distributions. For this reason, it is also called relative entropy.
For finite α, the authors provide a correction to the r.h.s. of (4.50), but we will not
use this result in this work.

The KL divergence is not a distance in the strict mathematical sense as it is not
symmetric, i.e. DKL(q ‖ p) 6= DKL(p ‖ q), and it does not satisfy the triangle
inequality. However, for infinitesimally close distributions, one recovers the Fisher
information, which is of course a genuine metric distance. To make things more
clear, note that the KL divergence is strictly positive (this can be shown very easily)
and its absolute minimum is zero, corresponding to the two distributions in the
divergence to be equal, as it can be seen from (4.51). As a consequence, it can be
shown that the expansion of the KL divergence around α ≈ 0 leads to

DKL(pα ‖ p)
α→0≈ α∂αDKL(pα ‖ p)|α=0 +

α2

2
∂2

αDKL(pα ‖ p)|α=0 =
α2

2
It(α)|α=0 ,

(4.52)
namely, the concavity of the KL divergence around its minimum is the Fisher in-
formation. Moreover, by taking the leading order in α of the numerator on the left
hand side of equation (4.50) one sees that

〈O〉αt − 〈O〉t
α→0≈ α∂α〈O〉αt |α=0 (4.53)

and hence, by using this along with (4.52) and plugging everything into (4.50) one
recovers (4.47).
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We have hence presented two different information theoretic bounds involving
two distinct fundamental quantities, i.e. the Fisher information and the KL diver-
gence, which do coincide for small α-perturbations. Even though the result we are
going to exploit coincides with latter case, the existence of these two bounds for
arbitrary perturbations opens the door, along with the bounds shown in equations
(4.35) and (4.39), to a deep study of stochastic uncertainty relations using informa-
tion theoretic techniques. Moreover, it offers a clearer interpretation for the mean-
ing of these inequalities, i.e. that the magnitude of the variation of the averages
of the system’s observable, due to a (virtual) perturbation and at fixed variance, is
bounded from above by a quantity that measures, in a sense that must be mathemat-
ically specified, the distance between the perturbed and unperturbed PDF. Finally,
we can outline the strategy which will be followed in this thesis in the context of
this perturbative approach:

1. Consider a stochastic process, in our case a Langevin process or a Markovian
jump process, along with a PDF associated to the process itself.

2. Perturb the original dynamics, such as in equation (4.44), in order to obtain a
modified PDF pα(ω) depending on some parameter α.

3. Evaluate the perturbed average 〈O〉αt , usually aiming to find something like
〈O〉αt = (1+ α)〈O〉t or 〈O〉αt = 〈O〉(1+α)t. As it will be clear later, this will make
the left hand side of both (4.43) and (4.50) physically accessible quantities.

4. Calculate the Fisher information or the KL divergence associated to the per-
turbation. Here, one usually tries to connect these quantities to entropy pro-
duction, like we will see in Section 5.2, or, as we have proven in [101], to the
mean dynamical activity 〈K〉t (2.31).

5. Take the limit of α→ 0.

Another interesting and powerful approach can be found in reference [15]. Here
the authors take again time itself as the the parameter with respect to whom the
Fisher information is calculated. Indeed, using (4.43) this would imply that

(∂t〈O〉t)2

〈∆O2〉t
≤ I(t) , (4.54)

whit I(t) the temporal Fisher information (4.37). As in the previous section, the
temporal Cramér-Rao bound (4.54) can also be used to study classical speed-limits
but, once more, we refer to [15, 93] for further details. Instead, we will use equation
(4.54) in Section 5.5 to derive a thermodynamic uncertainty relation for a system
with memory and modelled by a linear GLE equation. In this case, we will con-
sider state dependent PDFs associated to the process and, as a consequence, state
dependent observables for the left hand side of (4.54).

For the sake of completeness, we also present another multidimensional ver-
sion of the Cramér-Rao bound, which holds for an arbitrary number N of observ-
ables {Oi(ω)}i=1,...,N and number of parameters on which the PDF depends on, say
α = {αi}i=1,...,M. Indeed, by defining(

ZZZα
)

ij = ∂αi〈Oj〉αt
(
ΞΞΞα

t
)

ij = 〈OiOj〉αt − 〈Oi〉αt 〈Oj〉αt (4.55)
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where the quantity on the left is an M× N matrix while the one on the right is the
N × N dimensional covariance matrix between all observables. In terms of these
quantities, the Cramér-Rao bound for an arbitrary number of observables can be
formulated as follows

ZZZα
(

ΞΞΞα
t
)-1(ZZZα

)T ≤ IIIα
t , (4.56)

where of course on the right we have the Fisher information matrix whose compo-
nents have been defined in (4.25), i.e.(

IIIα
t
)

ij =
∫

dω pα (ω, t) ∂αi ln pα (ω, t) ∂αj ln pα (ω, t) . (4.57)

This multidimensional CR bound was used in reference [18] to derive a multidi-
mensional TUR. In this paper, the author shows how the simultaneous measure-
ment of many uncorrelated observable can indeed improve the lower bound to the
entropy production until it is eventually saturated. This in turn offers the possibil-
ity of accurately estimating entropy production by measuring the highest possible
number of operationally accessible observables.

Moreover, there is also a quantum version of the CR bound which has been used
to derive quantum speed limits of the Mandelstam-Tamm type, see [102] for some
examples, along with a quantum version of the thermodynamic uncertainty relation
[100].

To conclude, we presented two different bounds, (4.43) and (4.50), which can be
regarded as two possible starting points for the study of stochastic uncertainty rela-
tions. Indeed, many inequalities have been derived from them in the recent years.
In the next chapter, we will show some possible applications of this information the-
oretic approach to stochastic uncertainty relations along with some novel original
results.



CHAPTER 5

UNCERTAINTY RELATIONS

5.1 Introduction

During the last years, non-equilibrium statistical mechanics and the stochastic the-
ory of thermodynamics at a mesoscopic scale have proven to be indispensable
tools for the description of microscopic biological systems and the dynamics of
bio-chemical reactions. As regards the latter, it is clear that the vast majority of
the phenomena takes place in a non-equilibrium regime which is characterised by a
positive entropy production Σtot. Indeed, as it is shown in Chapter 2, for an isolated
stochastic system undergoing some thermodynamic transformation the second law
of thermodynamics is valid on average 〈Σtot〉t > 0. Despite being one of the most
fundamental principle of physics, the second law of thermodynamics does not give
any quantitative information about the production of entropy except that it is pos-
itive on average. A lot of effort has been made during the last decades to relate
entropy production to important features of non-equilibrium processes and indeed
it was found [25] that, in a steady state, it is linked to the ratio between the prob-
ability of a stochastic path P(ωt) and the probability of the (appropriately) time
reversed trajectory P†(ωt)

〈Σtot〉st =
∫

dωt P(ωt) ln

(
P(ωt)

P†(ωt)

)
. (5.1)

This result is known as the fluctuation theorem (FT), from which the second law can
be derived, and is considered to be one of the most important theorems of stochas-
tic thermodynamics. Nevertheless, if the system under investigation is extremely
complex, it could be quite impossible to access and evaluate the path probability
density function, as a consequence the estimation of entropy production can not be
obtained using the FT.

Taking a step back, one can note that most of physical principles are expressed in
terms of equalities and that the second law is arguably one of the most important
exceptions. However, there are many other inequalities that can help in grasping
important physical insights on the system under examination, the Heisenberg un-
certainty principle and the so called quantum speed limits (SL) [102], which de-
termine the minimum time needed to transform a quantum state to another, are
just few of the possible examples. As it is well known, stochastic processes have
many aspects in common with quantum mechanics because of their probabilistic
nature, so it is reasonable to expect that such inequalities could also exist in the
context of stochastic thermodynamics, and that is indeed the case. In 2015 Barato
and Seifert conjectured the so called thermodynamic uncertainty relation (TUR) [4]
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which stated that, for a certain class of stochastic processes and a current R of the
system, it holds that

〈R〉2t
〈∆R2〉t

≤ 〈Σtot〉t
2kB

(5.2)

which can be seen as a refinement of the second law of thermodynamics. More-
over, the left hand side of (5.2) is a type of signal to noise ratio (SNR) and can be
regarded as a measure of the precision associated to the observable R. Hence, the
TUR gives an upper bound to this SNR which is given by the total entropy produc-
tion up to time t. Precision can be a very relevant quantity for biological processes
[2, 3] and biological systems may be interested in maximising this precision in or-
der to enhance efficiency. The TUR hence sets a minimal cost for reaching a certain
precision and implies that a higher SNR for a given observable can eventually be
reached only at the cost of an increased dissipation. This is in line with the school
of thought that living systems tend to maximise entropy production in order to in-
crease their performances in the general sense. Nevertheless, this is strictly true
only near equilibrium and indeed there are works such as [30, 33, 34, 52] that show
that far from equilibrium there are kinetic effects, embodied by time symmetric
quantities as opposite to entropy production, that must be taken into account for the
complete characterisation of non-equilibrium states. To make an example, in [3] the
authors show how the precision of a circadian clock, modelled by means of Marko-
vian jump processes, does not monotonically increase with dissipation which is a
clue of how kinetic effects may influence the region of parameter space where opti-
mal performances are reached. In this context, we will add further insight on how
time symmetric quantities determine the performances of non-equilibrium systems
by means of our kinetic uncertainty relation, valid for Markovian jump processes and
where the upper bound to the SNR is given by the time symmetric quantity 〈K〉t,
often referred to as mean dynamical activity.

The TUR is the primary example a long list of recent non-equilibrium inequalities
and includes the entropy production as a cost function [5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21] (dissipation may also limit the speed of a process [103]).
Moreover, the TUR and its generalisations [22, 32, 23, 24, 101, 98, 104, 88, 98] are
inequalities usually discussed and proven for discrete and continuous diffusive
Markov systems. On the practical side, TURs may help in thermodynamic infer-
ence [105], for instance in evaluating the entropy production rate from data [10, 106,
107, 108, 109]. Theoretically, while the proof of the TUR in steady states is provided
by the machinery of large deviation theory [7, 11], an approach by Dechant and
Sasa (DS) [14, 19] adopts information theory as the main theoretical tool. Moreover,
a unifying view [110] may explain the mechanism behind uncertainty relations.

This information-theoretic approach, which is based on the generalised Cramér-
Rao (CR) bound (4.43)

(∂α〈O〉αt )2

〈∆O2〉αt
≤ It(α) , (5.3)

and the fluctuation response inequality (FRI) (4.50), which (for small α ≈ 0) reads

(〈O〉αt − 〈O〉t)2

〈∆O2〉t
≤ 2DKL(pα ‖ p) , (5.4)

leads to quite general results for stochastic systems, finite times statistics, and regimes
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outside steady states (the results above are presented, for simplicity, for scalar ob-
servables O). In the previous chapter we outlined some basic concepts of infor-
mation geometry and discussed some formal details of the CR bound and the FRI.
We also anticipated that, by means of a perturbative approach, we will show how
the Fisher information and the Kullback-Leibler (KL) divergence may be linked to
relevant thermodynamic and/or kinetic quantities. To this end, we present a very
useful result obtained in [19] that gives the general expression for the KL diver-
gence arising from the perturbation of a jump-diffusion process, i.e. involving both
Langevin dynamics and discrete stochastic jumps. Such process is governed by a
generalised Fokker Plank equation, which can be regarded as a combination of the
diffusive FP (2.47) and the master (2.15) equation, i.e.

∂t pi(xxxt, t) = −∇ · JJJdiff
i (xxxt, t) + ∑

k
JJJjump

ik (xxxt, t) (5.5)

where

JJJdiff
i (xxxt, t) =

(
AAAi(xxxt, t)−

(
∇TDDDi(xxxt, t)

)T
−DDDi(xxxt, t) ∇ ln pi(xxxt, t)

)
pi(xxxt, t)

JJJjump
ik (xxxt, t) = Wik(xxxt, t) pk(xxxt, t)−Wki(xxxt, t) pi(xxxt, t) .

(5.6)

This may be the case of a diffusing system whose chemo-mechanical configuration
changes at exponentially distributed times and determined by the rates Wik(xxxt, t),
hence changing the state dependent drift vector AAAi(xxxt, t) and diffusion matrix
DDDi(xxxt, t). Without going too much into detail, in [19] the authors prove that a si-
multaneous perturbation of drift vector, transition rates and initial probability dis-
tribution as follows

AAAi(xxxt, t)→ AAAα
i (xxxt, t) = AAAi(xxxt, t) +YYYα

i (xxxt, t)

Wik(xxxt, t)→Wα
ik(xxxt, t) = Wik(xxxt, t)eαZα

ik(xxxt,t)

pi0(xxx0, 0)→ pα
i0(xxx0, 0) ,

(5.7)

which in turn determines a modification of the path probability distribution (PDF)
p(ωt)→ pα(ωt) (such as (2.22) and (2.51)), leads to a KL divergence which reads

DKL(pα ‖ p) =
∫

dωt pα (ωt) ln
(

pα (ωt)

p (ωt)

)
=

∫ t

0
dt′
(

1
4
〈
YYYα DDD−1 YYYα

〉α

t′ +
〈
Zα + e−Z

α − 1
〉α

t′

)
+

〈
ln

pα
0

p0

〉α

0
.

(5.8)

As discussed in the previous chapter, we are interested in infinitesimal perturba-
tions and indeed, for the particular case of

YYYα(xxxt, t) = αYYY(xxxt, t) Zα
ik(xxxt, t) = αZik(xxxt, t) (5.9)

pα
0(x0, 0) = pi0(xxx0, 0) + αδpi0(xxx0, 0)

and for small α the authors also show that

DKL(pα ‖ p)
α→0≈ α2

2
It(α)|α=0 = α2

∫ t

0
dt′
(

1
4
〈
YYY DDD−1 YYY

〉
t′ +

1
2
〈
Z2〉

t′

)
+

α2

2

〈
δp2

0

p2
0

〉α

0
.

(5.10)
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By choosing "clever" perturbations on the dynamics of the system, DS showed that
various forms of TUR hold for diffusion processes (we will present one example
in the next section) and anticipated that a TUR holds also for Langevin dynamics
with inertia. Following this approach, Van Vu and Hasegawa [98] also provided an
explicit non-equilibrium inequality for inertial stochastic dynamics when reversible
currents are present. Their formula shows that the mean entropy production cannot
by itself constitute the cost function in inertial systems. In equilibrium, where on
average dissipation is absent while currents are eventually present thanks to inertia,
there is a form of dynamical activity that naturally enters in the upper bound. This
is not a surprise because, as we will show in the next sections, the cost function
can also include time-symmetric non-dissipative observables [22, 32, 23, 24, 98]. In
particular, using the DS approach along with (5.10) for pure jump processes, we will
show the existence of a KUR [101] that has the dynamical activity as a cost function.

The chapter is structured as follows. In the next section we will present one possi-
ble derivation of the TUR both for diffusive and jump systems and obtained in [19]
by exploiting the above-mentioned information approach, followed by our KUR
discussed with some examples in Section 5.3 and 5.4. Finally, in Section 5.5 we
present an original example of TUR for non Markovian systems and obtained by
means of the temporal Cramér-Rao bound (4.54)

(∂t〈O〉t)2

〈∆O2〉t
≤ I(t) . (5.11)

5.2 Thermodynamic uncertainty relation (TUR)

5.2.1 Diffusive systems

To get started, we consider a simple N dimensional Langevin system

ẋxx(t) = AAA(xxxt) +
√

2 DDD(xxxt) · ξξξ(t) , (5.12)

whose drift vector AAA(xxxt) and diffusion matrix DDD(xxxt) do not explicitly depend on
time. As usual, ξξξ(t) is a white Gaussian noise with first moments given by
〈ξξξ(t)〉 = 0 and 〈ξi(t′)ξ j(t)′′〉 = δij δ(|t′− t′′|). The Fokker Plank equation, presented
in (2.47) and associated to equation (5.12) leads to

∂t p(xxxt, t) = −∇ · JJJ(xxxt, t) = −∇ · (ννν(xxxt, t)p(xxxt, t)) , (5.13)

ννν(xxxt, t) = AAA(xxxt)−
(
∇TDDD(xxxt)

)T
−DDD(xxxt) ∇ ln

(
p(xxxt, t)

)
, (5.14)

where JJJ(xxxt, t) is the probability current and ννν(xxxt, t) is the local mean velocity. In this
section we are interested in the study of steady state dynamics, for which it holds
that the PDF and the mean local velocity do not explicitly depend on time which in
turn implies that

∂t pst(xxxt) = −∇ · (νννst(xxxt)pst(xxxt)) = 0 , (5.15)

νννst(xxxt) = AAA(xxxt)−
(
∇TDDD(xxxt)

)T
−DDD(xxxt) ∇ ln

(
pst(xxxt)

)
. (5.16)
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The next step towards the TUR, consists in perturbing the steady state dynamics by
adding an auxiliary drift vector proportional to the local mean velocity and leading
to a new global drift vector

AAAα(xxxt) = AAA(xxxt) + α νννst(xxxt) . (5.17)

By plugging this modified drift vector into equation (5.16) and subsequently into
equation (5.15), one obtains the modified PDF and local mean velocity associated to
this perturbation

νννα
st(xxxt) = AAAα(xxxt)−

(
∇TDDD(xxxt)

)T
−DDD(xxxt) ∇ ln

(
pst(xxxt)

)
= (1 + α)νννst(xxxt, t) , (5.18)

(1 + α)∇T(νννst(xxxt, t)pα
st(xxxt, t)) = 0 . (5.19)

This last equation implies that the modified PDF is the same as for the unperturbed
process while the mean local velocity is rescaled by a factor 1 + α.

Given this particular modification of the dynamics, one must choose a class of
observables that "scale well" whit this perturbation. In this case, the natural choice
falls on well known the class of integrated currents presented in (2.56), i.e.

RRR(ωt, t) =
∫ t

0
dt′ ggg(xxxt′ , t′) ◦ ẋxx(t′) (5.20)

where ◦ denotes the Stratonovich product. This is indeed a very important set of
quantities of which the entropy production associated to the thermal bath is just
an example. Indeed, one can recover the the heat dissipated into the environment
(2.55) first by identifying the drift vector in (5.12) with a force AAA(xxxt) = µµµ FFF(xxxt),
where µµµ is the mobility matrix, and then taking ggg(xxxt) = βFFFT(xxxt) in (5.20).

One of the main feature of these observables, as discussed in Chapter 2, is that
their average in a steady state can be explicitly written as a function of the mean
local velocity. Indeed, by restricting ourselves to a time independent weight matrix
ggg(xxxt), one finds that that is

〈RRR〉st
t =

∫ t

0
dt′ 〈ggg ◦ ẋxx〉st

t′ =
∫ t

0
dt′ 〈ggg νννst 〉st

t′ = JJJR t . (5.21)

Here we also noted that JJJR = 〈gggT νννst〉st
t , which can be regarded as the rate associated

to the current RRR(ωt), is constant because all equal time correlation functions, involv-
ing quantities that do not explicitly depend on time, are constant in the steady state.
As a consequence, the perturbed average of an integrated current, associated to the
modified dynamics due to (5.17), trivially becomes

〈RRR〉st, α
t = t〈ggg νννα

st 〉st, α
t = t

∫
dxxxt ggg(xxxt) νννα

st(xxxt) pα
st(xxxt) = (1 + α) JJJR t , (5.22)

where for the last equality we used (5.18) and (5.19). This means that the averages
evaluated in the perturbed dynamics are just rescaled by a factor 1 + α, i.e.

〈RRR〉st, α
t = (1 + α)〈RRR〉st

t . (5.23)
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This in turn implies that, by specialising the multidimensional CR bound (4.48) to
the case of one (infinitesimal) perturbation parameter, for these irreversible inte-
grated currents one obtains

∂α〈RRR〉st, α
t |α=0 = 〈RRR〉st

t ΞΞΞR, t = 〈RRRRRRT〉st
t − 〈RRR〉st

t 〈RRRT〉st
t (5.24)(

〈RRR〉st
t
)T( ΞΞΞR, t

)-1〈RRR〉st
t ≤ It(α)|α=0 (5.25)

where ΞΞΞR, t is the covariance matrix (4.49) associated to the current R. Furthermore,
if ggg(xxxt) appearing in (5.20) is a row vector, i.e. ggg(xxxt) = vvvT

t for some vector vvv, then
the integrated current is a scalar function, as is the case, for example, of the total
entropy production, and (5.25) becomes(

〈RRR〉st
t
)2

〈∆RRR2〉st
t
≤ It(α)|α=0 . (5.26)

The right hand side of (5.25) and (5.26) can be readily evaluated for the perturbation
(5.17) using the expression of the KL divergence for α ≈ 0 (5.10), that is

It(α)|α=0 =
2
α2 DKL(pα(xt) ‖ p(xt))|α=0 =

1
2

∫ t

0
dt′
〈
νννst DDD−1 νννst

〉st
t′ , (5.27)

where we identified YYYα(xxxt) = αYYY(xxxt) = α νννst(xxxt). Moreover, note that the second
last and last term of (5.10) do not appear in (5.27) because the initial distribution
remains untouched by the perturbation we have chosen and because , of course,
we are considering purely diffusive processes. As it is known in the literature, see
again for example (2.52) or reference [42, 64], one can identify the total entropy
production (in terms of kB this time) with

〈Σtot〉t =
∫ t

0
dt′
〈
ννν DDD−1 ννν

〉
t′ (5.28)

and hence, combining equation (5.26) with (5.25) or (5.27) one obtains

(
〈RRR〉st

t
)T( ΞΞΞR, t

)−1 〈RRR〉st
t ≤

〈Σtot〉st
t

2
,

(
〈R〉st

t
)2

〈∆R2〉st
t
≤ 〈Σtot〉st

t
2

(5.29)

that is the TUR for stationary states and vector/scalar integrated currents, respec-
tively. Moreover, because the total entropy production is an integrated current itself
with ggg(xxxt) =

(
DDD-1(xxxt)νννst

)T, the steady state average of the total entropy production
can be written in terms of the entropy production rate σtot, i.e.

〈Σtot〉st
t = σtot t (5.30)

so that, by also rewriting the averages of the integrated currents in terms of their
rates JJJR, one finally obtains from (5.29)

gggR
t ≡ t

(
JJJR
)T ( ΞΞΞR, t

)−1 JJJR ≤
σtot

2
, gggR

t ≡
J2
R

〈∆R2〉t/t
≤ σtot

2
(5.31)
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where we introduced the signal to noise ratio gggR
t associated to the observable R(ωt)

and, moreover, we also dropped the superscript indicating the stationary average.
Equation (5.31) is another form of the stationary TUR and is preferred to (5.29) be-
cause its right hand side, i.e. the upper bound, is finite and constant in the steady
state. As discussed in the introduction to this chapter, the signal to noise ratio
embodies the precision associated to the observable R(ωt) and it is bounded from
above by entropy production rate. For brevity, we do not present any applications
of this diffusive TUR and refer to the rich literature (mentioned in the introduc-
tion of this chapter) for a comprehensive discussion of the implications of this TUR.
Nevertheless, we will present some examples of the discrete TUR in Section 5.4 and
compare its performances to those of our KUR (5.55).

5.2.2 Markov jump processes

The TUR can also be obtained for Markovian jump processes [19] defined on a nu-
merable state space S = {si}i=1,...,N of N elements and continuous time. As ex-
plained in Chapter 2, the dynamics of such a process is entirely determined by the
transition rate matrix Wik(t) and the evolution of the PDF is governed by the Master
equation (2.15)

∂t pi(t) = ∑
k

Jik(t) Jik(t) = Wik(t) pk(t)−Wki(t) pi(t) (5.32)

where Jik(t) is the probability current from the kth site to the ith site.
The steady state dynamics again corresponds to the probabilities pi being not

dependent on time which implies that

∂t pi, st = ∑
k

Jik, st(t) = 0 Jik, st(t) = Wik(t) pk, st −Wki(t) pi, st . (5.33)

We perturb this steady state dynamics this time by modifying the transition rates as

Wα
ik(t) = Wik(t) exp

(
αZik

) α→0≈ Wik(t)(1 + αZik) (5.34)

Zik(t) =
Wik(t) pk, st −Wki(t) pi, st

Wik(t) pk, st + Wki(t) pi, st
. (5.35)

Note that, because Zik(t) = −Zki(t), i.e. they have anti-symmetric indexes, this
perturbation only acts on the sij parameters defined in (2.33) and this will lead, as it
will be clear in the next pages, to an upper bound to the signal to noise ratio that is
given by entropy production.

By putting the modified transition rates (5.35) into the steady state master equa-
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tion (5.33) one sees that

∑
k

Jα
ik, st(t) =∑

k

(
Wα

ik(t) pα
k, st −Wα

ki(t) pα
i, st
)
=

α→0≈ ∑
k

(
Wik(t) pα

k, st −Wki(t) pα
i, st+

+ α
(
Wik(t) pk, st −Wki(t) pi, st

)Wik(t) pα
k, st + Wki(t) pα

i, st

Wik(t) pk, st + Wki(t) pi, st

)
=

≈(1 + α)∑
k

(
Wik(t) pα

k, st −Wki(t) pα
i, st
)
= 0

(5.36)

meaning that the stationary modified probabilities obey to the same equations as
the original ones and implying that pα

i, st = pi, st. This in turn means that the mod-
ified probability currents are just the original ones but rescaled by a factor 1 + α,
i.e.

Jα
ik, st(t) = (1 + α) Jik, st(t) . (5.37)

Again, one can consider the class of integrated currents in the case of Markov jump
processes presented in (2.27) and defined as

R(ωt, t) =
∫ t

0
∑
ik

(
dnik(ωt′)− dnki(ωt′)

)
gik(t′) . (5.38)

The stationary average has also be found to be equal to

〈R〉st
t =

∫ t

0
dt′ ∑

ik

Jik, st(t′)gik(t′) (5.39)

which, together with equation (5.37), implies that

〈R〉st, α
t =

∫ t

0
dt′ ∑

ik

Jα
ik, st(t

′) gik(t′) = (1 + α)〈R〉st
t . (5.40)

So again, for integrated currents we managed to find a perturbation such that the
perturbed average is proportional to the unperturbed one and rescaled by a factor
1 + α. Hence, evaluating the left hand side of the Cramér-Rao bound for small
perturbations (4.47) leads anew to(

〈R〉st
t
)2

〈∆R2〉st
t
≤ It(α)|α=0 . (5.41)

Regarding the Fisher information, as before one can exploit its relation with the KL
divergence for small α which, together with (5.10), implies that

It(α)|α=0 =
2
α2 DKL(pα ‖ p)|α=0 =

∫ t

0
dt′
〈
Z2〉

t′ =

∫ t

0
dt′∑

ik
Wik(t′) pk, st Z2

ik(t
′) ,

(5.42)
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where Zik(t) is given by (5.35). Moving forward with the calculations and using the
so called log-mean inequality

2(b− a)2

b + a
≤ (b− a) ln(b/a) , (5.43)

valid for arbitrary positive a and b, along with (2.24), one sees that

It(α)|α=0 =

∫ t

0
dt′ Wik(t′) pk, st ∑

ik

(
Wik(t′) pk, st −Wki(t′) pi, st

Wik(t′) pk, st + Wki(t′) pi, st

)2

=
1
2

∫ t

0
dt′ ∑

ik

(
Wik(t′) pk, st −Wki(t′) pi, st

)2

Wik(t′) pk, st + Wki(t′) pi, st
≤

=
1
4

∫ t

0
dt ∑

ik

(
Wik(t′) pk, st −Wki(t′) pi, st

)
ln
(

Wik(t′) pk, st

Wki(t′) pi, st

)
=

=
1
2

∫ t

0
dt′ ∑

ik

Wik(t′) pk, st ln
(

Wik(t′) pk, st

Wki(t′) pi, st

)
=
〈Σtot〉st

t
2

,

(5.44)

i.e. the total entropy production is an upper bound to the Fisher information. Note
that this definition of total entropy production relies on the hypothesis of micro-
scopic reversibility, i.e. it must hold that if Wik(t) 6= 0 =⇒ Wki(t) 6= 0, so that the
ratio appearing in the logarithm of equation’s (5.44) last line is defined. This finally
leads to (

〈R〉st
t
)2

〈∆R2〉st
t
≤ 〈Σtot〉st

t
2

(5.45)

where, differently from (5.29), entropy production is dimensionless. We further
note that, for time independent jumping rates Wij and by choosing a time indepen-
dent weight matrix in (5.38), one can express (5.45) in terms of the entropy produc-
tion rate and the rate of the currents JR = 〈R〉st

t /t, hence obtaining

gggR
t ≡

J2
R

〈∆R2〉t/t
≤ σtot

2
(5.46)

that is the equivalent of (5.31) for Markov jump processes. We will consider some
applications of this result in Section 5.4, where the performances of the TUR will
be compared to those of the KUR. Indeed, for the examples that will be presented,
we will show how near equilibrium the TUR is the most relevant bound because,
as soon as the system starts to dissipate, currents start to appear and their signal
to noise ratio gggR

t is tightly bounded by the entropy production rate. Instead, the
kinetic constraint is the limiting factor for the precision of an observables in regimes
far from equilibrium.

5.3 Kinetic uncertainty relation (KUR)

In this section we derive and discuss the kinetic uncertainty relation (KUR), a result
we proposed [101] in 2019. The KUR is valid for Markov jump processes in con-
tinuous time, which describe a wide range of systems (molecules hopping between
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states, chemical reactions, demographic dynamics, etc.). This inequality limits ob-
servable fluctuations from an angle totally distinct from the constraint of the TUR
and is expressed as a function of time and of generic observables (with finite aver-
age). It embodies previous inequalities for non-equilibrium steady states [22, 23, 24]
and is easily applicable to any dynamics without thermodynamic interpretation.

Consider again the master equation associated a jump process with constant
jumping rates

∂t pi(t) = ∑
k

Jik(t) Jik(t) = Wik pk(t)−Wki pi(t) . (5.47)

Moreover, consider a perturbation only involving the transition rates as defined in
(5.7)

Wα
ik = WikeαZα

ik (5.48)

and with Zα
ik = Z

α
ki = 1, implying that

Wα
ik

α→0≈ (1 + α)Wik . (5.49)

In order to understand the effect of this perturbation on the dynamics of the system,
lets consider equation (2.22), i.e. the probability of observing a given trajectory
ωt = {i(t′)|0 ≤ t′ ≤ t} of a jump process where i(t′) is a piece-wise constant
function of time which performs NJ jumps between states {i0, ..., iNJ}, given by

P(ωt) = pi0(t0) exp
(
−
∫ t

0
dt′ λit′

)NJ−1

∏
n=0

Win+1 in dt , (5.50)

where λi(t) = −Wii(t) = ∑j 6=i Wji(t). For the perturbed rates defined in (5.49) the
probability associated to a stochastic path becomes

Pα(ωt) = pi0(t0) exp
(
−
∫ t

0
dt′ λα

it′

)NJ−1

∏
n=0

Wα
in+1 in dt =

α→0≈ pi0(t0) exp
(
−
∫ t

0
dt′ (1 + α) λit′

)NJ−1

∏
n=0

Win+1 in (1 + α) dt =

=P
(
ω(1+α)t

)
,

(5.51)

where in the second last line we noted that every 1 + α factor appearing in the
formula can be reabsorbed into a time differential, i.e. dt′ and dt. Indeed, per-
haps surprisingly, the rescaling of rates is equivalent to a global change in pace of
the system and leads naturally to perturbed quantities that are just unperturbed
ones evaluated at longer times. This implies that, for an arbitrary observable O(ωt)
which does not explicitly depend on time one has that

〈O〉αt = 〈O〉(1+α)t . (5.52)

As usual, we can use the expression of the perturbed average as a function of α to
evaluate the left hand side of (4.47) so that, for the perturbation we chose above, we
get (

t〈
...

O〉t
)2

〈∆O2〉t
≤ It(α)|α=0 . (5.53)
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As regards the right hand side of (5.53) one can readily evaluate it from (5.42) and
by taking Zik = 1

It(α)|α=0 =

∫ t

0
dt′
〈
1
〉

t′ =

∫ t

0
dt′∑

ik
Wik pk(t′) = ∑

ik

∫ t

0
〈dnik〉t′ = ∑

ik
〈nik〉t , (5.54)

where we used the definition (2.26) 〈dnik〉t = Wik pk(t)dt for the average number of
jumps in an infinitesimal time dt . Equation (5.54) implies that the Fisher informa-
tion, for this particular perturbation, becomes equal to the average total number of
jumps that the system performs in the time interval [0, t], i.e. the dynamical activity
presented in (2.30). The expectation 〈K〉t is a measure of how on average the system
has been active during the period [0, t] and thus, the inequality (5.53) generates a
KUR (

t〈
...

O〉t
)2

〈∆O2〉t
≤ 〈K〉t (5.55)

Note that, differently from the derivation of the TUR, no stationarity condition
is required to obtain the KUR and also, there is no restriction on the observables
for which the bound is valid, except that they must not depend explicitly on time.
However, the KUR only holds for time independent transition rates.

In a steady state this equation matches previous formulas for currents [22] and
counting observables [23]. Also, in the steady state one can rewrite the bound (5.55)
in terms of the rates as

gggO
t ≡

(
〈

...
O〉st

t
)2

〈∆O2〉st
t /t
≤ κ , (5.56)

where κ = 〈K〉t/t is constant because the average number of jumps, as it can be
seen from (5.54), grows linearly with time in the steady state. Moreover, one also
immediately sees that for integrated currents, for which it holds that 〈R〉st

t = JR t,
the stationary KUR becomes

gggR
t =

J2
R

〈∆R2〉st
t /t
≤ κ . (5.57)

To sum up, we have managed to derive a new inequality where the SNR is bounded
from above by the time symmetric quantity that counts the average number of
jumps in a time interval [0, t]. In the next section, we are going to consider some
possible application of this bound and compare its performances with its thermo-
dynamic counterpart (5.29).

5.4 TUR and KUR: examples

In this section we discuss some relevant applications of the bounds discussed above
in the context of Markov jump processes. Indeed, one may wonder whether ki-
netic constraints are useful in thermodynamic systems because, close to equilibrium
there is a finite activity (the system jumps also in equilibrium) while entropy pro-
duction tends to zero. Hence, around equilibrium the TUR brings certainly a tighter
constraint on a current precision than the KUR. Instead, as we will show, for all the
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Figure 5.1: Biased Random walk with jumping rates parametrised by a non-
equilibrium parameter F.

examples that we decided to consider the kinetic constraint becomes the most rele-
vant one far from equilibrium, i.e. at regimes with a higher entropy production rate.
More in detail, we will discuss the paradigmatic example of a biased random walk,
the dynamics of a four state network with randomly generated transition rates and
a model describing the motion of a molecular motor. In addition to these systems,
which respect local detailed balance and have a well defined entropy production,
we will also consider a non thermodynamic systems with an irreversible dynam-
ics, i.e. a predator prey model where the occurrence of extinction is of course a
permanent condition.

Biased Random walk is a fundamental, although very simple, example of jump
process defined on an infinite and numerable sample space and depicted in Figure
5.1. In a physical flavour, one could imagine that a force F (normalised by unit dis-
placement over kBT) is applied toward positive values, and a walker jumps from
n to n + 1 with rate q = eF/2 or to n − 1 with rate r = e−F/2 so that local de-
tailed balance is fulfilled. In terms of the transition rate matrix, this corresponds to
Wik = qδi−1, k + rδi+1, k − (q + r)δi, k which implies that, the average total number of
jumps or dynamical activity (5.58) becomes

〈
K
〉

t = 〈ntot〉t = ∑
i, k 6=i
〈nik〉t =

∫ t

0
∑

i, k 6=i
〈dnik〉t′ =

∫ t

0
dt′ ∑

i, k 6=i
pk(t′)Wik =

= (q + r)
∫ t

0
dt′∑

i
pi(t′) = (q + r)t = κt ,

(5.58)

where we used that 〈dnik〉t = pk(t)Wik dt and noted that the rate of jumps is equal
to κ = q + r. Moreover, it is clear that every time a jump occurs, the probabilities
of jumping to the right or the left are equal to p+ = q/(q + r) and p− = r/(q + r)
respectively. As a consequence, the average number of jumps towards the positive
〈n+〉 and negative 〈n+〉 direction become

〈n+〉t = p+〈ntot〉t = qt 〈n−〉t = p−〈ntot〉t = r t . (5.59)

By means of these averages, one can also compute the stationary average entropy
production. Indeed, by noting that for the case we are considering the entropic
parameters, defined in (2.33), are equal to s+ ≡ si+1, i = F and s− ≡ si−1, i = −F ,
one readily sees that (2.35) becomes

〈Σtot〉st
t = ∑

ik
sik 〈nik〉t = s+ 〈n+〉t − s− 〈n−〉t s− = (q− r)Ft = σtott , (5.60)
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Figure 5.2: Biased Random walk with jumping rates parametrised by a non-
equilibrium parameter F.

where clearly the entropy production rate equals σtot = (q− r)F. This value exceeds
the mean jumping rate κ = (p + q) for sufficiently large forces, where the KUR
becomes the limiting factor for the precision. For the latter, one could for example
consider R equal to the displacement at time t from the initial position, that is an
irreversible integrated current (2.27) with gik = δi−1, k

R(ωt) =
∫ t

0
∑
ik

(
dni, i−1(ωt′)− dni−1, i(ωt′)

)
= n+(t)− n−(t) , (5.61)

i.e. it is the difference between the total number of jumps towards the right and the
left. Its average is clearly 〈R〉t = 〈n+〉t − 〈n+〉t = (q− r)t while its variance, it can
be shown, is equal to 〈∆R2〉t = 2(q + r)t. These quantities can finally be used to
evaluate the stationary SNR appearing on the left of (5.46) and (5.57)

gggR
t =

J2
R

〈∆R2〉st
t /t

=
(q− r)2

2(q + r)
, (5.62)

where JR = 〈R〉st
t /t = q− r. We plot this SNR in Figure 5.2(a) together with σtot/2

and κ as a function of the mean dissipation rate σtot (points parametrised by in-
creasing F). The figure visualises how gggR

t is first limited from above by the entropic
constraint and then, getting farther from equilibrium by increasing σtot, it becomes
bounded by the frenetic limit σtot ≤ κ.

Random network. The generality of the nonequilibrium frenetic bounds on the
precision of a stochastic current is illustrated with a second example, in which we
focus on finite times. Let us consider networks of N states fully connected by tran-
sition rates Wik = exp(sik/2) and reverse Wki = exp(−sik/2), with sik drawn ran-
domly from the interval [−∆Smax, ∆Smax]. The entropy production in a trajectory
of NJ jumps visiting states {i0, i1, . . . , iNJ} is thus the sum Σtot = ∑

NJ−1
n=0 sin+1in plus

boundary terms that do not matter after averaging in the steady state. Due to the
randomisation, some networks dissipate on average more than others. Using for
instance N = 4 and ∆Smax = 5, we generate a wide spectrum of σtot values. We
first choose to observe the current R(t) = nxy(t)− nyx(t) over the single bond (x, y)
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Figure 5.3: Sketch of possible transitions and relative transition rates in the kinesin
model.

with largest sxy = maxik sik in each network. We thus count the jumps from x to y
minus those from y to x up to time t, with t = 1/ mini 6=j Wik. In Figure 5.2(b) each
point represents an average for a given random network. We see again that the
time-dependent TUR (gggR

t ≤ σtot/2) limits the current precision near equilibrium
while the KUR (gggR

t < κ) is the limiting factor far from equilibrium.

Molecular motor. A molecular motor model confirms that the KUR is relevant
in real non-equilibrium regimes. The model [111, 112] is based on parameters ex-
tracted from experimental data and describes the motion of a kinesin molecule on a
microtubule while pulling against an external force F < 0. The microtubule can be
regarded a one dimensional lattice with spacing d = 4nm while the Kinesin can be
in one of two kinds of state, A (its legs are on the tubule) and B (one leg is raised).
The full state space is infinite and characterised by the number n of half steps of
the motor and by the number m of ATP consumed, after assuming for example
i = (0, 0) to be of kind A. A jump from a state i = (n, m) is to a neighbour of the op-
posite kind via one of four different transitions. For kind A these are: (1) right step
with no ATP consumed, (2) left step with no ATP consumed, (3) right step with ATP
consumed (which is the typical motor direction), (4) left step with ATP consumed.
The opposite transitions from state B are also possible, see the scheme in Figure
5.3. In a notation consistent with the sketched transitions, we write their rates as
WWWa = (Wa,1, Wa,2, Wa,3, Wa,4) and WWWb = (Wb,1, Wb,2, Wb,3, Wb,4). Thus, in total, there
is a rate λa = WWWT

a ·111 to escape from A and λb = WWWT
b ·111 from B, where 111 = (1, 1, 1, 1).

Kinesin is usually pulling cargoes with a force F ≈ pN. For a scaled force f =
Fd/(kBT) with sign f < 0 if F is opposite to the motion (it pulls on the left), the
rates read

Wa,1 = ωe−ε+θ+a f , Wb,1 = ωe−θ−b f ,

Wa,2 = ω′e−ε−θ−a f , Wb,2 = ω′eθ+b f ,

Wa,3 = αe−ε+θ+a f k0[ATP] , Wb,3 = αe−θ−b f ,

Wa,4 = α′e−ε−θ−a f k0[ATP] , Wb,4 = α′eθ+b f ,
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Figure 5.4: Model of kinesin pulling against a force F: left panels for −F = 1.05pN,
right panels for −F = 5.63pN. (a), (b) Precision gggR of the molecular motor dis-
placement in the steady state as a function of ATP concentration, together with
half mean dissipation σtot/2 and mean jumping rate κ. (c), (d) Ratio of the pre-
cision with these quantities. All plots highlight that in physiological conditions
1mM . [ATP] . 10mM it is the KUR that determines the upper limit of precision.

with values

θ+a = 0.25 , θ−a = 1.83 , θ+b = 0.08 , θ−b = −0.16 ,

and k0 = 1.4× 105µM−1, ε = 10.81, α = 0.57s−1, α′ = 1.3× 10−6s−1, ω = 3.4s−1,
ω′ = 108.15s−1. See Ref. [111] for all the details on these parameters.

To compute average quantities and variances we resort to large deviation the-
ory [112, 113] and calculate the scaled cumulant generating function ΛO(s) associ-
ated to a given observable O. This can be done by first considering the generator
M of the dynamics is the matrix entering in the master equation ∂t p = Mp, where
p = (pA, pB) is the probability at time t to find the motor in A or B. The next step
consists in "tilting" the generator with exponentials suitably coupled to the transi-
tions. Let us define vvvi = (eγi,1s, eγi,2s, eγi,3s, eγi,4s) where γ’s will define the observable
O. With this definition, the tilted generator is written in a compact notation as

MO(s) =
(
−λa WWWb · vvvb

WWWa · vvva −λb

)
.

Its eigenvalue Λ(s) (of the two) for which Λ(0) = 0 (i.e. the eigenvalue correspond-
ing to the steady state of M = MO(0)) is the scaled cumulant generating function of
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O, namely the function determining its scaled cumulants in the limit of long time.
For instance, the scaled average is

JO = lim
t→∞
〈O〉t/t = ∂sΛO(s)|s=0 (5.63)

and the scaled variance is

C2 = lim
t→∞

[〈O2〉t − 〈O〉
2
t ]/t = ∂2

s ΛO(s)
∣∣∣
s=0

. (5.64)

To obtain the mean dynamical activity κ one uses γγγa = γγγb = 111. For the entropy
production σtot (with Boltzmann constant kB = 1) the suitable

γγγa = −γγγb = (ln Wa,1/Wb,1, . . . , ln Wa,4/Wb,4) . (5.65)

For an observable R equal to the displacement, in this model we have
γγγa = −γγγb = (d,−d, d,−d) and, by means of the procedure discussed above, one
can compute the precision gggR = J2

R/C2 (all the results are obtained via Mathemat-
ica and here we do not report their long explicit formulae) and plot it as a function
of growing ATP concentration, implying an increase of entropy production. More-
over, by also plotting σtot/2 and κ one can evaluate the performances of the TUR
and the KUR, the results are shown in Figure 5.4. We see that, in typical in vivo
conditions (−F ≈ pN, ATP concentration 1mM . [ATP] . 10mM), κ < σtot/2, i.e.,
it is the kinetic constraint that puts a ceiling on the precision of kinesin motion. At
the smaller force [Fig. 5.4(a),(c)], there is a regime of almost optimised precision at
around [ATP]= 0.1mM. While a lower precision seems normal at small fuel con-
centrations, it is perhaps more surprising when the environment furnishes more
resources. However, as already discussed in this thesis, this should not be consid-
ered unusual in life processes [3].

Predator prey model. The KUR is valid also for non-thermodynamic systems. We
may for example consider processes without microscopic reversibility (some Wik 6=
0 while Wki = 0), where the TUR cannot be applied. The following example of
population dynamics falls in this category.

Stochastic equations are routinely applied in studies of population dynamics, of
which a simple model is the predator-prey dynamics that gives rise quasi-periodic
oscillations (due to stochastic amplification [114]). The system is described by the
number of predators (n individuals of kind A) and preys (m individuals of kind B)
in a niche allowing at most N individuals, i.e., n + m ≤ N. Working in the context
of urn models [114], where also empty slots (E) are considered, the rates that de-
scribe the escape from a state i = (n, m) are built upon microscopic processes (birth

BE b−→ BB, death A
d1−→ E, B

d2−→ E and predation AB
p1−→ AA, AB

p2−→ AE). They
become w(1) = d1n, w(2) = 2bm(N − n − m)/N, w(3) = 2p2nm/N + d2m, and
w(4) = 2p1nm/N, see the scheme in the inset of Figure 5.5.

As an observable, in this demographic model we consider the number O(t) of
predators’ deaths (clearly originated by an irreversible process) up to time t, related
to the transition 1 with rates w(1)(n, m). The system is simulated with a Gillespie
algorithm [115] and is released at time zero from a given initial condition: (A) in
steady state, (B) with an abundance of predators (n/N = 3m/N = 0.6), or (C) with
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Figure 5.5: For the prey-predator model, we plot the KUR precision ratio gggO(t)/κ(t)
for the counting O of predator deaths up to time t. Curves are for the three initial
conditions discussed in the text (N = 3200, b = 0.1, d1 = 0.1, d2 = 0, p1 = 0.25,
p2 = 0.05, curves from averages over 104 trajectories). The horizontal dashed line
highlights that gggO(t)/κ(t) ≤ 1. The insets show a scheme of the transition rates of
the model, and a relaxation trajectory from initial state of condition (C) toward a
stochastic oscillatory regime.

an abundance of preys (m/N = 3n/N = 0.6). In the large inset of Fig. 5.5 we see an
example of relaxation toward the regime with stochastic oscillations, for case (C).
We collect the statistics of O in this transient phase. Fig. 5.5 shows that in all cases
the ratio gO(t)/κ(t), associated to non equilibrium KUR (5.55) with κ(t) = 〈K〉t/t,
is less then 1 as expected.

To compute the mean jumping rate κ(t) in the simulation it is sufficient to record
the total number of transitions in [0, t] and average this value over many realisations
of the process. We stress that in this system it is impossible to talk about irreversibil-
ity in the sense of ratios of reciprocal rates, Wik/Wki. Indeed such ratio is not defined
for transitions 1 and 4, which do not have allowed reversals. Conversely, it seems
a natural and easy procedure to count events to determine the mean dynamical
activity.

Final considerations For thermodynamic systems, the KUR is complementary to
the uncertainty relation based on thermodynamic considerations and focusing on
dissipation. We have shown examples in which, by getting farther and farther from
equilibrium dynamics, the kinetic constraints become more relevant than thermo-
dynamic ones in limiting the precision of a given process. A model of kinesin sug-
gests that the dispersion in the motion of this molecular motor, in physiological con-
ditions, cannot be arbitrarily small due to the KUR. Moreover, the KUR is readily
computed also in irreversible systems as those often modelled by discrete stochas-
tic processes. With an example of predator-prey dynamics, we have illustrated how
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the KUR puts a limit on the maximum precision of observables.

5.5 GLE based thermodynamic uncertainty relation

In this section we provide non-equilibrium inequalities for a simple system with
memory, modelled by equation (3.4) and based on our paper [116]. This is achieved
by applying the Cramér-Rao bound (4.54) to the joint PDF of position and velocity
associated to the GLE. We will then proceed to consider a multidimensional gen-
eralisation of this scenario. A practical realisation of this dynamics is a colloidal
bead dragged by optical tweezers in a complex medium [82, 117], say a viscoelastic
fluid, or driven by a space-independent time-modulated force. Analytical solutions
show that the average and variance of observables for this non-Markovian system
also obey a form of generalised TUR, especially in the unidimensional case. In this
inequality there appear instantaneous quantities: the instantaneous rate of entropy
production is eventually present, while original TURs include the accumulated en-
tropy production 〈Σtot〉t and may reduce to forms including its rate only if a steady
state is established. Similarly, the observable O entering in our formula is state
dependent and its variance is meant as the instantaneous variance in a statistical
ensemble at the same time. Thus, the formulas in this section are not for integrated
currents, as in usual TURs, but for state-dependent quantities. The importance of
such instantaneous quantities was recently highlighted in a novel version of TUR
for Markovian systems [20] (see also previous examples [118]).

For the simplest one-dimensional Langevin dynamics without memory, implying
equation (2.59) and with harmonic trap, both in steady states (where the trap has
been moving with a steady velocity for a long time) and in transients from an initial
equilibrium, but only for velocity-independent observables O(xt) in the latter case,
we find that the entropy production rate is the only component of the cost function
in the TUR. However, it comes with a prefactor depending on the trap strength
and the fluid viscosity. The same holds by replacing Markovianity with the long
time limit in systems with memory. The multidimensional generalisation, however,
shows that such thermodynamic interpretation is not always possible. For the case
of unbound diffusion we also find a rich phenomenology in which, under some
specific conditions, there emerges entropy production as the upper bound of the
non-equilibrium inequality.

We study a Langevin dynamics with coloured noise and friction with memory,
by focusing first on the unidimensional case. We would like to characterise uncer-
tainty relations for the motion of a colloidal particle in a complex viscoelastic fluid,
subject to a harmonic potential due to the action of optical tweezers, and eventually
to a time-modulated space-independent external force f (t) that could represent a
uniform electric field acting on a charged particle. With this addition, the GLE (3.4)
becomes

mẍ(t) = −
∫ t

tm
dt′Γ(t− t′)ẋ(t′)− κ [x(t)− λ(t)] + f (t) + η(t) , (5.66)

For future convenience, we collect the space-independent terms in

F(t) ≡ f (t) + κλ(t) . (5.67)
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In this section we will only focus on processes for which the joint probability den-
sity function (PDF) of position and velocity at time t is Gaussian. For linear sys-
tems, as in our case, this can be obtained either by starting already from a Gaus-
sian PDF p(xtm , vtm , tm), or by starting from an arbitrary distribution and wait long
enough till it becomes a Gaussian. The latter scenario occurs if either tm → −∞ or
t → ∞. Under these hypothesis, the PDF ptm(xt, vt, t) is a bivariate Gaussian such
that presented in (3.29)

ptm(xt, vt, t) =
1√

(2π)2|Stm, t|
exp

[
−1

2
(xxxt − 〈xxx〉tm, t)

TS−1
tm, t(xxxt − 〈xxx〉tm, t)

]
, (5.68)

with xxxt = (xt, vt). Moreover, 〈xxx〉tm, t = (〈x〉tm, t, 〈v〉tm, t) and Stm, t are given by
(3.20),(3.21) and (3.30), respectively. The distribution is of course completely char-
acterised by the above mentioned quantities. We can hence apply the temporal
Cramér-Rao bound (4.54) to (5.68) to obtain new stochastic inequalities involving
average and variance of generic observables O(xt, vt) depending on position and
velocity. The bound hence becomes〈

Ȯ
〉2

tm, t〈
∆O2

〉
tm, t

≤ Itm(t) , (5.69)

where Itm(t) is the temporal Fisher information depending on some initial condi-
tion at time tm. Moreover, in reference [118], the authors Ito and Dechant find the
expression for the temporal Fisher information associated to a Gaussian PDF, that
is

Itm (t) = (〈ẋ〉tm, t, 〈v̇〉tm, t)
T S−1

tm, t (〈ẋ〉tm, t, 〈v̇〉tm, t) +
1
2

tr
(
S−1

tm, t Ṡtm, tS−1
tm, t Ṡtm, t

)
,

(5.70)
where, as usual, the dot superscript stays for time derivative. In the next subsec-
tions we will calculate explicit expressions for the Fisher information starting from
different initial conditions and eventually show their connection with the entropy
production rate, derived in the previous chapter.

To sum up, the inequality defined by (5.69) and (5.70) is an instantaneous nonequi-
librium uncertainty relation for processes with a Gaussian distribution and follow-
ing a GLE with memory. Of course, this formula works also for Markov dynamics,
see again [118]. By instantaneous we mean that both the observable O and the cost
function on the right hand side are quantities that depend only on the (PDF of the)
position and velocity at time t. Moreover, the Fisher information can be related to
entropy production rates in some cases discussed in the following section.

5.5.0.1 Particle confined by a harmonic trap

For an active harmonic trap, we focus on two interesting regimes where the covari-
ance matrix is constant and diagonal: the case tm → −∞ and a dynamics starting
from thermodynamic equilibrium. For this cases we find that (see equation (3.80)
and (3.87))

Seq
t = S−∞, t =

(
kBT/κ 0

0 kBT/m

)
. (5.71)
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This is obtained by using equations (3.28), (3.33) and (3.34) along with the limits of
the susceptibilities calculated in A.1. Indeed, since κ is not modulated and since
the force f (t) is space-independent, we have that the covariance matrix remains
constant.

In the first case, this steady state for the covariance matrix is achieved by starting
from tm → −∞. To justify terming steady state such regime, we anticipate that we
will illustrate it for a particle that is being dragged since a long time by a trap mov-
ing at constant velocity. However, the results below hold also for a more complex
scenario with general λ(t) and f (t).

Using again the limits of the susceptibilities, in particular using that that lim
t→∞

χv(t) =

0, lim
t→∞

χx(t) = 0 and lim
t→∞

χ(t) = 1/κ, from (3.20) and (3.21) we obtain that

〈x〉−∞
t =

∫ t

−∞
dt′χx(t− t′)F(t′) , (5.72)

〈v〉−∞
t = χx(0)F(t) +

∫ t

−∞
dt′χv(t− t′)F(t′) . (5.73)

where χx(0) 6= 0 only for overdamped dynamics. Moreover, the notation 〈. . .〉−∞
t

denotes an average obtained for tm → −∞. The asymptotic decay of the position
susceptibility lim

t→∞
χx(t) = 0 is expected in a constrained system (this will not be the

case for κ = 0).
In the second case, equipartition as in (5.71) holds because we start at tm = 0

at equilibrium under the potential κ x2
t /2. This implies that 〈v0〉 = 〈x0〉 = 0,

〈∆v2
0〉 = kBT/m, 〈∆x2

0〉 = kBT/κ and Cov(xt0 , vt0) = 0, so that the covariance
matrix remains constant for all t ≥ 0 (this can be checked by plugging the param-
eters just listed into equations (3.28), (3.33) and (3.34)). Moreover, it can be readily
seen that

〈x〉eq
t =

∫ t

0
dt′χx(t− t′)F(t′) , (5.74)

〈v〉eq
t = χx(0)F(t) +

∫ t

0
dt′χv(t− t′)F(t′) . (5.75)

For these two cases of confined particle, the estimates for the average of position
and velocity and for the covariance matrix along with (5.69) and (5.70) lead to the
uncertainty relation

gtrap
O, tm

(t) ≤ Ctrap
tm

(t) (5.76)

with

gtrap
O, tm

(t) ≡
〈
Ȯ
〉2

tm, t〈
∆O2

〉
tm, t

Ctrap
x,v,tm

(t) ≡
κ〈ẋ〉2tm, t + m〈v̇〉2tm, t

kBT
,

(5.77)

where tm is either 0 or −∞, Ctrap
tm

(t) is the cost function and gtrap
O,tm

(t) is essentially
a (squared) signal-to-noise ratio (SNR), similar to those defined in (2.29), (5.31)
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and (5.46), encoding the precision associated to the observable O(xt, vt). Instead,
if we consider the position PDF ptm(xt, t), obtained from the marginalisation of
ptm(xt, vt, t) with respect to vt, we obtain another expression for the cost function
Ctrap

tm
(t) from the Fisher information, i.e.

Ctrap
x,tm

(t) ≡
κ〈ẋ〉2tm, t

kBT
, (5.78)

which is also valid for overdamped dynamics, where m = 0. In this case, the bound
is only valid for observables that depend solely on xt, i.e. O(xt).

We have previously shown in (3.58) that, if the memory kernel is integrable, for
large observation times the entropy production rate of the system becomes

lim
t→∞
〈σtot〉tm, t = lim

t→∞
〈σmed〉tm, t =

γ̂

kBT

(
lim
t→∞
〈ẋ〉tm, t

)2

. (5.79)

In this limit equation (5.76) can be rewritten as

lim
t→∞

gtrap
O, tm

(t) ≤ κ

γ̂
〈σtot〉tm, t +

m〈v̇〉2tm, t

kBT
. (5.80)

This means that for long times, instantaneous observables O(xt, vt) have a SNR
gtrap

O, tm
(t) bounded from above by the mean total entropy production rate times a

ratio of the trap strength by the low-frequency damping coefficient, plus a positive
term dependent on the average acceleration of the particle. Instead, for observables
dependent solely on the position xt or overdamped systems, the last term on the
r.h.s. is not present and the bound has a purely entropic interpretation for large
observation times. Again, as noted in [98], the dependence on odd variables, such
as vt, of the observables considered in the SNR ratio generates a new term in the cost
function in addition to entropy production. However, for non-oscillating external
forces such as F(t) ∝ tn or more specifically λ(t) = vt, it holds that 〈v̇〉t/〈ẋ〉t → 0 as
t → ∞ and hence, in this limit, the entropy production rate becomes the dominant
component of the cost function in (5.80).

As an example, we consider a particularly interesting regime that can be achieved
by choosing λ(t) = vt and by sending tm → −∞. Again in Chapter (3), we show
that this can be considered as a steady state for which

〈x〉ss
t = vt− γ̂v

κ
, 〈v〉ss

t = 〈vret〉ss
t = v , 〈σtot〉ss

t = γ̂v2t . (5.81)

Hence, in this case, we may express the cost function in terms of the instantaneous
mean entropy production rate times κ/γ̂ for all times and all observables O(xt, vt),
i.e.

gss,trap
O (t) ≤ κ

γ̂
〈σtot〉ss

t . (5.82)

Finally, in the Markovian (mk) case, inequality (5.80) is valid for every tm and t.
Indeed in this case

Γmk(t) = 2γ0 δ(t) , γ̂mk(t) =
∫ t

0
dt′Γmk(t) = γ0 , 〈vret〉mk

tm, t = 〈v〉mk
tm, t (5.83)
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and from equation (3.58) we get

κ

γ̂
〈σ〉mk

tm, t =
κ

kBT
(〈ẋ〉mk

tm, t)
2 , (5.84)

Cmk,trap
x,v,tm

(t) =
κ

γ0
〈σ〉mk

tm, t +
m

kBT
(〈v̇〉mk

tm, t)
2 , (5.85)

Cmk,trap
x,tm

(t) =
κ

γ0
〈σ〉mk

tm, t . (5.86)

In the last line we noted that, for Markovian dynamics and observables that de-
pend only on xt as well as for overdamped dynamics, the cost function is always
proportional to the entropy production rate.

5.5.0.2 Particle not confined

When no confinement is present (κ = 0), the only way to drive the system out of
equilibrium is through the space-independent force f (t). We again analyse two
situations.

First, we consider an initial distribution that can be factorised as p(x0, v0) =
δ(x0 − x̃0)peq(v0) (a Dirac delta is a limit of a Gaussian), with

peq(v0) =

√
m

2πkBT
exp

[
−

mv2
0

2kBT

]
(5.87)

and meaning that 〈x0〉 = 0, 〈v0〉 = 0, 〈∆x2
0〉 = 0, 〈∆v2

0〉 = kBT/m and
Cov(xt0 , vt0) = 0. With this initial conditions we find that

〈x〉dd
t = x̃0 +

∫ t

0
dt′χx(t− t′) f (t′) , 〈v〉dd

t = χx(0) f (t) +
∫ t

0
dt′χv(t− t′) f (t′) ,

(5.88)

St =

(
2kBTχ(t) kBTχx(t)
kBTχx(t) kBT/m

)
. (5.89)

Experimentally, this can obtained by selecting any occurrence where x(t) = x̃0 and
use it as an initial point for the future dynamics. Note that this kind of initial distri-
bution could have been also used for the trapped case but we simply chose not to
consider it.

Otherwise, we can prepare the system in an initial equilibrium distribution with
an optical trap, say with stiffness κ′, and switch it off when the external force is
turned on. This would correspond to 〈v0〉 = 〈x0〉 = 0, 〈∆v2

0〉 = kBT/m,
〈∆x2

0〉 = kBT/κ′ and Cov(xt0 , vt0) = 0, so that

〈x〉κ′t =
∫ t

0
dt′χx(t− t′) f (t′) , 〈v〉κ′t = χx(0) f (t) +

∫ t

0
dt′χv(t− t′) f (t′) , (5.90)

St =

(
kBT(2χ(t) + 1/κ′) kBTχx(t)

kBTχx(t) kBT/m

)
. (5.91)
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In both cases, using the limits of the susceptibilities for the diffusive scenario, one
sees that the long time limit of the covariance matrix reads

lim
t→∞
St =

(
2kBT t/γ kBT/γ

kBT/γ kBT/m

)
. (5.92)

In all the cases shown above, the averages of position and velocity along with the
covariance matrix fully characterise the joint PDF of position and velocity, as its
Gaussian character is preserved by construction.

Moreover, for both scenarios we can effectively write the covariance matrix, its
time derivative and its inverse as

St =kBT

(
2χ(t) + 〈∆x2

0〉/kBT χx(t)

χx(t) 1/m

)
, (5.93)

Ṡt =kBT

(
2χx(t) χv(t)

χv(t) 0

)
, (5.94)

S−1
t =

1
kBT|S̃tm, t|

(
1 −mχx(t)

−mχx(t) 2mχ(t) + m〈∆x2
0〉/kBT

)
, (5.95)

where
|S̃t| =

m
(kBT)2 |St| = 2χ(t) + 〈∆x2

0〉/kBT −mχ2
x(t) (5.96)

and 〈∆x2
0〉 = 0 or 〈∆x2

0〉 = kBT/κ′ depending on the case considered.
By using equations (5.93), (5.94) and (5.95) along with the Cramér-Rao bound

(5.69) and the expression of the temporal Fisher matrix for Gaussian PDFs (5.70) we
get

gdiff
O (t) ≤ Cdiff(t) (5.97)

with

gdiff
O (t) ≡

〈
Ȯ
〉2

t〈
∆O2

〉
t/t

Cdiff
x,v (t)

t
≡ 1

kBT|S̃t|

(
〈ẋ〉2t +

m〈∆x2〉t
kBT

〈v̇〉2t − 2mχx(t)〈ẋ〉t〈v̇〉t
)
+ Φ(t)

(5.98)

Φ(t) ≡1
2

tr
(
S−1

tm, t Ṡtm, tS−1
tm, t Ṡtm, t

)
=

=
2χ2

x(t)
|S̃t|2

(
1−mχv(t)

(
1−mχv(t)/2

))
t→∞−−→ χx(t)

2tχ(t)
,

(5.99)

where we used that 〈∆x2〉t = 2kBTχ(t) + 〈∆x2
0〉 and that for free diffusion

lim
t→∞

χ(t) = t/γ̂, lim
t→∞

χx(t) = 1/γ̂ and lim
t→∞

χv(t) = 0. For the case of observables

depending only on xt, as well as for overdamped dynamics, it can be shown that
the cost function reduces to

Cdiff
x (t)

t
≡ 〈ẋ〉2t
〈∆x2〉t

+
1
2

(
∂t〈∆x2〉t
〈∆x2〉t

)2

=
〈ẋ〉2t
〈∆x2〉t

+ 2

(
χx(t)

2χ(t) + 〈∆x2
0〉

)2

. (5.100)
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Note that the SNR gdiff
O (t) and the cost function Cdiff(t) for this diffusive case are

defined differently from (5.77). Now there is an additional factor t to let these quan-
tities converge to a constant value at large observation times.

Finally, we consider the entropy production rate of the system

〈σsys〉tm, t =
∂t|Stm, t|
2|Stm, t|

=
χx(t)(1−mχv(t))

2χ(t) + 〈∆x2
0〉/kBT −mχ2

x(t)
t→∞−−→ χx(t)

2χ(t)
. (5.101)

Except for a factor 1/t, we recover the same limit as for (5.99) as well as for the sec-
ond term on the right hand side of (5.100). Moreover, if again we consider external
forces that have a polynomial asymptotic behaviour f (t) ∝ tn, the term involving
the squared derivative of the position in Cdiff

x,v (t) becomes dominant. As a conse-
quence, using the expressions for the entropy production rate of the environment
(3.57) as well as its long time limit (5.79), we get

lim
t→∞
Cdiff(t) =

γ̂〈ẋ〉2t
2kBT

+
χx(t)
2χ(t)

=
1
2
(〈σtot〉t + 〈σsys〉t) . (5.102)

However, in general the term proportional to the squared acceleration may be not
negligible. This is the case for example for an oscillating external force as f (t) =
A sin(ωt). Nevertheless, for overdamped dynamics (m = 0) and for observables
only dependent on xt, the limit (5.102) holds for all f (t). Hence, again the presence
of the odd variable vt in the PDF modifies the interpretation of the cost function in
the large time limit.

Finally, it worth considering the two paradigmatic cases where

(a) f (t) = 0, corresponding to 〈ẋ〉t = 0 and 〈v̇〉t = 0 so that

Cdiff(t) = tΦ(t) t→∞−−→ 〈σsys〉t = 〈σtot〉t , (5.103)

(b) f (t) = f , corresponding to 〈ẋ〉t = f χx(t) and 〈v̇〉t = f χv(t) and implying
that

Cdiff(t) t→∞−−→ γ̂〈ẋ〉2t
2kBT

=
1
2
〈σmed〉t =

1
2
〈σtot〉t , (5.104)

where we used that 〈σsys〉t ∝ t−1 as t→ ∞

We thus find different behaviours for the cost function in the large time limit de-
pending on the external forces considered. While in all cases we recover the entropy
production rate, there is a prefactor 1/2 only for forced diffusion.

To sum up, for (i) underdamped dynamics, observables of the form O(xt, vt) and
external force with a polynomial large time limit f (t) ∝ tn, (ii) for underdamped
dynamics and observables R(xt) and (iii) for overdamped dynamics, we recover an
entropic interpretation of the cost function for the large time limit and the inequality
reads

lim
t→∞

gdiff
O (t) ≤ 1

2
(〈σtot〉t + 〈σsys〉t) . (5.105)

We close this section by noting that the bound above becomes valid for all times
in the special case of Markovian dynamics in the overdamped limit and starting
from an initial distribution that is a Dirac delta for the position and an equilibrium
distribution for the initial velocitiy.
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5.5.0.3 Multidimensional case

In this section we explore a multidimensional generalisation of our results in which
uncoupled degrees of freedom may be subject to different temperatures. The start-
ing point is of course the multidimensional GLE for the n-dimensional vector xxxt
with components xi

t defined as

mẍi(t) = −
∫ t

tm
dt′Γi(t− t′)ẋi(t′)− ∂xi

t
U(xt) + f i(t) + ηi(t) , (5.106)

〈ηi(t′)η j(t′′)〉 = kBTi δij Γi(|t′ − t′′|) . (5.107)

We choose the external potential to have the following form

U(xt, t) = ∑
i

κi

2
(xi(t)− λi(t)) =⇒ ∂xi

t
U(xt, t) = κi(xi(t)− λi(t)) . (5.108)

With this choice of the confining potential the multidimensional GLE becomes

mẍi(t) = −
∫ t

tm
Γi(t− t′)ẋi(t′)dt′ − κixi(t) + Fi(t) + ηi(t) (5.109)

where we set Fi(t) = κiλi(t) + f i(t). By defining χ̂x(k) =
[
mk2 + k Γ̂i(k) + κi]−1,

one can solve (5.109) by noting that all n equations are uncoupled and can hence be
solved independently, namely

xi(t) =xi
tm

(
1− κiχi(t− tm)

)
+ mvi

tm χi
x(t− tm)+

+
∫ t

tm
dt′χi

x(t− t′)
[

Fi(t′) + ηi(t′)
]

.
(5.110)

The averages of position and velocity can also be readily obtained

〈xi〉tm, t = 〈xi
tm〉
(

1− κiχi(t− tm)
)
+ m〈vi

tm〉χ
i
x(t− tm) +

∫ t

tm
dt′χi

x(t− t′)Fi(t′) ,

(5.111)
〈vi〉tm, t =− κi〈xi

tm〉χ
i
x(t− tm) + m〈vi

tm〉χ
i
v(t− tm)+

+ χi
x(0)Fi(t) +

∫ t

tm
dt′χi

v(t− t′)Fi(t′) ,
(5.112)

while the components of the 2n× 2n multidimensional covariance matrix

Stm, t =

(
Covtm(xi

t, xj
t) Covtm(xi

t, vj
t)

CovT
tm(xi

t, vj
t) Covtm(v

i
t, vj

t)

)
(5.113)

are explicitly calculated in A.3.
In this section we will again focus on initial conditions such that the joint PDF

ptm(qqqt, t) is Gaussian, where we have set qqqt = (xxxt, vvvt). In other words we are going
to consider PDFs of the form

ptm(qqqt, t) =
1√

(2π)2n|Stm, t|
exp

[
−1

2
(qqqt − 〈qqq〉tm, t)

TS−1
tm, t(qqqt − 〈qqq〉tm, t)

]
, (5.114)
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so that, for a given observable OOO(qqqt) with average

〈OOO〉tm, t =
∫

dqqqt ptm(qqqt, t)OOO(qqqt) , (5.115)

the inequality deriving from the temporal and multidimensional Cramér-Rao bound
reads

〈ȮOO〉Ttm, tS−1
OOO, tm, t 〈ȮOO〉tm, t ≤ 〈q̇qq〉Ttm, tS−1

tm, t 〈q̇qq〉tm, t +
1
2

tr
(
S−1

tm, t Ṡtm, tS−1
tm, t Ṡtm, t

)
. (5.116)

where S ij
OOO, tm, t = 〈O

i Oi〉tm, t − 〈Oi〉tm, t〈Oi〉tm, t, see again [118] for more details.

In the following we analyse this bound for the same cases of trapped dynamics
and free diffusion discussed in the previous subsections.

Multidimensional confined particle. Here we consider the dynamics of a Brown-
ian particle generated by a parabolic confining potential that is being dragged with
a driving protocol λλλ(t), i.e.

U(xxxt, t) = ∑
i

κi

2
(xi(t)− λi(t)) (5.117)

with κi 6= 0 for every i. Moreover, remembering that for this scenario it holds that

lim
t→∞

χi
v(t) = 0 lim

t→∞
χi

x(t) = 0 lim
t→∞

χi(t) = 1/κi (5.118)

we immediately see from (A.28), (A.29) and (A.30) that, in the long time limit as
well as for tm → −∞, the covariance matrix becomes

lim
t−tm→∞

Stm, t = lim
t−tm→∞

(
Covtm(xi

t, xj
t) Covtm(xi

t, vj
t)

CovT
tm(xi

t, vj
t) Covtm(v

i
t, vj

t)

)
=

(
kBTiδij/κi 0

0 kBTiδij/m

)
,

(5.119)
which is a constant matrix and also corresponds to the covariance matrix of a system
that is in equilibrium. In fact, using this covariance matrix as initial condition at
time tm, we see that St,tm remains constant at all times. We conclude that for the
dynamics starting from an initial equilibrium condition and for a stationary state,
i.e. tm → −∞, the covariance matrix is always constant and diagonal. Moreover,
from (5.111) and (5.112) we see that average positions and velocities can be in both
cases effectively written as

〈xi〉tm, t =
∫ t

tm
dt′χi

x(t− t′)Fi(t′) (5.120)

〈vi〉tm, t = χi
x(0)Fi(t) +

∫ t

tm
dt′χi

v(t− t′)Fi(t′) (5.121)

where tm = 0 for equilibrium initial conditions or tm = −∞. Hence, for these initial
setups, the inequality (5.116) becomes

gtrap
OOO (t) ≤ Ctrap(t) , (5.122)
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with
gtrap

OOO (t) = 〈ȮOO〉Ttm, tS−1
OOO,tm
〈ȮOO〉tm, t , (5.123)

Ctrap
x,v,tm

(t) ≡∑
i

κi〈ẋi〉2tm, t + m〈v̇i〉2tm, t

kBTi
,

Ctrap
x,tm

(t) ≡∑
i

κi〈ẋi〉2tm, t

kBTi
,

(5.124)

where the range of validity of the two cost functions was discussed in the previous
subsections.

Moving forward, we consider the total entropy production rate, which coincides
with the entropy production rate of the environment because of the constancy of
the covariance matrix, along with its large time limit

lim
t→∞
〈σtot〉tm, t = lim

t→∞
〈σmed〉tm, t = ∑

i

γ̂i

kBTi

(
lim
t→∞
〈v〉tm, t

)2

. (5.125)

We see that, differently from the unidimensional case, it is not possible to find a
simple proportionality relation between the first terms on the right hand side of
(5.124) and the long time limit of the entropy production rate. We conclude that,
for this multidimensional case, the cost functions in general have no entropic inter-
pretation for large observation times. The recovery of a cost function proportional
to the entropy production rate is only possible in specific cases: for example, for a
dragging vector λλλ(t) with one nonzero component, or when all ratios κi/γ̂i are the
same.

Multidimensional particle not confined. We conclude this section by considering
the case of diffusion without confinement. The GLE associated to this scenario is as
follows:

mẍi(t) = −
∫ t

tm
dt′Γi(t− t′)ẋi(t′) + f i(t) + ηi(t) . (5.126)

In a similar way as for the unidimensional case, we chose

S0 =

(
Cov(xi

0, xj
0) Cov(x0

t , v0
t )

CovT(xi
0, vj

0) Covtm(v
i
0, vj

0)

)
=

(〈(
∆xi

0
)2〉

δij . 0

0 kBTδij/m

)
(5.127)

as the covariance matrix characterising the initial state at t = 0, with〈(
∆xi

0
)2〉

= kBT/κ
′i. This corresponds to an initial state where the particle has

reached thermal equilibrium in a parabolic trap as in (5.117), with parameters {κ′i}.
The potential is then switched off at time t = 0 when f (t) is turned on. As a conse-
quence we have that 〈xi

0〉 = 0 and 〈vi
0〉 = 0. Moreover, in the limit of κ

′i → ∞, the
covariance matrix (5.127) is the same as the one of a joint PDF that is factorised as
P(xxx0, vvv0) = ∏i δ(xi

0 − x̃i
0)peq(vvv0). This would rather correspond to 〈xi

0〉 = x̃i
0 and

〈vi
0〉 = 0. Both scenarios can hence be hence effectively described by the covariance

matrix

St =

((〈(
∆xi

0
)2〉

+ 2kBTiχi(t)
)
δij kBTiχi

x(t)δij

kBTiχi
x(t)δij kBTiδij/m

)
(5.128)
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as well as by

〈xi〉t = x̃i
0 +

∫ t

0
dt′χi

x(t− t′) f i(t′) , (5.129)

〈vi〉t = χi
x(0) f i(t) +

∫ t

0
dt′χi

v(t− t′) f i(t′) (5.130)

where x̃i
0 6= 0 only for {κi → ∞}. With all these informations we are able to evaluate

the bound (5.116)

gdiff
OOO (t) ≤ Cdiff(t) , (5.131)

with
gdiff

OOO (t) = t〈ȮOO〉Ttm, tS−1
OOO, tm

(t)〈ȮOO〉tm, t (5.132)

Cdiff
x,v,tm

(t)
t

≡∑
i

〈ẋi〉2t + m
〈(

∆xi)2〉
t〈v̇

i〉2t /kBT − 2mχi
x(t)〈ẋi〉t〈v̇i〉t

kBTi|S̃ i
t |

+ ∑
i

Φi(t)

(5.133)

Φi(t) ≡
2
(
χi

x(t)
)2

|S̃ i
t |2

(
1−mχi

v(t)
(

1−mχi
v(t)/2

))
t→∞−−→ 1

2t∑
i

χi
x(t)

χi(t)
(5.134)

|S̃ i
t | =

〈(
∆xi)2〉

t/kBTi −m(χi
x(t))

2 , (5.135)

where again we used that
〈(

∆xi)2〉
t = 2kBTiχi(t) +

〈(
∆xi

0
)2〉 along with the limits

of the susceptibilities.
Hence, similarly to the the confined case, there is no straightforward connection

between the cost function (5.133) and the total entropy production (see (5.125)).
However, if we consider free diffusion with f i(t) = 0, that means 〈xi〉t = 0 and
〈vi〉t = 0, and note that

〈σsys〉tm, t =
∂t|Stm, t|
2|Stm, t|

= ∑
i

∂t|S̃ i
tm, t|

2|S̃ i
tm, t|

= ∑
i

χi
x(t)(1−mχi

v(t))〈
(∆xi)

2〉
t/kBT −m(χi

x(t))2

t→∞−−→∑
i

χi
x(t)

2χi(t)
(5.136)

it is clear that, for this special case,

lim
t→∞
Cdiff

x,v,tm(t) = 〈σsys〉tm, t = 〈σtot〉tm, t (5.137)

Finally, it is worth noting that, as usual, for observables that depend solely on xxxt, i.e.
OOO(xxxt) as well as for overdamped dynamics, the cost function has a different form

Cdiff
x,tm(t) = ∑

i

 〈ẋi〉2t〈
(∆xi)

2〉
t

+ 2

(
χi

x(t)

2χi(t) +
〈(

∆xi
0
)2〉
)2
 . (5.138)

Moreover, for overdamped free diffusion and for
〈(

∆xi
0
)2〉 → 0, i.e. κ

′i → ∞ for
every i, we get that for all times

Cdiff
x,tm(t) = 〈σtot〉tm, t (5.139)
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Figure 5.6: Upper bound (5.78) (dense black line) of the non-equilibrium inequal-
ity (5.76), and SNR ratios gtrap

O = 〈Ȯ〉2t /〈∆O2〉t for two observables (dashed lines,
see legend), for a pure exponential kernel (γ0 = 0) and starting from equilibrium
(parameters m = 1, v = 1, κ = 1, γ = 1 and τ = 1). We also show the term
κ〈σtot〉t/γ̂ (red line), which becomes the entropic bound for long times but in gen-
eral is not a bound for the SNRs. In (a) we vary γ (quantities exhibit oscillations that
become less pronounced as γ grows), in (b) we vary κ (oscillations become stronger
and more persistent in time as κ becomes larger and the limit of the cost functions
as well as the entropic bound grow linearly as the value of trap stiffness becomes
larger), and in (c) we vary τ (note that for τ = 0.1, i.e. at quasi-Markovianity, red
and black continuous lines nearly coincide meaning that for Markovian dynamics
the cost function becomes proportional to the entropy production rate).

5.5.1 Applications

We discuss some regimes for which it is possible to derive explicit analytical ex-
pressions for the SNRs and for the cost function or the entropy production rates.
Moreover, we will focus on unidimensional underdamped dynamics and observ-
ables that depend only on spatial variables. This will allow us to observe the typical
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Figure 5.7: Similar to Figure 5.6 but for a complete exponential memory kernel with
Markovian contribution γ0 = 0.5 that smothers the oscillations.

oscillations associated to the underdamped scenario and will enable us to recover
an entropic interpretation of the cost functions in the large time limit.

5.5.1.1 Exponential memory kernel with confinement

For our example, we focus on a simple memory kernel with one exponential com-
ponent, with GLE

mẍ(t) = −γ0ẋ(t)− γ

τ

∫ t

tm
dt′e−(t−t′)/τ ẋ(t′)− κ [x(t)− vt] + η(t) , (5.140)

where we set λ(t) = vt and f (t) = 0. As already hinted in the previous section,
with this linear dragging protocol a steady state is established for tm → −∞.
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Figure 5.8: As in Figure 5.6 but for a trap dragging the particle with constant ve-
locity (the “steady state”) and passing with its minimum λ(t) = vt at λ(0) = 0.
In this case the cost function Ctrap, ss(t) = κ〈σtot〉ss

t /γ̂ = κv2 matches the entropic
bound, proportional to the constant entropy production rate (see equation (5.81)).
Variations of memory characteristic time are not considered as their effects are not
present as tm → −∞. (a) A larger value of γ corresponds to a shift of the minimum
and maximum of the two SNRs towards larger observation times. The cost function
remains unaffected by variations of γ. (b) As the trap stiffness grows, so does the
cost function proportionally, while the minimum and maximum of the SNRs move
towards smaller observation times.

Here we analyse the the bound (5.76) for two different observables,
i.e. O1(x) = sign(x) and O2(x) = x2, starting from equilibrium or from a stationary
state. In the latter case, the bound becomes a full-fledged entropic bound (5.80).

As a first standard example for viscoelastic fluids, we analyse the case of an ex-
ponential memory kernel,

Γexp(t) = 2γ0 δ(t) + ∑
i=1

γi

τi
e−t/τi , Γ̂exp(k) = γ0 + ∑

i=1

γi

1 + kτi
, (5.141)

with

γ̂ =
∫ ∞

0
dt′Γ(t′) = ∑

i=0
γi , 0 ≤ γ̂ < ∞ . (5.142)

This is an important example, as a finite sum of suitably sized exponential terms
can approximate, up to a finite time scale, every memory kernel even if γ̂ does not
converge, see [77] for details.
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Figure 5.9: For free diffusion (κ = 0) under a constant force f = 1 from an initial
distribution p(xt0 , vt0 , t0) = δ(x − x0)peq(v0): SNRs gdiff

O = t〈Ȯ〉2t /〈∆O2〉t (dashed
lines, see legend), cost function (dense black line) and entropic bound (red line) for
pure exponential memory kernel (γ0 = 0). As in previous figures, m = 1, γ = 1
and τ = 1. In row (a) we vary γ. Differently from the bounded case (see Figure
5.6) oscillations become stronger in amplitude as γ increases while again the limit
to which the cost functions and the entropy production rates does not change with
γ. In (b) instead we vary τ. As before, the long time limit of the cost function is
approached also by the corresponding entropic bound, while oscillations increase
as the memory characteristic time gets larger. The bound is very quickly saturated
for the observable O2(x) = x2, hence its SNR is not visible in the panels.

For a memory kernel that is purely exponential, i.e. when γ0 = 0, we note that
the SNRs as well as the bounds exhibit strong oscillations when starting from an
equilibrium distribution, depending of course on the values of the parameters (Fig-
ure 5.6). When γ0 6= 0 instead, these oscillations are smothered (Figure 5.7). No
significant difference is seen instead if we start from a stationary state (thus we
show only the case γ0 = 0 in Figure 5.8), in fact if tm → −∞ the memory effects
are lost and the dynamics only depends on the limit of the time dependent friction
coefficient γ̂, see equation (5.81). In other words it is not possible anymore to distin-
guish the effects of the exponential part of the memory kernel from the Markovian
one.
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Figure 5.10: As in Figure 5.9 but for complete exponential memory kernel (γ0 = 0.5,
damping the oscillations) with initial distribution P(xt0 , vt0 , t0) = δ(x− x0)peq(v0).

5.5.1.2 Exponential memory kernel without confinement

We analyse diffusion dynamics (κ = 0) of the bead subject to an external force
f (t) = f that is constant both in space and time. The variance of the position grows
in time, hence there exists no stationary distribution. Also the average position
grows linearly in time due to f .

As in the previous subsection, for simplicity the associated GLE contains a single
exponential with characteristic time τ,

mẍ(t) = −γ0ẋ(t)− γ

τ

∫ t

0
dt′e−(t−t′)/τ ẋ(t′) + f + η(t) . (5.143)

We thus discuss the bound (5.97) for the dynamics generated by the above equa-
tion, again noting the entropic nature of the bound in the large time limit. We will
consider three observables: O1(x) = sign(x), O2(x) = x2 and O3(x) = x. The latter
observable has a non-saturating SNR for this unbound diffusion dynamics.

Figure 5.9 and Figure 5.10 show the case of an initial distribution that is a Dirac
delta for the starting position and an equilibrium distribution for the initial veloc-
ity, which implies 〈∆x2

0〉 = 0. For small times this causes a divergence of the cost
function Cdiff

x (t) due to its term t(∂t〈∆x2〉t/〈∆x2〉t)2 in (5.100). While in this regime
the bound becomes loose for O1(x) and O3(x) it is immediately saturated for O2(x).

However, if the dynamics starts from an equilibrium condition in an optical trap
of stiffness κ′ (implying 〈∆x2

0〉 = kBT/κ′) no divergences occur and the bound be-
comes tighter for all observables. This can be all seen in Figure 5.11, for γ0 = 0. The
case γ0 > 0 yields similar plots with less oscillations.
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Figure 5.11: SNRs gdiff
O = t 〈Ȯ〉2t /〈∆O2〉t (dashed lines, see legend), cost function

(dense black line) and entropic bound (red line) for pure exponential memory ker-
nel (γ0 = 0) and for initial distribution p(xt0 , vt0 , t0) = pκ′, eq(v0)peq(v0) with
〈∆x2

0〉 = kBT/κ′. In row (a) we chose m = 1, f = 1 and τ = 1. A finite initial
variance of the position avoids a divergence of the cost functions. Differently from
the bounded case (see Figure 5.6) oscillations become stronger in amplitude as γ in-
creases while again the long time limit of cost function and entropy production rate
does not change with γ. For (b) instead we have γ = 1, m = 1 and f = 1. As before,
the long time limit of the cost function and rates is the same for both values of τ
while oscillations increase as the memory characteristic time grows larger. Again
the bound is very quickly saturated for O2(x).

To summarise, the entropic bound is violated for finite times and is only valid
asymptotically. It is perhaps surprising that the observable which goes closer to
saturate the inequality is O2 = x2 instead of O3 = x, which fully saturates the bound
for trapped dynamics and, of course, for observables that are velocity-independent.

5.5.2 Conclusions

Considering a system as optical tweezers dragging a microbead in a complex fluid,
we have considered a non-equilibrium inequality (5.69) for Langevin equations
with memory kernel, for the cases in which the position evolves distributed as a
Gaussian. This inequality covers also diffusion not bounded by a harmonic trap
but driven by a homogeneous time-dependent field.
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The inequality (5.69) quantifies how the signal-to-noise ratio of observables is
bounded by a cost function. By focusing on instantaneous quantities as the bead
position, it is in line with a recent TUR for Markovian dynamics [20] and embodies
a previous Markovian version [15]. An approach based on instantaneous quanti-
ties is a viable option for dealing with non-Markovian systems, which have more
complicated path weights than those of Markovian systems.

The cost function in the inequality (5.69) in general is not the entropy production,
but it can become proportional to the entropy production rate in some limits. For
a particle confined by a harmonic trap, (5.69) can be cast as (5.76), which becomes
the TUR (5.80) in the limit of large observation times (again, this TUR contains the
instantaneous entropy production rate, at variance with TURs in the literature).
Moreover, for a particle dragged at constant velocity in a complex fluid by mov-
ing optical tweezers, the TUR (5.82) holds for all times if the dragging has been
performed since a long time before the beginning of measurements.

For particles not constrained by optical tweezers, but eventually subject to a
global force f (t), the inequality reduces to (5.97). This may also become an instan-
taneous TUR with cost function proportional to some entropy production rates, see
(5.105). For instance, for integrable memory kernels, at long times the effects of the
memory are lost and essentially the system behaves as a Markovian one.

Markovian Langevin dynamics is a particular subclass of what we have described.
In all cases we have analysed, a Markovian dynamics may lead more easily to a
thermodynamic interpretation in which the entropy production rate is the func-
tion bounding the signal-to-noise ratio (besides constant prefactors). Indeed, we
recover it for a particle dragged but starting from equilibrium, and also for a free
overdamped particle starting from a given position (Dirac delta distribution ini-
tially). In the latter case the susceptibility is equal to χ(t) = 2Dt, with diffusion
constant D. Thus χx(t) = ∂tχ(t) = 2D and the ratio (tχx(t))/χ(t) = 1, so that
from (5.105) we can infer the validity of the instantaneous TUR (5.105) for all times.
A realisation of this scenario could be a charged particle driven by a homogeneous
time-varying electric field in a fluid without memory.

The fact that a non-equilibrium inequality contains a cost function not directly
related only to the entropy production is not surprising. As discussed in this the-
sis, many previous examples show that other non-dissipative aspects may be con-
straining the SNR of observables, in conjuction with or in alternative to the entropy
production.



CHAPTER 6

SOLVED MODELS

In this chapter we present and solve three different linear models in a steady
state, which will be used in the next chapter to discuss and apply our Markovian
variance sum rule (VSR), valid for Langevin systems in a steady state and described
by

ẋxx(t) = µµµFFF(xxxt, t) +
√

2DDD ξξξ(t) , (6.1)

where µµµ and DDD are the (constant) mobility and diffusion matrix, respectively, and
FFF(xxxt, t) is the total force acting on the bead. In this setting, the VSR takes the fol-
lowing form

Cov(xxxt − xxx0, xxxt − xxx0) +
∫ t

0
dt′
∫ t

0
dt′′ Cov(µµµFFF(xxxt′ , t′), µµµFFF(xxxt′′ , t′′)) = 2DDDt + 4VVV(t)

(6.2)
where

VVV(t) = 1
2

∫ t

0
dt′
∫ t′

0
dt′′

(
Cov(ẋxxt′′ , ννν0) + CovT(ẋxxt′′ , ννν0)

)
(6.3)

is a quantity involving the mean local velocity (2.48). In this chapter, which can be
regarded as some anticipated appendices, we will restrict ourselves to calculating
these quantities for the above-mentioned models and postpone a more detailed dis-
cussion of the application and relevance of the VSR and VVV(t) to the next chapters.

Each system that we are going to consider is driven out of equilibrium by a dif-
ferent mechanism and are as follows:

• a 2D system trapped in a parabolic potential plus a non conservative force,
the latter being accountable for the non equilibrium regime;

• another 2D system in a parabolic potential and in contact with two heat baths
at different temperatures, also known as Brownian gyrator. In this case, it is the
temperature gradient that drives the system out of equilibrium.

• A 1D system, again in a parabolic potential, plus a position independent ran-
dom force proportional to σ(t), the latter taking values {0, 1} alternately with
exponentially distributed waiting times. This is an example of a jump-diffusing
process.

In addition, we will calculate the entropy production rate along with other interest-
ing quantities related to these systems and whose usefulness will be clear in Chapter
7.
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Figure 6.1: Non-conservative force field for kBT = µ = κ = ρ = 1 and α = 1/2. The
legend bar indicates the value of the potential U(xt, yt) while the arrows correspond
the vector field fff (xt, yt). Note that they are tangent to the equipotential lines.

6.1 Linear non-conservative force

Lets consider the LE (2.43) in two dimensions, i.e. xxxt = (xt, yt), with a parabolic
potential given by U(xt, yt) = κ1x2

t /2+ κ2y2
t /2 and in the presence of a non conser-

vative force fff (xt, yt) = (−ρ1yt, ρ2xt). Moreover, we consider a diagonal diffusion
matrix Dij = kBTµ δij where µ = 1/γ is the mobility of the particle. With this in
mind, the LE can be written as the following set of coupled linear stochastic differ-
ential equations

ẋ(t) = µ (−∂xtU(xt, yt) + f x(xt, yt)) +
√

2kBT µ ξx(t) =
= −µκ1 x(t)− µρ1 y(t) +

√
2kBT µ ξx(t)

ẏ(t) = µ
(
−∂ytU(xt, yt) + f y(xt, yt)

)
+
√

2kBT µ ξy(t) =
= −µκ2 y(t) + µρ2 x(t) +

√
2kBT µ ξy(t) .

(6.4)

One can easily verify that, by setting κ1 = ακ, κ2 = κ, ρ1 = ρ and ρ2 = αρ, the
stationary solution of FP equation has a Gaussian shape of the following form

pst(xxxt) = pst(xt, yt) ∝ exp
[
−ακ x2

t + κ y2
t

2kBT

]
, (6.5)

which implies that 〈xxxt〉 = 0 and

Cov(xxxt, xxxt) =
kBT
ακ

(
1 0

0 α

)
(6.6)

where (Cov(xxxt, xxxt))ij = 〈xi
t xi

t〉 − 〈xi
t〉〈xi

t〉 = 〈xi
t xi

t〉 is the covariance matrix. More-
over, the mean local velocity defined in (2.48) becomes

νννst(xt, yt) = µ (−∇U(xt, yt) + fff (xt, yt))− kBT µ∇ ln pst(xt, yt) = µ fff (xt, yt) , (6.7)
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showing that the non-equilibrium state is due to the non conservative force fff .
In order to calculate relevant quantities associated to the dynamics defined in

(6.4), we solve these equations by means of Laplace transforms. Indeed, similarly
to what has been done for the unidimensional GLE in Chapter 3, by applying the
Laplace transform to (6.4) one gets{

k x̂(k)− x0 = −αµκ x̂(k)− µρ ŷ(k) +
√

2kBT µ ξ̂x(k)
k ŷ(k)− y0 = −µκ ŷ(k) + αµρ x̂(k) +

√
2kBT µ ξ̂y(k)

(6.8)

which can be rearranged to get(
x̂(k)

ŷ(k)

)
= χ̂χχ(k) ·

(
x0 +

√
2kBT µ ξ̂x(k)

y0 +
√

2kBT µ ξ̂y(k)

)
(6.9)

which is given in matrix notation and where we introduced the susceptibility ma-
trix, defined via its Laplace transform, that is

χ̂χχ(k) =
1

(k + αµκ)(k + µκ) + αµ2 ρ2

(
k + µκ −µρ

αµρ k + αµκ

)
. (6.10)

By further defining the function

T (t) =L−1
[

1
(k + αµκ)(k + µκ) + αµ2 ρ2

]
=

=

sin
(

tµ

√
αρ2 − (1−α)2κ2

4

)
µ

√
αρ2 − (1−α)2κ2

4

e−κ µ(1+α)t/2 ,

(6.11)

one can easily see that the susceptibility matrix becomes

χχχ(t) =

(
Ṫ (t) + µκT (t) −µρT (t)

αµρT (t) Ṫ (t) + αµκT (t)

)
, (6.12)

where we also used that Ṫ (t) = L−1 [k T̂ (k)] because T (0) = 0. By using this and
by transforming back (6.9) into real time, the solution of (6.4) can be expressed as

xi(t) = χij(t)xj
0 +

∫ t

0
dt′χij(t− t′)ξ j(t′) , (6.13)

where summation over repeated indexes is intended. In a stationary state with PDF
given by (6.5) it holds 〈xxxt〉 = (0, 0) for every t and clearly (6.13) is consistent with
this. Moreover, by using the equation above one can easily calculate the steady state
correlation functions

〈xxxt xxxT
0 〉 =χχχ(t)〈xxx0 xxxT

0 〉 = χχχ(t)Cov(xxx0, xxx0) =

=
kBT
ακ

(
Ṫ (t) + µκT (t) −αµρT (t)

αµρT (t) α Ṫ (t) + α2 µκT (t)

)
,

(6.14)
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where we used equation (6.6) and that, in the Ito convention, 〈ξξξ(t′)xxx0〉 = 0 for every
t′ ≥ 0. By means of (6.14), one can calculate the stationary entropy production rate,
corresponding to the heat injected into the environment and which can be readily
obtained from (2.52)

σtot = ∂t〈Σtot〉t =
〈
νννst DDD-1νννst

〉
t =

µρ2

kBT

(
〈yt yt〉+ α2〈xt xt〉

)
=

µρ2(1 + α)

κ
, (6.15)

where we used equation (6.7) along with 〈xxxt xxxt〉 = 〈xxx0 xxx0〉 in this steady state (to-
gether with the fact that the average of xxx(t) is constant in time) and that
T (0) = 0, Ṫ (0) = 1.

Moreover, the correlation functions shown in (6.14) also serve as building blocks
for the calculation covariances which will be needed in Chapter 7 to verify and
discuss our variance our sum rule (6.2). With this in mind, we can proceed and
calculate, for example, the covariance matrix of the relative displacement that is

Cov(xxxt − xxx0, xxxt − xxx0) =〈(xxxt − xxx0)(xxxT
t − xxxT

0 )〉 − 〈(xxxt − xxx0〉〈xxxT
t − xxxT

0 )〉 =

=2〈xxx0 xxxT
0 〉 − 〈xxxt xxxT

0 〉 − 〈xxxt xxxT
0 〉T =

=
2kBT

ακ

(
1− Ṫ (t) + µκT (t) 0

0 α
(
1− Ṫ (t) + µκT (t)

)) .

(6.16)

Another quantity we are interested in is the covariance matrix of the integral of the
forces. It can be calculated by exploiting that

F(xxxt) =

(
−ακ x(t)− ρy(t)
−κ y(t) + αρ x(t)

)
, (6.17)

meaning that the correlation function
〈
FFF(xxxt′) FFFT(xxxt′′)

〉
can be again expressed in

terms of the components of (6.14), and that 〈FFF(xxxt)〉 = 0, which leads to

Cov
( ∫ t

0
dt′FFF(xxxt′),

∫ t

0
dt′′FFF(xxxt′′)

)
=
∫ t

0
dt′
∫ t

0
dt′′
〈
FFF(xxxt′)FFFT(xxxt′′)

〉
=

=
2kBT

κ

∫ t

0
dt′
∫ t′

0
dt′′


(ακ2 + ρ2)Ṫ (t′′) +
+αµκ(κ2 + ρ2)T (t′′) 2ρκ(1− α)Ṫ (t′′)

2ρκ(1− α)Ṫ (t′′) (κ2 + αρ2)Ṫ (t′′) +
+αµκ(κ2 + ρ2)T (t′′)

 .

(6.18)

In a similar way, one can also calculate the violation factor, defined in (6.3) and
equal to

VVV(t) = 1
2

∫ t

0
dt′
∫ t′

0
dt′′

(
Cov(ẋxxt′′ , νννst, 0) +

(
CovT(ẋxxt′′ , νννst, 0)

))
. (6.19)
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Because νννst(xxxt) = µ fff (xxxt), implying that 〈νννst〉 = 0, one gets that the terms involving
the covariances in (6.19), i.e. Cov(ẋxxt, νννst, 0) = 〈ẋxxt νννst, 0〉, can be again expressed in
terms of the components of (6.14) hence leading to

VVV(t) = µ2 kBT
κ

∫ t

0
dt′
(

ρ2T (t′) ρκ (1− α)T (t′)
ρκ (1− α)T (t′) ρ2T (t′)

)
. (6.20)

The behaviour and relevance of all these quantities will be discussed in more detail
in Section 7.3

6.2 Brownian gyrator

Brownian gyrators are nice minimal systems that can be used, for example, as mod-
els for microscopic heat engines operating on the nanoscale [119]. By following
previous works on this topic such as [120, 121, 122, 123, 124], we consider a set
of two LEs with a parabolic potential U(xt, yt) = κ(x2

t + y2
t )/2 + α κ xt yt, where

−1 < α < 1 is a factor determining the asymmetry of the potential landscape, and
with diffusion matrix equal to

DDD =

(
kBT1 µ1 0

0 kBT1 µ2

)
(6.21)

hence leading to
ẋ(t) = −µ1 ∂xtU(xt, yt) +

√
2kBT1 µ1 ξx(t) =

= −µ1 κ x(t)− µ1 ακ y(t) +
√

2kBT1 µ1 ξx(t)

ẏ(t) = −µ2 ∂ytU(xt, yt) +
√

2kBT2 µ2 ξy(t) =
= −µ2 κ y(t)− µ2 ακ x(t) +

√
2kBT2 µ2 ξy(t) .

(6.22)

In a similar way as done for the system described in the previous subsection, one
can apply the Laplace transform to (6.22) and, by turning to matrix notation and by
doing some algebra, one gets(

x̂(k)

ŷ(k)

)
= χ̂χχ(k) ·

(
x0 +

√
2kBT1 µ1 ξ̂x(k)

y0 +
√

2kBT2 µ2 ξ̂y(k)

)
, (6.23)

where this time the susceptibility matrix is equal to

χ̂χχ(k) =
1

(k + µ1 κ)(k + µ2 κ)− α2 µ1 µ2 κ2

(
k + µ2 κ −αµ1 κ

−αµ2 κ k + µ1 κ

)
. (6.24)

Again, we define the function

T (t) =L−1
[

1
(k + µ1 κ)(k + µ2 κ)− α2 µ1 µ2 κ2

]
=

=
2 sinh

(
κ t
√

4α2µ1 µ2 + (µ1 − µ2)2/2
)

κ
√

4α2µ1 µ2 + (µ1 − µ2)2
e−t κ(µ1+µ2)/2 ,

(6.25)
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which is such that T (0) = 0 (implying that Ṫ (t) = L−1 [k T̂ (k)]) and can be used
to express the susceptibility matrix in real time as

χχχ(t) =

(
Ṫ (t) + µ2 κT (t) −αµ1 κT (t)
−αµ2 κT (t) Ṫ (t) + µ1 κT (t)

)
. (6.26)

Furthermore, by taking the inverse Laplace transform of (6.23), the solution of (6.22)
can be written as

xi(t) = χij(t)xj
0 +

∫ t

0
dt′χij(t− t′)ξ j(t′) . (6.27)

From this, one can readily evaluate the stationary average of xxxt

〈xxx〉st
t = 〈xxx〉st

0 = χχχ(t)〈xxx〉st
0 , (6.28)

where 〈xxx〉st
t = 〈xxx〉st

0 is a consequence of the fact that neither the drift vector nor the
diffusion matrix explicitly depend on time. Moreover, because the matrix χχχ(t) 6= 12
is not degenerate, the only possibility for (6.28) to hold corresponds to 〈xxx〉st

0 = 0.
Another consequence of (6.27) is that, if xxx0 is distributed as a bivariate Gaussian, the
same will be true for xxxt at all times because a sum (or integral) of Gaussian random
variables is itself Gaussian (remember that ξξξ(t) is also Gaussian). This feature is
indeed a consequence of the linearity of equation (6.22) and, along with 〈xxx〉st

0 = 0,
it implies that

pst(xxxt) ∝ exp
(
−1

2
xxxT

t Cov-1(xxx0, xxx0) xxxt

)
, (6.29)

where

Cov(xxx0, xxx0) =

(
〈∆x2

0〉 Cov(x0, y0)

Cov(x0, y0) 〈∆y2
0〉

)
=

(
〈x2

0〉 〈x0 y0〉
〈x0 y0〉 〈y2

0〉

)
(6.30)

is, as usual, the covariance matrix. In order to evaluate its components, we resort to
the discretised version of (6.22), i.e.{

x(t + dt) = x(t)− µ1 κ x(t)dt− µ1 ακ y(t)dt +
√

2kBT1 µ1 dBx(t) (a)
y(t + dt) = y(t)− µ2 κ y(t)dt− µ2 ακ x(t)dt +

√
2kBT2 µ2 dBy(t) (b)

(6.31)

where 〈dBi(t)〉 = 0 and 〈dBi(t)dB j(t)〉 = δij dt. By taking the square of (a) and (b)
along with the product between (a) and (b) and by taking their average, one gets
〈x2

t+dt〉 = 〈x2
t 〉+

(
−2µ1 κ 〈x2

t 〉 − 2µ1 ακ 〈yt xt〉+ 2kBT1 µ1
)

dt + o(dt)
〈y2

t+dt〉 = 〈y2
t 〉+

(
−2µ2 κ 〈y2

t 〉 − 2µ2 ακ 〈yt xt〉+ 2kBT2 µ2
)

dt + o(dt)
〈xt+dt yt+dt〉 = 〈xt yt〉 − (κ(µ1 + µ2)〈xt yt〉+ αµ2 κ〈x2

t 〉+ αµ1 κ〈y2
t 〉)dt + o(dt) .

(6.32)
By further noting that, in a steady state, the correlation functions of random vari-
ables with constant average only depend on time differences (meaning for example
that 〈x2

t+dt〉 = 〈x2
t 〉), one readily sees that (6.31) leads to a linear system of three
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equations and three variables (i.e. 〈x2
t 〉, 〈y2

t 〉 and 〈xt yt〉, which are of course con-
stant in time) whose solution reads

〈x2
0〉 = kB

T1(µ1 + µ2) + α2 µ1 (T2 − T1)

κ(1− α2)(µ1 + µ2)

〈y2
0〉 = kB

T2(µ1 + µ2) + α2 µ2 (T1 − T2)

κ(1− α2)(µ1 + µ2)

〈x0 y0〉 =− αkB
µ1 T2 + µ2 T1

κ(1− α2)(µ1 + µ2)
.

(6.33)

By means of these quantities we managed to fully determine the stationary PDF
pst(xxxt) (6.29) which in turn allows us to calculate the mean local velocity

νννst(xt, yt) = −µµµ∇U(xt, yt)−DDD∇ ln pst(xt) =

(
a1 xt − b1 yt

a2 yt − b2 xt

)
, (6.34)

where (µµµ)ij = µiδij is the mobility matrix and

a1 =
kBT1 µ1〈y2

0〉
〈x2

0〉〈y2
0〉 − 〈x0 y0〉2

− µ1 κ b1 =
kBT1 µ1〈x0 y0〉

〈x2
0〉〈y2

0〉 − 〈x0 y0〉2
+ αµ1 κ

a2 =
kBT2 µ2〈x2

0〉
〈x2

0〉〈y2
0〉 − 〈x0 y0〉2

− µ2 κ b2 =
kBT2 µ2〈x0 y0〉

〈x2
0〉〈y2

0〉 − 〈x0 y0〉2
+ αµ2 κ .

(6.35)

At this point, our aim would be to compute all the quantities that we derived in the
last subsection, but this time the calculations are much longer and tedious. Hence,
we will limit ourselves to present all the results by skipping most of the calculations
and starting from the stationary entropy production which, similarly to (6.15), can
be derived from (2.52) and it is equal to

σtot =
〈
νννst DDD-1νννst

〉
t =

α2 κ µ1 µ2(T1 − T2)
2

T1 T2(µ1 + µ2)
. (6.36)

From this expression one can note that if the potential landscape is symmetric, cor-
responding to α = 0, or if T1 = T2, the entropy production rate becomes equal to
zero.

The next step consists in the calculation of the position correlation functions, i.e.
the components of

〈xxxt xxxT
0 〉 =χχχ(t)〈xxx0 xxxT

0 〉 = χχχ(t)Cov(xxx0, xxx0) =

=



(
Ṫ (t) + κ µ2T (t)

)
〈x2

0〉+
−ακ µ1T (t)〈x0 y0〉

(
Ṫ (t) + κ µ2T (t)

)
〈x0 y0〉+

−ακ µ1T (t)〈y2
0〉(

Ṫ (t) + κ µ1T (t)
)
〈x0 y0〉+

−ακ µ2T (t)〈x2
0〉

(
Ṫ (t) + κ µ1T (t)

)
〈y2

0〉+
−ακ µ2T (t)〈x0 y0〉

 ,
(6.37)

where in the first equality we used (6.27) along with the fact that 〈ξξξ(t′) xxx0〉 = 0
almost everywhere. Note that, because T (0) = 0 and Ṫ (0) = 1, for t = 0 (6.37)
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trivially reduces to (6.30). Again, these correlations turn out to be very useful in the
computation of the relative displacement covariance matrix, i.e.

Cov(xxxt − xxx0, xxxt − xxx0) = 2〈xxx0 xxxT
0 〉 − 〈xxxt xxxT

0 〉 − 〈xxxt xxxT
0 〉T =

=2

(
〈x2

0〉 − 〈xt x0〉 〈x0 y0〉 − (〈xt y0〉+ 〈yt x0〉) /2

〈x0 y0〉 − (〈xt y0〉+ 〈yt x0〉) /2 〈y2
0〉 − 〈yt y0〉

)
,

(6.38)

of the covariance matrix of the integral of the forces

Cov
( ∫ t

0
dt′FFF(xxxt′),

∫ t

0
dt′′FFF(xxxt′′)

)
=
∫ t

0
dt′
∫ t

0
dt′′
〈
FFF(xxxt′)FFFT(xxxt′′)

〉
=

= 2κ2
∫ t

0
dt′
∫ t′

0
dt′′


µ2

1
(
〈xt′′ x0〉+ α2〈yt′′ y0〉+

+α(〈xt′′ y0〉+ 〈yt′′ x0〉)
) µ1 µ2

(
α(〈xt′′ x0〉+ 〈yt′′ y0〉) +

+(1 + α2)(〈xt′′ y0〉+ 〈yt′′ x0〉)/2
)

µ1 µ2
(
α(〈xt′′ x0〉+ 〈yt′′ y0〉) +

+(1 + α2)(〈xt′′ y0〉+ 〈yt′′ x0〉)/2
) µ2

2
(
〈yt′′ y0〉+ α2〈xt′′ x0〉+

+α(〈xt′′ y0〉+ 〈yt′′ x0〉)
)

 ,

(6.39)

and of the Violation factor

VVV(t) =1
2

∫ t

0
dt′
∫ t′

0
dt′′

(
Cov(ẋxxt′′ , νννst, 0) + CovT(ẋxxt′′ , νννst, 0)

)

=

∫ t

0
dt′


a1 〈xt′ x0〉 − b1〈xt′ y0〉

(
a1 〈yt′x0〉+ a2 〈xt′y0〉+
−b1〈yt′y0〉 − b2〈xt′x0〉

)
/2(

a1 〈yt′x0〉+ a2 〈xt′y0〉+
−b1〈yt′y0〉 − b2〈xt′x0〉

)
/2

a2 〈yt′ y0〉 − b2〈yt′ x0〉


(6.40)

where a1, a2, a3, a4 are given by (6.35). Again, we will study the behaviour of these
covariances in 7.3, where they will be used to study the performances of our sum
rule.

6.3 Stochastically switching trap

Finally, we consider the system composed by a Brownian particle at a temperature T
and mobility µ, trapped in an harmonic potential whose center stochastically jumps
between the positions {0, ∆λ}, i.e. U(xt, t) = κ (xt − σt)

2 /2. The stochastic variable
σt, which is uncorrelated with the noise ξ(t), takes values {0, 1} and undergoes a
Markovian jumping dynamics, as those described in Section 2.3.1, with jumping
rates W+ ≡W10 and W− ≡W01. By defining Wtot = W+ +W−, one can also readily
see that, in the stationary state, the average of σt becomes mss = 〈σt〉 = W+/Wtot.
The dynamics of this system can be modelled by the Langevin equation

ẋ(t) = µ (−κ (x(t)− ∆λσ(t))) +
√

2kBT µ ξ(t) =

= µ (−κ x(t) + εσ(t)) +
√

2kBT µ ξ(t) ,
(6.41)
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where we also defined ε = κ∆λ. Furthermore, because in this steady state 〈ẋt〉 = 0,
one can readily compute the stationary average of the position of the particle which
reads 〈xt〉 = εmss/κ.

As we will show later, all the quantities we are interested in can be calculated
in terms of the stationary correlation functions Cxx(t) = 〈xt x0〉, Cxσ(t) = 〈xt σ0〉,
Cσx(t) = 〈σt x0〉 and Cσσ(t) = 〈xt σ0〉 for t ≥ 0. To compute these correlations we
turn to a discrete description of the system, which can be modelled by the following
set of stochastic equations{

x(t + dt) = x(t)− µκ x(t)dt + µεσ(t)dt +
√

2kBT µdBx(t) (a)
σ(t + dt) = σ(t) + (1− 2σ(t))θ(W1−σt, σt dt− r) (b)

(6.42)

where r is random variable with uniform probability distribution on [0, 1]. By mul-
tiplying (a) in the latter equation by x(0) and taking the stationary average, one
obtains a first order differential equation that reads

∂tCxx(t) = −µκ Cxx(t) + µεCσx(t) . (6.43)

By multiplying the same line (a) in (6.42) by σ(0), instead, one obtains

∂tCxσ(t) = −µκ Cxσ(t) + µεCσσ(t) . (6.44)

In a similar way, by multiplying line (b) in equation (6.42) by x(0) and σ(0), one can
show that the following equations hold, i.e

∂tCσx(t) = W+〈xt〉 −Wtot Cσx(t) (6.45)

and
∂tCσσ(t) = W+mss −Wtot Cσσ(t) . (6.46)

These linear equations can be solved with standard techniques in terms of the ini-
tial conditions of the correlation functions at time t = 0. These (stationary) initial
conditions can be calculated with the same method used in the previous sections
and starting from the discretised equations (6.42). For brevity, we only present the
results of this procedure, which are

Cxx(0) =
ε2m2

ss
κ2 +

kB T
κ

+
ε2 µmss(1−mss)

κ(Wtot + µκ)

Cσx(0) =
ε2m2

ss
κ

+
εµmss(1−mss)

Wtot + µκ
= Cxσ(0)

Cσσ(0) =mss .

(6.47)

By means of these quantities, one can readily solve equations (6.43), (6.44),(6.45)
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and (6.46) finding that

Cxx(t) =
ε2m2

ss
κ2 +

(
kB T

κ
+

ε2 µmss(1−mss)

κ(Wtot + µκ)

)
e−µ κ t+

+
ε2 µ2 mss(1−mss)

W2
tot − µ2 κ2

(
e−µ κ t − e−W+ t

)
Cσx(t) =

ε2m2
ss

κ
+

εµmss(1−mss)

Wtot + µκ
e−µ κ t

Cxσ(t) =
ε2m2

ss
κ

+
εµmss(1−mss)

Wtot + µκ
e−µ κ t +

εµmss(1−mss)

Wtot − µκ

(
e−µ κ t − e−W+ t

)
Cσσ(t) =m2

ss + mss(1−mss)e−W+ t .
(6.48)

From these correlation functions, one can for example compute the variance of the
relative displacement, that is

Var(xt − x0) =〈(xt − x0)(xt − x0)〉 = 2(Cxx(0)− Cxx(t)) =

=2
(

kB T
κ

+
ε2 µmss(1−mss)

κ(Wtot + µκ)

)
(1− e−µ κ t)+

+
2ε2 µ2 mss(1−mss)

µ2 κ2 −W2
tot

(
e−W+ t − e−µ κ t

)
.

(6.49)

Note that, for ε = 0, one recovers the usual formula for the relative displacement
of the Ornstein–Uhlenbeck process. As regards the variance of the time integrated
forces, it can be readily computed by identifying the total forces acting on the bead
as F(xt, t) = −κ x(t) + εσ(t), which leads to

Var
( ∫ t

0
dt′ F(xt′ , t′)

)
=
∫ t

0
dt′
∫ t

0
dt′′Cov(F(xt′ , t′), F(xt′′ , t′′)) =

=2
∫ t

0
dt′
∫ t′

0
dt′′

(
κ2Cxx(t′′) + ε2Cσσ(t′′)− εκ(Cxσ(t′′) + Cσx(t′′))− 〈F〉2t′′

)
=

=
2kBT t

µ
+

2kBT
µ2 κ

(
1− e−µ κ t)+ 2ε2 mss(1−mss)

µκ(Wtot + µκ)

(
1− Wtot e−µ κ t

Wtot − µκ
+

µκe−Wtot t

Wtot − µκ

)
(6.50)

where we used that, because of the symmetry of the correlation functions
〈F(xt′ , t′)F(xt′′ , t′′)〉, it holds that∫ t

0
dt′
∫ t

0
dt′′Cov(F(xt′ , t′), F(xt′′ , t′′)) = 2

∫ t

0
dt′
∫ t′

0
dt′′Cov(F(xt′′ , t′′), F(x0, 0)) .

(6.51)
Finally, we can also compute the average entropy production rate in a steady state,
where the total entropy production can be identified with the amount of heat in-
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jected into the environment and which can be obtained from equation (2.55), i.e.

σtot =∂t〈Σenv〉 = β∂t

∫ t

0
dt′
〈

F(xt′ , t′) ◦ ẋ(t′)
〉
=

=β∂t

∫ t

0
dt′
〈
− κ x(t′) ◦ ẋ(t′) + εσ(t′) ◦ ẋ(t′)

〉
=

=− κ ∂t

(
〈x2

t 〉 − 〈x2
0〉
)
+ εµ∂t

∫ t

0
dt′
〈

σ(t′)
(
− κ x(t′) + εσ(t′) +

√
2kBT/µ ξ(t′)

)〉
=

=ε2 µCσσ − εµκCσx(0) =

=
ε2 µmss(1−mss)Wtot

Wtot + µκ
,

(6.52)

where between the last two lines we used that 〈x2
t 〉 = const and that 〈σ(t)ξ(t)〉 = 0.

Note that, as expected, the entropy production rate is zero for ε = 0.



CHAPTER 7

MARKOVIAN VARIANCE SUM RULE

7.1 Introduction

Stochastic processes are extensively used, nowadays, to model and describe the
dynamics of coarse grained mesoscopic systems or intrinsically random systems.
As already discussed in the previous chapters, these processes are characterised
by a path weight P(ωt) (essentially, the path probability function (PDF)), such as
(2.20) and (2.51), encoding the whole information about the dynamics. Indeed, in
addition to their obvious role in calculating averages, variances and so on, the path
PDFs can be used, for example, to calculate the entropy production associated to
some non-equilibrium dynamics by means of Shannon’s entropy (2.23) or, in the
presence of a steady state and in the context of Markovian dynamics, by using the
well known fluctuation theorems [25]. However, from a practical point of view,
even if the functional form of the path PDF is known a priori, it is often very difficult
if not impossible to gather a sufficient statistics to reconstruct the exact PDF in a
proper way.

The problem of estimating probabilities and their evolution from raw data is
a wide and extremely complex problem. Moreover, the abundance of data, the
available computational power and the efficiency of the used algorithms play a
prominent role in determining the final quality of the estimation procedure. For
all these reasons, a comprehensive treatment of this topic is, of course, far beyond
the scope of this thesis. Instead, in this chapter, we propose a new method, based
on the estimation of variances of certain relevant observables, which can be used
for the inference of model parameters and entropy production. This estimation
technique is based on our main results, which we term the Markovian and non-
Markovian variance sum rules (VSRs). For Markovian systems governed by the
usual d-dimensional Langevin equation (LE) with constant diffusion matrix DDD and
mobility matrix µµµ

ẋxx(t) = µµµFFF(xxxt, t) +
√

2DDD ξξξ(t) , (7.1)

in the steady state with local mean velocity ννν, the Markovian VSR takes the follow-
ing form

Cov(xxxt − xxx0, xxxt − xxx0) +
∫ t

0
dt′
∫ t

0
dt′′ Cov(µµµFFF(xxxt′ , t′), µµµFFF(xxxt′′ , t′′)) = 2DDDt + 4VVV(t)

(7.2)
where

VVV(t) = 1
2

∫ t

0
dt′
∫ t′

0
dt′′

(
Cov(ẋxxt′′ , ννν0) + CovT(ẋxxt′′ , ννν0)

)
. (7.3)
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is the integrated violation factor, involving the mean local velocity and hence equal
to zero at equilibrium. The violation factor was first presented in [36] and de-
rived for unidimensional systems, where it was shown that its magnitude can be
regarded as a measure of the amount of violation of the fluctuation-dissipation the-
orem (FDT).

We anticipate that the VSR (7.2) has been verified by experiments performed with
optical tweezers located at the Small Biosystems Lab (Barcelona) for the equilibrium
dynamics of a colloidal bead in a parabolic potential and for the steady states dy-
namics of a stochastically switching harmonic trap described in Section 6.3. For
more complicated non-equilibrium steady states, instead, we are still refining the
experimental techniques aimed to the estimation of total forces.

To conclude this introductory section, we would like to acknowledge the merit
for the experimental effort to Drss. Marta Gironella, who worked under the super-
vision of Prof. Felix Ritort at the the University of Barcelona. For this reason, we do
not include any technical detail on the functioning of optical tweezers (a detailed
description can be found for example in [125]). Indeed, for our purposes one just
needs to know that the output of the experiments is a temporal series of forces ap-
plied on the colloidal bead by the trapping potential, i.e. the optical mini tweezers,
with sampling frequency equal to 105Hz. Data analysis has been a joint work with
Drss. Gironella. All the results presented in this chapter will be included in some
papers [126] (in preparation at the time of writing this thesis) whose authors will be
Ivan Di Terlizzi*, Marta Gironella*, Marco Baiesi and Felix Ritort.

7.2 Markovian variance sum rule: derivation

This technical section is devoted to the derivation of the VSR for the Markovian
dynamics of a colloidal bead in d dimensions and in an homogeneous media, deter-
mined by the following Langevin equation

ẋxx(t) = µµµFFF(xxxt, t) +
√

2DDD ξξξ(t) . (7.4)

The random noise, as usual, is Gaussian with moments equal to 〈ξ i(t′)〉 = 0 and
〈ξ i(t′)ξ i(t′′)〉 = δij δ(t′ − t′′). Instead, the diffusion matrix corresponds to
DDD = kB TTT µµµ and it is defined via the mobility µµµ and temperature TTT matrices. This
hypothesis is valid in two distinct cases:

• the system is in contact with only one heat bath at temperature T, meaning
that the temperature matrix is proportional to the identity matrix, i.e. TTT = T1,
hence leading to DDD = kBTµµµ;

• the system is in contact with many heat baths. In this case, we consider a
diagonal mobility matrix and same thing for (TTT)ij = Ti δij, implying that
Dij = kBTi µii δij.

Hence, for the situations discussed above, the diffusion matrix can be written in
terms of a commutative product of a temperature and a mobility matrix. In addi-
tion, the force term FFF(xxxt, t) can have an explicit time dependence due, for example,
to a time dependent external protocol λλλ(t). In the case of conservative forces, for
instance, it could take the form FFF(xxxt, t) = ∇U(xxxt − λλλt). The external protocol may
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itself have a stochastic behaviour. If the statistics associated to the external protocol
does not depend on trajectory ωt, then we can take a specific realisation of λ(t) in
(7.4) and consider it deterministic. Once we will get the final formula, we will be
able to average with respect all possible realisations of λ(t) to get an experimen-
tally accessible result. With this in mind, we proceed by considering an external
force with an explicit, but deterministic time dependence.

Lets consider the time integral of equation (7.4) that is, rearranging the terms,

∆RRRt ≡ xxx(t)− xxx(0)−
∫ t

0
dt′ µµµFFF(xxxt′ , t′) =

√
2DDD

∫ t

0
dt′ ξξξ(t′) . (7.5)

where we defined ∆RRRt which is useful for calculations. Of course 〈∆RRRt〉 = 0.
Consider now

Cov(∆Ri
t , ∆Rj

t) =〈∆R
i
t ∆Rj

t〉 − 〈∆R
i
t〉〈∆R

j
t〉 =

=Cov(xi
t − xi

0 , xj
t − xj

0)+

+ µil µjk

∫ t

0
dt′
∫ t

0
dt′′ Cov

(
Fl(xxxt′ , t′) , Fk(xxxt′′ , t′′

)
+

− µjk

∫ t

0
dt′ Cov

(
xi

t − xi
0 , Fk(xxxt′ , t′)

)
+

− µik

∫ t

0
dt′ Cov

(
xj

t − xj
0 , Fk(xxxt′ , t′)

)
= 2Dij t ,

(7.6)

where, for the last term, we used the the second fluctuation dissipation theorem.
We can rewrite equation (7.6) as

Cov(xi
t − xi

0 , xj
t − xj

0) + µil µjk

∫ t

0
dt′
∫ t

0
dt′′ Cov

(
Fl(xxxt′ , t′) , Fk(xxxt′′ , t′′

)
=

=2Dij t + µjk

∫ t

0
dt′ Cov

(
xi

t − xi
0 , Fk(xxxt′ , t′)

)
+ µik

∫ t

0
dt′ Cov

(
xj

t − xj
0 , Fk(xxxt′ , t′)

)
,

(7.7)

By focusing on the last two terms on the right hand side of (7.7) and noting that

µij

∫ t

0
dt′ Fj(xxxt′ , t′) = xi(t)− xi(0)−

√
2Dij

∫ t

0
dt′ ξ j(t′) , (7.8)

one immediately sees that

µjk

∫ t

0
dt′ Cov

(
xi

t − xi
0 , Fk(xxxt′ , t′)

)
+ µik

∫ t

0
dt′ Cov

(
xj

t − xj
0 , Fk(xxxt′ , t′)

)
=

=2 Cov(xi
t − xi

0 , xj
t − xj

0)−
√

2Djk

∫ t

0
dt′ 〈xi

t ξk(t′)〉 −
√

2Dik

∫ t

0
dt′ 〈xj

t ξk(t′)〉 ,

(7.9)

where we used that Cov(xj
t , ξ i(t′)) = 〈xj

t ξ i(t′)〉 because 〈ξ i(t′)〉 = 0 and that∫ t
0 dt′ 〈xi

0 ξ j(t′)〉 = 0 since 〈xi
0 ξ j(t′)〉 = 0 almost everywhere on [0, t] for every {ij}.

In order to evaluate the correlations between position and noise we use the Furutsu-
Novikov formula [127, 128] that relates the average of the functional derivative of
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an observable, dependent on a Gaussian noise, with respect to the noise itself and
the correlation between the noise and the observable. In our case, the result can be
obtained by first considering the path probability density functional associated to
all possible realisations of the stochastic noise {ξξξt}

P({ξξξt}) ∝ exp

[
− 1

2

∫ t

0
dt′ ξξξT

t′ ξξξt′

]
. (7.10)

From this one sees that, for a generic observable O({ξξξt}), it holds that〈
δO({ξξξt})

δξ i
t′

〉
=
∫
D[{ξξξt}]P({ξξξt})

δO({ξξξt})
δξ i

t′
= −

∫
D[{ξξξt}]

δP({ξξξt})
δξ i

t′
O({ξξξt}) =

=
∫
D[{ξξξt}]P({ξξξt})O({ξξξt})ξ i

t′ = 〈O({ξξξt}) ξ i
t′〉

(7.11)

where at the end of the first line we performed an integration by parts and used
that the path PDF goes to 0 at infinity. Using this, equation (7.9) becomes

µjk

∫ t

0
dt′ Cov

(
xi

t − xi
0 , Fk(xxxt′ , t′)

)
+ µik

∫ t

0
dt′ Cov

(
xj

t − xj
0 , Fk(xxxt′ , t′)

)
=

= 2 Cov(xi
t − xi

0 , xj
t − xj

0)−
√

2Djk

∫ t

0
dt′
〈

δ xi
t

δξk
t′

〉
−
√

2Dik

∫ t

0
dt′
〈

δ xj
t

δξk
t′

〉
.

(7.12)

Let us focus on the response function

χij(t, t′) =
〈

δ xi
t

δξ
j
t′

〉
(7.13)

with t > t′. As discussed in [46, 47, 50], if a perturbing potential is added to the
unperturbed Hamiltonian so that

Htot(xxxt, t) = H0(xxxt, t) + Hp(xxxt, t) = H0(xxxt, t) + hj
t V j(xxxt, t) , (7.14)

then, the response with respect to ht in the steady state is equal to〈
δO(xt, t)

δhj
t′

〉
= (kBTTT)-1

jl

(
d
dt′
〈O(xxxt, t)V l(xxxt′ , t′)〉 − 1

2
〈O(xt, t)(Lt′ − L∗t′)V

l(xxxt′ , t′)〉+

− 1
2
〈O(xxxt, t) ∂t′V l(xxxt′ , t′)〉

)
.

(7.15)

where Tjl is the diagonal temperature matrix and Lt′ and L∗t′ are the generator of the
dynamics and it conjugate, respectively. For the systems we are considering they
are equal to

Lt = µik Fi(xxxt, t)∂xk
t
+ Dik ∂xi

t
∂xk

t
(7.16)

L∗t = −µik Fi(xxxt, t)∂xk
t
− Dik ∂xi

t
∂xk

t
+ 2Dik

(
∂xi

t
log(pst(xxxt)

)
∂xk

t
(7.17)
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where Einstein’s notation is understood and pst(xxxt, t) is the stationary distribution
obtained from the FP equation associated to (7.4). The same formal reasoning that
lead to (7.15) can be applied to the thermal noise, which near equilibrium leads
to the famous Onsager regression hypothesis. Indeed we see that the Langevin
equation can be rewritten as

ẋi(t) = µij Fj(xxxt, t) +
√

2Dij ξ j(t) = µij
(

Fj(xxxt, t) + µ-1
jl

√
2Dlr ξr(t)

)
, (7.18)

meaning that the thermal noise can be seen as a small perturbation to the determin-
istic dynamics driven by FFF(xxxt, t) and arising from the perturbing Hamiltonian

Hp(xxxt, t) = xj(t)µ-1
jl

√
2Dlr ξr(t) . (7.19)

Moreover, comparing this last equation with (7.14), we identify

V j(xxxt, t) = xr(t)µ-1
rl

√
2Dl j hj

t = ξ j(t) (7.20)

so that (7.15) specialises to〈
δO(xxxt, t)

δξ
j
t′

〉
= (kBTTT)-1

js

√
2Dsl µ-1

lr

(
d

dt′
〈O(xxxt, t) xr

t′〉 − 〈O(xxxt, t)(Lt′ − L∗t′) xr
t′〉/2

)
(7.21)

as a consequence of µij and Dij being symmetric and ∂tV j(xxxt, t) = 0, because ∂t is a
partial derivative and V j(xxxt, t) in (7.20) does not depend explicitly on time. Going
back to the position response function appearing in (7.12) and using this last result
one gets

χij(t, t′) =
〈

δ xi
t

δξ
j
t′

〉
= (kBTTT)-1

js

√
2Dsl µ-1

lr

(
d

dt′
〈xi

t xr
t′ 〉 − 〈x

i
t (Lt′ − L∗t′)xr

t′ 〉/2
)

,

(7.22)
where we also defined the position’s susceptibility χij(t, t′). Lets calculate the term
involving the generators of the dynamics, i.e.

(Lt′ − L∗t′)xr
t′ =2

(
µkl Fk(xxxt′ , t′)∂xl

t′
+ Dkl ∂xk

t′
∂xl

t′
− Dkl

(
∂xk

t′
log(pst(xxxt)

)
∂xl

t′

)
xr

t′ =

=2
(

µkr Fk(xxxt′ , t′)− Dkr ∂xk
t′

log(pst(xxxt′)
)
= 2νr

st(xxxt′ , t) ,

(7.23)

where νr
st(xxxt, t), defined in (2.48), is the steady state mean local velocity. Hence,

putting equation (7.23) into (7.22) (and renaming some indexes), one obtains that

χij(t, t′) = (kBTTT)-1
js

√
2Dsl µ-1

lr

(
d

dt′
〈xi

t xr
t′〉 − 〈x

i
t νr

t′〉
)

. (7.24)
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Furthermore, one can also note that√
2Djk χik(t, t′) =

√
2Djk (kBTTT)-1

ks

√
2Dsl µ-1

lr

(
d

dt′
〈xi

t xr
t′〉 − 〈x

i
t νr

t′〉
)

=
√

2Djk
√

2Dks (kBTTT)-1
sl µ-1

lr

(
d

dt′
〈xi

t xr
t′〉 − 〈x

i
t νr

t′〉
)

=2Djs D-1
sr

(
d

dt′
〈xi

t xr
t′〉 − 〈x

i
t νr

t′〉
)
=

=2
(

d
dt′
〈xi

t xj
t′〉 − 〈x

i
t ν

j
t′〉
)

,

(7.25)

where between the first and the second line we used that, if TTT and its inverse are
diagonal (but not proportional to the identity), also DDD and µµµ are diagonal and hence
all matrices involved in the previous formula commute. Instead, if TTT is proportional
to the identity, then it trivially commutes with all matrices. Moreover, for the same
reason, we have that DDD−1 = (kBTTT µµµ)−1 = kBTTT−1 µµµ−1, motivating the step between
the second and the third line of (7.25). Finally, going back to equation (7.12) and
using (7.25) we get

µjk

∫ t

0
dt′ Cov

(
xi

t − xi
0 , Fk(xxxt′ , t′)

)
+ µik

∫ t

0
dt′ Cov

(
xj

t − xj
0 , Fk(xxxt′ , t′)

)
=

= 2 Cov(xi
t − xi

0 , xj
t − xj

0)−
√

2Djk

∫ t

0
dt′χik(t, t′)−

√
2Dik

∫ t

0
dt′χjk(t, t′) =

= 2 Cov(xi
t − xi

0 , xj
t − xj

0)− 2
(

2〈xi
t xj

t〉 − 〈x
i
t xj

0〉 − 〈x
j
t xi

0〉+

−
∫ t

0
dt′ 〈xi

t ν
j
t′〉 −

∫ t

0
dt′ 〈xj

t νi
t′〉
)
=

= 2
(
〈xi

0 xj
0〉 − 〈x

i
t xj

t〉+
∫ t

0
dt′ 〈xi

t ν
j
t′〉+

∫ t

0
dt′ 〈xj

t νi
t′〉 − 〈x

i
t − xi

0〉〈x
j
t − xj

0〉
)

,

(7.26)

where we used that

Cov(xi
t − xi

0 , xj
t − xj

0) = 〈x
i
t xj

t〉+ 〈x
i
0 xj

0〉 − 〈x
j
t xi

0〉 − 〈xi
t xj

0〉 − 〈x
i
t − xi

0〉〈x
j
t − xj

0〉 .
(7.27)

In addition, we exploit that, in a steady state and with a constant diffusion matrix,
xxx(t) can be decomposed into a deterministic and a random component yyy(t), the lat-
ter having constant average and implying that xxx(t) = vvvt + yyy(t) and
〈xxx〉t = vvvt + 〈yyy〉. This is indeed a consequence of Galilean invariance applied to
the LE [85]. Furthermore, one also has that vvv = 〈νννst〉, which is the reason for the
latter of being called local mean velocity. By using this decomposition in the last
line of (7.26) (except for a factor 2) and by then recollecting all the terms one gets

〈xi
0 xj

0〉 − 〈x
i
t xj

t〉+
∫ t

0
dt′ 〈xi

t ν
j
t′〉+

∫ t

0
dt′ 〈xj

t νi
t′〉 − 〈x

i
t − xi

0〉〈x
j
t − xj

0〉 =

=
∫ t

0
dt′
(
〈(xi

t − 〈xi〉t)ν
j
t′〉+ 〈(xj

t − 〈x
j〉t)νi

t′〉
) (7.28)
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Moreover, for reasons that will be clear soon, the next step consists in evaluating

〈xi
0 ν

j
0〉+ 〈x

j
0 νi

0〉 =µjk〈xi
0 Fk

0 〉+ µik〈x
j
0 Fk

0 〉+

−
∫

dxxx0

(
Djk ∂xk

0
pst(xxx0)xi

0 + Dik ∂xk
0
pst(xxx0)xj

0

)
=

=µjk〈xi
0 Fk

0 〉+ µik〈x
j
0 Fk

0 〉+
∫

dxxx0
(

Dji pst(xxx0) + Dij pst(xxx0)
)
=

=µjk〈xi
0 Fk

0 〉+ µik〈x
j
0 Fi

0〉+ 2Dij ,
(7.29)

where we used the definition (2.48) of the local mean velocity while between the
second line and the third line we performed an integration by parts and used that
the PDF is zero at infinity. In order to evaluate the terms involving the correlations
with the forces, one considers the LE (7.4) in incremental form and using the Ito
convention, that is

xi(t + dt) = xi(t) + µij Fj(xxxt, t)dt +
√

2Dij dB j(t) , (7.30)

with 〈dBi(t)〉 = 0 and 〈dBi(t) dB j(t)〉 = δij dt. By multiplying equation (7.30) by
itself for two different indexes {ij} and taking the average one gets

〈xi
t+dt xj

t+dt〉 = 〈x
i
t xj

t〉+ µjk 〈xi
t Fk

t 〉dt + µik 〈x
j
t Fk

t 〉dt + 2Dij dt + o(dt) . (7.31)

By using the decomposition used above and by noting that

〈xi
t+dt xj

t+dt〉 = 〈y
i
t+dt yj

t+dt〉+ vi〈yj〉(t + dt) + vj〈yi〉(t + dt) + vivjt2 + o(dt), (7.32)

where 〈yi
t+dt yj

t+dt〉 = 〈y
i
t yj

t〉 because yyy(t) has a constant average and we are in a
steady state, one gets from (7.31)

vi〈yj〉dt + vj〈yi〉dt = µjk 〈xi
t Fk

t 〉dt + µik 〈x
j
t Fk

t 〉dt + 2Dij dt . (7.33)

This finally implies that

µjk 〈xi
t Fk

t 〉+ µik 〈x
j
t Fk

t 〉 = vi〈yj〉+ vj〈yi〉 − 2Dij (7.34)

and hence (7.29) leads to

〈xi
0 ν

j
0〉+ 〈x

j
0 νi

0〉 = vi〈yj〉+ vi〈yj〉 . (7.35)

The final step consist in noting that the correlations in the last line of equation (7.28)
involve only quantities whose average is constant, which implies that these corre-
lations are homogeneous in time. As a consequence, and by performing a change
of variables, the right hand side of equation (7.28) becomes∫ t

0
dt′
(
〈(xi

t′ − 〈x
i〉t′)ν

j
0〉+ 〈(xj

t′ − 〈x
j〉t′)νi

0〉
)
=

=
∫ t

0
dt′
∫ t′

0
dt′′

(
〈(ẋi

t′′ − 〈ẋ
i〉t′′)ν

j
0〉+ 〈(ẋj

t′′ − 〈ẋ
j〉t′′)νi

0〉
)
+

+
∫ t

0
dt′
(
〈(xi

0 − 〈xi〉0)ν
j
0〉+ 〈(xj

t′ − 〈x
j〉t′)νi

0〉
)
=

=
∫ t

0
dt′
∫ t′

0
dt′′

(
Cov(ẋi

t′ , ν
j
0) + Cov(ẋj

t′ , νi
0)
)

(7.36)
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where between the first and the second line we added and subtracted∫ t
0 dt′〈(xi

0 − 〈xi〉0)ν
j
0〉 (same thing for switched indexes {ij}) and then noted that

xi(t)− xi(t) =
∫ t

0 dt′ ẋi(t′). Instead, to get the final line from the previous one we
use (7.35) along with the fact that, at time t = 0, it holds that 〈xxx〉0 = 〈yyy〉. Finally, by
plugging (7.36) into (7.26) and (7.7) afterwards, one gets

Cov(xi
t − xi

0 , xj
t − xj

0) + µil µjk

∫ t

0
dt′
∫ t

0
dt′′ Cov

(
Fl(xxxt′ , t′) , Fk(xxxt′′ , t′′)

)
=

= 2Dij t + 4Vij(t)
(7.37)

where

Vij(t) =
1
2

∫ t

0
dt′
∫ t′

0
dt′′

(
Cov(ẋi

t′′ , ν
j
0) + Cov(ẋj

t′′ , νi
0)
)

. (7.38)

is the multidimensional (integrated) version of the violation factor presented in [36],
quantifying the amount of violation of the equilibrium fluctuation dissipation the-
orem. Indeed, the latter is of course equal to zero at equilibrium, where the proba-
bility current and the mean local velocity as a consequence are equal to zero.

7.3 Markovian variance sum rule: discussion and
applications

The Markovian VSR

Cov(xxxt − xxx0, xxxt − xxx0) +
∫ t

0
dt′
∫ t

0
dt′′ Cov(µµµFFF(xxxt′ , t′), µµµFFF(xxxt′′ , t′′)) = 2DDDt + 4VVV(t)

(7.39)
is a novel result relating the covariance of the relative displacement and the covari-
ance of the integrated force (multiplied by the mobility Matrix). Its functional form
depends on the presence (or absence) of the integrated violation factor VVV(t), which
is zero at equilibrium. For this reason, we divide this section in two distinct parts,
hence discussing equilibrium or non-equilibrium regimes separately.

7.3.1 Equilibrium

As it is known from the literature, an equilibrium condition for a colloidal bead is
reached when a static confining potential is applied to the bead and enough time
has passed for the system to relax to equilibrium. If the trapping is due to optical
tweezers, one can actually measure the forces acting on the particle as well as its
position (the latter can be reconstructed from the forces by knowing the functional
form of the trapping potential). As a consequence, one is also able to compute the
terms involving the covariances in (7.39) and hence, the equilibrium VSR

Cov(xi
t − xi

0, xj
t − xj

0) + µik µjl

∫ t

0
dt′
∫ t

0
dt′′ Cov(Fk(xxxt′), Fl(xxxt′′)) = 2kB Tik µkj t ,

(7.40)
where we used that Dij = Tik µkj, leads to a set of time dependent equations with
unknown variables given by the components of the mobility matrix and the tem-
peratures. An example of such kind of dynamics can be found in Figure 7.1, row
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(a), where the temporal evolution of the VSR and of the quantities involved in it are
depicted for a Brownian gyrator, discussed in Section 6.2, with equal temperatures
(T1 = T2, hence corresponding to equilibrium). Moreover, because the VSR (7.40)
produces a different relation for each data point (given by the covariances) at every
sampling time, one can robustly fit the unknown parameters by evaluating the be-
haviour of the covariances on a time window including many different time scales
during which the variances evolve (from t ≈ 10−4 to t ≈ 10−1 for the experiments
we are going to consider ). Note that this cannot be done by naively taking the av-
erage of the integrated Langevin equation because, at equilibrium, the averages are
constant in time and the computed quantities are hence static. Furthermore, addi-
tional information about the mobility tensor and the temperatures is contained in
the noise amplitude and it is clear that the study of variances can also make use of
this information. At this stage of the project, we still have not applied this method
to multidimensional systems, but we are positive to say that it can be regarded as
a valuable technique to estimate physical parameters in a robust way. Indeed, we
already obtained very good results by applying this method to unidimensional sys-
tems such as the simple case of a Brownian particle trapped in a parabolic potential
U(xt) = κ x2

t /2, where κ is the stiffness of the trap. In this setup, one has that the
(measured) force f (xt) acting on the particle is equal to f (xt) = −∂xtU(xt) = −κ xt,
which enables to rewrite the equilibrium VSR as

γ

κ2 Var( f (xt)− f (x0)) +
1
γ

∫ t

0
dt′
∫ t

0
dt′′ Cov( f (xt′), f (xt′′)) = 2kBT t , (7.41)

where we used that, for such a system, γ = µ−1. We point out that, the trap stiffness,
as well as the friction coefficient γ, are parameters not known a priori and must be
estimated in some way. Indeed, because the forces f (xt) are experimentally acces-
sible, one can compute the variances (and covariances) involving these forces and
fit the best parameters γ and κ such that the VSR (7.41) is optimally satisfied. The
results of this procedure (for two beads and four traces for each bead) are displayed
in Figure 7.2 where, after the fitting procedure has been performed, we have plotted
the left hand side (coloured lines) and right hand side (black dashed line) of (7.41)
for the estimated optimal parameters. The latter are in very good agreement with
the values obtained by means of another established method for the estimation of γ
and κ, based on the analysis of the particle’s power spectrum [125, 129]. Of course,
one could also estimate the trap stiffness with the latter method and use (7.40) to
estimate γ (or, in a multidimensional setting, the mobility tensor).

The method we just showed can hence be useful to estimate physically relevant
model parameters but, as a matter of fact, there already exist other techniques that
can be used to achieve the same scope. However, our method should be considered
as a viable and complementary technique that may be used for the characterisation
of diffusive systems modelled by a overdamped Langevin equation.

7.3.2 Non-equilibrium

Non-equilibrium regimes are known to be more difficult to deal with if compared
to equilibrium conditions and the VSR makes no exception. Indeed, the integrated
violation factor V(t) appearing on the right hand side of (7.39) involves correlations
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Figure 7.1: VSR for the Brownian gyrator presented in Section 6.2. The first row (a)
has parameters equal to kB = µ1 = µ2 = T1 = T2 = κ = 1 and α = 0.5 and, because
the two temperatures are equal, it corresponds to equilibrium. Indeed, the sum of
the right terms on the right hand side of (8.35) (yellow line) scales linearly in time
for all components of the sum rule with slope determined by the components of the
mobility tensor. Instead, for row (b), we set kB = µ1 = µ2 = T1 = κ = 1, T2 = 2 and
α = 0.75, hence corresponding to non equilibrium. Note that, also in this case, both
sides of the sum rule are equal to zero for the xy component.

with the local mean velocity, which are often difficult to compute from an experi-
mental point of view. Nevertheless, for the linear systems presented in Section 6.1
and 6.2, we manage to calculate V(t) and observe that it is finite at all times. Indeed,
as one can see from Figure 7.1(b) and Figure 7.3, the finite contribution given by the
violation factor modifies the linear relation of the variances observed for the equilib-
rium setting. This in turn implies that, if a finite deviation from the linear behaviour
would be observed, this would imply that the system is in a non-equilibrium state.
Indeed, we are planning to apply this method to more complicated system such
that of a red blood cell trapped by optical tweezers and whose deviation from the
equilibrium sum rule should indicate the presence of activity. Furthermore, because
VVV(t) is itself a quantity of interest and linked to the amount of violation of the FDT,
one can also exploit the VSR to compute this term which, as stated at the begin-
ning of this section, may be difficult to evaluate in other ways. However, because
a non-equilibrium (steady) state is generated by an additional force to that coming
from the trapping potential, the total force acting on the particle is itself difficult
to estimate. We are still working on how this estimation could be done precisely in
non-trivial situations and hence we do not mention any further details on this issue.
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Figure 7.2: VSR for two different beads and four traces for each bead. Coloured
lines correspond to the left hand side of equation (7.41) (for the optimal parameters
γ̃, κ̃) while the black dashed lines correspond to its right hand side. By computing
the variance of the relative displacement and of the integrated force, one is able to
fit the optimal parameters γ̃, κ̃ such that the VSR is optimally satisfied. For Figure
(a) we find:
Trace 1) γ̃ = (2.85± 5 · 10−2) · 10−5 pNs and κ̃ = (6.99± 2 · 10−2) · 10−2 pN/nm;
Trace 2) γ̃ = (2.77± 4 · 10−2) · 10−5 pNs and κ̃ = (6.94± 3 · 10−2) · 10−2 pN/nm;
Trace 3) γ̃ = (2.88± 3 · 10−2) · 10−5 pNs and κ̃ = (7.01± 2 · 10−2) · 10−2 pN/nm;
Trace 4) γ̃ = (2.77± 4 · 10−2) · 10−5 pNs and κ̃ = (6.99± 3 · 10−2) · 10−2 pN/nm.
For Figure (b), instead, we find that :
Trace 1) γ̃ = (2.61± 2 · 10−2) · 10−5 pNs and κ̃ = (6.91± 3 · 10−2) · 10−2 pN/nm;
Trace 2) γ̃ = (2.63± 1 · 10−2) · 10−5 pNs and κ̃ = (6.91± 3 · 10−2) · 10−2 pN/nm;
Trace 3) γ̃ = (2.63± 4 · 10−2) · 10−5 pNs and κ̃ = (6.86± 4 · 10−2) · 10−2 pN/nm;
Trace 4) γ̃ = (2.68± 3 · 10−2) · 10−5 pNs and κ̃ = (6.95± 3 · 10−2) · 10−2 pN/nm.
For both cases, the power spectrum method gives values
γ = (2.53± 5 · 10−2) · 10−5 pNs and κ = (7.0± 5 · 10−1) · 10−2 pN/nm.

As discussed in the introduction to this chapter and as shown in the previous
section, the main use of the VSR is to estimate model parameters by exploiting the
information contained in the correlation functions defining the variances. To show
a possible application of the VSR based method for non-equilibrium steady states,
we consider the simple model described in Section 6.3 (see all details there) and
whose stochastic evolution for its diffusive variable x(t) corresponds to

ẋ(t) = µ (−κ x(t) + εσ(t)) +
√

2kBT µ ξ(t) , (7.42)

while σ(t) jumps stochastically between the two states {0, 1}. For this dynamics,
an experimental estimation of the total forces is possible. To this end, and because
the direct computation of the violation factor is more difficult with respect to the
other cases considered as a consequence of the non-Gaussian shape of the PDF, we
directly compute V(t) by means of the VSR and equations (6.49) and (6.50), i.e.

V(t) = Var(xt − x0)+µ2Var
( ∫ t

0
dt′ F(xt′ , t′)

)
− 2kBT µ t =

=
4ε2 mss(1−mss)

κ(Wtot + µκ)

(
1− Wtot e−µ κ t

Wtot − µκ
+

µκe−Wtot t

Wtot − µκ

)
.

(7.43)
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Figure 7.3: VSR for the case of a parabolic potential in a non-conservative force field
depicted in Section 6.1. Row (a) corresponds to kBT = µ = κ = α = 1 and ρ = 4.
Because α = 1, the xy component of the VSR is equal to zero at all times. Instead,
in row (b), we consider kBT = µ = T = κ = 1, α = 0.5 and ρ = 4. In this case, the
xy component of the VSR has a non trivial behaviour and a finite limit, differently
from all the cases considered until now.

Figure 7.4: VSR for a stochastically switching trap described in section 6.3. Param-
eters are set to kBT = µ = κ = 1, ε = 5, mss = 1/2 and Wtot = 10. Note that the
integrated violation factor V(t) increases monotonically and reaches a finite value
for large times.

The temporal evolution of all quantities shown above has been computed ana-
lytically and is depicted in Figure 7.4. In order to test the VSR based estimation
method, we consider two time traces of a bead trapped in an harmonic poten-
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Figure 7.5: VSR based method for time traces of colloidal beads trapped in
a stochastically jumping harmonic potential and modelled by equation (7.42).

Coloured lines correspond to Var(xt − x0)/µ + µVar
( ∫ t

0 dt′ F(xt′ , t′)
)

, i.e. the sum

of the variances except for a factor µ−1.
Trace nr. 1 is generated by using ∆λ = 200nm and Wtot = 6Hz and the VSR predicts
∆̃λ = (193± 9)nm and Wtot = (5.7± 0.4)Hz.
Instead, Trace nr. 2 is generated by using ∆λ = 270nm and Wtot = 10Hz and the
VSR predicts ∆̃λ = (268± 14)nm and Wtot = (10.2± 0.5)Hz.

tial, generated by optical tweezers, whose center randomly jumps between two
positions {0, ∆λ} (∆λ = ε/κ) with exponentially distributed waiting times. Also,
the two jumping rates are taken equal, i.e. W+ = W− = Wtot/2, implying that
mss = W+/Wtot = 1/2. Because the stochastic protocol σ(t) is known a priori, one
is able to recunstruct the total forces acting on the bead and, as a consequence, one
is also able to calculate all the variances appearing in the VSR. Indeed, from an equi-
librium estimate of γ = µ−1 and κ, which can be performed for example by means
of our method, one is also able to compute the variance of the position (remember
that xt = −f opt(xt, t)/κ + ∆λ σt, where the force exerted by the optical tweezers
f opt(xt, t) and σt are experimentally accessible) which in turn implies that an exper-
imental estimate of the V(t) from the left hand side of (7.43) is possible. By fitting
the latter with the right hand side of the (7.43) and with free parameters ε̃ and W̃tot,
one is able to find an estimate for these parameters. By comparing the results of
this estimation with the real values ε and Wtot used in the experimental setup, one
is able to test the performances of our method applied to real experimental data.
The extracted parameters are in very good agreement with the experimentally used
values ε and Wtot and the results of this estimation procedure can be found in Figure
7.5.

Further applications of this VSR based method in a non-equilibrium steady state,
such as the case of a living red blood cell trapped by optical tweezers, will be pre-
sented in future papers.

7.3.2.1 Link to entropy production

Because the direct estimation of the probabilities is difficult in general, statistical
physicists usually try to overcome this problem by finding alternative ways to esti-
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mate relevant quantities characterising the dynamics (or equilibrium) of the system
under examination. This would be the case, for example, for entropy production
whose magnitude is directly related to the distance from equilibrium and to the
amount of time-symmetry breaking. As we showed in Chapter 5, the TUR can be
used to estimate a lower bound to the entropy production rate by measuring aver-
ages and variances of experimentally accessible observables. Furthermore, recent
works [130, 131] have shown how the finite time generalisation of the TUR can
be used to efficiently infer the entropy production rate by performing short time
experiments and without needing the knowledge of the whole path PDF. In this
sections, we present a novel formula for the entropy production, based on the VSR,
which can be used to estimate the entropy production rate by means of short times
experiments as well.

As discussed in the previous section, the non-equilibrium VSR is characterised
by the presence of the integrated violation factor VVV(t). In [36], the authors show
that its one dimensional version is tightly linked to entropy production and, in a
similar fashion, we are going to exploit this link in order to express the stationary
entropy production rate as a function of the covariances appearing in the VSR. To
do so, we consider the latter in component notation, that is

Cov(xi
t − xi

0 , xj
t − xj

0)+

+2µil µjk

∫ t

0
dt′
∫ t′

0
dt′′ Cov

(
Fl(xxxt′′ , t′′) , Fk(xxx0, 0)

)
= 2Dij t + 4Vij(t) ,

(7.44)

where, for reasons of symmetry, it holds that

µil µjk

∫ t

0
dt′
∫ t

0
dt′′ Cov

(
Fl(xxxt′ , t′) , Fk(xxxt′′ , t′′)

)
=

= 2µil µjk

∫ t

0
dt′
∫ t′

0
dt′′ Cov

(
Fl(xxxt′′ , t′′) , Fk(xxx0, 0)

)
.

(7.45)

By taking the second time derivative of (7.44) and by evaluating the result for t = 0,
one readily gets that

∂2
t Cov(xi

t − xi
0 , xj

t − xj
0)|t=0 + 2µil µjk Cov

(
Fl(xxx0, 0) , Fk(xxx0, 0)

)
= 4∂2

tVij(t)|t=0 ,
(7.46)

where the last term can be evaluated from (7.38), that is

∂2
tVij(t) =

(
Cov(ẋi

0, ν
j
0) + Cov(ẋj

0, νi
0)
)

/2 =

=
(

Cov(νi
0, ν

j
0) + Cov(νj

0, νi
0)
)

/2 = 〈νi
0 ν

j
0〉 − vi

d vj
d ,

(7.47)

where we used that 〈ẋi
0〉 = 〈νi

0〉 = vi
d (with vd the mean drift velocity) and that, as

shown in [42] and for a generic g(xxxt), it holds that 〈g(xxxt)ẋxxt〉 = 〈g(xxxt)ννν(xxxt)〉. Hence,
equation (7.47) enables us to rewrite (7.46) as

〈νi
0 ν

j
0〉 = vi

d vj
d +

1
4

∂2
t Cov(xi

t − xi
0 , xj

t − xj
0)|t=0 +

1
2

µil µjk Cov
(

Fl(xxx0, 0) , Fk(xxx0, 0)
)

.
(7.48)
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By multiplying both sides of this equation by D-1
ij and by summing over these in-

dexes (summation signs are omitted and Einstein’s notation is understood) one gets

〈νi
0 D-1

ij ν
j
0〉 = vi

d D-1
ij vj

d +
1
4

D-1
ij ∂2

t Cov(xi
t − xi

0 , xj
t − xj

0)|t=0+

+
1
2

D-1
ij µil µjk Cov

(
Fl(xxx0, 0) , Fk(xxx0, 0)

)
.

(7.49)

The matrix multiplication in front of the covariance matrix can be readily evaluated
by exploiting that, as discussed in the derivation of the Markovian VSR in Section
7.2, D-1

ij = (TTT µµµ)-1
ij = T−1

ik µ−1
kj = µ−1

ik T−1
kj (because if TTT is diagonal and not propor-

tional to the identity, then also µµµ and as a consequence DDD are diagonal) and hence

Mlk = D-1
ij µil µjk = T−1

ir µ−1
rj µjk µil = T−1

ki µil , (7.50)

where we introduced the matrixM and used that, of course, TTT is symmetric. Fur-
thermore, by noting that the left hand side of (7.49) can be identified with the total
entropy production rate by means of equation (2.52), one finally gets from (7.49)

σtot =
1
2

vvvT
d DDD-1vvvd+

1
4

∂2
t 〈(xxxt − xxx0)

T DDD-1 (xxxt − xxx0)〉|t=0+

+
1
2
〈(FFF(xxx0, 0)− 〈FFF(xxx0, 0))TMMM (FFF(xxx0, 0)− 〈FFF(xxx0, 0))〉 ,

(7.51)

where we used that

∂2
t Cov(xi

t − xi
0 , xj

t − xj
0)|t=0 = ∂2

t 〈(xi
t − xi

0)(xj
t − xj

0)〉 − 2 vi
d vj

d (7.52)

because 〈xi
t − xi

0〉 = vi
d t.

Equation (7.51) is a new formula for the average entropy production rate, involv-
ing the (variances of the) position of the particle and the total force acting on it.
Position and force are also needed for the usual direct estimation of the average en-
tropy production rate in a steady state by means of the generalisation of equation
(2.55) to more heat baths at different temperatures, i.e.

σtot = 〈Σenv〉t/t = ∑
i

〈∆Qi〉t
t kBTi

= k−1
B

∫ t

0
dt′ 〈(TTT-1 FFF)T ◦ ẋxx〉t′/t , (7.53)

where ∆Qi is the amount of heat exchanged with the thermal bath at temperature
Ti = (TTT)ii. The need to apply the Stratonovich prescription (2.45) for the estimation
of the stochastic integral above requires a sufficiently fast sampling rate with respect
to the rate of variation of force. This requirement seems less strict for (7.51), it is
expected to work as long as the second derivative in time is evaluated correctly
thanks to a diffusive behaviour of the position. Anther appealing feature of (7.51)
is that other quantities are instantaneous correlations and thus can be evaluated
correctly at any experimental sampling rate.

For a quick comparison of the performances of (7.51) vs the classic formula (7.53)
in correctly estimating the entropy production rate, we consider time traces of po-
sition and forces from the gyrator model described in Section 6.1 and described by
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Figure 7.6: Estimate of the entropy production rate for the model described in 6.1
with two equations: the VSR method (7.51) and the estimation procedure based on
the Stratonovich integral (7.53). Results are as a function of the sampling frequency.
We generate 1000 trajectories and parameters are set to µ = κ = 1 and α = ρ = 2,
implying an exact entropy production rate σtot = 12 (black lines). Panel (a) is for
kBT = 1 while panel (b) corresponds to kBT = 4. One sees that, in both cases, our
VSR method is more stable and estimates entropy production in a more precise way
especially for low sampling frequencies.

the set of coupled Langevin equationsẋ(t) = −αµκ x(t)− µρy(t) +
√

2kBT µ ξx(t)

ẏ(t) = −µκ y(t) + αµρx(t) +
√

2kBT µ ξy(t)
(7.54)

with stationary entropy production rate equal to

σtot =
µρ2(1 + α)

κ
. (7.55)

We generate traces on a time interval [0, 4] with numerical integration time step
dt = 10−3. We then calculate the entropy production rate using our formula (7.51),
and (7.53). To test the performances of these two methods as a function of the
sampling frequency, we analyse results for subsets including a fraction ϕ = 1/2,
1/4, 1/10, 1/20, 1/50, 1/100 of the available data by keeping one sample every
1/ϕ ones. The last step is equivalent to an empirical sampling frequency equal to
f = ϕ/dt . From the results depicted in Figure 7.6 one sees that the new method
(7.51) shows better performances when the sampling frequency is small and, fur-
thermore, it is much more stable. Hence, the new way of estimating entropy pro-
duction could work for a slow apparatus that would not sample fast enough for
the standard computation of a Stratonovich integral. As the sampling frequency
increases, the performances of the two methods become comparable. Further ap-
plications of this procedure will be presented in future papers.
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7.4 Chapter conclusions

To sum up, in this chapter we presented a novel formula, which we term the vari-
ance sum rule (VSR), that can be useful for the characterisation of equilibrium and
non-equilibrium Langevin systems. As opposite to the uncertainty relations dis-
cussed in Chapter 5, the VSR is an equality and hence it can be used for precise
estimation of relevant model parameters. Indeed, for a bead in an harmonic poten-
tial at equilibrium and in a stochastically jumping trap, we tested our method by
estimating some model parameters whose true value is known a priori and found
a very good agreement between the estimated values an the real ones. This adds
further evidence that the variance of stochastic motion can be exploited for mea-
suring physical quantities. Furthermore, we also showed that the small time limit
of the VSR leads to a novel formula for the entropy production rate (7.51) which
is more stable and accurate (especially for low sampling frequency) with respect to
the textbook estimation approach based on the definition of the entropy production
in terms of a Stratonovich integral (see Figure 7.6). In the next chapter, we will show
how a similar VSR holds for equilibrium non-Markovian systems , governed by an
overdamped generalised Langevin equation (GLE), which again may be used for
the estimation of relevant quantities, such as the parameters defining the memory
kernel Γ(t) appearing in the GLE.



CHAPTER 8

NON-MARKOVIAN VARIANCE SUM
RULE

8.1 Introduction

In this chapter we introduce an equivalent of the variance sum rule (VSR) (7.2) for
a system with memory. Specifically, we consider the non-Markovian equilibrium
Langevin dynamics of N Brownian identical particles in one dimension, trapped by
an external potential U(xt) and subject to a pairwise interaction force
f (xn

t , xm
t ) = − f (xm

t , xn
t ), that is∫ t

−∞
dt ′Γ(t− t′)ẋn

t′ = −∂xn
t
U (xn

t ) + ∑
m 6=n

f (xn
t , xm

t ) + ηn(t). (8.1)

with n, m ∈ {1, . . . , N}. By defining the center of mass variable
x(t) = ∑n xn(t)/N, we will show that the non-Markovian VSR reads∫ t

0
dt′ Γ(t− t′)

∫ t′

0
dt′′ Γ(t′ − t′′)Var (xt′′ − x0) +

+
∫ t

0
dt′
∫ t

0
dt′′ Cov(F({xn

t′}), F({xn
t′′})) = 2 kBT

∫ t

0
dt′
∫ t′

0
dt′′ Γ(t′′)

(8.2)

where
F({xn

t }) = −
1
N ∑

n
∂xn

t
U (xn

t ) (8.3)

can be regarded as the "average" external force exerted on each Brownian particle.
We point out that, in equilibrium, the variances of the relative displacement and the
covariance of the forces are experimentally accessible quantities making it possible,
as we will show in Section 8.3, to extract the functional form of the memory ker-
nel from experimental data. We also add that a very similar relation to (8.2) can be
found for an external potential being dragged at a constant speed, i.e
U(xt, t) = U(xt − vt). Indeed, for the same reasons discussed in 3.7.2.1, this con-
stant dragging leads to a non-equilibrium steady state that can be mapped to an
equivalent equilibrium dynamics by means of a Galilean transformation, which in
turn helps in obtaining the VSR in this stationary regime. In this context, by identi-
fying the double integral of the covariance of the average forces with the variance of
the thermodynamic work, it will be also straightforward to obtain the upper bound
to the Fano factor of the thermodynamic work,

〈∆W2〉st
T

〈W〉st
t
≤ 2 kB T . (8.4)
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Note that this inequality is opposite to the TUR which, instead, gives a lower bound
to the Fano factor of the entropy production. Indeed, we will also show how the
non-Markovian VSR naturally leads to a reversed thermodynamic uncertainty relation
(RTUR) for the thermodynamic work. These inequalities will be presented in more
detail in Section 8.3.1 while the derivation of the non-Markovian VSR can be found
in Section 8.2. Its consequences and applications, instead, are depicted in Section
8.3.

8.2 Non-Markovian variance sum rule: derivation

We start from the set of overdamped Generalised Langevin equations∫ t

−∞
dt′ Γ(t− t′)ẋn

t′ = −∂xn
t
U (xn

t − vt) + ∑
m 6=n

f (xn
t , xm

t ) + ηn(t) (8.5)

describing a system of N Brownian particles in one dimension, subject to a confin-
ing potential U(xt, t) and interacting through a pairwise force such that
f (xn

t , xm
t ) = − f (xn

t , xm
t ). The latter could be central forces arising from an inter-

action potential Uint(|xn
t − xm

t |), i.e such that

f (xn
t , xm

t ) = −∂xn
t
Uint(|xn

t − xm
t |) = ∂xm

t
Uint(|xn

t − xm
t |) = − f (xm

t , xn
t ) . (8.6)

Moreover, we have that 〈ηn(t)〉 = 0 and 〈ηn(t′)ηm(t′′)〉 = δnm kBT Γ(|t′− t′′|). Note
that we already included the velocity term inside the potential. Indeed, once the
non-Markovian VSR will be derived for the steady state determined by v 6= 0, the
equilibrium relation will be readily obtained for v = 0.

In order to prove the VSR, we integrate and sum over n both sides of (8.1)

∑
n

∫ t

0
dt′
∫ t′

−∞
dt′′ Γ(t′ − t′′)ẋi(t′′) =

= −∑
n

∫ t

0
dt′ ∂xn

t
U
(
xn

t′ − vt′
)
+ ∑

n, m 6=n

∫ t

0
dt′ f (xn

t′ , xm
t′′) + ∑

n

∫ t

0
dt′ ηn(t′)

(8.7)

and, by further doing a change of variables on the left hand side of (8.7) and noting
that ∑n, m 6=n f (xn

t′ , xm
t′ ) = 0, we get that∫ t

0
dt′
∫ ∞

0
dt′′ Γ(t′′)ẋ(t′ − t′′) = − 1

N ∑
n

∫ t

0
dt′ ∂xnU

(
xn

t′ − vt′
)
+
∫ t

0
dt′η(t′) . (8.8)

where we defined x(t) = ∑n xn(t)/N and η(t) = ∑n ηn(t)/N. The latter is a sum
of independent Gaussian noises whose mean and variance are equal to the sum of
all mean and variances, respectively, characterising ηn(t) for each index n. This
fact, together with the 1/N normalisation factor, implies that with 〈η(t)〉 = 0 and
〈η(t′)η(t′′)〉 = kBTΓ(|t′ − t′′|). For a steady state, we have that a change of variable
yn(t) = xn(t)− vt in (8.1) maps the system into a reference frame where y(t) is an
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equilibrium variable, so that 〈y〉t = const. With this change of reference frame, and
by defining y(t) = x(t)− vt, equation (8.8) becomes∫ t

0
dt′ F({yn

t′}) =
∫ t

0
dt′η(t′)−

∫ t

0
dt′
∫ ∞

0
dt′′ Γ(t′′)ẏ(t′ − t′′)− γ̂ v t =

=
∫ t

0
dt′η(t′)−

∫ ∞

0
dt′′ Γ(t′′)

(
y(t− t′′)− y(−t′′)

)
− γ̂ v t ,

(8.9)

where γ̂ =
∫ ∞

0 dt′ Γ(t′), defined in Chapter 3, and we further defined the "average"
external force

F({yn
t }) =

1
N ∑

i

∫ t

0
dt′ ∂ynU (yn

t′) . (8.10)

This change of reference allows us to consider equilibrium averages, which are of
course easier to handle, and to use the equilibrium FDT, as it will be clear in few
lines. We proceed by considering the variance of both sides of (8.9), hence obtaining∫ t

0
dt′
∫ t

0
dt′′ Cov(F({yn

t′}), F({yn
t′′})) =

∫ t

0
dt′
∫ t

0
dt′′ 〈ηt′ ηt′′〉+

+
∫ ∞

0
dt′Γ(t′)

∫ ∞

0
dt′′Γ(t′′)Cov (yt−t′ − y−t′ , yt−t′′ − y−t′′) +

− 2
∫ t

0
dt′
∫ ∞

0
dt′′ Γ(t′′) (〈yt−t′′ ηt′)〉 − 〈y−t′′ ηt′〉) =

=2 kBT
∫ t

0
dt′
∫ t′

0
dt′′ Γ(t′′)+

+
∫ ∞

0
dt′Γ(t′)

∫ ∞

0
dt′′ Γ(t′′)〈(yt−t′ − y−t′)(yt−t′′ − y−t′′〉)+

− 2
∫ t

0
dt′
∫ ∞

0
dt′′ Γ(t′′) (〈yt−t′′ ηt′)〉 − 〈y−t′′ ηt′〉) .

(8.11)

where we used that 〈η(t)〉 = 〈yt − yt′〉 = 0. Furthermore, by exploiting that y(t)
is an equilibrium variable, which implies that the correlations involving y(t) are
homogeneous in time 〈yt′ yt′′〉 = 〈yt′−t′′ y0〉 = 〈yt′′−t′ y0〉 = 〈yt′′ yt′〉, we can rewrite
(8.11)∫ t

0
dt′
∫ t

0
dt′′ Cov(F({yn

t′}), F({yn
t′′})) +R(t)− φ(t) = 2 kBT

∫ t

0
dt′
∫ t′

0
dt′′ Γ(t′′)

(8.12)

where we defined

φ(t) = 2
∫ ∞

0
dt′ Γ(t′)

∫ ∞

0
dt′′ Γ(t′′)

(
C(t′′ − t′)− C(t + t′′ − t′)

)
(8.13)

R(t) = 2
∫ ∞

0
dt′ Γ(t′)

∫ t

0
ds
〈
(yt−t′ − y−t′) ηs〉 . (8.14)

and C(t′− t′′) = 〈yt′ yt′′〉. Let us focus on (8.14). Because η(t) can be regarded as the
noise generating the randomness of the equilibrium variable y(t), we can consider
the latter as a functional of the noise η(t), i.e. y(ηt). Again, the Furutsu-Novikov
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formula [127, 128] gives us an expression for the correlation of a functional O(ηt) of
the noise and the noise itself, that is

〈O(ηu)ηs〉 = kBT
∫ ∞

−∞
dt′′ Γ(|s− t′′|)

〈
δO(ηu)

δη(t′′)

〉
. (8.15)

From this we see that for Γ(t) = 2γ0δ(t), i.e Markovian dynamics, one recovers
(7.11) (except for a factor 2 kBT γ0 arising from a different definition of the noise)
where the correlation function is equal to 0 for s > u. This is not true instead for
coloured noise. For an equilibrium scenario [132], even for non Markovian dynam-
ics it holds that

χO(u, t′′) =
〈

δOu(η)

δη(t′′)

〉
= 〈Ou ẏt′′〉 θ(u− t′′)/kBT , (8.16)

where χO(t, s) is the response function associated to the observable O and the Heav-
iside step function θ(t− s) is needed to preserve causality. For O = y, (8.15) hence
specialises to

〈y(ηu)ηs〉 =
∫ ∞

−∞
dt′′ Γ(|s− t′′|)〈yu ẏt′′〉 θ(u− t′′) . (8.17)

By dropping the explicit noise dependence for the variable yt and by looking at
(8.14), one sees that the terms to calculate have the form∫ t

0
ds 〈yu ηs〉 =

∫ ∞

−∞
dt′′

∫ t

0
ds Γ(|s− t′′|)〈yu ẏt′′〉θ(u− t′′) =

=
∫ ∞

−∞
dt′′

∫ t

0
ds Γ(|t′′|)〈yu ẏt′′+s〉θ(u− t′′ − s) =

=
∫ ∞

−∞
dt′′ Γ(|t′′|)

∫ t

0
ds ∂sC(u− t′′ − s)θ(u− t′′ − s)

(8.18)

where in the second line we performed a change of variables t̃′′ = t′′ − s renaming
t̃′′ = t′′ afterwards. Moreover, we again used that C(u − s) = C(u, s) = 〈yuys〉.
Moving forward, one sees that (8.18) can we rewritten as∫ t

0
ds 〈yuηs〉 =

∫ ∞

−∞
dt′′ Γ(|t′′|)θ(u− t′′)θ(t− u + t′′)

∫ u−t′′

0
ds ∂sC(u− t′′ − s)+

+
∫ ∞

−∞
dt′′ Γ(|t′′|)θ(u− t− t′′)

∫ t

0
ds ∂sC(u− t− t′′) =

=
∫ u

u−t
dt′′ Γ(|t′′|)

(
C(0)− C(u− t′′)

)
+

+
∫ u−t

−∞
dt′′ Γ(|t′′|)

(
C(u− t′′ − t)− C(u− t′′)

)
=

=
∫ u

u−t
dt′′ Γ(|t′′|)C(0) +

∫ ∞

0
dt′′ Γ(|t′′|)C(u + t′′ − t)+

−
∫ t−u

0
dt′′ Γ(|t′′|)C(u + t′′ − t)−

∫ ∞

0
dt′′ Γ(|t′′|)C(u + t′′)+

+
∫ −u

0
dt′′ Γ(|t′′|)C(u + t′′)

(8.19)
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Using this we see that equation (8.14) becomes

R(t) = 2
∫ ∞

0
dt′ Γ(t′)

[ ∫ ∞

0
dt′′ Γ(|t′′|)C(t′′ − t)−

∫ ∞

0
dt′′ Γ(|t′′|)C(t + t′′ − t′)

−
∫ t′

0
dt′′ Γ(|t′′|)C(t′′ − t′) +

∫ t′−t

0
dt′′ Γ(|t′′|)C(t + t′′ − t′)+

−
∫ ∞

0
dt′′ Γ(|t′′|)C(t′′ − t′ − t) +

∫ ∞

0
dt′′ Γ(|t′′|)C(t′′ − t′)+

+
∫ t+t′

0
dt′′ Γ(|t′′|)C(t′′ − t′ − t)−

∫ t′

0
dt′′ Γ(|t′′|)C(t′′ − t′)+

+
∫ t−t′

−t′
dt′′ Γ(|t′′|)C(0)−

∫ −t′

−t′−t
dt′′ Γ(|t′′|)C(0)

]
=

= 2
∫ ∞

0
dt′ Γ(t′)

[ ∫ t−t′

0
dt′′ Γ(|t′′|)

(
C(0)− C(t− t′ − t′′)

)
+

−
∫ ∞

t+t′
dt′′ Γ(|t′′|)C(t′′ − t′ − t)+

+
∫ ∞

t′
dt′′ Γ(|t′′|)C(t′′ − t′)−

∫ t′

0
dt′′ Γ(|t′′|)C(t′′ − t′)+

−
∫ t+t′

0
dt′′ Γ(|t′′|)C(0) + 2

∫ t′

0
dt′′ Γ(|t′′|)C(0)

]
+ φ(t) ,

(8.20)

where φ(t) is defined in (8.13). By further noting that

∫ ∞

0
dt′
∫ t′

0
dt′′ =

∫ ∞

0
dt′′

∫ ∞

t′′
dt′ (8.21)

i.e. these integrals define the same region of integration, one readily sees that the
second to last line of (8.20) is equal to 0.

Consider now the variance of y(t)− y(0),

Var(t) = Var [yt − y0] =

= 〈y2
t 〉+ 〈y2

0〉 − 2〈yt y0〉 = 2
(
〈y2

0〉 − 〈yt y0〉
)
= 2 (C(0)− C(t)) .

(8.22)
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With this definition,R(t) becomes equal to

R(t) =
∫ ∞

0
dt′ Γ(t′)

[ ∫ t−t′

0
dt′′ Γ(|t′′|)Var(t− t′ − t′′)+

− 2
∫ ∞

t+t′
dt′′ Γ(|t′′|)C(t + t′ − t′′)+

− 2
∫ t+t′

0
dt′′ Γ(t′′)C(0) + 4

∫ t′

0
dt′′ Γ(t′′)C(0)

]
+ φ(t) =

=
∫ ∞

0
dt′ Γ(t′)

[ ∫ t−t′

0
dt′′ Γ(|t− t′ − t′′|)Var(t′′)+

− 2
∫ 0

−∞
dt′′ Γ(|t + t′ − t′′|)C(t′′)+

− 2
∫ t+t′

t′
dt′′ Γ(t′′)C(0) + 2

∫ t′

0
dt′′ Γ(t′′)C(0)

]
+ φ(t) =

= φ(t) +
∫ t

−∞
dt′ Γ(t− t′)

∫ t′

0
dt′′ Γ(t′ − t′′)Var(t′′)+

+2
∫ ∞

0
dt′ Γ(t′)

[ ∫ ∞

t′+t
dt′′ Γ(t′′)C(0)−

∫ ∞

0
dt′′ Γ(t + t′ + t′′)C(t′′)

]
,

(8.23)

where again we used (8.21) to obtain the term proportional to C(0) in the eighth
line from the sixth.

Let us focus on the integral of the second last line, i.e.

r(t) =
∫ t

−∞
dt′ Γ(t− t′)

∫ t′

0
dt′′ Γ(t′ − t′′)Var(t′′) . (8.24)

We immediately see that

r(t) =
∫ t

0
dt′ Γ(t− t′)

∫ t′

0
dt′′ Γ(t′ − t′′)Var(t′′)+

−
∫ ∞

0
dt′ Γ(t + t′)

∫ t′

0
dt′′ Γ(t′ − t′′)Var(t′′) =

=
∫ t

0
dt′ Γ(t− t′)

∫ t′

0
dt′′ Γ(t′ − t′′)Var(t′′)+

− 2
∫ ∞

0
dt′ Γ(t + t′)

∫ t′

0
dt′′ Γ(t′ − t′′)C(0)+

+ 2
∫ ∞

0
dt′′

∫ ∞

t′′
dt′ Γ(t + t′)Γ(t′ − t′′)C(t′′)

(8.25)

where again equation (8.21) was used along with (8.22). Let us consider the last two
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terms of (8.25) separately.

2
∫ ∞

0
dt′ Γ(t + t′)

∫ t′

0
dt′′ Γ(t′ − t′′)C(0) =2

∫ ∞

0
dt′ Γ(t + t′)

∫ t′

0
dt′′ Γ(t′′)C(0) =

=2
∫ ∞

0
dt′′

∫ ∞

t′′
dt′ Γ(t + t′)Γ(t′′)C(0) =

=2
∫ ∞

0
dt′′

∫ ∞

t+t′′
dt′ Γ(t′)Γ(t′′)C(0) =

=2
∫ ∞

0
dt′ Γ(t′)

∫ ∞

t+t′
dt′′ Γ(t′′)C(0)

(8.26)

where in the last line we renamed the integration variables. As for the second term
we get

2
∫ ∞

0
dt′′

∫ ∞

t′′
dt′ Γ(t + t′)Γ(t′ − t′′)C(t′′) =

=2
∫ ∞

0
dt′′

∫ ∞

0
dt′ Γ(t + t′ + t′′)Γ(t′)C(t′′) =

=2
∫ ∞

0
dt′ Γ(t′)

∫ ∞

0
dt′′ Γ(t + t′ + t′′)C(t′′) .

(8.27)

Putting (8.25), (8.26) and (8.27) all together we hence obtain

r(t) =
∫ t

0
dt′ Γ(t− t′)

∫ t′

0
dt′′ Γ(t′ − t′′)Var(t′′)+

− 2
∫ ∞

0
dt′ Γ(t′)

[ ∫ ∞

t+t′
dt′′ Γ(t′′)C(0)−

∫ ∞

0
dt′′ Γ(t + t′ + t′′)C(t′′)

]
.

(8.28)

Moreover, from (8.23) and (8.28) one gets

R(t) =φ(t) + r(t)+

+ 2
∫ ∞

0
dt′ Γ(t′)

[ ∫ ∞

t+t′
dt′′ Γ(t′′)C(0)−

∫ ∞

0
dt′′ Γ(t + t′ + t′′)C(t′′)

]
=

=φ(t) +
∫ t

0
dt′ Γ(t− t′)

∫ t′

0
dt′′ Γ(t′ − t′′)Var(t′′) .

(8.29)

Finally, by plugging (8.29) into (8.12) we get∫ t

0
dt′ Γ(t− t′)

∫ t′

0
dt′′ Γ(t′ − t′′)Var(t′′)+

+
∫ t

0
dt′
∫ t

0
dt′′ Cov(F({yn

t′}), F({yn
t′′})) = 2 kBT

∫ t

0
dt′
∫ t′

0
dt′′ Γ(t′′) .

(8.30)

The last step of the derivation consists in rewriting the terms involving the covara-
iances in terms of the original variable xt = yt + vt. Indeed, because vt is a deter-
ministic variable, one trivially finds that

Var(t) = Var (yt − y0) = Var (xt − x0) (8.31)
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As regards the covariance of the forces, because for a Galilean transformations it
holds that P̃(yt) = P̃(xt− vt) = P(xt) [85], where P̃ is the probability defined in the
rest frame while P is the one defined in the laboratory frame, one can easily show
that

Cov(F({yn
t′}), F({yn

t′′})) = Cov(F({xn
t′}), F({xn

t′′})) . (8.32)

As a consequence, one immediately sees that (8.30) becomes∫ t

0
dt′ Γ(t− t′)

∫ t′

0
dt′′ Γ(t′ − t′′)Var (xt′′ − x0) +

+
∫ t

0
dt′
∫ t

0
dt′′ Cov(F({xn

t′}), F({xn
t′′}))= 2 kBT

∫ t

0
dt′
∫ t′

0
dt′′ Γ(t′′) ,

(8.33)

that is our final result. We further add that, by exploiting the symmetries of the
correlation functions in a steady state, the latter can be rewritten in Laplace space
as (

k Γ̂(k)
)2Lk[Var (xt − x0)] + 2Lk

[〈
F({xn

t }) F({xn
0})
〉]

= 2 kBT Γ̂(k) . (8.34)

8.3 Non-Markovian variance sum rule: discussion and
applications

The non Markovian VSR∫ t

0
dt′ Γ(t− t′)

∫ t′

0
dt′′ Γ(t′ − t′′)Var (xt′′ − x0) +

+
∫ t

0
dt′
∫ t

0
dt′′ Cov(F({xn

t′}), F({xn
t′′}))= 2 kBT

∫ t

0
dt′
∫ t′

0
dt′′ Γ(t′′)

(8.35)

is another novel result relating the variance of the relative displacement and the
covariance of the averaged force acting on the beads. For a single colloidal particle,
the latter becomes the external force acting on the bead through the confinement
potential. For this case, analytical and numerical verification of the VSR have been
performed for harmonic and non-harmonic potentials, respectively, as for the ex-
amples shown in figure 8.1. Furthermore, in comparison to the Markovian VSR
(7.39), here there appears a double convolution between the memory kernel and
the variance of the relative displacement while on the right hand side there appears
the double integral of the memory kernel. Even though these additional features
seem to complicate the functional form of the VSR, the latter can be recast in a more
elegant and simple form in Laplace space (8.34) where it can be used to estimate the
parameters characterising the memory kernel Γ(t). Indeed, by rewriting (8.34) as(

k Γ̂(k)
)2Lk[Var (xt − x0)]− 2 kBT Γ̂(k) + 2Lk[Cov (F({xn

t }) F({xn
0}))]= 0 , (8.36)

one immediately sees that it can be regarded as a second order algebraic equation
for the unknown variable Γ̂(k), hence leading to

Γ̂±(k) =
1±

√
∆(k)

β k2 Lk[Var (xt − x0)]
, (8.37)
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Figure 8.1: Behaviour or the non-Markovian VSR as a function of time (kBT = 1)
and where (Γ ∗ Γ ∗ Var)(t) =

∫ t
0 dt′ Γ(t − t′)

∫ t′

0 dt′′ Γ(t′ − t′′)Var (xt′′ − x0). Panel
(a) corresponds to a particle trapped in a harmonic potential U(xt) = κ x2

t /2
(κ = 1) in a Markovian medium with Γ(t) = 2 γ0 δ(t) (γ0 = 1). The case of a
non-Markovian kernel 2 γ0 δ(t) + γ1e−t/τ/τ (γ0 = 0.1, γ1 = 1, τ1 = 2) in the same
harmonic potential is depicted in panel (b). All these results have been analytically
obtained with the formulas shown in Chapter 3. Panel (c) instead is obtained via
simulated data in a double well potential U(xt) = a

2x
2
t +

b
4x

4
t (a = −1, b = 1) and

kernel Γ(t) = 2 γ0 δ(t) + γ1e−t/τ/τ (γ0 = 0.1, γ1 = 1, τ1 = 2).

∆(k) = 1− 2 β2 k2 Lk[Var (xt − x0)]Lk[Cov (F({xn
t }) F({xn

0}))] (8.38)

where β = (kBT)−1. Equation (8.37) shows that, similarly to the Markovian VSR,
one is able to extract relevant model parameters, in this case those defining the
memory kernel, by measuring variances and correlations of operationally accessible
quantities. Indeed, by gathering a good statistics to estimate these quantities and by
numerically calculating their Laplace transform (only for real k in this case), the two
solutions Γ̂±(k) of equation (8.37) can be readily evaluated. To understand which of
these two solutions must be taken, we perform a consistency check by considering
the solutions in the limits of small and large k. This can be done by first evaluating
the small/large time limits of Var (xt − x0) and Cov (F({xn

t }) F({xn
0})), which can

be readily extrapolated from the VSR itself. Indeed, for small times, corresponding
to large k, and similarly to what has been done in Appendix A.1, these quantities
behave as follows

lim
t→0

Var (xt − x0) ∝ t =⇒ lim
k→∞
L [Var (xt − x0)] ∝ k−2 ,

lim
t→0

〈
F({xn

t }) F({xn
0})
〉

∝ const =⇒ lim
k→∞
Lk[Cov (F({xn

t }) F({xn
0}))]] ∝ k−1 .

(8.39)

As a consequence, the right hand side of (8.37) becomes
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Figure 8.2: Plot of the solutions for Brownian particle in a parabolic poten-
tial, modelled by (3.4) with m = 0, λ(t) = 0, κ = 5 and memory kernel
Γ(t) = 2 γ0 + γ1 e−t/τ/τ with Laplace transform Γ̂(k) = γ0 + γ1/(1 + k τ) (γ0 =
γ1 = τ = 1). The solutions Γ̂±(k) and the discriminant ∆(k) have been analytically
computed from (8.37) and (8.38) by using the formulas presented in Chapter 3. As
it is clear from the figure, when the discriminant becomes equal to zero, the correct
solution switches from Γ̂−(k) to Γ̂+(k) (as k grows).

Γ̂±(k)
k→∞≈ = c1

(
1±

√
1− c2 k−1

)
, (8.40)

for some constants c1, c2. As discussed in Chapter 3 and in the context of the unidi-
mensonal overdamped GLE, the large k limit of Γ̂(k) must be finite, which in turn
implies that in this regime the correct solution of (8.40) is Γ̂+(k), while for the other
solution one finds Γ̂−(k) ∝ k−1. In a similar way and finite effective friction coeffi-
cient γ̂, the large times (small k) limit leads to

lim
t→∞

Var (xt − x0) ∝ const =⇒ lim
k→0
L [Var (xt − x0)] ∝ k−1 ,

lim
t→∞

〈
F({xn

t }) F({xn
0})
〉

∝ e−t/τ =⇒ lim
k→0
Lk[Cov (F({xn

t }) F({xn
0}))]] ∝ const ,

(8.41)

for some typical time τ characterising the long time behaviour of the correlation
functions. Moreover, the constant variance of the relative displacement is constant
because of the presence of the confining potential. Hence, in this limit, equation
(8.37) becomes

Γ̂±(k)
k→0≈ =

c1

k

(
1±

√
1− c2 k

)
, (8.42)

implying that, because Γ̂(0) = γ̂ is finite, Γ̂−(k) is the right solution. Indeed, for
small k one finds that Γ̂+(k) ∝ k−1.

To summarise, we found that for large (small) k the right solution to consider
is Γ̂+(k) (Γ̂−(k)). Moreover, from equations (8.40) and (8.42) one sees that the dis-
criminant ∆(k) ≈ 1 in these regimes. Indeed, because the memory kernels are
continuous and real function, their Laplace transform must be continuous and real
(for real k) as well. This implies that there must be at lest one k such that the so-
lution can smoothly switch from Γ̂−(k) to Γ̂+(k) as k grows. For all the cases we
analysed, there is always a single point where the discriminant ∆(k) becomes zero
(which is a global minimum for ∆(k)) and, from a practical point of view, by detect-
ing this point one is able to discriminate which part of the solution must be used for
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Figure 8.3: Estimation of the memory kernel from simulated data (104 tra-
jectories) on a time window of 10s and dt = 10−3. The upper row cor-
responds to a particle in a harmonic potential U(xt) = κ x2

t /2 (κ = 1)
while the second row corresponds to U(xt) = a

2 x2
t + b

4 x4
t (a = −1,

b = 1). The column on the left is generated using a Markovian kernel
Γ(t) = 2 γ0 δ(t) (γ0 = 1). Instead, the column on right corresponds to
the non-Markovian kernel equal to 2 γ0 δ(t) + γ1e−t/τ/τ (γ0 = 1, γ1 = 1.5,
τ1 = 0.2). By numerically evaluating the Laplace transform for k ∈ {1, 2, . . . , 103}
one is able to fit the solution (Γ+(k) in this case because ∆(k), whose scale is the red
one on the right of each panel, has already become 0 for k < 1) with the analytical
formula of the kernels above in Laplace space. In real world application, of course,
one does not know the functional form of the kernel a priori and, as a consequence,
the strategy would be to try different analytical forms and chose the one that fits the
data better. For the cases above, we fit the solutions with Γ̂fit(k) = γ̃0 + γ̃1/(1+ kτ̃)
finding for:
(a) γ̃0 = 1.003± 0.001, γ̃1 = 0.01± 0.001 and τ̃ = 0.007± 0.002;
(b) γ̃0 = 1.005± 0.001, γ̃1 = 1.48± 0.01 and τ̃ = 0.191± 0.005;
(c) γ̃0 = 1.005± 0.001, γ̃1 = 0.02± 0.02 and τ̃ = 0.01± 0.02;
(d) γ̃0 = 0.999± 0.001, γ̃1 = 1.506± 0.04 and τ̃ = 0.197± 0.002.

the fitting procedure of the parameters of the memory kernel. An example of this
behaviour is depicted in Figure 8.2.

Simulations In order to study the performances of our fitting method, we first
simulate 104 stochastic trajectory for the equilibrium dynamics of a single Brown-
ian particle in a harmonic potential U(xt) = κ x2

t /2 and a in double well potential
U(xt) = a x2

t /2 + b x4
t /4 (with a < 0), both in a Markovian Γ(t) = 2 γ0 δ(t) and

in a non-Markovian Γ(t) = 2 γ0 δ(t) + γ1 e−t/τ/τ bath. From these trajectories,
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Figure 8.4: Schema of a DNA hairpin i a (a) folded and (b) unfolded state.

we compute the variance of the relative displacement and the double integral of
the covariance of the forces and numerically evaluate their (real valued) Laplace
transform. Because the traces are defined in a time interval [0, 10] with sampling
frequency of dt = 10−3, we decide to evaluate the numerical Laplace transforms
for the discrete set of values in Laplace space, k ∈ {1, 2, 3, . . . , 1000}. As shown in
Figure 8.3 and in its caption, the result of the parameter estimation is in very good
agreement with the original values used for generating the traces. However, one
can note that, in many cases, an underestimation of the errors occurs (see caption
of Figure 8.3). This is probably due to the systematic error occurring during the
numerical evaluation of the Laplace transforms, especially for small k (remember
that the traces are up to t = 10). Nevertheless, this issue is of secondary importance
and indeed, encouraged by these good results, we proceed by applying this same
method to experimental data coming from traces of a Brownian particle attached to
a DNA hairpin whose dynamics may be described by a GLE equation.

DNA hairpins are well known biological systems formed by a single stranded
DNA molecule which can be studied by using optical tweezers [133, 134, 135, 136].
In this case, one end of the DNA is fixed by a pipette while the other end is chem-
ically attached to a colloidal bead which in turn is trapped by the laser beams of
the optical tweezers. What can be observed, in this setting, is that the hairpin un-
dergoes a zipping/unzipping dynamics between a folded (Figure 8.4(a)) and an
unfolded (Figure 8.4(b)) state. The GLE has already been used to model this kind of
system in terms of a reaction coordinate dynamics [137] but has never been used, to
our knowledge, to model the motion of a colloidal bead attached to a DNA hairpin.
Indeed, we are going to suppose that the effects of the hairpin on the dynamics of
the colloidal bead can be modelled by some effective potential Veff(xt) where, be-
cause the system is complex and many degrees of freedom have been integrated
out in this effective model, there are also memory effects. We thus assume that
such equilibrium dynamics can be effectively described by a GLE where the posi-
tion PDF equals p(xt) ∝ exp [−β Veff(xt)] and, as a consequence, the force acting
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Figure 8.5: Reconstructed PDF from experimental measurements (blue scale on the
left) and effective potential Veff (xt) = −kBT ln p(xt) + const (red scale on the right
in [pN nm]). Figure (a) corresponds for the trace in a unfolded state, (b) to the folded
state and (c) to the zipping/unzipping dynamics.

on the particle is F(xt) = −∂xtVeff(xt). We are going to consider three traces for a
hairpin always in an unfolded case, always in a folded state and while undergo-
ing zipping/unzipping dynamics. For each of these traces, the effective potential
can be readily obtained by empirically estimating the PDF p(xt) from experimental
measurements and by considering Veff(xt) = −kBT ln p(xt), as shown in Figure 8.5.
These potential data points can be be fitted with a polynomial Pn(x) of degree n,
with n = 2 for the folded and unfolded state and n = 12 for the zipping/unzipping
dynamics. The forces, and hence their variances, can be then readily evaluated by
considering (minus) the derivative of the effective potential with known analytical
form and fitted parameters.

By applying this procedure, we are now able to apply the VSR method as for the
simulation case depicted in the previous paragraph and the results of the estima-
tion procedure are shown in Figure 8.6. The first thing we observe is that, for all
cases, the Markovian friction coefficient γ0 is always higher then the nominal value
≈ 2.5 · 10−5[pN s/nm], also observed in the section dedicated to the Markovian
VSR. Such an effect is expected, of course, because of the presence of the hairpin.
Moreover, the estimated γ0 for the folded case is slightly higher then that in the
unfolded case. We interpret this as hydrodynamic backflow effects due to the in-
creased proximity of the bead to the pipette. In addition, for the folded and un-
folded cases, we already obtain very good fits by only using one additional ex-
ponential to the memory kernel, i.e. Γ(t) = 2 γ0 δ(t) + γ1 e−t/τ1/τ1. The non-
Markovian friction coefficients γ1 are one order of magnitude larger then γ0 and
for the folded state it is four times larger then that in the unfolded case. This could
be due to the more rigid configuration of the hairpin in the folded state. The es-
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Figure 8.6: Experimental data derived from traces with (a) unfolded hairpin, (b)
folded hairpin and (c) jumping hairpin. Again, we numerically evaluate Γ̂±(k) but
this time we fit Γ̂−(k) because ∆(k) (red scale on the right) still has not reached 0
in the k interval we are considering. The fitting procedure has been performed by
choosing different functional forms for the memory kernel (a Markovian compo-
nent plus a number of exponentials with parameters {γ̃i, τ̃i}) and we present the
best results coming from these fits, which read:
(a) γ̃0 = (8.6± 1 · 10−1) · 10−5 pN s/nm, γ̃1 = (1.06± 2 · 10−2) · 10−3 pN s/nm and
τ̃1 = (0.43± 0.01)s;
(b) γ̃0 = (9.3± 1 · 10−1) · 10−5 pN s/nm, γ̃1 = (4.06± 2 · 10−2) · 10−3 pN s/nm and
τ̃1 = (0.582± 0.008)s;
(c) γ̃0 = (1.5 ± 1 · 10−2) · 10−4 pN s/nm, γ̃1 = (2.12 ± 3 · 10−2) · 10−3 pN s/nm,
τ̃1 = (0.76 ± 0.02)s, γ̃2 = (1.08 ± 8 · 10−2) · 10−3 pN s/nm and
τ̃2 = (1.29 · 10−2 ± 1 · 10−4)s

timated typical times τ1 are of the same order of magnitude (≈ 0.5s) and slightly
higher for the folded case. Such typical times are rather large for a DNA hairpin dy-
namics. We are currently evaluating how these parameters could be connected with
the molecular construct of the hairpin and eventually to some pink noise from the
apparatus. Moreover, because one needs long time traces for the small k estimation
of the numerical Laplace transform, there is the possibility that some experimental
drift effects could have altered the measured data. Indeed, such effects have been
detected in data of free beads, even though this VSR analysis applied to the latter
still gives compatible results to the nominal value of the friction coefficient (we do
not present these data here for shortness).

However, it is worth noting that, for the trace undergoing zipping/unzipping
dynamics, the best fit was given by a memory kernel with two exponentials, whose
estimated parameters are again presented in the caption of Figure 8.6. Here, we
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observe an increase of the Markovian friction coefficient (one order of magnitude)
while γ1 and γ2 have the same order of magnitude as γ1 for the folded unfolded
case. Again we observe a large typical time τ1 ≈ 0.76, for which the same consider-
ations as above can be made, in addition to a smaller typical time τ2 ≈ 10−2 which
is more compatible with molecular timescales.

To sum up, in this paragraph we showed how the VSR can be used to deduce the
memory kernel characterising the effective dynamics of a bead attached to DNA
hairpin. Due to the lack of a sufficiently large pool of analysed traces and to the
possibility of systematic errors occurred during the measurements, we cannot yet
assert precisely how the fitted parameters are related to molecular constructs of
the hairpin. However, we are confident that this VSR based procedure could be
useful for future applications and for similar estimation tasks as those shown in
this section.

8.3.1 Reversed TUR and Fano factor

Another interesting consequence of the non-Markovian VSR can be derived by con-
sidering the total external work done on the particles for a constant dragging at
velocity v 6= 0. This is given by the generalisation of (3.41) for N particles and for
λ(t) = vt, i.e.

Wtot(xt, t) =v ∑
n

∫ t

0
dt′ ∂vt′U

(
xn

t′ − vt′
)
=

=− v ∑
n

∫ t

0
dt′ ∂xn

t′
U
(
xn

t′ − vt′
)
= N v

∫ t

0
dt′ F({xn

t′}) .
(8.43)

Its average can be readily evaluated by switching to the equilibrium reference frame,
corresponding to a change of variables yn

t = xn
t − vt and characterised by the equi-

librium PDF

P̃eq({yn
t }) ∝ exp

[
−β

(
∑
n

V(yn
t ) + ∑

n, m 6=n
Uint(|yn

t − ym
t |)
])

, (8.44)

where Uint(|xn
t − xm

t |) is defined in (8.6), V(yn
t ) = U(yn

t ) + γ̂ v yn
t is a tilted potential

for the variables in the moving frame and v yn
t comes from the transformed GLE in

terms of yt, obtained from (8.5) by setting xn
t = yn

t + vt. From this one readily sees
that the average of (8.43) becomes

〈Wtot〉t =− v ∑
n

∫ t

0
dt′
∫

∏
n′

dyn′
t′ P̃eq({yn

t }) ∂yn
t′

U
(
yn

t′
)
=

=− v ∑
n

∫ t

0
dt′
∫

∏
n′

dyn′
t′ P̃eq({yn

t′})
(

∂yn
t′

V
(
yn

t′
)
− ∑

m 6=n
f (yn

t′ , ym
t′ )− γ̂ v

)
=

=N γ̂ v2 t + v kBT ∑
n

∫ t

0
dt′
∫

∏
n′ 6=n

dyn′
t′

∫
dyn

t′ ∂yn
t′

P̃eq({yn
t′}) =

=N γ̂ v2 t .
(8.45)
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where in the second line we used that ∑n, m 6=n f (yn
t′ , ym

t′ ) = 0 while in the third line

we noted that ∂yn
t′

P̃eq({yn
t′}) = −β

(
∂yn

t′
V
(
yn

t′
)
−∑m 6=n f (yn

t′ , ym
t′ )
)

P̃eq({yn
t′}) and

that
∫

dyn
t′ ∂yn

t′
P̃eq({yn

t′}) = 0 because the PDF becomes zero at the boundaries. As
regards its variance, one readily sees from (8.43) that

〈∆W2
tot〉t = N2 v2

∫ t

0
dt′
∫ t

0
dt′′ Cov(F({yn

t′}), F({yn
t′′})) . (8.46)

This in turn implies that, the non-Markovian VSR (8.35) can be rewritten as∫ t

0
dt′ Γ(t− t′)

∫ t′

0
dt′′ Γ(t′−t′′)Var (xt′′ − x0) + 〈∆W2

tot(xt, t)〉/N2 v2 =

=2 kBT
∫ t

0
dt′
∫ t′

0
dt′′ Γ(t′′) .

(8.47)

For the class of positive memory kernel, i.e. such that Γ(t) ≥ 0 for every t and
including a large number of relevant examples, one clearly sees that (8.47) leads to

〈∆W2
tot〉t

N2 v2 ≤ 2 kBT
∫ t

0
dt′
∫ t′

0
dt′′ Γ(t′′) ≤ 2 kBT

∫ t

0
dt′
∫ ∞

0
dt′′ Γ(t′′) = 2 kBT γ̂ t ,

(8.48)
i.e.

〈∆W2
tot〉t

〈Wtot〉t
≤ 2 N kBT (8.49)

where we used (8.45) to get this last inequality. The ratio on the left hand side
of (8.49) is also known as the Fano factor [138] of the total work. By the ratio of
variance over average, it quantifies how an observable is relatively spread in a way
opposite to a signal to noise ratio (SNR). By further exploiting that, in a steady state
and in analogy with equation (3.40), it holds that

〈Σtot〉t = 〈Σenv〉t = β〈∆Q〉 = β (〈Wtot〉t − 〈∆E〉t) = β〈Wtot〉t , (8.50)

where we noted that 〈∆E〉t = 〈U〉t − 〈U〉0 = 0, one also readily sees that (8.49)

〈Wtot〉2t
〈∆W2

tot〉t
≥ 〈Σtot〉t

2 N
, (8.51)

that is a form of reversed thermodynamic uncertainty relation (RTUR) for the observable
work. The latter is not an integrated current and, moreover, even for Markovian dy-
namics, the drift vector of the LE associated to this model is time dependent, hence
the TUR was not expected to hold. However, it is a curious fact that for a simple
constant-velocity dragging, this TUR is reversed at all times. This violation of the
TUR at all times was noted in [20] for Markovian systems: it is as a byproduct of
their generalisation of the TUR for arbitrary time-dependent protocols and a wider
class of observables (such as the work).

To conclude, we add that also the TUR (5.29) leads to a bound to the Fano factor,
this time for the entropy production. Indeed, the latter can be taken as observable
the R(ωt) in (5.29), i.e.

〈∆Σ2
tot〉t

〈Σtot〉t
≥ 2 kBT . (8.52)
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This lower bound on a Fano factor contrasts with the upper bound of (8.49). These
examples show that it is not trivial to predict which kind of inequalities may hold
for non-autonomous, driven systems. Either upper and lower bounds can be found
for Fano factors of thermodynamic observables not so different from each other.

8.4 Chapter conclusions

To conclude, in this chapter we presented a non-Markovian version of the VSR
whose main use, at the moment, is the estimation of the parameters defining the
non-Markovian memory kernel Γ(t). We first tested the performances of our esti-
mation method on simulated data obtaining a nearly perfect agreement between
the estimated parameters and those used to simulate the data. Encouraged by this
result, we apply the same method to experimental time traces of a bead attached to
a DNA hairpin and trapped by optical tweezers. In this case, the estimated char-
acteristic times seem to be too large if compared to the typical times associated to
a molecular dynamics, such that of a jumping DNA hairpin. We believe that such
overestimation is due to experimental noise (pink noise) and drift effects, which
must be removed. As a consequence, a more complete and refined analysis of such
traces is postponed to future work. Finally, we also show that the non-Markovian
VSR leads to a lower bound to the Fano factor of the thermodynamic work (8.49) for
a system dragged at constant velocity v, differently from the TUR which, instead,
leads to an upper bound of the Fano factor for the total entropy production.



CHAPTER 9

CONCLUSIONS

In Brownian motion, from the variance of displacements it is possible to measure
a physically relevant quantity as the diffusion constant or the friction coefficient of
a particle. We have generalised this approach by providing variance sum rules for
systems of confined particles, which can be used to infer other relevant parameters
also for regimes far from equilibrium. Estimations of parameters and entropy pro-
duction via a new formula are favoured by our approach. A specific sum rule is
also used to estimate an effective memory kernel describing the dynamics of com-
plex systems where many degrees of freedom are involved and where a detailed
Markovian description of the system is hard to handle. All of this shows that the
indetermination of stochastic motion is a resource that we should continue to un-
derstand and exploit for measuring physical quantities.

Of course, the very same variance is a negative factor for the precision of stochas-
tic processes, as characterised by thermodynamic uncertainty relation. This says
that dissipation is needed for having currents with low variance. Nevertheless,
with the kinetic uncertainty relation we have shown that the degree of agitation, as
quantified by the mean jumping rate in a discrete system, is a kinetic upper limit to
precision as well. In fact, we have often found that it is the main limit to precision
in systems far from equilibrium.

Let us conclude by listing again some original results we have discussed in this
work

• A generalisation of the Laplace transform, which allows to study steady states
of dragged particles (Chapter 3).

• The kinetic uncertainty relation (Section 5.3).

• Some uncertainty relations for systems with memory (Section 5.5).

• The exact solution of some linear models also in regimes not solved previously
(Chapter 6).

• The variance sum rule for a multidimensional system, in which one observes a
deviation from linearity of the sum of variances that quantifies non-equilibrium
(Chapter 7).

• The variance sum rule for a non-Markovian system and its utility in estimat-
ing memory kernels (Chapter 8).

• A new formula for the entropy production rate, based on the variance sum
rule at short times (Section 7.3.2.1).
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APPENDICES

A.1 Appendix A: Limits of susceptibilities

In this section we discuss the limits of the position susceptibility defined in Laplace
space as

χ̂x(k) = [mk2 + k Γ̂(k) + κ]−1 (A.1)

along with the limit of its integral and and of its derivative,

χ(t) ≡
∫ t

0
dt′χx(t′) , χv(t) ≡ ∂tχx(t) . (A.2)

To this end we use that for a given function g(t) it holds

lim
t→0

g(t) = L−1
t

[
lim
k→∞

ĝ(k)
]

, lim
t→∞

g(t) = L−1
t

[
lim
k→0

ĝ(k)
]

. (A.3)

We first consider the long time limit of the susceptibilities

lim
t→∞

χx(t) = L−1
t

[
lim
k→0

1
mk2 + k Γ̂(k) + κ

]
≈ L−1

t

[
1
κ

]
=

2δ(t)
κ

t→∞
= 0 ,

lim
t→∞

χ(t) = L−1
t

[
lim
k→0

1
k(mk2 + k Γ̂(k) + κ)

]
≈ L−1

t

[
1

kκ

]
=

θ(t)
κ

t→∞
= 1/κ ,

lim
t→∞

χv(t) = 0 ,

(A.4)

where the last line immediately follows from the first line. Note that all this limits
do not depend on m and hence they hold for both underdamped and overdamped
dynamics. Things become different in the limit of t → 0, where the the mk2 term
becomes dominant. Indeed, for underdamped dynamics, i.e. for finite m, we get

lim
t→0

χunder
x (t) = L−1

t

[
lim
k→∞

[mk2 + k Γ̂(k) + κ]−1
]
≈ L−1

t

[
1

mk2

]
=

t
m

t→0
= 0 , (A.5)

where we used that lim
k→∞

mk2

k Γ̂(k)
� 1. In fact Γ̂(k)

k→∞
∝ k would correspond to bal-

listic motion which we do not consider, see [77] for more details. As for its integral
and derivative of course we have that

lim
t→0

χunder(t) = lim
t→0

∫ t

0
dt′χunder

x (t′) ≈ t2

2m
t→0
= 0 , lim

t→0
χunder

v (t) = lim
t→0

∂tχ
under
x (t) ≈ 1

m
.

(A.6)
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We see that this result does not depend on the kernel form, in fact inertial effects
dominate the particle behaviour in the small time limit. Moreover, it is clear from
the last formulae that one can not simply take the massless limit m→ 0 a posteriori
to recover overdamped dynamics, because otherwise the limit of the susceptibilities
would be ill defined. Instead, the correct procedure would correspond to calculate
all the susceptibilities taking the mass m exactly equal to zero a priori, i.e. one
should compute

lim
t→0

χover
x (t) = L−1

t

[
lim
k→∞

[kΓ̂(k) + κ]−1
]

(A.7)

that now depends on the details of the memory kernel. Consider for example a
memory kernel consisting of a piece proportional to a Dirac delta, which alone
would make the dynamics Markovian, plus a sum of exponentials.

Γexp(t) = 2γ0δ(t) + ∑
i

γi

τi
e−t/τi , (A.8)

Its Laplace transform is equal to

Γ̂exp(k) = γ0 + ∑
i

γi

1 + kτi
. (A.9)

This is an important example, as a finite sum of appropriately chosen exponentials
can approximate, up to a certain time scale, every memory kernel even if γ̂ does not
converge, see [77] for more details.

Going back to the overdamped susceptibility, we have that

lim
t→0

χ
exp, over
x (t) = L−1

t

[
lim
k→∞

[k Γ̂exp(k) + κ]−1
]
≈ L−1

t

[
1

kγ0(1 + 1
k γ0

∑i
γi
τi
+ κ

k γ0
)

]
≈

≈ L−1
t

[
1

kγ0
− 1

(kγ0)2

(
∑

i

γi

τi
+ κ

)]
=

1
γ0
− t

γ2
0

(
∑

i

γi

τi
+ κ

)
,

(A.10)

lim
t→0

χexp, over(t) = lim
t→0

∫ t

0
dt′χexp, over

x (t′) ≈ t
γ0

t→0
= 0 , (A.11)

lim
t→0

χ
exp, over
v (t) = lim

t→0
∂tχ

exp, over
x (t) ≈ − 1

γ2
0

(
∑

i

γi

τi
+ κ

)
. (A.12)

We see that that, for this particular kernel, the overdamped limit requires the pres-
ence of the piece proportional to the Dirac delta. A more detailed discussion of this
problem can be found in [87].

A.2 Appendix B: Calculation of C(t′, t′′)

This appendix is dedicated to the calculation of the following quantity

C(t′, t′′) = 〈φ(t′)φ(t′′)〉 =
∫ t′

tm
ds′

∫ t′′

tm
ds′′χx(t′ − s′)χx

(
t′′ − s′′

)
〈η(s′)η

(
s′′
)
〉 =

= kBT
∫ t′

tm
ds′

∫ t′′

tm
ds′′χx(t′ − s′)χx

(
t′′ − s′′

)
Γ
(
|s′ − s′′|

)
.

(A.13)
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In the last line we used the second fluctuation-dissipation theorem
〈η(t′)η (t′′)〉 = kBTΓ (|t′ − t′′|) that relates the correlation of the noise to the mem-
ory kernel. Taking the double modified Laplace transform of both sides of equation
(A.13) we get

βLtm
k′

[
Ltm

k′′
[
C(t′, t′′)

]]
=

=
∫ ∞

tm
dt′e−k′t′

∫ ∞

tm
dt′′e−k′′t′′

∫ t′

tm
ds′

∫ t′′

tm
ds′′χx(t′ − s′)χx

(
t′′ − s′′

)
Γ
(
|s′ − s′′|

)
=

=
∫ ∞

tm
ds′

∫ ∞

tm
ds′′

∫ ∞

s′
dt′e−k′t′

∫ ∞

s′′
dt′′e−k′′t′′χx(t′ − s′)χx

(
t′′ − s′′

)
Γ
(
|s′ − s′′|

)
=

=
∫ ∞

tm
ds′e−k′s′

∫ ∞

tm
ds′′e−k′′s′′

∫ ∞

0
du′e−k′u′

∫ ∞

0
du′′e−k′′u′′χx(u′)χx

(
u′′
)

Γ
(
|s′ − s′′|

)
=

= χ̂x(k′)χ̂x
(
k′′
) ∫ ∞

tm
ds′e−k′s′

∫ ∞

tm
ds′′e−k′′s′′Γ

(
|s′ − s′′|

)
,

(A.14)

where β = 1/kBT as usual. Moreover, we again used that
∫ ∞

tm
dt
∫ t

tm
dt′ =

∫ ∞
tm

dt′
∫ ∞

t′ dt
between the second and the third line and then we made the change of variable
u = t− s. Focusing on the remaining integrals, we have that∫ ∞

tm
ds′e−k′s′

∫ ∞

tm
ds′′e−k′′s′′Γ

(
|s′ − s′′|

)
=

=
∫ ∞

tm
ds′

∫ ∞

tm
ds′′e−k′(s′−s′′)e−s′′(k′+k′′)Γ

(
|s′ − s′′|

)
=

σ=s′−s′′
=

∫ ∞

tm
ds′′e−s′′(k′+k′′)

∫ ∞

tm−s′′
dσ e−k′σΓ (|σ|) =

=
∫ ∞

tm
ds′′e−s′′(k′+k′′)

(∫ ∞

0
dσ e−k′σΓ (σ) +

∫ 0

tm−s′′
dσ e−k′σΓ (−σ)

)
=

=
e−tm(k′+k′′)

k′ + k′′
Γ̂(k′) +

∫ ∞

tm
ds′′e−s′′(k′+k′′)

∫ 0

tm−s′′
dσ e−k′σΓ (−σ) ,

(A.15)

where in the last line we recognised the Laplace transform of Γ(t) and used that

∫ ∞

tm
ds′′e−s′′(k′+k′′) =

e−tm(k′+k′′)

k′ + k′′
. (A.16)

As for the second term in the last line of equation (A.15), using integration by parts
we get ∫ ∞

tm
ds′′e−s′′(k′+k′′)

∫ 0

tm−s′′
dσ e−k′σΓ (−σ) =

= −
(

e−s′′(k′+k′′)

k′ + k′′

∫ 0

tm−s′′
dσ e−k′σΓ (−σ)

) ∣∣∣∞
tm
+
∫ ∞

tm
ds′′

e−k′′s′′−k′tm

k′ + k′′
Γ
(
s′′ − tm

)
=

=
∫ ∞

tm
ds′′

e−k′′s′′−k′tm

k′ + k′′
Γ
(
s′′ − tm

) u=s′′−tm=
e−tm(k′+k′′)

k′ + k′′
Γ̂(k′′) .

(A.17)
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where we noted that the first term in the second line is equal to zero. Going back to
equation (A.15) and remembering that we started from (A.14) we finally obtain

βLtm
k′

[
Ltm

k′′
[
C(t′, t′′)

]]
= χ̂x(k′)χ̂x

(
k′′
) Γ̂(k′) + Γ̂(k′′)

k′ + k′′
e−tm(k′+k′′) . (A.18)

Recalling the definition of the position susceptibility via its Laplace transform and
its relation with the memory kernel χ̂x(k) = [mk2 + kΓ̂(k) + κ]−1 and doing some
algebra it is possible to show that

βLtm
k′

[
Ltm

k′′
[
C(t′, t′′)

]]
=

[
χ̂x(k′)

k′′(k′ + k′′)
+

χ̂x(k′′)
k′(k′ + k′′)

+

− κ
χ̂x(k′)

k′
χ̂x(k′′)

k′′
−mχ̂x(k′)χ̂x(k′′)

]
e−tm(k′+k′′) .

(A.19)

The inverse transformation back to real time yields

βC(t′, t′′) =Ltm,−1
t′

[
χ̂x(k′)e−tmk′Ltm,−1

t′′

[
e−tmk′′

k′′(k′ + k′′)

]]
+

+ Ltm,−1
t′′

[
χ̂x(k′′)e−tmk′′Ltm,−1

t′

[
e−tmk′

k′(k′ + k′′)

]]
+

− κLtm,−1
t′

[
χ̂x(k′)e−tmk′

k′

]
Ltm,−1

t′′

[
χ̂x(k′′)e−tmk′′

k′′

]
+

−mLtm,−1
t′

[
χ̂x(k′)e−tmk′

]
Ltm,−1

t′′

[
χ̂x(k′′)e−tmk′′

]
.

(A.20)

Using that

Ltm,−1
t′

[
1

k′(k′ + k′′)

]
=

1
k′′
− e−t′k′′

k′′
, Ltm,−1

t′

[
e−tmk′

]
= 2δ(t′ − tm) , (A.21)

along with the generalised convolution theorem, we are able to show that (A.20)
becomes

C(t′, t′′) =kBT
[
χ(t′ − tm) + χ(t′′ − tm)− θ(t′ − t′′)χ(t′ − t′′)+

− θ(t′′ − t′)χ(t′′ − t′)− κχ(t′ − tm)χ(t′′ − tm)−mχx(t′ − tm)χx(t′′ − tm)
]

.

(A.22)

A.3 Multidimensional covariance matrix

We show how to calculate the components of the 2n× 2n covariance matrix associ-
ated to the multidimensional GLE (5.109). In order to do so, we use the expressions
for the position and velocity which read

xi(t) = xi
tm

(
1− κiχi(t− tm)

)
+mvi

tm χi
x(t− tm) +

∫ t

tm
dt′χi

x(t− t′)
[

Fi(t′) + ηi(t′)
]

,

(A.23)
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vi(t) = −κixi
tm χi

x(t− tm) + mvi
tm χi

v(t− tm) +
∫ t

tm
dt′χi

v(t− t′)
[

Fi(t′) + ηi(t′)
]

.

(A.24)
The velocity, if not averaged, is not defined in the overdamped limit (there should
be an additional term of the form χi

x(0)(Ft + ηi(t)) which is singular for over-
damped dynamics and equal to zero in the underdamped case). Nevertheless, for
m = 0, the covariance matrix has only n× n components and the cross correlation
between position and velocity are not needed to define such matrix. Hence the ex-
pression above perfectly works for our scopes. In a similar way as done in [80] we
define

φi(t) =
∫ t

tm
dt′χi

x(t− t′)ηi(t′) (A.25)

and, by doing so, one can show that

Cij(t′, t′′) =〈φi(t′)φj(t′′)〉 =
∫ t′

tm
ds′

∫ t′′

tm
ds′′χi

x(t
′ − s′)χj

x
(
t′′ − s′′

)
〈ηi(s′)η j (s′′)〉

=kBTi δij

[
χi(t′ − tm) + χi(t′′ − tm)− θ(t′ − t′′)χ(t′ − t′′)− θ(t′′ − t′)χi(t′′ − t′)+

− κiχi(t′ − tm)χ
i(t′′ − tm)−mχi

x(t
′ − tm)χ

i
x(t
′′ − tm)

]
.

(A.26)

Using this result, one can finally calculate the four matrices composing the the mul-
tidimensional covariance matrix

St, tm =

(
Covtm(xi

t, xj
t) Covtm(xi

t, vj
t)

CovT
tm(xi

t, vj
t) Covtm(v

i
t, vj

t)

)
(A.27)

that are respectively

Covtm(xi
t, xj

t) =〈x
ixj〉tm,t − 〈xi〉tm,t〈xj〉tm,t =

=Cov(xi
tm , xj

tm
)
(

1− κiχi(t− tm)
) (

1− κ jχj(t− tm)
)
+

+ mCovtm(xi
tm , vj

tm
)
(

1− κiχi(t− tm)
)

χ
j
x(t− tm)+

+ mCovtm(xj
tm

, vi
tm)
(

1− κ jχj(t− tm)
)

χi
x(t− tm)+

+ m2 Covtm(v
i
tm , vj

tm
)χi

x(t− tm)χ
j
x(t− tm)+

+ kBTiCij(t, t) =

=Cov(xi
tm , xj

tm
)
(

1− κiχi(t− tm)
) (

1− κ jχj(t− tm)
)
+

+ mCovtm(xi
tm , vj

tm
)
(

1− κiχi(t− tm)
)

χ
j
x(t− tm)+

+ mCovtm(xj
tm

, vi
tm)
(

1− κ jχj(t− tm)
)

χi
x(t− tm)+

+ m2 Covtm(v
i
tm , vj

tm
)χi

x(t− tm)χ
j
x(t− tm)+

+ kBTiδij

[
2χi(t− tm)− κi

(
χi(t− tm)

)2
−m

(
χi

x(t− tm)
)2 ]

,

(A.28)



APPENDICES 155

Covtm(xi
t, vj

t) =〈x
ivj〉tm,t − 〈xi〉tm,t〈vj〉tm,t =

=− κ j Cov(xi
tm , xj

tm
)
(

1− κiχi(t− tm)
)

χ
j
x(t− tm)+

+ mCovtm(xi
tm , vj

tm
)
(

1− κiχi(t− tm)
)

χ
j
v(t− tm)+

−mκ j Covtm(xj
tm

, vi
tm)χ

j
x(t− tm)χ

i
x(t− tm)+

+ m2 Covtm(v
i
t, vj

t)χ
i
x(t− tm)χ

j
v(t− tm)+

+ kBTi
(

∂t′Cij(t′, t′′)
∣∣∣
t′=t′′=t

=

=− κ j Cov(xi
tm , xj

tm
)
(

1− κiχi(t− tm)
)

χ
j
x(t− tm)+

+ mCovtm(xi
tm , vj

tm
)
(

1− κiχi(t− tm)
)

χ
j
v(t− tm)+

−mκ j Covtm(xj
tm

, vi
tm)χ

j
x(t− tm)χ

i
x(t− tm)+

+ m2 Covtm(v
i
tm , vj

tm
)χi

x(t− tm)χ
j
v(t− tm)+

+ kBTiδij

[
χi

x(t− tm)− κiχi
x(t− tm)χ

i(t− tm)−

−mχi
v(t− tm)χ

i
x(t− tm)

]
,

(A.29)

Covtm(v
i
tm , vj

tm
) =〈vivj〉tm,t − 〈vi〉tm,t〈vj〉tm,t =

=κ jκi Cov(xi
tm , xj

tm
)χi(t− tm)χ

j
x(t− tm)+

−mκi Covtm(xi
tm , vj

tm
)χi

x(t− tm)χ
j
v(t− tm)+

−mκ j Covtm(xj
tm

, vi
tm)χ

j
x(t− tm)χ

i
v(t− tm)+

+ m2 Covtm(v
i
tm , vj

tm
)χi

v(t− tm)χ
j
v(t− tm)+

+ kBTi
(

∂t′∂t′′Cij(t′, t′′)
∣∣∣
t′=t′′=t

=

=κ j κi Cov(xi
tm , xj

tm
)χi(t− tm)χ

j
x(t− tm)+

−mκi Covtm(xi
tm , vj

tm
)χi

x(t− tm)χ
j
v(t− tm)+

−mκ j Covtm(xj
tm

, vi
tm)χ

j
x(t− tm)χ

i
v(t− tm)+

+ m2Covtm(v
i
tm , vj

tm
)χi

v(t− tm)χ
j
v(t− tm)+

+ kBTiδij

[ 1
m
− κi

(
χi

x(t
′ − tm)

)2
−m

(
χi

v(t
′ − tm)

)2 ]
.

(A.30)
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