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Abstract

The Internet of Things (IoT) paradigm is nowadays applied to multiple do-

mains, including Smart Cities, Smart Industry and Smart Agriculture. To

support the specific requirements of these scenarios, Low Power Wide Area

Network (LPWAN) technologies have been developed, among which Long

Range Wide Area Network (LoRaWAN) and Narrowband IoT (NB-IoT) play a

dominant role.

This thesis aims at evaluating the performance of these technologies by con-

sidering both traditional IoT scenarios and more challenging use cases, such

as industrial monitoring or remote drone tracking, which have strict com-

munication requirements in terms of reliability and delay. To estimate the

network performance in all these domains, mathematical modeling and net-

work simulations have been used, leveraging the ns-3 lorawan module. From

these evaluations, it is appearent that a proper technology configuration has a

significant impact on the system’s performance, and that multiple elements

should be taken into account when implementing an IoT system.

Another aspect considered in this thesis regards the energy efficiency: indeed,

although LPWAN technologies are designed to be low power, the evaluation

on real testbeds can help in assessing the correctness of the node’s behavior

and the impact of the network settings on the device lifetime. Furthermore,

most of the IoT devices are currently battery-powered, an approach that is not

economically sustainalble, nor environmental friendly. A possible alternative is

to implement Green IoT systems by providing IoT nodes with a mechanism that

allows them to harvest power from renewable sources. The thesis applies this

concept to LoRaWAN devices, and discusses its feasibility by leveraging ns-3

simulations and experiments on real testbeds. Finally, in the last chapter of the

thesis, we present experimental results considering the energy consumption of

a NB-IoT device connected to different operators’ networks, evaluating several

configurations.

v





Sommario

Attualmente il concetto di Internet of Things (IoT) è applicato a diversi am-

biti, che spaziano da applicazioni di Città Intelligenti (Smart City) a quelle

in ambito industriale e agricolo (Smart Industry e Smart Agriculture). Per

rispondere agli specifici requisiti di questi scenari sono state progettate le

tecnologie Low Power Wide Area Network (LPWAN), tra le quali Long Range

Wide Area Network (LoRaWAN) e Narrowband IoT (NB-IoT) hanno un ruolo

predominante.

Obiettivo di questa tesi è valutare le prestazioni di queste tecnologie, con-

siderando sia scenari IoT “tradizionali”, sia casi d’uso più impegnativi, come

il monitoraggio di sistemi industriali e la localizzazione di droni da remoto,

dove i requisiti di comunicazione in termini di affidabilità e latenza sono più

stringenti. Per stimare le prestazioni di rete in questi ambiti sono stati impie-

gati modelli matematici e simulazioni di rete che utilizzano il modulo lorawan
di ns-3. Da queste valutazioni emerge che un’appropriata configurazione della

tecnologia di comunicazione ha un impatto significativo sulle prestazioni del

sistema, e che vari fattori devono essere considerati quando si implementa un

sistema IoT.

Un altro aspetto considerato in questa tesi è quello del consumo energetico:

infatti, nonostante le tecnologie LPWAN siano progettate per avere basso

consumo, la loro valutazione in sistemi reali può contribuire a verificare il

corretto comportamento del nodo e l’impatto dei settaggi di rete sul ciclo di

vita del dispositivo. Inoltre, molti dispositivi IoT sono attualmente alimentati a

batterie, un approccio poco sostenibile economicamente e con grande impatto

ecologico. Pertanto, una possibile alternativa è implementare sistemi di Green
IoT, equipaggiando i nodi IoT con meccanismi che permettono di assorbire

energia da sorgenti rinnovabili. La tesi applica questo concetto a dispositivi

LoRaWAN e ne discute la fattibilità utilizzando simulazioni ns-3 e esperimenti

con dispositivi reali. Infine, nell’ultimo capitolo della tesi, sono presentati
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risultati sperimentali che considerano il consumo energetico di un dispositivo

NB-IoT connesso a reti di diversi operatori, e ne valutano varie configurazioni.
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1Introduction

The Internet of Things (IoT) is a new paradigm according to which every object

can potentially be connected to the Internet. This disruptive concept enables

the remote monitor and control of a wide set of heterogeneous objects through

an Internet connection, a capability that enables various services in a wide

array of scenarios and that can impact our lifestyle and everyday activities.

For example, cities could benefit from smart lighting control, a more efficient

waste management, and continuous infrastructure monitoring [1, 2], which

are examples of the so-called Smart City applications, that can improve citizens

security, offer better public services and reduce the city’s costs. In industrial

scenarios, connected sensors can be adopted to implement the Industrial Inter-
net of Things (IIoT), helping in the continuous monitoring of the production

process, and making it possible to quickly detect or even predict failures. In

the agricultural sector the widespread collection of environmental data, such

as temperature and soil moisture, can improve quantity and quality of the soil

production, while reducing costs (Smart agriculture applications) [3]. Health

monitoring, home security and home automation are yet other examples of

possible application scenarios [4, 5]. Therefore, what in the last years was

just a vision is currently being deployed into different domains, thanks to the

strong push from the industrial community and city administrators. Indeed,

minimizing maintenance costs and waste through a sharper monitoring pro-

cesses’ efficiency and resource consumption makes it possible to increase both

the production and the quality of the services offered to the final users.

In general, the communication needs of IoT scenarios differ significantly

from the classic high-throughput and low-delay requirements that have so-

far driven the design of traditional communication systems. For example,

in many IoT scenarios, supporting sporadic transmissions of short packets

from a massive number of devices is more important than providing stable

high-throughput connections to a few users [6]. Furthermore, long-range

communication technologies are required to minimize the infrastructure and

provide connectivity in remote areas and with low power consumption, so that

the IoT nodes (usually sensors) can work for a longer time. To address these

requirements, new communication technologies have been recently proposed

under the name of Low Power Wide Area Network (LPWAN). Depending on

the specific application considered, one technology may fit better than the
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others, and the variety of the proposed solutions can therefore be suitable to

fulfill the different use cases. For example, cellular IoT technologies can benefit

from the already existing LTE networks and licensed frequency bands provided

by telecommunication operators, are more reliable in terms of latency, but are

associated with higher subscription costs. On the other hand, other Low Power

Wide Area Network (LPWAN) technologies employ unlicensed frequency bands

and allow the deployment of private networks, which can be under the full

control of the user (with all the advantages and drawbacks). Also, hybrid and

ad hoc solutions can be proposed, according to the needs of the market.

Among the proposed LPWAN solutions for the IoT applications, Long Range

Wide Area Network (LoRaWAN) and Narrowband IoT (NB-IoT) play a major

role. One of the main advantages of LoRaWAN is the flexibility of deployment

and configuration, also motivated by the use of the unlicensed spectrum and

the open standard defining the Medium Access Control (MAC) layer protocol.

LoRaWAN leverages the patented Long Range (LoRa) modulation, whose

performance can be adapted to the considered scenario, providing a reliable

communication even in harsh environments and a coverage range up to few

kilometers. This, together with its low power consumption and high network

scalability, make it one of the best candidate for applications such as Smart

Cities and Smart agriculture. On the other side, NB-IoT can be easily provided

by telecommunication operators that, having complete control of the network,

can offer more guaranteed communication performance, as well as support for

a proper configuration of the network, to fit the users’ needs. Therefore, this

technology can be a more reliable candidate for IIoT applications, where the

stronger channel impairments can be mitigated by a more dense infrastructure.

In this thesis, we focus on the evaluation of some LPWAN technologies consid-

ering several aspects. We evaluate the performance of LoRaWAN networks in

terms of scalability, communication reliability, and delay performance in differ-

ent scenarios, spanning from the most traditional IoT applications, to more

“challenging” use cases, where the application needs to transmit as frequently

as possible, and a reliable communication with short delays is required. We

also analyze a Green IoT solution, where, instead of using batteries, the device

harvests the required energy from renewable external sources.

Assessing the technology capabilities in such scenarios can help answer ques-

tions of uttermost importance when considering IoT networks, such as

(i) How should the network be configured to achieve given performance in

terms of scalability, data successful delivery, minimum delay?
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(ii) What is the trade-off between communication reliability and network

scalability? Is it possible to improve it?

(iii) Can we leverage LoRaWAN extended coverage and low-power communi-

cation to support non-traditional IoT applications?

(iv) What is the impact of external regulations about the use of the unlicensed

frequency spectrum on network performance?

(v) Is it feasible to apply Green IoT to LoRaWAN?

To answer these questions, we studied LoRaWAN technology with different

approaches. First, we developed a mathematical model that captures the

main features of the technology and its specificities. Second, we used the

popular ns-3 network simulator to investigate the impact of several possible

system settings on different applications. The advantage of the simulator is

that it offers a rather complete and accurate representation of the full protocol

stack, making it possible also to evaluate the effect of possible changes in the

protocol design. However, the high accuracy comes at the price of long and

computational costly simulations compared to the mathematical modeling.

At the same time, the simulator makes it possible to study the behavior and

performance of a complete network before the actual installation, easing the

configuration of all the nodes. A third approach we followed was experimental,

on real testbeds, to assess whether the empirical behavior was coherent with

what was theorized.

Finally, we consider the energy performance of NB-IoT nodes, deeply evaluat-

ing the impact of each operational phase of the device, and the effect of timers

values and communication settings. Since NB-IoT employs the infrastructure

provided by private telecommunication operators, the node does not have

full control of the communication and network settings, and the choice of the

operator can actually impact on the device performance. Therefore, we also

evaluated the impact of the operator, as well as the device choice, on the energy

consumption. To this aim, we performed an extensive measurement campaign,

collecting data in different scenarios and with multiple configurations of the

technology.

This thesis addresses the aforementioned topics providing an in-depth anal-

ysis of the performance of LoRaWAN, under different perspectives, and an

evaluation of NB-IoT with respect to the energy consumption. The presented

results show that LoRaWAN can be an efficient technology both in traditional

IoT scenarios, ensuring communication reliability and network scalability, and
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in more advanced use cases, supporting, for example, tracking applications

and industrial monitoring. However, these results can be obtained only with a

careful tuning of the system’s setting and technology parameters. Furthermore,

the considerations on the energy consumption demonstrate that devices can

be prone to high consumption if the network and/or the technology are not

carefully configured, and that more ecological solutions adopting harvesting

techniques can be viable but require further investigations.

The rest of this thesis is structured as follows. Chapter 2 presents the main

technologies that are in the field for IoT applications, describing the differences

between the various categories and then focusing on the functioning and

protocols of NB-IoT and LoRaWAN . Chapter 3 introduces the lorawan module

for the ns-3 simulator. The module has been extensively employed to obtain

most of the results presented in this dissertation. Chapters 4 and 5 investigate

the LoRaWAN performance in traditional applications and more challenging

scenarios, respectively. The energy consumption is the focus of the last part

of the thesis. Chapter 6, discusses whether the Green IoT approach with

battery-less devices can be applied to LoRaWAN, assessing the performance

with simulation results and experimental evaluations. Then, Chapter 7 focuses

on the current consumption performance of a NB-IoT node, showcasing that

proper evaluation and careful settings need to be done before deploying the

devices in a plug-and-play fashion. Finally, Chapter 8 summarizes the achieved

results and discusses possible extensions.
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2LPWAN technologies

This section gives an overview of the most important technologies that are

competing for the IoT market. These technologies are classified according to

their coverage range, that determines their suitability for certain applications.

In Sec. 2.1, the chapter first provides a general overview of three groups of

IoT communication technologies, namely Low-Rate Wireless Personal Area

Networks, cellular technologies for the IoT, and Low Power Wide Area Net-

works. Then, the chapter focuses on two technologies whose performance

are discussed in the rest of the thesis, i.e., NB-IoT (Sec. 2.2), and the LoRa

modulation and the LoRaWAN standard (Sec. 2.3, and Sec. 2.4).

2.1 Technologies’ overview
IoT technologies are often classified in three categories based on their charac-

teristics in terms of coverage range, throughput, cost and power consumption.

Fig. 2.1, for example, depicts their different capabilities in terms of coverage

range and power consumption. In the following, we give an overview of the

main solution proposed in the market for the three categories.

2.1.1 Low-Rate Wireless Personal Area Network
Low-Rate Wireless Personal Area Network (LR-WPAN) technologies (indicated

in Fig. 2.1 under the name of Short-range Wireless) includes technologies

characterized by low bit rate, low power consumption and short coverage

range, reaching at maximum a few hundred meters. This range can be ex-

tended using a dense deployments of gateways and devices connected in a

multihop mesh network. Such a deployment becomes economically unfeasible

and technically complex in very large scenarios such as cities or wide open-air

areas. The main solutions belonging to this category are the following.

BLE Bluetooth Low Energy (BLE) was defined in 2010 by the Bluetooth

Special Interest Group as a single-hop solution suitable for use cases as

healthcare, consumer electronics and short-range tracking of personal

devices. It operates in the 2.4 GHz Industrial, Scientific, and Medical

(ISM) band, defining 40 channels with different functions. The physical

data rate is 1 Mbps and the coverage range is typically of few tens of

meters. Similarly to Bluetooth, BLE specification defines two device
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Figure 2.1.: Low Power Wide Area Network (LPWAN) vs. legacy wireless technolo-
gies [7].

roles: master and slave. To save energy, slaves can turn their radios

off for some time intervals. However, the star topology does not allow

for path diversity, which is important to overcome radio propagation

impairments and node failures. For this reason, the implementation of

a mesh network topology has been suggested by standard development

organizations, academic community and industries [8].

IEEE 802.15.4 and ZigBee In 1999, IEEE established the 802.15 working

group to develop specific standards for Wireless Personal Area Networks

(WPANs). In particular, the target group four (802.15.4) was given the

responsibility of developing standards for Physical (PHY) and Medium Ac-

cess Control (MAC) layers enabling the transmission of small data flows

consuming a little energy. By using the standard developed by 802.15.4,

ZigBee proposes a complete standard for Low-Rate Wireless Personal

Area Networks (LR-WPANs), adding the specifications for network and

application layers [9]. This technology works in the ISM 2.4 GHz band

and defines 16 channels, which can be selected by the operating device.

Three type of devices are defined. The Personal Area Networks (PANs)

coordinator and the coordinator are defined as Full Function Devices

as they implement all the functionalities of the IEEE 802.15.4 protocol.

They transmit beacon frames to provide global and local synchronization,

respectively. Simple nodes are connected to the coordinators and have

no coordinating functionalities. ZigBee proposes three types of network

topologies: star, tree and mesh. While with star and tree topologies a

single link failure compromises the communication, the mesh topology
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is more robust, since it provides multiple paths from simple nodes to the

coordinator. The specifications require a maximum transmission range of

a hundred meters, a throughput between 20 and 250 kbps and a capacity

of 64000 nodes for each PAN coordinator. The main applications of

Zigbee are found in home automation and healthcare [10].

Z-Wave Z-Wave is a proprietary protocol designed by Zensys mainly for home

automation applications. Only partial information can be found in lit-

erature, since it is a closed standard owned by the Z-Wave Alliance, an

organization that groups all the Z-Wave vendors. It is aimed to support

the exchange of short messages in a reliable manner from a central

control unit to one or more nodes in the network using half duplex

communication. It works in the ISM band around 900 MHz to limit

power consumption and interference with other technologies. Its cover-

age range goes from 30 meters indoor to about 100 meters in outdoor

environments. Two basic kinds of nodes are specified: controlling devices

and slave nodes that receive and execute controlling commands, and,

potentially, answer to them. If required, slave nodes can also forward

commands to other nodes, extending the communication range of the

controller. Controllers also maintain routing tables and one of them (the

primary controller) can include/exclude nodes from the network [11].

2.1.2 Cellular IoT
Cellular technologies for IoT leverage the existing cellular network infrastruc-

ture to offer new services. The network infrastructure is, for most, already

installed and, usually, only a software upgrade is required. One of their main

characteristic is that, differently from the other IoT technologies, they operate

in the licensed spectrum. In the following, we give an overview of the three

solutions proposed by 3GPP in Release 13 [12]. Notice that connectivity for

IoT and Massive Machine Type Communication (mMTC) is also among the use

cases of 5G networks.

EC-GSM Extended Coverage GSM (EC-GSM) has been proposed to improve

already existing GSM/EDGE networks, providing services to areas where

Long Term Evolution (LTE) is not available. Using repetitions and sig-

nal combining techniques, a coverage of 164 dB Maximum Coupling

Loss (MCL) is reached when using the maximum transmission power

(33 dBm). EC-GSM adds new control and data channels to legacy Global

System fro Mobile communications (GSM) and has the possibility of
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multiplexing new EC-GSM devices with other cellular technologies, such

as legacy Enhanced Data rates for GSM Evolution (EDGE) and Gen-

eral Packet Radio Service (GPRS) [13]. Its deployment only requires a

software upgrade on existing GSM networks and provides a combined

capacity of 50000 devices per cell. eDRX is used to improve power

efficiency and battery life. The achievable rate can vary from 350 bps to

240 kbps depending on the coverage and modulation used [12].

LTE-M LTE-Machine Type Communication (LTE-M), also called Enhanced

Machine-Type Communication (eMTC) aims to enhance LTE technology

for machine-type communications. By reducing bandwidth and maxi-

mum transmit power, it enables new power-saving functionality, lower

device complexity and cost. The coverage is extended up to 155.7 dB

MCL and a low deployment cost for network operator is possible: control

and data are multiplexed in the frequency domain and therefore it is

possible to schedule IoT devices within any legacy LTE system, sharing

the carrier capacity, antenna, radio, hardware and frequency spectrum.

The achieved rate varies between 10 kbps to 1 Mbps, both for Uplink

(UL) and DL communication [12].

NB-IoT Similarly to the previous technology, Narrowband IoT (NB-IoT) reuses

the already existing LTE infrastructure. The main difference is the narrow

bandwidth used: 200 kHz [13]. To adapt it to IoT use cases, LTE

has been simplified, reducing data rate, bandwidth, mobiliy support

and optimizing the protocol. With these adaptations, the number of

devices supported by each cell is about 50000 with an extended coverage

of 164 dB MCL. NB-IoT supports three modes of operation according

to the position of its carrier with respect to the LTE spectrum: stand-

alone, guard band and in-band. Power saving mode described in 3GPP

Release 12 and eDRX are used to increase battery life. The bit rate is

about 250 kbps both in UL and DL. Also in this case, the low costs are

achieved by lowering the complexity of the devices and by the fact that

a software upgrade is sufficient to deploy it in LTE networks. Further

details about this technology and its power saving mechanisms are

provided in Sec. 2.2.

2.1.3 Low Power Wide Area Networks (LPWANs)
The Low Power Wide Area Network (LPWAN)s are halfway between LR-WPANs

and cellular networks. In fact, they have a larger coverage than LR-WPANs,
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but lower cost and less energy consumption than cellular technologies. For

these reasons they are spreading in the market and have already been adopted

in different parts of the world. They are characterized by a star topology

where peripheral nodes are directly connected to a concentrator, that acts as

gateway towards the IP network. Robust modulation allows for the use of these

technologies also in challenging environments, where cellular communication

may fail [14].

Most of the LPWAN technologies use sub-GHz ISM bands, that are unlicensed

and less crowded then 2.4 GHz band used by Wi-Fi and Bluetooth. We present

now an overview of three LPWAN solutions that compete with the LoRaWAN

solution, which will be thoroughly described in the Sec. 2.3, and Sec. 2.4.

Sigfox Sigfox has been the first LPWAN technology proposed in the IoT market

by the homonymous French start-up founded in 2009. The architecture

consists of transmitting devices, gateways and Sigfox back-end. The

coverage is deployed in each country by a Sigfox Network Operator that

owns the whole infrastructure and generally requires a yearly fee for

each device to provide access to the network. By using Ultra Narrow

Band (UNB) communications, Sigfox can transmit a signal occupying a

channel of only 100 Hz, thus benefiting from flat fading and very low

noise contribution. Therefore, it is possible to have a simpler receiver and

to successfully demodulate signals received with extremely low power.

The channel access is random both in time and frequency. The usage

of randomness in the frequency domain makes it possible to limit the

effects of the imprecision due to electrical components deterioration

and oscillator jitter; gateways are configured to continuously scan the

spectrum, listening in parallel on all frequency channels. Since no

acknowledgment is used, the reliability of communication is increased by

making the device transmit three times the same message, on randomly

selected channel. In this way, the transmission benefits from both time

and frequency diversity. Since Sigfox is also subject to regional duty

cycle limitations, each device can send a maximum of 140 messages per

day in UL and receive no more then 4 messages per day in DL. The data

rate is 100 bps in UL and 600 bps in DL [7]; the claimed range is 30-50

km in rural areas and 3-10 km in urban environments. Although Sigfox

technology is one of the most prominent solution in the IoT market, the

limited number of messages per day is a major drawback, as well as the
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fact that the network is owned by Sigfox, which may limit the flexibility

of the deployment.

Weightless Weightless is a set of three standards proposed by the British

company Neul, acquired by Huawei in 2014. Each standard targets

different use-cases, but each of them complies with IoT requirements

of low-power, low-cost and large coverage. Wightless-N is based on

narrow band technology with a star architecture. Transmissions are

performed in the 868 MHz ISM band and there is only support for one-

way communication that achieves a data rate of 30 - 100 kbps. The

coverage range is 5 km also in urban environment, while the device cost

is maintained very low [15]. Wightless-P improves the previous standard

by adding DL communication, that permits the use of acknowledgments

to increase the reliability. The channel band is 12.5 kHz and the access is

performed using Frequency Division Multiple Access (FDMA) and Time

Division Multiple Access (TDMA) schemes. The range is reduced to 2

km in urban environment. Weightless-W takes advantage of the available

TV white spaces, so it uses the frequencies at 470 and 790 MHz. It

also enables coverage and data rate adaptation to better fit the actual

requirements. Time Division Duplexing (TDD) is used to provide UL and

DL pairing, as spectrum is not guaranteed in the TV white space [15].

The range varies from 5 km (indoor) to 10 km (outdoor) and the rate

from 1 kbps to 1 Mbps.

Ingenu Ingenu technology was proposed by the American company On-Ramp

Wireless. The solution is based on the Random Phase Multiple Access

(RPMA) scheme, working in the 2.4 GHz ISM band with a typical channel

bandwidth of 1 MHz. Data are encoded, interleaved, and spread by a

Golden Code, then the signal is randomly delayed before transmission.

The spreading provides a processing gain and makes it possible to adapt

the data rate to the propagation conditions. UL and DL transmissions are

performed in an half-duplex way and their rate varies from 60 bps to 30

kbps [15]. The communication range has been estimated to be up to 10

km in urban environment.

LoRa LoRa is a widespread IoT technology, which is considered more flexible

than others (such as Sigfox) and where only the PHY modulation is

patented. Therefore, each user or company can buy LoRa devices and

build its own network. The LoRa PHY layer makes it possible to adapt
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range and data rate to the different scenarios. LoRa actually refers

to the modulation scheme at PHY layer, while LoRaWAN includes the

specifications at MAC layer, which are promoted by the LoRa Alliance to

set up the network and exploit the properties of the LoRa modulation

at the best way possible. The coverage range varies from 2 to 5 km in

urban areas and from 15 to 30 km in open space, while the raw data rate

ranges between 250 bps to about 5.5 kbps. Since one of the objectives

of this thesis is to simulate and analyze LoRaWAN’s performance, the

features of this technology will be further explored in Sec. 2.3 (LoRa

PHY) and Sec. 2.4 (LoRaWAN specifications).

2.2 Narrowband IoT (NB-IoT)

NB-IoT was proposed by Third Generation Partnership Project (3GPP) in

Release 13 as a standard focused on IoT and Machine Type Communication

(MTC), with the aim of minimizing battery consumption at the price of a lower

data rate and a higher latency. The standardization of NB-IoT was driven

by 3GPP targeting the following main objectives [16]: 1) Improved indoor
coverage: NB-IoT is meant to retain connectivity up to 20 dB beyond the limit

of older technologies aimed at similar use cases, such as GPRS; 2) Support for
massive access of low-throughput devices: the target is 50 thousand devices per

cell, much larger than the typical number of broadband User Equipment (UE)

per cell considered in the classic LTE access; 3) Reduced complexity: NB-IoT is

meant for very cheap and possibly disposable devices, with reduced throughput

requirements, for which the radio has to be very simple; 4) Improved power
efficiency: the target devices are expected to be mostly battery powered, so that

the energy efficiency of the communication is critical to provide a lifetime in

the order of 10 years with batteries of 5 Wh (Watt-hours) capacity; 5) Relaxed
latency requirements: most of NB-IoT use-cases are delay tolerant, and even in

specific scenarios that require some delay guarantees (e.g., event notification

systems), a delay of 10 seconds between action trigger and uplink transmission

is considered reasonable by the specifications.

NB-IoT occupies a bandwidth of 180 kHz within the LTE spectrum, according

to three possible options: (i) Standalone, where NB-IoT is placed in existing

idle spectrum resources, (ii) Guardband, where the LTE guard bands are used

for NB-IoT, and (iii) In-band, where in-band LTE resource blocks are assigned

to NB-IoT [17] (Fig. 2.2).
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Figure 2.2.: NB-IoT operational modes [18]

Table 2.1.: Main features of NB-IoT [17, 19, 20].

Feature NB-IoT

Frequency Licensed LTE frequency bands
Bandwidth 180 kHz
Theoretical peak data rate at the PHY layer 226.7 kbps (DL); 250 kbps (UL)
Range ∼1km (urban); ∼10km (rural)
Handover Not available1

Latency ≤ 10 s
Low power mechanisms eDRX, PSM

The main features of the technology are listed in Table 2.1. Next, we briefly

present the main operational modes and power saving mechanisms of NB-IoT.

2.2.1 Operational phases
This section describes the operational phases of a UE at different time scales, as

schematically illustrated in Fig. 2.3a. At a macro timescale, the UE alternates

between two main states: Connected and Idle. In Connected state, the UE

maintains a control link with the network. When such link is released, the

UE enters the Idle state. In both states, the UE periodically should check for

the availability of DL messages at the Base Station (BS). To reduce power con-

sumption, the UE can employ the Discontinuous Reception (DRX) mechanism

(see Fig. 2.4), which consists in listening/sleep cycles whose time duration

is specified by the DRXCycle parameter. The duration of the listening period

inside a DRXCycle is specified by the OnDurationTimer and is expressed in

multiples of ∼1 ms, corresponding to the duration of a Paging Occasion, i.e., a

time interval during which the UE can receive notifications of pending packets

from the BS. The values of DRXCycle and OnDurationTimer are set by the BS.

The plots in Figs. 2.3b, 2.3c, 2.3d and Fig. 2.5 show some experimental cur-

rent traces with periodic UL traffic. The periods of high current consumption

1The handover functionality is not considered in the standard: therefore, a new connection
procedure is required for mobile devices entering in a cell covered by a different Base
Station (BS). Further, NB-IoT does not officially support mobility. Cell reselection is
intended only for attaching to a cell with better coverage.
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(a) UE’s main operational phases: Connected state, eDRX and PSM procedures in Idle
state.

(b) Current trace showing
UE’s Connected state.

(c) Current trace showing
eDRX procedure.

(d) Current trace showing
PSM procedure.

Figure 2.3.: UE’s operational phases: illustrative scheme and empirical traces of
current consumption.

correspond to intervals in which the device is active transmitting, receiving or

sensing the channel for possible DL messages. In the following, we examine in

more detail the operations in Connected and Idle states.

Connected state
This actually consists of a combination of the following operations: synchro-

nization, transmission/reception, listening and release, which are described

below.

Figure 2.4.: Example of the DRX procedure in Connected state.
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(a) Experiment showing Connected state and
eDRX procedure.

(b) Experiment showing Connected state and
PSM procedure.

Figure 2.5.: Current traces of two experiments where the UE alternates between
Connected and Idle states.

Synchronization (SYNC) This phase is performed by the UE to re-synchronize

with the network whenever it exits from the Idle state. If the UE does not

have any allocated resources, it performs a random access procedure to

initiate the communication with the BS. In our experiments, we observe

that this phase can have a variable duration.

Transmission and Reception (TX/RX) This phase corresponds to the trans-

mission of (one or more) UL messages, each followed by a reception

interval where the UE waits for possible DL data or acknowledgement

packets. In the current traces, the UL transmissions are preceded and

followed by peaks of current consumption, as illustrated in Fig. 2.6. Such

peaks correspond to control signaling traffic. The actual data transmis-

sion causes a lower peak, which lasts longer. In the sequel, we consider

as transmission phase the time between the highest peaks, thus including

signaling associated to the actual packet transmission. As previously

discussed, when the UE exits the Idle state, the first TX/RX phase is pre-

ceded by a SYNC phase to establish a control channel with the BS. The

UE then requests the allocation of transmission resources by performing

a Service Request operation, which in our analysis is considered part of

the TX/RX phase. Instead, if the connection was only suspended rather

than being released, the Service Request is replaced by a Connection

Resume procedure, which is lighter in terms of control signaling.

Listening Period In the Connected state the UE maintains the so-called inac-

tivity timer, which is restarted at any RX/TX event. If the timer expires

the UE performs the release operation and enters the Idle state. The
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Figure 2.6.: First part of the Connected state.

value of the timer is set by the base station, typically in the range be-

tween 10 and 20 seconds. The UE can ask the network to set the value

of this timer to zero using the Release Assistance Indicator (RAI) flag,

explained in Sec. 2.2.2. In this case, the UE leaves the Connected state

immediately after a TX/RX event.

While the inactivity timer is counting down, the UE might keep the

radio on, always listening, or perform Connected state Discontinuous

Reception (cDRX). During cDRX, the UE alternates between high energy

periods of listening for scheduling information and low energy periods of

sleeping. During sleeping periods, the radio consumes ∼90% less energy.

In case of available DL messages, the UE can directly perform a TX/RX

without any SYNC operation. An example of the current consumption in

cDRX is given in Fig. 2.4.

Release The UE releases the connection with the BS and leaves the Connected

state entering the Idle state.

Idle state
In the Idle state, the UE may utilize two power saving mechanisms, in addition

to normal DRX: eDRX or Power Saving Mode (PSM). These mechanisms, better

described below, are based on timers that are negotiated with the network

(see Table 2.2).

eDRX This mechanism is similar to cDRX, but with more sporadic listening

periods. An eDRX cycle does indeed correspond to a sequence of DRX

listening/sleep cycles, called Paging Time Window (PTW), followed by a

long sleep period (see Figs. 2.3a, 2.3c, 2.5a for reference). The overall

duration of an eDRX cycle is determined by the eDRXcycle parameter,
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Table 2.2.: Main timers for DRX, eDRX and PSM. Note that timers used in DRX also
apply to cDRX and eDRX, and that timers configurable by the UE are
actually subject to the network approval, which could also set different
values.

Mode Timer Description Min
Value

Max
Value

Configured
by

DRX
OnDurationTimer Time spent in active listen-

ing
1 ms 200 ms Network

DRXcycle Time interval between the
beginning of two active lis-
tening periods

2 ms 2.56 s Network

eDRX

PTW Duration of Paging Oc-
casions monitoring, com-
posed of multiple DRX cy-
cles

2.56 s 40.96 s UE

eDRXcycle Time interval between the
beginning of two PTWs

20.48 s 10485.76
s

UE

PSM
T3324 Active Timer: duration

of DRX/eDRX within Idle
state (listening for paging)

2 s 410 h UE

T3412 TAU timer: interval be-
tween two TAUs

2 s 410 h UE

Inactivity timer Time spent in Connected
state, after the end of the
last TX/RX

0 s 65.536 s Network

while the period in which the UE performs the DRX cycles is determined

by the PTW parameter [21]. Therefore, the time difference between

eDRXCycle and PTW gives the duration of the sleep period in an eDRX

cycle. When not listening, the radio is off.

PSM This is the most effective power saving technique supported by NB-IoT.

During PSM, the UE switches off its radio for a long period (deep sleep),

but keeps its registration to the network: therefore, when exiting PSM,

the UE just needs to perform a Connection Resume operation. Moreover,

in PSM the UE periodically performs a Tracking Area Update (TAU) oper-

ation to communicate its location to the network. The PSM is character-

ized by two timers, namely T3412 and T3324 (see Figs. 2.3a, 2.3d, 2.5b

for reference). The T3412 timer (or TAUTimer) defines the time interval

between two TAU operations. Each TAU is followed by a period, whose

duration is defined by the timer T3324 (ActiveTimer), during which the

UE listens for paging, similarly to what happens during the PTW. After

this time, the UE enters into a deep sleep state and is no longer reachable

by the network. The UE exits the sleep state when T3412 expires or
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when a new UL data becomes available. Fig. 2.3d shows the current

consumption for the TAU operation, followed by the listening for paging

interval, whose duration is determined by the T3324 timer.

We observe that the TAU timer in PSM can be almost 17 days long. Therefore,

a device entering in PSM will consume a minimum amount of energy, but may

be unreachable from the network for several days if no UL transmission is

required. On the contrary, when adopting the eDRX power saving mechanism,

the UE can be contacted by the network within a limited time interval, but at

the cost of higher energy consumption.

2.2.2 ECL and RAI
One of the objectives of NB-IoT is providing reliable communication to devices

in harsh conditions, such as parking garages and ground pits. Therefore, the

Extended Coverage Level (ECL) feature is introduced to tune the robustness

of the communication. Robustness is primarily achieved by repeating the

messages up to thousands of times, at the cost of a reduced data rate and an

increased delay and energy consumption. The BS can set the ECL parameter

based on the received Narrowband Reference Signal Received Power (NRSRP),

a metric indicating the power of the LTE reference signals. The 3GPP identifies

three different coverage levels, namely Normal (ECL 0), Robust (ECL 1) and

Extreme (ECL 2), which are defined in terms of the target MCL, which is set to

144, 154, and 164 dB for the three levels, respectively.2 Each level is associated

to a certain setting of some transmission parameters, including the transmit

power, the subset of subcarriers, the number of repetitions of random channel

access, and the maximum number of transmission attempts. These result in

prolonged transmission and reception under challenging conditions. In the

worst case, in ECL 2, the number of repetitions may reach 2048 for the DL

and 128 for the UL [22]. Consequently, the transmission delay may reach 10

seconds. The thresholds for each ECL class and the associated transmission

parameters are determined by the operators. The BS monitors the signal

strength of a target device on both the uplink and what the device reports for

the downlink and decides its ECL level. The device does not have any control

on the ECL parameter, but in our experiments, it was possible to retrieve its

current value by using appropriate diagnostic commands.

2MCL is the largest attenuation between the transmitter and the receiver that can be sup-
ported by the system with a defined level of service.
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Table 2.3.: Possible values of Release Assistance Indicator (RAI) field [23].

Flag value Meaning

0x000 No flags set: remain in the Connected state for the
duration of the inactivity timer

0x200 RAI: release after next UL message
0x400 RAI: release after next UL message has been replied to

Conversely, the UE can control the Release Assistance Indicator (RAI) flag that is

carried into signaling messages before any UL transmissions. This flag is used

to notify the BS that, after the upcoming UL transmission, the UE is expecting:

(i) another UL transmission; (ii) a DL message; (iii) none of the previous.

Based on this signaling, the BS can release the connection beforehand (see

Table 2.3), so that the UE can reduce the time spent in cDRX phase, awaiting

incoming DL transmissions. The effects of this parameter will be explored in

the following sections.

2.3 LoRa modulation
LoRa (Long Range) is a proprietary physical layer modulation used to create

long-range wireless links, developed by Semtech and based on the Chirp

Spread Spectrum (CSS) modulation technique. Being covered by a patent,

most of the information is found in semi-official documents published by

Semtech, like [24, 25, 26].

2.3.1 LoRa’s Chirp Spread Spectrum
The principle of CSS is to occupy with the transmission a bandwidth much

larger than the one actually needed for the considered data rate. As explained

in [15], CSS is a subcategory of Direct-Sequence Spread Spectrum (DSSS) and

the receiver can benefit from controlled frequency diversity to recover weak

signals and, thus, achieve a higher sensitivity. This way, the covered range

is increased at the cost of a lower data rate. In CSS data are spread using

chirps, sinusoidal signals whose frequency linearly increases in time, spanning

all the available bandwidth. For example, if we assume that the frequency

band that can be used for the transmission is B = [f0, f1], a chirp can start

at frequency fs ∈ [f0, f1], increase its frequency linearly till f1 and then wrap

around to f0 to increment fs. In particular, LoRa symbols are obtained as

different circular shifts of the basic upchirp signal. These temporal shifts are

slotted into multiples of the time Tchip = 1/B, called chip where B = f1 − f0,
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Figure 2.7.: Modulating signal with SF = 9 for one basic upchirp and three symbols:
128, 256, 384 [27].

and they characterize each symbol. The modulating signal for a generic n-th

LoRa symbol can be expressed by the following equation

f(t) =

⎧⎪⎨⎪⎩f1 − n · k · Tchip + k · t, for 0 ≤ t ≤ n · Tchip
f0 + k · t, for n · Tchip < t ≤ Ts

(2.1)

where Ts is the LoRa symbol time and k = (f1 − f0)/TS is the slope of the

frequency variations [27]. For the sake of clarity, Fig. 2.7 depicts the basic

upchirp and three modulated signals.

2.3.2 Configurable parameters
When transmitting a signal using LoRa modulation, different parameters can

be set to tune its data rate and robustness to channel impairments.

Spreading Factor (SF) The total number of symbols (each one coding SF

information bits) is M = 2SF , where SF is a tunable parameter called

spreading factor and goes from 7 to 12. The symbol time can be obtained

as

Ts = 2SF · Tchip = 2SF
B
, (2.2)

and it can be noted that, for an increase of 1 in the SF, the symbol

time doubles. When the symbol duration increases, more energy is put

into each symbol, and this makes the signal more robust to noise and
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Table 2.4.: SNR values at LoRa demodulator for different SFs [28, 29].

SF LoRa Demodulator SNR (dB)

7 -7.5
8 -10.0
9 -12.5
10 -15.0
11 -17.5
12 -20.0

interference, reaching longer distances. However, SF also influences raw

data rate Rb at PHY layer, which is equal to

Rb = SF · B
2SF , (2.3)

and, therefore, the data rate is lower when a higher SF is used. Moreover,

transmission lasts longer for higher SFs (Eq. 2.2) and then it is more

subject to interference and collisions.

In the datasheets [28, 29] we find the values of Tab. 2.4 showing that a

higher SF leads to a better Signal to Noise Ratio (SNR) at the receiver.

Bandwidth (B) A second parameter that can be set in LoRa is the bandwidth

(125, 250, 500 kHz). In general, a larger bandwidth yields higher

data rate and a worse receiver sensitivity, and is used together with

the SF to adapt to channel conditions. The availability of different

bandwidths depends on the region the network is operated in, since

regional regulations apply different constraints (see Sec. 2.4.6).

Carrier frequency The third configurable parameter is the carrier frequency.

LoRa uses sub-GHz ISM bands, but the center frequency and channel

division depend on regional regulations. The carrier frequency in use can

be changed by the users, which can choose channels with more lenient

duty cycle limitations to exchange more data [30].

Code Rate (CR) LoRa provides support for Forward Error Correction (FEC)

with configurable Code Rates (CRs). The code rate is defined as CR =
n/k where n is the number of information bits in the word and k is

the total length of the word. Having k > n means that redundant bits

have been added to correct errors. In LoRa, the code rate is given by

CR = 4/(4 + r) where r ∈ 1, 2, 3, 4. Therefore, the set of possible code
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rates is {4/5, 4/6, 4/7, 4/8}. Reducing the CR provides more protection

against error bursts, but also increases the packet transmission time.

2.3.3 Additional LoRa modulation properties
Besides to the use of CSS modulation, that allows the recovering of signals

having very weak power, LoRa modulation presents two particular advantages

that make it very competitive in the IoT market: spreading factor orthogonality

and capture effect.

Spreading Factor Orthogonality LoRa spreading factors are pseudo-orthog-

onal, even when the same channel and the same bandwidth are used.

This means that if an ED transmits using spreading factor i, it can be

correctly received by the GW even if it is overlapping with another trans-

mission using spreading factor j, as long as i ̸= j. Even if in [31] the

LoRa spreading factor orthogonality is mathematically demonstrated,

different works ([27], [32]) state that the orthogonality is not perfect,

but, depending on the signal power, some spreading factors can mutually

interfere. It is also observed that lower SFs are more susceptible to

interference than higher SFs.

Capture effect When multiple packets transmitted with the same SF overlap

in time and frequency, instead, they may generate destructive mutual

interference, disrupting each other’s reception and resulting in what is

called a packet collision event. However, if one signal is significantly

stronger than the others, with a power margin greater than the so-called

“co-channel rejection parameter” ρ, then it can be correctly received

despite the interference, giving rise to a capture phenomenon. The co-

channel rejection threshold ρ is specified in LoRa chip datasheets [25,

28], and can be as large as 25 dB for SF 12, as estimated in [32].

Literature works, as [33], show the importance of this feature for the total

performance of the network and underline that it should be taken into

account when planning or simulating a LoRa network. Capture effects

and spreading factors pseudo-orthogonality make LoRa’s performance

better than that of a classic Aloha network: even though the channel

access is still Aloha-based, overlapping packet in LoRa can survive if their

power at the receiver is sufficiently high, and this margin is even lower

for packets transmitted with different SFs.
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Figure 2.8.: LoRaWAN Infrastructure.

2.4 LoRaWAN standard
While the PHY layer specifications are proprietary of Semtech, the documen-

tation describing the protocol at MAC layer, called LoRaWAN, is public and

developed by LoRa Alliance, an association initiated by industry leaders, now

extended to vendors and researchers, having the objective of spreading LoRa

technology and guaranteeing interoperability among different operators.

The standard defines the use of a star topology, with Gateways (GWs) acting as

transparent message forwarders between End Devices (EDs) and the Network

Server (NS). EDs use LoRa to connect to one or more GWs, that, in turn use IP

links to connect to the NS.

When the EDs transmit, the LoRa packets are collected by all the GWs in

their coverage range and forwarded to the NS, which discards duplicates and

chooses the best GWs for the return transmissions to the EDs. It is worth noting

that the GWs do not support full-duplex transmission: to send a DL packet

(from the NS to an ED), they have to interrupt any ongoing UL reception.

2.4.1 Classes of devices
LoRaWAN distinguishes three classes of EDs. They all provide bi-directional

communication, but differ in functionalities and power constraints. Each

device must implement at least the Class A features and optionally the others.

Class A (All) Devices belonging to this class access the channel to transmit

the packet received from the application layer in a totally asynchronous

fashion, implementing an Aloha Medium Channel Access Control. Each

ED’s UL communication is followed by at most two short DL receive

windows, and the second one is opened in a different sub-band pre-

viously agreed with the network server in order to increase resilience

against channel fluctuations. These are the most power-saving devices as
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receiving windows are opened only after a transmission starting from the

EDs. Downlink communication could, thus, suffer a high latency. These

nodes are meant to be used for monitoring applications.

Class B (Beacon) In addition to the functionalities of Class A’s devices, Class

B devices periodically open reception windows, following the scheduling

information provided in periodic beacon messages sent by the GWs. This

allows the NS to know when the device is listening and makes these

nodes suitable for remote control applications.

Class C (Continuously listening) Class C devices usually are powered by

the main electric grid and consequently can keep the reception window

always open to get DL messages, when not transmitting.

In the reminder of this thesis, if not explicitly stated, we will refer to the

most common Class A devices, which are expected to be battery powered,

in accordance with a typical IoT scenario. In the following, we will better

describe the functioning and operational phases of a LoRaWAN Class A device.

After the transmission of each UL message the Class A ED opens two short

receive windows, which are the only possibility for the communication from

NS to ED. The start times of the receive windows are defined using the end of

the UL transmission as reference (see Fig. 2.9).

The frequency and data rate of the first receive window (RX1) are func-

tion of the corresponding values used for the UL. By default, they keep the

same data rate of the last UL message. The first receive window is opened

RECEIV E_DELAY 1 seconds after the end of the transmission. The length

of the receive windows can be variable, but must be at least the time required

by the ED’s radio to detect the DL message’s preamble. If there is such a

detection, the radio receiver stays on until the message is demodulated. If,

during the reception, the ED notices, from the address field, that the message

is intended for another user, it stops the reception discarding the packet. In this

case or when RX1 goes empty, the ED must open the second receive window

(RX2) RECEIV E_DELAY 2 seconds after the end of the UL transmission.

Frequency and data rate of the second receive window have fixed values that

can be configured by MAC commands

A transmission from the NS to the ED must initiate exactly at the beginning of

one receive window and an ED shall not begin to transmit a new UL message

before it either has received a DL message or the second receive window has

expired.
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Figure 2.9.: End device receive slot timing [26].
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Figure 2.10.: Example of operational phases for a Class-A ED.

Fig. 2.10 represents the sequence of operations performed by a Class A device,

using the default values described in Sec. 2.4.6 as time intervals between the

opening of the reception windows. The ED can wake up at anytime (time t0)

to transmit its data. Then, it enters into idle state and 1 s after the end of the

transmission, at time t2, it opens RX1. During RX1 the ED listens for possible

incoming packets for the time needed to detect a preamble. If no reception

is started, the ED switches to idle state again. At time t3 = t1 + 2s, RX2 is

opened, providing a second opportunity to receive DL packets. Then, the ED

enters in sleep state until the next packet transmission. In the following, we

will indicate as transmission cycle the period between two consecutive packet

transmissions, including all the intermediate phases.

Note that these operational phases also correspond to different values of the

current consumption, according to the operation that is performed by the

device. More details about this aspect can be found in Sec. 6, where the

current consumption is considered.

2.4.2 Packet frame
At the PHY layer, a LoRa frame consists in three parts: preamble, an header

and a payload. Also, the header and the payload can be followed by two

Cyclic Redundancy Check (CRC) fields for error correction. The preamble has

a synchronization function and defines the packet modulation scheme, since

it is modulated at the same SF as the rest of the packet. The header can be

implicit or explicit, depending on the chosen mode of operation.
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It is possible to compute the packet time-on-air with the formula given in [28]:

Tpacket = Tpreamble + Tpayload, (2.4)

where

Tpreamble = (npreamble + 4.25) · Ts, (2.5)

with npreamble the programmable number of symbols that constitute the pream-

ble and Ts the symbol period.

The payload duration depends on the header mode that is enabled, and is

computed as

Tpayload = npayload · Ts (2.6)

with the number of payload symbols npayload given by the following formula:

npayload = 8 +max

⎧⎪⎪⎪⎩
⌈︄

(8PL− 4SF + 16CRC − 20IH)
4(SF − 2DE)

⌉︄
(CR + 4), 0

⎫⎪⎪⎪⎭. (2.7)

Different parameters are defined as follows:

• PL is the number of bytes of payload;

• SF is the spreading factor;

• IH indicates which header mode is used: IH = 1 for implicit header

mode, IH = 0 for explicit header mode;

• DE set to 1 indicates the use of low data rate optimization, otherwise it

is set to 0;

• CRC is equal to 1 when the CRC field is present, 0 otherwise;

• CR is the programmed coding rate (from 1 to 4).

Fig. 2.11 shows the spectrum of the transmission of one LoRa packet: at

the beginning, the preamble sequence of constant upchirps spanning the

entire available bandwidth is visible. Fig. 2.12 represent the results of the

decoding process used in [34] to analyze a LoRa modulated signal. To obtain

it, the authors first "de-chirp" the signal, then take its Fast Fourier Transform

(FFT) with a number of bins equal to the number of symbols M that can be

represented with the spreading factor in use. Secondly, since the signal can

now be interpreted as if it was modulated using Multiple Frequency Shift

Keying (MFSK), they take multiple overlapping FFTs and, to detect the symbol

at each time frame, select the bin with the highest power content. Again,
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Figure 2.11.: Spectrogram excerpt of
a LoRa chirp. x-axis:
Frequency, y-axis: Time
[34].

Figure 2.12.: Dechirped signal
(preamble and body)
[34].

the constant part at the beginning indicates the constant symbols used in the

preamble.

To make data more robust, LoRa perfors a set of operations on packets at the

PHY layer before sending them:

Interleaving This procedure scrambles data bits throughout the packet and

is often used with Forward Error Correction (FEC): in this way, if in-

terference affects data, corrupted bits will be spread across the whole

packet after de-interleaving, avoiding bursts of errors and making the

correction operation more effective. In [34] it has been found that the

interleaver is a diagonal interleaver with the two most significant bits

reversed, slightly different from the one described in Semtech’s patent.

Forward Error Corrections (FECs) LoRa uses Hamming FEC with a vari-

able codeword size in the range from 5 to 8 bits and fixed data size of 4

bits per codeword, as previously described.

Data Whitening This technique is applied to transform the sequence of sym-

bols, providing more features for clock recovery. It is particularly useful

when there are long runs of equal bits. To recover the signal, data are

XORed against the same whitening sequence used by the transmitter.
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Gray map This encoding procedure maps a block of SF bits into one of the

M symbols in the costellation and, by definition, makes sure that two

adjacent symbols differs by at most one bit. In this way, when applying

FEC it is easier to successfully correct symbols that differ by one bit.

For the principle of encapsulation, the packet at MAC layer is the payload

of the PHY packet , which consists of a 1-byte-long MAC Header (MHDR), a

MAC Payload (MACPayload) with variable size, and a Message Integrity Code

(MIC) of 4 bytes, checking the integrity of the whole message. In particular,

the MHDR specifies the Message Type (MType) of the packet and according

to which version of the LoRaWAN specification the frame has been encoded.

In Tab. 2.5 we have the codes used to indicate the type of the message and

the corresponding description. We focus now on the four types used for data

messages: they are employed for UL or DL communication (Data Up and

Data Down) and can require an acknowledgment from the receiver, or not

(Confirmed - Unconfirmed data). We remark that for Class A EDs the only

possibility that the NS has of acknowledging UL traffic is during the receive

windows, while if an ED is asked for an acknowledgment, it should answer

whenever it is possible. MAC commands often require the ED to confirm the

message reception and command execution.

Table 2.5.: MAC message types [26]

MType Description

000 Join Request

001 Join Accept

010 Unconfirmed Data Up

011 Unconfirmed Data Down

100 Confirmed Data Up

101 Confirmed Data Down

110 Reserved for Future Use

111 Proprietary

2.4 LoRaWAN standard 29



MAC commands are used for network administration and can be exchanged in

both UL and in DL directions, enabling the following functionalities:

• Resetting;

• Link checking: commands sent by EDs to validate their connectivity to

the network and answered by network server with information about the

received signal power;

• ADR setting (see Sec. 2.4.4);

• Duty cycle limitations, set by the network server;

• Setting of different parameters (reception slots, transmission power, DL

channel...);

• Exchange of information about the status of the ED (battery level and

demodulation margin);

• Creation or modification of radio channels.

2.4.3 Retransmission procedure
As previously discussed, transmissions can either be unconfirmed or confirmed.

In the first case, a message is transmitted only once and is not expected to be

acknowledged by the NS, while in the latter case, messages are retransmitted

until an ACK packet is returned by the receiver.

When a device (both ED and NS) receive a confirmed data message, it shall

answer with a data frame having the ACK bit set: the server will answer in

one of the two receive windows while the ED will reply at its own discretion,

by sending an empty frame with ACK immediately after the reception or

piggybacking it to a following data message. Uplink messages are transmitted

NbTrans, unless a valid DL is received following one of the transmissions. It

is used to control the redundancy and obtain a given Quality of Service (QoS)

that can depend on the application in use. It is suggested to use frequency

hopping also in the retransmission procedure and to delay retransmissions

until the receive windows have expired. Moreover it is recommended to stop

further retransmissions if the corresponding DL acknowledgment frame is

received.

Consequent retransmissions should be done at least ACK_TIMEOUT sec-

onds after RX2, with the value of ACK_TIMEOUT is randomly chosen in

the interval [1, 3] s. The parameter NbTrans can be set by appropriate MAC
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commands and its value ranges from 0 to 15. In the following chapters, we will

indicate with m and h the value of NbTrans for confirmed and unconfirmed

traffic, respectively.

In the previous version of the LoRaWAN standard [35] it was also remarked

that in addition to selecting a different frequency channel, retransmissions

could also use a different (lower) data rate: the recommended scheme was to

decrement the data rate every couple of failed transmissions, until the lowest

possible data rate is reached. Any further transmission will employ the last

data rate used, and the recommended maximum number of transmissions is

8. For example, suppose that an ED sends a confirmed frame using DR5. If

it does not receive any ACK, after the eight re-transmission, it will be using

DR2 and the packet will be dropped. A following application packet will

initiate a new transmission cycle, where the first two attempts will be done at

DR2, then, in case of failure, the end device will switch to DR1, then to DR0.

As shown in Sec. 4.3, this behavior is generally damaging for the network

performance, and it is not longer recommended in the later versions of the

LoRaWAN standard. [26]. Nonetheless, it is currently adopted in some public

implementations, such as that used by [36].

2.4.4 Adaptive Data Rate (ADR)

The LoRaWAN standard provides the Adaptive Data Rate (ADR) mechanism

that allows the NS to control the transmission parameters of the EDs in order to

optimize the performance of either the device itself or the network as a whole.

Since each ED is allowed to use any data rate and transmission power, the

network, via the NS, has the possibility of controlling them and this is referred

to as ADR. This is possible only when the UL ADR bit is set, informing the

NS that it can send appropriate MAC commands to modify ED’s transmission

parameters. The NS will then choose to decrease SF and transmission power if

the ED transmissions are received above sensitivity or increase them if the SNR

margin is too low. If the ADR bit is unset, the ED controls its own parameters.

It is worth noting that the LoRaWAN specifications do not describe any ADR

algorithm: its implementation is left to network owners (which control the NS)

that should find a compromise between computational efficiency and accuracy.

Some papers have been recently published about this topic, proposing and/or

evaluating different algorithm, which will be described in Sec. 4.1.
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2.4.5 Device activation
The specifications [26] define two ways to activate an ED and allow its partici-

pation in a LoRaWAN network: Over-The-Air Activation (OTAA) and Activation

By Personalization (ABP).

In the first one the ED sends a request to join the network; the network server

checks if that specific device is allowed to join the network (if, for example,

the device has a valid subscription or has not been banned from the network

for security problems) and, if so, answers with a join accept message. During

this procedure, the ED is also given keys (an application key and a network

key) for message encryption and decryption. Higher security is given by the

fact that these keys are computed based on root keys specific to the ED and

assigned to it during fabrication: if a key is extracted from an ED, it only

compromises that specific ED and not the whole network. The over-the-air

procedure can be repeated multiple times (for example, every day) and each

time new keys are computed and provided to the device, further increasing

the security of the network. With the activation, the ED is also given a device

address (DevAddr) that uniquely identifies it in the network.

With the ABP procedure, the ED can participate in the network as soon as it is

started, without requiring the joining procedure, since the device address and

all the keys are already stored into the device.

2.4.6 Regional parameters
In addition to the LoRaWAN specifications, the LoRa Alliance also publishes

a document, that describes how LoRaWAN should be used and configured in

the different regions. As already mentioned, this is because the available ISM

band is not the same everywhere, and the local regulations can be more or

less strict. In particular, the document provides information about preamble

format, channel frequencies, data rate, maximum payload size, maximum

transmission power, MAC commands, Class B implementation and default

settings. In the following of this section, we better describe the elements that

mostly affect the protocol performance. Tab. 2.6 reports the frequencies of

the ISM band in the different regions. In the following, we will focus our

discussion on the European configurations.

Frequency plan and transmission power
For the European region the protocol defines the use of the 868 MHz fre-

quency, where network operators can freely assign channels. However, the
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Table 2.6.: Regions and LoRaWAN frequency bands [37].

Region Frequency band (MHz)

Europe (EU) 863 - 870 and 433
United States (US) 902 - 928

China (CN) 779 - 787 and 470 - 510
Australia (AU) 915 - 928

Asia (AS) 470 - 510
South Korea (KR) 920 - 923

India (INDIA) 865 - 867

specifications define a minimum set of channels (see Tab. 2.7) that must be

implemented and cannot be modified, so as to guarantee in any occasion a

minimal common channel set between ED and GWs. In fact, each GW should

always listen to at least these three bi-directional channels, which are located

at 868.1, 868.3, 868.5 MHz, and have a channel bandwidth of 125 kHz. Addi-

tionally, other channels could be defined to improve the network capacitance:

for example, in [36] five additional channels are configured in the 867 MHz

band.

Even if the ISM band is unlicensed, users have to respect some regulations

dictated by different entities: the National Administrators, organisms at the

European level and the International Telecommunication Union (ITU) at the

worldwide level. In particular, in European countries, LoRa is required to

respect the European Telecommunications Standard Institute (ETSI) regula-

tions. The restrictions concern the physical medium access, such as maximum

transmission time. Radios are required to either adopt a Listen Before Talk

(LBT) policy or duty cycled transmissions, to limit the rate at which messages

are generated. The Duty Cycle (DC) is defined as the ratio of the maximum

transmitter “on” time over one hour, expressed as a percentage. For example,

a device with a 1% DC, can perform 10 transmissions of 3.6 seconds within

one hour, while if the same device had a 10% of DC, the transmissions could

last 36 seconds. To keep ED simple and save energy, the DC option is adopted

in LoRa. This can have an important influence when the packets are generated

frequently or when the transmitter uses high SFs (and thus longer transmission

times) since it limits the activity of the device. The 868.1, 868.3, 868.5 MHz

channels belong to the same regulatory sub-band (Sub-Band 1 (SB1)), and

have to share a DC limitation of 1%, while the channel reserved for DL, located

in the 869 MHz sub-band (Sub-Band 2 (SB2)), can benefit from a more lenient

DC of 10% and a higher transmission power.
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Table 2.7.: Mandatory channels in EU863-870 ISM band [37, 38].

Sub-band Frequency [MHz] Bandwidth Use Duty Cycle Maximum ERP

SB1
868.1

125 kHz
UL/DL 1%, shared 14 dBm

868.3 UL/DL 1%, shared 14 dBm
868.5 UL/DL 1%, shared 14 dBm

SB2 869.525 125 kHz DL 10%, dedicated 27 dBm

Table 2.8.: Minimum transmission interval allowed by a duty cycle of 1% for different
packet sizes, SF 7 and additional 9 B due to the MAC header.

Payload size [B] Packet duration [ms] Min interval [s]

0 41.22 4.12
5 46.34 4.63
50 112.90 11.29

100 184.58 18.46

The LoRaWAN specifications also allow for the use of a single 250 kHz channel

with SF 7 for the transmission of UL packets in the European region. The

wider bandwidth makes it possible to transmit the same message in half the

time, reducing the collision probability. Once the bandwidth is defined, there

is a one-to-one correspondence between SFs and Data Rates (DRs), as defined

in Tab. 2.9. Here, we also give the values of the indicative bit rate at the PHY

layer. According to the LoRaWAN specifications, the rates indicated with DR0

to DR5 correspond to SF 12 to 7 (respectively) with 125 kHz channel, while

DR6 corresponds to SF 7 with a 250 kHz channel.

ETSI also limits the effective power radiated by the devices. In [37] the possible

values for the maximum transmission power are given, with the maximum

value being equal to 16 dBm.

Default configurations
For Class A devices, the standard requires the RX1 to be opened in the same

frequency channel and with the same SF used for the UL communication. The

RX2, instead, is always opened on the dedicated 869.525 MHz channel and

with SF 12, in order to maximize the robustness of the communication. These

standard settings can be changed by using appropriate MAC commands sent

by the NS. However, for RX1, only SFs higher than that used in UL can be set,

since the ED is assumed to use the lowest SF that allows the GW to receive its

signal. If a lower SF were used in DL, the message could arrive at the ED with

a power level below the sensitivity, preventing its correct reception.
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Table 2.9.: Data rate table for EU863-870 band with bandwidth of 125 kHz [37].

DataRate Configuration
Indicative physical

bit rate [bit/s]

DR0 LoRa SF12/125 kHz 250
DR1 LoRa SF11/125 kHz 440
DR2 LoRa SF10/125 kHz 980
DR3 LoRa SF9/125 kHz 1760
DR4 LoRa SF8/125 kHz 3125
DR5 LoRa SF7/125 kHz 5470
DR6 LoRa SF7/250 kHz 11000

Table 2.10.: Default values of some parameters in the EU863-870 band [37].

Parameter Value

RX1 frequency same as UL transmission
RX1 data rate same as UL transmission
RX2 frequency 869.525 MHz
RX2 data rate DR0 (SF12, 125 kHz)

ACK_TIMEOUT 2 ± 1 s
RECEIVE_DELAY1 1 s
RECEIVE_DELAY2 2 s = RECEIVE_DELAY1 + 1 s

Class C devices, instead, when not transmitting or receiving in RX1, are

always listening in RX2 using the default parameters. These and other default

parameters, such as the time interval between the opening of the reception

windows, are reported in Tab. 2.10.

2.4.7 Additional considerations on LoRaWAN devices
In order to take advantage of the powerful feature of orthogonality between

different SFs, the SX1301 LoRa PHY chipset, typically employed in GWs [25],

provides 8 parallel demodulation chains, which allow the chip to demodulate

up to 8 different signals simultaneously, irrespective of their SFs and frequency.

We also remark that the GWs do not support full-duplex transmission and

reception: in order to send a DL packet they have to interrupt any ongoing

reception, regardless of the frequency channels in which transmission and

reception occur.

We further notice that, as described in the corresponding datasheets [25, 28,

29] GWs and EDs have different sensitivities, with the GW chipset having

higher capability of receiving weaker signals, as reported in Tab. 2.11. This

introduces a sort of asymmetry in the channel, which will be further dis-

cussed in Sec. 4.3.4. Note that for the ED we reported the values for the chip
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Table 2.11.: Sensitivity comparison.

SF GW Sensitivity (dBm) ED Sensitivity (dBm)

7 -130.0 -124.0
8 -132.5 -127.0
9 -135.0 -130.0
10 -137.5 -133.0
11 -140.0 -135.0
12 -142.5 -137.0

SX1272 [28]; for the chip SX1276, the sensitivity values for a LoRa commu-

nication with 125 kHz bandwidth are slightly different, going from -118 to

-136 dBm.
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3Simulation software

3.1 ns-3 lorawan module
To perform simulations of network with LoRaWAN devices, we leverged the

ns-3 simulator, a popular discrete-event network simulator written in C++. In

particular, the first version of the ns-3 lorawan module used for the evaluations

presented in this thesis was proposed in [39]. The module models the protocol

stack of LoRaWAN EDs and GWs at the PHY and MAC layers, including all the

protocol features, as well as the behavior and functionalities of the LoRaWAN

NS. The module was then extended with the support for downlink traffic and

re-transmissions [40], and then further improved to support various network

configurations and test the proposed ameliorations, with the aim of gaining a

deeper understanding of the role played by each configurable parameter and

identifying unforeseen behaviors.

The lorawan module [41] consists in a collection of C++ classes, representing

the network components at different layers (PHY, MAC). Additionally, these

classes leverage “helper” objects to keep track of interference, correctly manage

the state of the DC, update the list of available channels, compute the path

loss between two locations and perform other similar tasks. Other classes are

designed to model different kinds of applications, and NS’s capabilities.

Currently, the module supports both confirmed and unconfirmed messages,

permits the configuration of multiple network parameters, and implements a

realistic model of the GW chip, accounting for the eight available demodulators,

as better detailed in the following. Note also that in Sec. 6, we combine this

module to a new ns-3 implementation of a battery-less capacitor-based IoT

node, testing whether such a solution is feasible in LoRaWAN networks. More

details about the ns-3 implementation of that specific application can be found

in Sec. 6.

3.1.1 PHY layer model
The abstraction of the PHY layer implements the transmission chain at this

level, manages the different states of the device, and aims at making inter-

ference computations more manageable. In particular, interference between

colliding packets at the PHY layer is computed by considering a model of

the GW layer, and a pair of look-up tables representing the chips’ sensitivities
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and conditions that should be fulfilled by the received power. These models

are employed to determine the success of a packet reception. If the packet’s

reception power is above the receiver’s sensity, the receiver can lock on the

packet. Then, the simulator performs other controls to determine whether

packets survive eventual collisions, considering the time overlap and power

difference between the two signals, which should be above the co-channel

rejection parameter. This value is defined in the interference matrices, which

model the LoRa modulation capabilities [15, 32]. Further details about the

interference modeling can be found in [39].

The classes modeling the PHY layer are responsible of the switching between

the different states, which can either be triggered by MAC layer operations or

by the energy level. The states represent the chip’s transmission, reception,

power save mode and listening phases, which are characterized by different

values of the current consumption. The representation of the ED’s states,

paired with a model for the energy consumption in each one of these states

used in [42], provides an integration with ns-3’s energy module, and allows

users to run simulations in which the power level of EDs is also accounted for.

Additionally, to model the intermittent behavior of a battery-less device, an

Off and a Turn On state have been also introduced, as well as an Idle state

which considers the fact that in real devices the current consumption when

waiting for the opening of the reception windows is higher than that in the

Sleep state. More details on these aspects are provided in Sec. 6.

Additionally, the classes modeling the GW’s PHY implement the GW behavior,

featuring a realistic modeling of the parallel decoding capabilities available

in Semtech’s SX1301 chip (which is currently employed in GWs). Indeed, it

assumes that a single LoRa gateway has 8 demodulators working in parallel, as

explained in [25]. These 8 demodulators are connected to the same antenna,

and any SF can be received without prior configuration on any receive path,

meaning that multiple packets can be demodulated simultaneously on different

frequency channels. Incoming packets that find the GW’s PHY layer model in a

state where all 8 demodulators are occupied, are dropped. On the other hand,

the PHY layers of EDs, are structured to be only able to receive a packet at a

time.

3.1.2 MAC layer model

The lorawan module implements the LoRaWAN specification of Version 1.1,

including devices of Class A and Class C.
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Channel access is managed by keeping track of the available frequencies and

of the set of sub-bands in the region being considered. Before performing any

transmission (i.e., forwarding the packet to send to the object modeling the

PHY layer), the MAC layer model checks whether a transmission on the desired

frequency would break DC limitations. If this is the case, the transmission

can either be dropped or delayed, taking then place when the DC restrictions

allow for it. Otherwise, the packet is transmitted, and its parameters (i.e.,

the frequency used for the communication and the transmission duration) are

then used to determine the following silent time imposed by the DC in that

sub-band. The frequency for UL transmission is chosen at random among the

available UL channels for the EDs, and is determined by the NS in case the GW

is to perform the LoRa transmission.

The classes modeling the MAC layer complexity are also responsible of the

logic handling the opening of the receive windows and re-transmissions of a

packet. In particular, if the packet that is being transmitted is confirmed and no

ACK is received in any of the two receive windows, EDs are assumed to be able

to re-transmit that same packet up to a maximum number of times that can be

set by the NS. If a new packet needs to be sent by the application layer, the

packet that is currently in the re-transmission process is dropped, and the new

transmission is performed as soon as possible. Re-transmissions are otherwise

performed as soon as possible (always taking the DC restrictions modeled by

the channel access manager into account) if no successful reception of an ACK

was completed after the closing of the second receive window.

3.1.3 Application layer models
The behavior of the Application Layer is modeled differently based on the

device under consideration. EDs are generally assumed to be equipped with a

PeriodicSender application that generates traffic with a fixed packet length

and period; the generated traffic can be either confirmed or unconfirmed.

However, when analyzing specific scenarios, such as the feasiblity of battery-

less devices, applications that generate traffic also according to the stored

energy are considered, and are better detailed in Sec. 6. GWs, instead, run a

Forwarder application that is connected both to the LoRaWAN MAC Layer and

to the reliable point-to-point connection that links each GW to the NS, and

whose only task is to act as a bridge between the two.

Finally, the NS node runs a NetworkServer application that is split in three

main components, to better model the logic of the controller, which is responsi-

ble of the whole network management. The NetworkStatus component holds

3.1 ns-3 lorawan module 39



a data structure modeling the NS’s view of the network, which takes shape as

long as it receives messages from the EDs. This representation contains a list of

addresses of the EDs participating in the network, together with their channel

access parameters, such as SF and maximum number of re-transmissions. This

data, together with a list of packets received from each ED, can be accessed

by the NetworkScheduler, responsible of scheduling DL transmission events

to respond to any UL transmission that needs a reply by the NS or to send

any DL commands, such as that implementing the ADR mechanism. Finally,

the NetworkController creates and sets all required fields of such DL pack-

ets, based on the data available in the NetworkStatus’s data structure. For

instance, it is the NetworkController’s responsibility to set the ACK bit, to

aggregate the correct MAC Command to implement the desired ADR algorithm,

and defining which parameters to use for the DL transmission. More details

on the module architecture are available in the online documentation [43].

3.1.4 Other module features

Aside from models describing the behavior of LoRaWAN networks, the lorawan
module also contains propagation models that are useful to perform simu-

lations in different contexts, from the traditional Smart City scenario, also

in the presence of buildings and spatially correlated shadowing, to open air

scenarios where only the path loss is present, to more challenging propagation

environments, such as industrial plants, where the communication can be

heavily affected by channel impairments. In the rest of this thesis, the specific

propagation models employed are described when illustrating scenarios of

interests.

We also remark that the simulation module contains some usability features to

facilitate the analysis and the setup of the network: for instance, helper classes

are provided to facilitate users in correctly setting up working LoRaWAN

networks. These functions can be used to automate the creation of reliable

connections between each GW and the NS, and the setting of the SF parameter

at each ED, either considering user-defined distributions or based on distance

between the ED and the nearest GW, in order to ensure that the two devices

will be able to communicate. Furthermore, a packet counting facility was

created to keep track of all messages that are exchanged in the network and

easily compute some metrics of interest. Such metrics include the packet

success rate for confirmed and unconfirmed traffic, and the delay from UL

packet generation to delivery to the NS and from UL packet generation to
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delivery of the ACK to the ED. Further details on the computation of metrics

are given in each chapter, as needed.

3.2 Comparison with other LoRaWAN simulators
Some of the available tools to simulate LoRaWAN networks are described

in [44], where the authors survey LoRa and LoRaWAN simulators present in

the literature. Among those providing an open-source implementation, we

briefly describe here the two main ones, LoRaWANSim and a ns-3 lorawan
module different from that employed in this thesis.

LoRaWANSim is emplyed for the analysis presented in [45], and is a network-

layer extension of the Python-based LoRaSim simulator, which was previously

limited to simulate the physical layer communication. LoRaWANSim differs

from the simulator employed in this thesis in different aspects. However,

in addition to the above mentioned GW modeling, The main drawback is

the assumption of perfect orthogonality between SFs, neither it considers

DC limitations. Furthermore, downlink traffic is not taken into account, just

focusing on the UL performance. Finally, this implementation neglects the

parallel reception capabilities of the GW.

A second LoRaWAN simulator is presented in [46, 47] proposing a LoRaWAN

module for ns-3. In this implementation, the error model is derived from

complex baseband Bit Error Rate (BER) simulations. Furthermore, we observe

that this implementation models the GW reception capabilities in a different

way, considering one receiver for each SF on each uplink frequency band, for

a total of 18 parallel receivers (8 demodulators for 3 mandatory frequency

channels in the EU configuration), each one capable of locking on one signal

transmitted on a specific frequency with a specific SF. In this way, however,

the GW will not be able to receive two or more signals sent with the same SF

on the same frequency, irrespective of their relative received power, thus being

more conservative than a real GW. On the contrary, the simulated GW may

be able to successfully decode up to 18 signals, provided that the SFs of the

signals in the same band are different, while a practical GW can only decode

up to 8 signals.

These differences between the implementations turn out to be particularly

significant when analyzing traffic scenarios with confirmed transmissions, as

those that will be analyzed in the following of this thesis.
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4LoRaWAN in traditional IoT
scenarios

LoRaWAN is gaining momentum thanks to its ease of deployment and the pos-

sibility of configuring several network parameters that affect different network

performance indexes, such as energy efficiency, fairness, and capacity, thus,

in principle, making it possible to adapt the network behavior to the specific

requirements of the application scenario. Unfortunately, the complex and

sometimes elusive interactions among the different network components make

it rather difficult to predict the actual effect of a certain parameters setting, so

that flexibility can turn into a stumbling block if not deeply understood. How-

ever, the deployment of a dense IoT network is expensive and time consuming,

and performance assessments using simulations and mathematical models

become essential to gauge the effect of network parameters and estimate the

performance at a reduced cost. Also, these tools can be leveraged to explore

possible improvements to the standard’s default settings and protocol, as well

as the join impact of the available parameters, so that to improve performance

both in general use cases or in specific application settings.

In this chapter, we present both a mathematical model for LoRaWAN networks

and a simulation framework, which is used in different contexts also in the rest

of this thesis. The aim of this chapter is the evaluation of LoRaWAN perfor-

mance in traditional IoT scenarios, focusing on open air or urban propagation

environments. Therefore, the main objective is not assessing the feasibility

of a specific application, but rather modeling and studying of the impact of

the technology parameters, such as SF allocation, RX2 settings, number of

transmissions on traditional networks metrics, like the Packet Delivery Rate

(PDR).

In Sec. 4.1 we comment some previous studies on LoRaWAN performance

evaluation, briefly describing experimental works and focusing on studies that

propose analytical and simulation approaches.

Sec. 4.2 provides a mathematical model to estimate the performance of a

LoRaWAN gateway serving a set of devices that may or may not employ

confirmed traffic. The model features a set of parameters that can be adjusted

to investigate different GW and ED configurations, making it possible to

carry out a systematic analysis of various trade-offs. The results given by the

proposed model are validated through realistic ns-3 simulations that confirm
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the ability of the model to predict the system performance with high accuracy,

and assess the impact of the assumptions made in the model for tractability.

Additionally, we show how the model can be leveraged to maximize different

performance metrics.

Finally, in Sec. 4.3, we employ simulations to shed light on the complex interac-

tions in a single-GW scenario. More specifically, we analyze the effect of some

LoRaWAN built-in features and configurations, including the GW’s limitations

in terms of DC and number of parallel reception paths, and the number of

allowed re-transmissions for confirmed traffic, and the pre-configured data

rate used in downlink transmissions. The simulation-based analysis reveals

various trade-offs and spotlights some inefficiencies in the design of the Lo-

RaWAN standard. Furthermore, we show how significant performance gains

can be obtained by wisely setting the system parameters, possibly in combina-

tion with some novel network management policies (e.g., enabling selective

prioritization of downlink transmissions at the gateway).

4.1 State of the art
In the last years, the LoRaWAN technology has been the subject of many studies,

which analyzed its performance and features with empirical measurements,

mathematical analysis and simulative tools.

Among the works evaluating LoRaWAN through experimental campaigns,

we remind [48, 49], where the authors test the coverage range and packet

loss ratio, but without investigating the impact of the parameters setting on

the performance. In [33], Bor et al. examine the impact of the modulation

parameters on the single communication link between an ED and its GW,

without considering more complex network configurations. Other works test

LoRaWAN coverage in different propagation environments, such as cities [30,

50, 51], industrial settings [52], harbors [53] and rural settings [54, 55], or

comparing the performance in different scenarios [56]. Other evaluations,

instead, involve the analysis of the employed ADR algorithms, such as [57].

In the following subsections, we focus on previous literature works that ana-

lyzed LoRaWAN performance through mathematical modeling or simulation

tools.
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4.1.1 State of the art in LoRaWAN modeling

The work presented in [58] is one of the first to address the issue of scalabil-

ity, using stochastic geometry to model interference in a LoRaWAN network.

However, in this study, Georgiou et al., consider scenarios with only UL traffic.

Similarly, Li et al. [59] use a stochastic geometry model to jointly analyze

interference in the time and frequency domains in LPWANs, considering Sigfox

and LoRaWAN technologies. It is observed that when implementing a packet

repetition strategy, i.e., transmitting each message multiple times, the failure

probability reduces, but, clearly, the average throughput decreases because of

the introduced redundancy. The work in [60] adopts a Markovian approach

to model the over-the-air activation procedure. In [61], Ferré et al. proposes

closed-form expressions for collision and packet loss probabilities and, under

the assumption of perfect orthogonality between SFs, it is shown that the

Poisson distributed process does not accurately model packet collisions in

LoRaWAN. Network throughput, latency and collision rate for uplink transmis-

sions are analyzed in [62] using queueing theory and considering the Aloha

channel access protocol and the regulatory constrains (i.e., DC) in the use of

the different sub-bands. In this work, Sorensen et al. point out the importance

of a clever splitting of the traffic in the available sub-bands to improve the

network performance, for UL traffic only. In [63], Adelantado et al. address

high-level questions about LoRaWAN’s suitability for a range of smart city

applications, from metering to video surveillance, by modeling the system as a

superposition of different Aloha networks. They conclude that, even if the long

coverage range of a single GW makes the infrastructure able to serve several

devices, the network must be carefully dimensioned to meet the application

requirements.

Croce et al., in [64], consider the features of the technology at the PHY layer,

by focusing on the capture effect and imperfect orthogonality between SFs:

after performing empirical measurements, they model these effects and derive

the throughput achieved by the network for different cell configurations and

number of GWs. In [65], the problem of network scalability is faced through

mathematical modeling and Python-based simulations, taking into account

also the capture effect, and evaluating the impact of SF allocation and power

control. In these works, however, the main focus is on the PHY layer, and

downlink traffic and re-transmissions are not considered.

In [66] Bankov et al. present a mathematical model of the network perfor-

mance, taking into account factors such as the capture effect and a realistic
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distribution of SFs in the network. However, the model does not include

some important network parameters, preventing the study of their effect on

the network perfomance. This study is further improved in [67], where the

authors provide a model based on Poisson arrival processes which takes DL

communications, re-transmissions and capture effect into account. However,

the analysis holds only in limited-size networks, where nodes can employ

any transmission rate and their received powers are similar. A step further is

made in [68] where Capuzzo et al. develop a model that makes it possible to

consider various parameters configurations, such as the number of ACKs sent

by the GW, the SF used for the downlink transmissions, and the DC constraints

imposed by the regulations. In this work, mathematical modeling has been

applied to assess the network performance with respect to various metrics, but

multiple packet re-transmissions have not been considered.

Finally, in [69], Bouguera et al. focuse on the energy consumption of LoRa

radio chipsets; in the work presented in [70], Khan et al. propose a model to

calculate energy consumption and delay for reliable UL traffic in a LoRaWAN

network. The results for a limited number of devices are compared to real

test-bed measurements and to the outcome of ns-3 simulations. The analysis,

based on Markov-chain theory, neglects the DC constraints in the different

sub-bands, and assumes that ACKs are always sent in one specific receive

window (either RX1 or RX2). Other mathematical models regarding LoRaWAN

energy performance present in the literature are discussed in Sec. 6.

4.1.2 Related works on LoRaWAN simulations
In the study presented in [45], Pop et al. feature a system-level analysis

of LoRaWAN with the LoRaSim simulator, and give significant insights on

bottlenecks and network behavior in presence of downlink traffic. However,

besides pointing out some flaws in the design of the LoRaWAN medium access

scheme, this work does not propose any way to improve the performance of

the technology.

In [46], system-level simulations in ns-3 in a multi-GW scenario are employed

to assess the performance of confirmed and unconfirmed messages and show

the detrimental impact of confirmation traffic on the overall network capacity

and throughput in a smart city scenario. As expected, the availability of a

multi-GW infrastructure brings several benefits to the network. In addition to

the possibility of employing lower SFs in a dense deployment, a higher number

of GWs makes it possible to share the load of downlink traffic, overcoming DC

limitations and increasing the number of reply messages sent in RX1, which
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prevents sensor nodes from opening both receive windows. Here, the only

proposed solution is the use of multiple gateways, without deeply investigating

the specificities of the LoRaWAN standard. In [47] a module for the ns-3

simulator is proposed and used for a similar scope, comparing the single- and

multi-gateway scenarios and the use of unconfirmed and confirmed messages.

In this case, Reynders at al. correctly implement the GW’s multiple reception

paths, but do not take into account their association to a specific UL frequency,

which usually occurs during network setup: indeed, the number of packets that

can be received simultaneously on a given frequency can not be greater than

the number of reception paths that are listening on that frequency. Also in this

case, the study only focuses on the performance analysis, without proposing

any improvement.

In [71] Kouvelas et al. show how the use of a persistent-Carrier Sense Multiple

Access (p-CSMA) MAC protocol when transmitting UL messages can improve

the packet reception ratio. However, attention must be payed to the fact that

having many EDs that defer their transmission because of a low value of p

may lead to channel under-utilization. In [72], Zucchetto et al. investigate,

via simulation, the impact of DC restrictions in LPWAN scenarios, showing

that rate adaptation capabilities are indeed pivotal to maintain reasonable

level of performance when the coverage range and the cell load increase.

However, the effect of other parameters setting on the network performance is

not considered.

Varsier et al., in [73], instead, rely on a custom MATLAB simulator and

tune the network parameters based on the requirements of an real metering

application. Generally, these works identify DL traffic as a weak point in the

LoRaWAN technology, because of either the strict DC limitations in Europe or

its deleterious effect on UL traffic, and point to GW densification as a partial

solution to the problem.

As we will see in the following discussion, the network will benefit from a

wise SFs allocation, while an unwise setting of this parameter can easily be

damaging for both the EDs’s and network performance. Therefore, many works

in the literature have investigated this aspect, i.e., how to optimal allocate SFs

or how to design ADR algorithms that modify them, to improve the network

capabilities. In [74] Cuomo et al. propose an ADR algorithm that assignes SFs

by using a waterfilling algorithm, equalizing the aggregate time on air of the

multiple SFs. This work is further extended in [75], with the proposal of two

more algorithms for ADR. In particular, EXPLoRa-KM relieves critical regions,

characterized by a significant number of collisions, and computes how to adjust
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the SF allocation leveraging the K-means algorithm. Conversely, the EXPLoRa-

TS algorithm performs an equalization of the traffic load (measured in symbol

times) among the SF channels, by considering the fact that each device, can

transmit a variable amount of data at a different sending rate, according to

the application. Thus, different traffic types (more or less aggressive) can be

recognized by the NS, which can leverge this information to formulate a better

policy for SF allocation, increasing the scalability of the network.

The authors in [76, 77] target the original ADR algorithm proposed by [36],

suggesting possible ameliorations. Generally, the modified algorithms yield

an increase of network scalability, fairness among nodes, packet delivery

ratio and robustness to variable channel conditions. The proposals have been

evaluated using Matlab and FLoRa, an open-source framework for end-to-

end LoRa simulations in OMNeT++, respectively. In [78], Reynders et al.

compute the optimal SFs distribution to minimize the collision probability

and propose a scheme to improve the fairness for nodes far from the station

by optimally assigning SFs and transmit power values to the network nodes,

in order to reduce the packet error rate. Their proposal is validated using

ns-3 simulations [47]. In [79] Benkahla et al. propose an ADR algorithm

for LoRaWAN networks with mobility, which targets the minimization of

transmission time and energy consumption, as well as packet loss. The SF to

allocate is then chosen by estimating the future position of the node. The EARN

algorithm proposed in [80], instead, also consider the CR and the capture effect

to tune the link performance of the EDs, and evaluate it using SimPy, a discrete

simulator on Python [81]. In [82], Lima et al. propose the APRA algorithm to

optimize LoRaWAN’s resources allocation, to improve scalability and energy

performance by acting on multiple LoRaWAN transmission parameters, such

as SF, power and bandwidth, evaluating its efficancy through the LoRaSim

simulator.
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4.2 A mathematical model for single-gateway
LoRaWAN networks

The work presented in the first part of this section is an extension of our

conference paper [68], where we modeled a wide network with Poisson packet

arrivals, considering the DC limitations and a set of network parameters. Here

we revise the model by developing a novel approach to accurately consider

the limited availability of reception chains at the GW, the peculiarities of

the two receive windows, and the DC constraints. Additionally, we include

packet re-transmissions and the capture effect. Compared to previous models,

our model takes into account the coexistence of unconfirmed and confirmed

traffic, while offering the possibility of estimating the network behavior under

several network configurations with minimal effort. The results obtained

through this model are compared with those given by the LoRaWAN simulator,

presented in Chapter 3, further attesting the accuracy of the proposed approach

and exploring the impact of some common assumptions. Finally, we also

show possible usages of the model to evaluate a wide variety of network

configurations with limited effort. The results are obtained by considering the

European default settings, previously described in Sections 2.3, 2.4, but our

conclusions have broader interest, being valid also for other regions.

4.2.1 Packet life cycle
In LoRaWAN networks, messages transmitted by EDs to the GW are subject to

multiple causes of losses, which affect their reception at the GW. Specifically,

we can identify the following:

• Interference: packets sent in the same frequency channel and with the

same SF collide. A transmission can survive a collision event if its

received power is sufficiently higher than that of the other overlapping

signals (capture effect).

• GW already in transmission: the GW can not lock on a UL packet while

performing a DL transmission.

• GW starting a transmission: an ongoing packet reception may be inter-

rupted if the GW needs to send a DL packet.

• No available demodulation chains at the GW: all demodulators are already

busy decoding incoming signals.
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Moreover, confirmed UL messages cause the NS to generate ACKs that need to

be transmitted by the GW. Such DL transmissions may as well be impaired by

a number of events:

• Unavailability of receive windows: this event occurs when all available

GWs are prevented from transmitting in both the receive windows be-

cause of the DC constraint or other ongoing transmissions.

• Interference: DL packets transmitted in RX1 can collide with UL packets

transmitted by other EDs in the same channel and with the same SF.

The network model provided in the following accounts for all these events.

4.2.2 Model formulation
The aim of the model is to characterize the behavior of a LoRaWAN network

with a single GW, which receives packets from a set of EDs and needs to

reply in one of the two receive windows when an ED requires confirmation.

The system performance is assessed in terms of packet success probability,

following the approach used in [68] and extending it with a more accurate

characterization of the GW behavior. This performance metric is proxy to other

fundamental metrics, such as throughput and network capacity, which can be

straightforwardly derived from it. The following sub-sections are structured

as follows. The reference scenario, model assumptions, system parameters

and their effects are described in Sec. 4.2.3, together with a brief presentation

of the structure of the model and its underlying rationale; Sec. 4.2.4, then,

describes some relevant quantities and parameters of the proposed model. We

then delve into the analytical formulation by decoupling the analysis of the UL

traffic and DL messages, and derive the formulas for DL success probabilities.

Finally, we describe different performance metrics and their computation. Note

that, because of the mutual dependency of some values, some terms may be

described and introduced before the corresponding equation can be derived,

in which case references are provided in the text.

4.2.3 Scenario and assumptions
We consider a scenario where the EDs are randomly and uniformly distributed

around a single GW. Application-layer packets are generated according to a

Poisson Process with aggregate packet generation rate λ [pck/s], and can be

either confirmed or unconfirmed.

For tractability, we assume perfect orthogonality between different SFs, i.e.,

only packets employing the same SF can collide. In this case, one of the two
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Figure 4.1.: Representation of the model’s packet filtering structure. Rphy is the rate
of UL traffic (see (4.4)), while r1 and r2 represent the rate of ACKs sent
in SB1 and SB2, respectively (see (4.16), (4.18)).

packets can survive if its received power is sufficiently higher than that of the

colliding packet (collisions with more than two packets happen with negligible

probability and are not considered). While the orthogonality assumption has

been shown to have an impact on the PHY-layer performance of UL only

traffic [32], the results discussed in Sec. 4.2.10 show that the effect is much

more limited in the presence of confirmed traffic, where the performance is

severely limited by other factors.

Fig. 4.1 shows the structure of the packet reception model, consisting in

successive filtering of Poisson processes. At the base of the figure, arrows are

used to represent the UL traffic generated by the EDs, including both new

packet transmissions and re-transmissions of failed packets. This process is

assumed to be Poisson for tractability, ignoring the fact that re-transmissions

of a certain packet are correlated in time because of DC limitations. An initial

filtering of this process excludes some arrivals, modeling packet losses due to

interference from other EDs, unavailability of GW demodulators, or ongoing

DL transmissions from the GW. This yields a process with a reduced rate,

which now represents the packets that are correctly received by the GW.

When the received UL message requires confirmation, an ACK must be sent by

the GW during one of the two receive windows of the target ED. The ability of

the GW to perform such a transmission is modeled through two independent

alternating renewal processes, in which the system alternates between the ON

and OFF states. The two processes represent the opportunity of sending the

ACK in RX1 or RX2, respectively, which are opened on SB1 or SB2, i.e., on the
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shared or dedicated sub-band. If a confirmed packet finds a process in the ON

state, it means that the GW will be able to send an ACK in that sub-band. In

this case, the process will switch to the OFF state to model the unavailability of

that sub-channel for a certain period of time following the ACK transmission,

due to the DC restrictions.

Since the sub-bands are disjoint, we assume that the two processes are uncor-

related, neglecting the fact that the very packets that need to be served in SB2

are those that found SB1 in the OFF state. If the DL packet finds at least one

of the two processes in the ON state, an ACK is sent. If the ACK is sent on SB1

(hence, using frequencies shared by UL and DL traffic), it can be destroyed by

the interference created by other EDs. If the ACK is sent on SB2, instead, it is

assumed to be always successful.

For the sake of clarity, the following list describes some examples of the life

cycle of the packets in Fig. 4.1:

(A) This packet is lost because of interference or GW transmission or unavail-

ability of demodulators. Hence, it does not pass the first filter.

(B) This is an unconfirmed UL packet, which is successfully received by the

GW. It does not generate any ACK.

(C) This is a confirmed packet successfully received by the GW. It generates

an ACK, which finds the SB1 process in the ON state. The ACK is

successfully sent, and the SB1 process switches to the OFF state.

(D) This is another confirmed packet which is successfully received by the

GW. Since the GW has just sent an ACK for packet (C), it cannot reply in

SB1 due to DC constraints; SB2 is however in the ON state, and the GW

can thus reply to the ED, making the second process switch to the OFF

state.

(E) This is another confirmed packet, which gets a treatment similar to that

of packet (D). However, since the GW has transmitted the ACK for packet

(D) and is still under the DC constraints, it cannot reply to packet (E)

in either of the two receive windows (both SB1 and SB2 processes are

in the OFF state). The DL packet is hence discarded, and the ED will

re-transmit the UL message at a later time.
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4.2.4 Tunable parameters
Our model offers some tunable parameters to increase its flexibility, enabling

the evaluation of the network performance in various configurations with

minimal effort. The model makes it possible to specify the following values:

• SF = {7, . . . , 12} indicates the set of all SFs.

• α: fraction of application-layer traffic requiring confirmation;

• pui , p
c
i : fraction of devices generating unconfirmed and confirmed traffic

with a specific SF i ∈ SF , respectively. Note that

∑︂
i∈SF

pui =
∑︂
i∈SF

pci = 1;

• h: number of times an application-layer unconfirmed packet is transmit-

ted;

• m: maximum number of transmission attempts for confirmed packets;

• δSB1 and δSB2: ratio between silent time and transmission time in SBk,

corresponding to the DC constraint. For instance, in Europe, we have

δSB1 = 99 and δSB2 = 9 corresponding to a DC of 1% in SB1 and 10%

in SB2. In general, when δSBk > 0 the DC constraint applies to all

devices transmitting in subchannel SBk. Instead, the setting δSBk
= 0

corresponds to a DC constraint of 100%, which means that there is no

limitation on the transmission time1;

• τ1 and τ2: prioritization flags. If τk = 0, the GW prioritizes reception

operations over transmission during the k-th receive window, with k =
1, 2. In this case, the GW will drop any DL message that needs to be

transmitted while a UL reception is ongoing. Instead, if TX is prioritized

(τk = 1), the reception of any incoming packet will be interrupted in

order to send the ACK;

• C: number of UL frequency channels. Note that each UL channel can

also be used for DL transmissions. Instead, the channel in SB2 is DL only;

• T ack2
i : duration of the transmission of the ACK in RX2 when using SF

i. (The standard requires the use of SF 12 in RX2 as a pre-configured

1This setting is not allowed by current RF recommendations but is considered in this study
to gain insights on the impact of DC limitations in the considered scenarios.
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setting, corresponding to T ack2
12 . Note that this default setting can be

changed by the NS, and accordingly in our model.)

• T datai and T ack1
i indicate the time durations of a data packet and of an

ACK transmitted in SB1 with SF i, respectively. If ACKs transmitted in

SB2 use SF12, irrespective of the SF employed in the UL transmission,

then T ack2
i = T ack1

12 , ∀i ∈ SF .

In the formulas, the notation generally respects the following scheme. The

probability is indicated with S or F if it corresponds to a “success” or “failure”

event, respectively; if this rule does not apply, the probability is denoted simply

as P . The superscript indicates the considered event, while the subscript

the SF. For example, in (4.6), the symbol SINTi represents the probability of

successfully surviving interference (INT ) when using SF i. Different uses

of the notation are specified in the text. The following sections provide a

mathematical formulation for some relevant quantities in this model.

4.2.5 Uplink traffic rates
The assumption of perfect orthogonality between different SFs makes it possi-

ble to split the network traffic in different logical channels that do not interfere

with each other. The traffic load for each SF i is split uniformly over the

given C frequency channels (since EDs pick a random UL frequency for each

transmission attempt). Thus, the traffic generated at the application layer by

the EDs using confirmed and unconfirmed messages is, respectively, given by

Rc,app
i = pci · λ

C
· α, (4.1)

Ru,app
i = pui · λ

C
· (1 − α). (4.2)

Since EDs using unconfirmed traffic will perform h transmissions of each

application-layer packet, the PHY rate of these devices can be computed as

Ru,phy
i = Ru,app

i · h. For EDs transmitting confirmed messages, instead, the

number of re-transmitted packets depends on the success of both the UL trans-

mission and the corresponding ACK. We indicate as PDL
i,j the probability that a

confirmed UL packet sent with SF i is successfully received and acknowledged

at the j-th transmission attempt, which will be derived in (4.29). Therefore,

we have that the rate of confirmed packets transmitted at SF i, Rc,phy
i , is given

by the product of the application-level rate, Rc,app
i , and the average number of

times a confirmed packet is transmitted at the PHY layer.
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Rc,phy
i = Rc,app

i

⎡⎣m−1∑︂
j=1

j · PDL
i,j +m

⎛⎝1 −
m−1∑︂
j=1

PDL
i,j

⎞⎠⎤⎦. (4.3)

The first summation in the square brackets of (4.3) takes into account transmis-

sions that are successfully received before the mth attempt, while the second

term considers the case when the packet is transmitted m times (irrespective

of whether the last transmission is successful or not).

The total traffic for a single frequency channel and for SF i is therefore given

by

Rphy
i = Ru,phy

i +Rc,phy
i . (4.4)

In general, the distribution of the SFs for the transmitted packets at the PHY

layer will differ from the native distribution of SFs among the devices, {pui , p
c
i},

because of re-transmissions. Thus, we define

di = Rphy
i∑︁

j R
phy
j

, (4.5)

as the ratio of PHY layer packets that are transmitted at SF i ∈ SF .

4.2.6 PHY layer probabilities
A UL packet is successfully received by the GW if all the following conditions

are met: (i) it does not overlap with another UL transmission using the same

SF on the same frequency, or it overlaps with another UL packet, but the

received power is sufficiently large to allow for correct decoding despite the

interference (capture), (ii) it does not overlap with a GW DL transmission in

any channel, and (iii) it finds an available demodulator. These conditions are

represented by the first filter in Fig. 4.1.

Since packets are generated following a Poisson process, the probability of

event (i) is given by two components. The first is the probability that there

are no other arrivals during the 2T datai vulnerability period across the packet

arrival instant. The second, considers a collision with one packet, and the fact

that the receiver successfully captures the frame. For the UL, we consider the

capture probability WGW as computed in [66]. Since these two events are

disjoint, the probability of surviving interference (event (i)) is given by the

sum of the two components, which results in

SINTi = e−2T data
i Rphy

i + 2T datai Rphy
i e−2T data

i Rphy
i · WGW , (4.6)
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where, in the right-most term, we computed the probability that either of the

two colliding packets is captured (collision events with more than two packets

are neglected).

To compute the probability of event (ii), we observe that a UL message is

always lost when it arrives at the GW during the transmission of an ACK.

Otherwise, the GW will start the reception of the UL message, which will take

a time T datai . If reception on SBk is prioritized (i.e., τk = 0), this process cannot

be interrupted, and the UL message will be successfully delivered to the NS.

Conversely, if τk = 1, i.e., we prioritize transmission on SBk, the reception of

the UL packet may be aborted at any time during the period T datai , in order to

give priority on the ACK transmission. Therefore, the vulnerability period is

given by the ACK transmission time T ackk
s , to which we need to add the interval

T datai only if τk = 1. Denoting by bks the probability that an ACK is transmitted

on SBk with SF s ∈ SF (which will be derived later in (4.22)), the average

vulnerability period is then given by Tk = ∑︁
s∈SF b

k
sT

ackk
s + T datai · τk. Now,

according to the Poisson Arrivals See Time Averages (PASTA) property, the

probability that a UL packet arrival falls in the vulnerability period of channel

SBk, with k = 1, 2, can be expressed as

F TXk
i =

∑︁
s∈SF b

k
sT

ackk
s + T datai · τk

Ek
ON + Ek

OFF

, (4.7)

where the denominator is the mean renewal time of the SBk process, given by

the sum of Ek
ON and Ek

OFF , i.e., the expected times the SBk process spends in

the ON and OFF states during a renewal period (ON-OFF cycle), which will

be computed in (4.21) and (4.23). Then, assuming (for ease of analysis) that

events in SB1 and SB2 are independent, the probability that a UL packet is

successfully received (event (ii)) is given by

STXi = (1 − F TX1
i )(1 − F TX2

i ). (4.8)

Next, we compute the probability of event (iii), i.e., that at least one demod-

ulator out of 8 is available. Each demodulator chain is modeled through an

alternating renewal process, where the demodulator can be in an “available”

state A, when idle or in a “locked” state L, when occupied with the reception

of another signal. We assume that the different demodulators are activated

in succession: if all are available, an incoming signal will be received by the

first demodulator; if the first demodulator is in the L state, the packet will be

handled by the second demodulator, and so on. Let EL be the expected time a
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demodulator will be locked on a incoming signal. Since the occupation will

last for the duration of UL LoRa packets at the PHY layer, we have:

EL =
∑︂
i∈SF

di · T datai . (4.9)

The average time the first demodulator is in the A state, instead, is computed

as the average inter-arrival time of UL packets, regardless of their SF and

selected frequency:

EA,1 = 1
C ·∑︁i∈SF R

phy
i

. (4.10)

Then, the process of packets that require the second demodulator is filtered by

the probability of finding the first demodulator occupied. Thus, the expected

time the second demodulator is available is given by

EA,2 = EA,1

PL,1 = 1
PL,1 · C ·∑︁i∈SF R

phy
i

, (4.11)

where PL,1 is the probability that the first modulator is in the L state (see (4.13)).

With a similar reasoning, we compute the expected time for which the j-th

demodulator is available as

EA,j = EA,j−1

PL,j−1 = 1∏︁j−1
ℓ=1 P

L,ℓ · C ·∑︁i∈SF R
phy
i

. (4.12)

The probability PL,ℓ of finding the ℓ-th demodulator in the L state, in turn, can

be expressed as

PL,ℓ = EL

EA,ℓ + EL
. (4.13)

Then, a packet finds an available demodulator (event (iii)) with probability:

Sdemod = 1 −
8∏︂
j=1

PL,j. (4.14)

The overall UL packet success probability, considering events (i), (ii) and (iii)

described above, is finally expressed as

SULi = SINTi · STXi · Sdemod. (4.15)

4.2.7 ACK transmission
Once a confirmed packet is correctly received by the GW, an ACK needs to

be transmitted back to the ED. Eq. (4.15) gives the probability of successful
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Figure 4.2.: Diagram for successful ACK reception.

packet reception at the GW. Therefore, the rate of ACK messages that the GW

will try to send in SB1 is:

r1
i = Rc,phy

i · SULi . (4.16)

A visual representation of the possible ACK life cycles considered in the model

is shown in Fig. 4.2. Labels refer to the probabilities of the different events,

which we derive next. In general, an ACK is transmitted in SBk if both the

following conditions hold: (i) τk = 1 (TX is prioritized) or τk = 0 and the

GW is idle; (ii) SBk is available (i.e., not blocked by DC constraints). If either

condition is not satisfied, the ACK is dropped.

Let T denote the event “the GW may transmit,” which depends on the TX/RX

prioritization policy. If τk = 1, the GW can transmit the DL packet whenever it

needs to; otherwise, if τk = 0, the GW can transmit in SBk only if no reception

is ongoing. We denote by P T,k the probability of T , which can be computed as

P T,k =

⎧⎪⎨⎪⎩1, if τk = 1;

e−
∑︁

i∈SF C·Rphy
i T data

i , if τk = 0;
(4.17)

where the second expression is the probability that no UL packet was generated

in the last T datai seconds.

If SB1 is not available, the GW will try to process the ACK in SB2. Such packets

form a process with rate

r2
i = r1

i [POFF,1 + PON,1(1 − P T,1)], (4.18)

where PON,1 and POFF,1 are the probabilities of finding SB1 in the ON and OFF

state, respectively, and (1 −P T,1) is the probability that the GW is not available
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for DL transmission. The ON and OFF probabilities for the SBk process, with

k = 1, 2, are given by

PON,k = EON,k

EON,k + EOFF,k
, (4.19)

POFF,k = EOFF,k

EON,k + EOFF,k
, (4.20)

where EON,k and EOFF,k are the mean sojourn times in ON and OFF states,

respectively, which are computed as follows. By considering the arrival rate of

successful UL packets in the k-th sub-band, we have:

EONk = 1∑︁
i∈SF C · rki

. (4.21)

Note that the switch from the ON to the OFF state will be caused by a packet

sent in any of the C UL channels: therefore, we need to multiply the rates rki
of arrivals to SBk with SF i by the number of available channels.

In order to compute the expected duration of the OFF periods, we first need to

derive the probability distribution bki of the SFs used for ACK transmissions,

which is given by

bki = rki∑︁
s∈SF

rks
. (4.22)

In our model, the OFF period accounts for the time the GW is prevented from

transmitting a new data packet, which includes the time to send the ACK using

the given SF, plus the waiting time imposed by the DC limitations. We hence

have

EOFF,1 =
∑︂
s∈SF

b1
s(T ack1

s + δSB1 · T ack1
s ),

EOFF,2 =
∑︂
s∈SF

b2
s(T ack2

s + δSB2 · T ack2
s ).

(4.23)

(Note that, by including the parameter δSBk as defined in Sec. 4.3.2, we can

change the DC limitations in the k-th sub-band, thus making it possible to

analyze its impact.)

Finally, we remark that DL packets sent by the GW in SB1 also have to avoid

interference from other EDs. In the absence of collisions, the vulnerability

period is given by the sum of two terms. The first term corresponds to the case

of no UL transmissions starting while the DL packet is being sent (T ack1); the

second term represents the event where no UL transmissions started before
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the ACK is sent. Note that if τ1 = 0 the second term is not present, since in that

case the ACK would not be generated at all. Furthermore, an ACK can survive

an interfering packet sent by another ED in case of capture, which happens

with probability WED (equivalent to the WMote as derived in [66]). Therefore,

the probability that the ACK does not collide with a UL packet in SB1, or is

captured despite the collision, is equal to

SINT,ack1
i = e−Rphy

i (Tack1
i +τ1·T data

i ) +Rphy
i (T ack1

i +T datai ) · e−Rphy
i (Tack1

i +T data
i ) ·WED.

(4.24)

For packets sent in SB2, instead, the reception is assumed to be always suc-

cessful, since the 869.525 MHz channel is dedicated to DL communication and

the GW only transmits one packet at a time (note that this assumption does

not hold in the case of multiple GWs).

4.2.8 DL success probability

Given that a confirmed UL packet sent with SF i has been successfully received

by the GW, the probability that the corresponding ACK is also successfully

returned to the ED is expressed as

SDL
i = SSB1

i + SSB2, (4.25)

where SSB1
i describes the probability of a successful ACK transmission in SB1

with SF i, while SSB2 accounts for the probability that SB1 is not available,

and the ACK is successfully sent in SB2. These probabilities, in turn, can be

expressed as follows:

SSB1
i = PON,1 · P T,1 · SINT,ack1

i , (4.26)

SSB2 = [POFF,1 + PON,1 · (1 − P T,1)] · PON,2 · P T,2. (4.27)

Fig. 4.2 can be used as a reference for the computation of this quantity.

Finally, we can compute the success probabilities over m transmissions. We

recall that, for the sake of simplicity, we neglect the time correlation of packet

re-transmissions due to DC constraints, (the impact of this approximation will

be analyzed by simulation). We recall that PUL
i,j indicates the probability that

a UL packet with SF i is successfully received at the GW at exactly the j-th

transmission attempt, which can be computed as:

PUL
i,j = SULi

(︂
1 − SULi

)︂j−1
. (4.28)
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Then, the ED successfully receives the ACK at exactly the j-th attempt if both

the UL and the DL transmissions succeed. The probability PDL
i,j of this event is

hence given by:

PDL
i,j =

[︂
1 − (SULi SDLi )

]︂j−1
· (SULi SDLi ). (4.29)

Once all intermediate quantities are computed, the model can be summarized

by two inter-dependent equations:

⎧⎨⎩S
UL = f(SUL, SDL),

SDL = g(SUL, SDL).

where SUL = [SUL7 , . . . , SUL12 ] and SDL = [SDL7 , . . . , SDL12 ], while f() and g() are

implicit functions given by the chaining of the sequence of operations that

yield (4.15) and (4.25), respectively.

This system admits a fixed-point solution, which can be found through fixed-

point iteration. From a practical perspective, when initialized with the states

SUL = SDL = [1, 1, 1, 1, 1, 1], the iterative process has always reached conver-

gence to the stable fixed point after a few iterations (order of few units) for

all the parameter combinations considered in this work. The proof of the

system’s convergence is provided in Appendix A. An implementation of the

model, allowing the interested readers to easily replicate the results shown in

this section, is publicly available at [83].

Performance metrics
To evaluate the system performance, we consider three classes of key perfor-

mance indicators, namely: reliability, delay, and fairness metrics, which are

better detailed in the remainder of this section together with the methodology

to determine their value using the proposed model. Once a set of parameters is

fixed, the model can be solved and the performance metrics can be estimated

starting from SUL and SDL. Conversely, it is possible to employ the model

to optimize a given performance metric, finding the parameter setting that

maximizes it, as shown in Sec. 4.2.10.

Reliability Metrics We consider three PDR indexes, namely:

• Unconfirmed Uplink PDR (UU): fraction of (application-layer) un-

confirmed packets that are successfully received by the GW;

• Confirmed Uplink PDR (CU): fraction of (application-layer) con-

firmed packets that are successfully received by the GW, irrespective
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of whether or not the corresponding ACK is successfully returned to

the ED;

• CD: fraction of (application-layer) confirmed packets that are suc-

cessfully acknowledged by the NS.

Clearly, CD ≤ CU, since a packet needs to be successfully received by the

GW in order to be acknowledged. Note that the CU metric captures the

performance of applications for which it is important to deliver packets to

the NS and ACKs are only used to stop re-transmissions (and thus avoid a

useless increase in traffic), while CD is more interesting for applications

that require the EDs to get explicit feedback from the NS, for instance

containing control information addressed to the ED.

We obtain the UU and CU values by averaging the UL success probability

(UUi and CUi for unconfirmed and confirmed packets, respectively) for

each SF i over the SF distribution, i.e.,

UU =
∑︂
i∈SF

(pui · UUi) =
∑︂
i∈SF

⎛⎝pui ·
h∑︂
j=1

PUL
i,j

⎞⎠ , (4.30)

CU =
∑︂
i∈SF

(pci · CUi) =
∑︂
i∈SF

⎛⎝pci ·
m∑︂
j=1

PUL
i,j

⎞⎠ . (4.31)

Similarly, CD is computed as the probability of success for a confirmed

packet within the available re-transmission attempts

CD =
∑︂
i∈SF

⎛⎝pci ·
m∑︂
j=1

PDL
i,j

⎞⎠ . (4.32)

Delay Metrics We define two delay metrics, considering confirmed traffic

only: ∆UL measures the time from the first transmission attempt to the

successful delivery to the GW of an UL confirmed packet, while ∆DL

accounts for the time from the first transmission of a confirmed packet to

the successful reception of the corresponding reply. Delays are computed

for successful packets only, and the propagation delay is assumed to be

negligible. To compute these metrics with our model, we assume the

RETRANSMIT_TIMEOUT value to be a uniformly distributed random

variable with mean µ, and consider that EDs employ the shared sub-band
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with δSB1 DC limitations. Therefore, the average time between two

transmissions of the same MAC-layer packet by a device is given by:

γi = (δSB1 + 1) · T datai + µ. (4.33)

The average delay from the successful reception of a packet at the GW to

the transmission of the ACK is given by:

ϕi = SSB1
i · (1 + T ack1

i ) + SSB2 · (2 + T ack2
i ), (4.34)

where we take into account that the ACK will be served in SB1 (opened

after 1 second) with probability SSB1
i , and in SB2 (opened after 2 seconds)

with probability SSB2.

If a packet is re-transmitted m times, each re-transmission j is associated

with a certain UL success probability PUL
i,j . The average delay at each SF

i ∈ SF can be computed as:

∆UL =
∑︂
i∈SF

pci ·

⎛⎝ m∑︂
j=1

P̄
UL
i,j

(︂
T datai + (j − 1) · γi

)︂⎞⎠ , (4.35)

where we define P̄
UL
i,j = PUL

i,j /
∑︁
j P

UL
i,j to obtain the distribution of suc-

cessful UL packet transmissions.

Similarly, we can compute the average ACK delay:

∆DL =
∑︂
i∈SF

pci ·

⎛⎝ m∑︂
j=1

P̄
DL
i,j

(︂
T datai + (j − 1) · γi + j · ϕi

)︂⎞⎠ , (4.36)

where, in addition to the inter-transmission time between two packets,

we also account for the time to perform the ACK transmission.

Fairness Finally, we consider the fairness of the system in different scenarios.

Indeed, EDs employing confirmed traffic or higher SFs will use more

system resources (e.g., channel occupancy), possibly affecting the appli-

cation performance of devices that employ different settings. To this aim,

we use Jain’s fairness index, defined as

J(x) =

(︃∑︁n
i=1 xi

)︃2

n ·∑︁n
i=1 x

2
i

, (4.37)
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where n is the total number of user categories, each with throughput xi.

Note that 1/n ≤ J(x) ≤ 1, and the system is perfectly fair if J(x) = 1. In

particular, in the following section, we will consider the fairness among

devices employing different SFs. Furthermore, since all the devices

have equal packet generation rate, and transmit packets with the same

length, instead of the throughput we can simply consider the UL success

probability, i.e., UU for nodes employing unconfirmed traffic and CU

for devices transmitting confirmed messages. Therefore, the fairness

is computed by taking x = [xu,xc], where the elements correspond to

xui = UUi, and xci = CUi, as defined in (4.30), (4.31).

4.2.9 Network simulations
In order to validate our model, we compared the performance estimates

obtained from the model with those observed in more realistic simulations, in

which most of the simplifying assumptions of the model are removed.

This section describes how we employed the LoRaWAN ns-3 module described

in [84] to perform such a validation. To be noted that the more accurate

modeling of the LoRaWAN standard considered in the simulator comes at the

cost of a much larger computational time to assess the system performance.

Indeed, for the same parameter set, the performance evaluation is basically

instantaneous when employing the theoretical model, while each ns-3 simu-

lation run takes in the order of tens of seconds, with execution times rapidly

increasing when the traffic load, the number of devices or the number of

required randomized runs grow.

The merit of the simulator is that it strives to be as realistic as possible, also

taking into account some factors that are overlooked by the model for tractabil-

ity reasons. For instance, the assumption of perfect orthogonality between

transmissions employing different SFs is removed, and the simulator relies

on the link-level model provided in [15] to determine the actual reception

probability in case of overlapping transmissions, which also accounts for the

capture effect.

The simulation setting is as follows.

• Traffic load – The number of EDs is fixed to 1200, and the EDs’ application

layer is set to periodically generate packets to be transmitted by the MAC

layer. The traffic load in the network is modified by varying the packet

generation period. It is to be noted that this periodic traffic generation

pattern is likely more realistic than the Poisson traffic assumed in the
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Table 4.1.: Values of T data, T ack and SF distributions p. Payload of data packets is 10
bytes; ACKs have no payload.

SF T data [s] T ack [s] pequal pEXPLoRa

7 0.051 0.041 0.166 0.487
8 0.102 0.072 0.166 0.243
9 0.185 0.144 0.166 0.135

10 0.329 0.247 0.166 0.076
11 0.659 0.495 0.166 0.038
12 1.318 0.991 0.166 0.019

model. Nonetheless, the good match of simulation and analytical results

confirms that the Poisson assumption is valid when the number of nodes

is sufficiently large.

• Channel allocation – We consider the typical frequency allocation scheme

for Europe, as reported in Tab. 2.7. Therefore, the number of different

frequency channels for UL is C = 3.

• Duty cycle – The simulator considers the DC limitations applied in the

European region [37], which corresponds to setting δSB1 = 99 and

δSB2 = 9 in the model.

• Channel model – Differently from the model, simulated LoRaWAN nodes

experience a log-distance propagation path loss, as for an open-air sce-

nario. Thus, farther devices will suffer increased loss, and their perfor-

mance will be penalized with respect to EDs that are close to the GW.

Note that we do not include fast-fading components, which are sup-

posed to be averaged out by the LoRa modulation, nor time-dependent

variations in the channel, which remains constant throughout the en-

tire simulation. Also, the channel is assumed to be symmetric, and DL

transmissions will suffer the same impairments as in the UL.

• SF distribution – EDs are located around the single GW in a circular area

of radius 2500 m, which allows for communications with any SFs with

negligible channel error probability (in the absence of interference). In-

stead, the positions of the nodes are randomly picked at each simulation

run. SFs are assigned uniformly (see Tab. 4.1, pequal). A different SF

distribution (pEXPLoRa) is considered in some scenarios, to evaluate the

impact of this parameter on the different metrics.
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• Interference and capture effect – To model interference, in the simulator we

consider the collision matrix provided in [15] and the overlapping time

between packets, as described in [39].2 A packet survives interference

from a signal modulated with the same SF if its power is at least CRdB =
6 dB higher than the colliding one. In order to provide a comparison

with this scenario, in the analytical model we leverage the assumption

of uniformly distributed EDs around the GW to compute the capture

probabilities as in [66], which results in WGW = 0.1796, and WED =
0.5682. We remark that different distributions of EDs around the GW can

be modeled by adapting this derivation.

Since the GW implementation in the simulator attempts to emulate the behav-

ior of a real device, a UL packet is successfully received when all the following

conditions are satisfied:

1. The packet finds an available demodulator;

2. The packet’s reception is not interrupted by DL transmissions;

3. Once the reception is finished, the packet was not corrupted by interfer-

ence.

To count packets at the PHY layer coherently with the simulator implementa-

tion, the model’s packet loss probabilities due to lack of demodulators (FNMD),

GW transmission (FGWTX) and interference (FINT ) are plotted in the following

section using, respectively, the following expressions:

1. FNMD = 1 − Sdemod;

2. FGWTX = Ei
[︂
Sdemod · (1 − STXi )

]︂
;

3. FINT = Ei
[︂
Sdemod · STXi · (1 − SINTi )

]︂
;

by exploiting (4.6), (4.8), and (4.14), and where Ei [·] indicates the expec-

tation over the distribution of SFs and Sdemod the probability that, in the

simulations, a packet can lock on an available demodulator.

2Note that, in the simulator, the capture event is determined also considering the partial
overlapping of the colliding packets.
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Figure 4.3.: PHY-level performance with m = 8, α = 1.

4.2.10 Results
This section provides a comparison between the performance estimated with

the proposed model and by the ns-3 simulator. Results are presented for both

PHY and MAC layer, and the impact of the model’s assumptions is shown to be

mostly negligible, or at least acceptable. Finally, some results will showcase

how the model can be used to gain insight on the behavior of the LoRaWAN

technology in a quick and effortless way, analyzing the effects of various

parameters on the performance of the network. In the plots of this section

the analytical results are represented by lines, while markers correspond to

simulation outcomes.

Fig. 4.13 shows the packet outcome probabilities at the PHY layer in a network

employing confirmed traffic. Although obtained with different approaches,

such probabilities are overall consistent, proving the effectiveness of the model.

The good match between model and simulation is also reflected in Fig. 4.4,

which shows the CU and CD metrics for a network in which all EDs generate

confirmed traffic (α = 1), and for different values of m. Also in this case,

the model results are quite close to those given by the simulations. Fig. 4.4a

shows that the number of available transmissions helps the correct delivery

of the message at the MAC layer, providing performance above 0.9 also for

relatively high traffic levels, when an average of one packet per second is

generated by the network at the application layer. The CD performance shown

in Fig. 4.4b exhibits a similar behavior, but reaches much lower values mostly

because the rate of DL messages that the GW can generate is limited by the

DC restrictions. The fact that this loss in performance is caused by the GW’s
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(a) CU for different values of m, α = 1

(b) CD for different values of m, α = 1

Figure 4.4.: Comparison of model and simulation results in terms of CU and CD.

DC is confirmed by the lilac dash-dotted line in Fig. 4.4b: to obtain these

results, the DC restrictions were lifted by setting δSB1 = δSB2 = 0 in the model,

producing markedly better results when compared to the corresponding green

curve, where DC is enabled. Another example of the model’s flexibility in

considering also non-standard settings is given by the densely dash-dotted

brown line, which represents the CD metric when δSB1 = δSB2 = 9, i.e., when

transmissions in both sub-bands are subject to a DC of 10%. Although being

an ideal setting, this case shows that even a small increase in the DC allowance

in SB1 can yield considerable performance gains.

Fig. 4.5 compares simulation and theoretical results, in terms of UU, CU and

CD, when different fractions of confirmed traffic are employed in the network.

For this comparison, we set the network application layer packet arrival rate
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Figure 4.5.: Performance when varying the fraction of confirmed traffic, with λ =
1, m = 8, h = 1.

Figure 4.6.: Delays for a confirmed traffic network, m = 8.

to λ = 1 pck/s, the maximum number of transmissions for confirmed traffic

to m = 8, and the number of repetitions for unconfirmed traffic to h = 1. As

the fraction of EDs employing confirmed traffic increases, the data delivery

performance decreases for all the EDs, in particular for nodes employing

unconfirmed traffic which do not have the chance of re-transmitting their

packets. The match between the simulator and the model is confirmed to be

excellent for all values of α.

The final metric that we evaluate through both model and simulation is

the delay, as described in Sec. 4.2.8. Fig. 4.6 shows how delays generally

increase with the traffic load, since more re-transmissions are needed to

successfully deliver a packet. Note that for high values of λ the average ACK
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Figure 4.7.: Fairness for different SF distributions when m = 8, h = 8, τ = 1, α = 0.3.

delay ∆DL decreases: this is explained by the fact that devices employing higher

SFs, (which may increase the average delay due to their longer inter-packet

transmission times) heavily suffer from interference and are often dropped

(unsuccessful packets are not considered in the delay computation). Although

not shown here, it is worth noting that the model formulation makes it easy to

extract per-SF metrics that can help troubleshoot the network configuration

under study.

We now analyze how the fairness varies with the traffic load for different

configurations of α, pu and pc. We consider the SF distributions pequal and

pEXPLoRa as defined in Tab. 4.2. The pEXPLoRa distribution, first presented in [74],

aims at equalizing the aggregate time on air of each group of devices employing

the same SF to minimize the collision probability. In Fig. 4.7 we can observe

that, when the SFs are uniformly allocated independently of the traffic type

(i.e., pu = pc = pequal), the fairness decreases for an increasing traffic intensity.

Indeed, as the traffic grows, nodes employing lower SFs will suffer less from

interference because of the shorter transmission times. The fairness grows

when α = 0.3 and pc = pEXPLoRa, since with this configuration 30% of the

generated packets will use lower SFs with higher probability, diminishing the

channel and GW occupancy. However, since the traffic load is high and the

fairness is measured on the uplink performance (UU and CU), the beneficial

effect of allocating SFs according to the pEXPLoRa distribution are more evident

when it is used for most of the devices, i.e., the 70% of nodes employing

unconfirmed traffic. Finally, the maximum fairness is achieved when the SFs

are allocated using pEXPLoRa both for pu and pc (dotted line in Fig. 4.7). Note
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Figure 4.8.: Distribution of re-transmissions, m = 4, α = 1.

Table 4.2.: Configurations employed in Fig. 4.9

Configuration τ1 τ2 m h pu = pc

C1 1 1 1 1 pequal
C2 0 1 1 4 pEXPLoRa

C3 0 1 4 4 pEXPLoRa

that, when λ ≤ 1, the load in the network is low enough to have J = 1 for

every pu, pc, since the collision probability is low and the GW is not busy with

ACK transmissions.

An example of insight that the analytical model can offer is presented in

Fig. 4.8, which shows the fraction of traffic that achieves success after a certain

number of re-transmission attempt for different traffic loads, derived from

PDL
i,j . This data, for instance, can be used to estimate the power consumption

at the nodes: for low traffic loads the vast majority of MAC layer packet

transmissions succed with just one PHY layer transmission attempt. As the

traffic load increases, the fraction of devices needing multiple re-transmissions

to correctly receive an ACK correspondingly increases. After a certain point,

packet reception fails with such a high rate that most EDs need to employ the

maximum number of transmissions and, despite the high energy expenditure,

still fail to receive an ACK from the GW.

Finally, we show how the model can be applied to investigate the impact of

different network parameters on the performance. In the example of Fig. 4.9,

30% of the EDs employ confirmed traffic, and we show results obtained with

the proposed mathematical model. The parameter configurations are sum-

marized in Table 4.2. Configuration C1 provides a baseline: priority is given
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Figure 4.9.: UU and CD performance for different network configurations, α = 0.3.

to DL transmission in both windows, devices employ a single transmission

attempt for both confirmed and unconfirmed traffic, and SFs are uniformly

distributed. In this case the curves have a shape similar to those shown in

Fig. 4.4 for m = 1, but, since fewer devices require ACKs, the GW is able to

receive more packets and profitably send replies, leading to better performance.

To improve UU a second configuration (C2) considers the prioritization of ACK

transmissions in RX2, where their reception suffers less interference. Moreover,

unconfirmed packets are sent multiple times and we use pu = pc = pEXPLoRa.

This configuration provides a considerable improvement with respect to the UU

metric, and some gains are also achieved in the CU performance. To improve

also the results for confirmed traffic, a further step (configuration C3) is to

set m = 4. This provides a significant improvement of CU, at the cost of a

(minimal) decrease in UU performance.

As a final step, we fully leverage the analytical model to identify the optimal

parameter configuration (i.e., m, h, pu and pc) for each plotted traffic load,

with the objective of maximizing the average of UU and CU. The red curves

of this setting (C4) show how this optimization process enabled by the model

can significantly improve the global performance of the network, significantly

improving the CD performance at the price of a very small reduction in packet

success rate for unconfirmed devices.
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Figure 4.10.: Optimal values of pu, pc, m and h as computed through model-driven
optimization, for various values of λ.

The optimization problem that is solved to obtain configuration C4 is defined

as:
max
pu,pc

UU + CD

s.t. 0 ≤ pui ≤ 1

0 ≤ pci ≤ 1∑︂
i

pui = 1
∑︂
i

pci = 1

(4.38)

where we explore the entire space defined by m, h and λ, by solving (4.38)

to find the best pu and pc, and finally pick the best solution for each λ. The

search is performed using the trust region method as implemented by the

scipy library, and we always set pui = pci = 1/6 as the initial parameter value

for the algorithm.

Fig. 4.10 displays the parameters of configuration C4 for some representative

values of λ, showing pu in the first row, pc in the second row, and a combination

of the two weighed on α on the third row. For a low value of generated traffic

(λ = 0.1, first column), we see that the optimization stops almost immediately,

yielding a distribution that is very similar to the initial value of pu and pc.
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In this case, as can also be seen in Fig. 4.9, since the traffic load is low the

performance is indeed very good for high values of m and h, and needs little

optimization of the SF distributions. For λ = 1, instead, the optimization

process yields a more distinctive value of pc, setting almost all devices to use

SF7. This is motivated by the fact that, RX1 is set to employ the same SF used

in the UL. Therefore, having most of the confirmed devices employ an SF as

low as possible is advantageous, since it guarantees faster ACK transmissions

in the DL and, as a consequence, shorter silent times imposed by the DC, and

a larger set of devices can thus be served. Devices employing unconfirmed

traffic, instead, are set to use a variety of SF values. Notably, the selected

values are such that the aggregated distribution considering both unconfirmed

and confirmed traffic (visible in the third row) takes a shape that is very similar

to that of pEXPLoRa. This behavior is even more marked when λ = 10, with

the notable difference that higher SF values are not used in the optimized

network: this is because of the limited number of demodulators at the GW (a

factor which is accounted for in our model). Indeed, although using all SF

values would bring an additional gain, a packet with high SF value occupies

a demodulator for quite a long time, increasing the probability that other

incoming packets are dropped because of unavailability of reception chains at

the GW. Finally, we note that m and h are consistently set to their maximum

values (8 here) up to λ = 1. After this value, instead, it pays off to reduce the

number of repetitions employed by both unconfirmed and confirmed EDs.

Although this analysis showcases the potential of the mathematical model

to identify the optimal settings, an evaluation of the trade-offs associated to

parameter configurations and their effect on other metrics of interest, such as

delays and energy consumption, needs a deeper investigation, which we leave

for future work.

4.2.11 Conclusions
In this section, we presented a model for the performance evaluation of a

LoRaWAN network in the presence of both confirmed and unconfirmed traffic,

taking into account the influence of different settings of multiple network

configuration parameters.

The model is able to capture both the PHY layer and MAC layer performance,

and describes the multiple events that affect both UL packet reception and

DL transmission: interference, capture effect, availability of demodulator, DC

constraints, ongoing transmissions and receptions. We validated the model

results with ns-3 simulations, showing the consistency among the two sets
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of results. Finally, we presented some examples of how the model can be

employed to analyze the effects of possible changes to the standard parameter

settings, and to identify optimal configurations with minimum effort.

Several extensions of this work are possible. A first improvement to the

model is the inclusion of multi-GW scenarios, where UL packets are potentially

received by several GWs, and the network DL capacity is increased. A second

aspect of interest is to leverage the proposed model to better investigate trade-

offs among different network parameters in various scenarios, or when specific

performance requirements are provided. A third possible improvement would

involve characterizing the capture effect for non-uniform spatial distribution

of the devices. Finally, a fourth direction is to employ the proposed model to

identify optimal network settings when different metrics of interest are used as

optimization functions, as we showed in the results section with some simple

cases. We point out that the target of the model was to explore the capabilities

of LoRaWAN networks, thus, in this work, we neglected some features of LoRa,

such as the interference between overlapping packets modulated with different

SFs. The model can be extended by including this, as well as other specific

features of the LoRa technology. Such extensions are left for future work.

We remark that all figures contained in this section, covering both model

evaluations and simulation results, can be easily reproduced using the tool

available at [83].

4.3 A thorough simulation study of LoRaWAN
performance under different parameter settings

As presented in Sec. 2.3 and Sec. 2.4, the LoRaWAN standard offers large

flexibility in the network configuration, which is another attractive factor.

Indeed, the NS can choose the SF used by the different nodes, the duration

of the receive windows, the transmission/reception channels, the priority of

acknowledgement and downlink data packets, and so on. By properly setting

these parameters it is hence possible to support reliable/bidirectional commu-

nications and to change the balance between communication reliability, delay,

energy-efficiency and system capacity. However, while the effect of certain

parameters settings can be predicted in simple scenarios, with a relatively low

number of nodes, the interactions among the different mechanisms of the

system become much more complex and less intuitive in large-scale scenarios.
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In the following of this section, we leverage realistic network simulations to

gain insight on the performance of LoRaWAN technology in such scenarios, and

show how even small adjustments in MAC layer parameters can significantly

affect the system performance (e.g., the packet success ratio). By doing so,

we highlight some inherent issues raised by the DC limitations in European

ISM bands, and propose some improvements to mitigate the impairments that

LoRaWAN may experience at scale. Such simple ingenuities can help increase

the number of devices that can be served by a single gateway, postponing the

potential collapse of the network in overcrowded scenarios and reducing the

network management costs created by inefficient network layouts.

In this study we differ from the existing literature described in Sec. 4.1.2 in

that we target large networks with bidirectional traffic, a scenario that makes

it possible to observe some unforeseen effects rising from the interaction of

multiple nodes served by one single GW and NS. Furthermore, in our analysis

we examine one by one the role played by the configurable network parameters,

as detailed in Sec. 4.3.1, thus highlighting some pitfalls that can affect the

network performance. We then propose possible counteractions that require

some small changes at the MAC layer, and we evaluate their effectiveness in

some representative scenarios.

4.3.1 Available network settings
The analysis carried out in this work leverages the ns-3 lorawan module

described in Chapter 3. Next we give a brief introduction to the network

configuration options that are available in the simulator and that make it

possible to control the behavior and features of both GW and EDs.

Gateway DC In the simulator we have the opportunity of turning on or

off the DC restriction at the GW to analyze its impact on the network

performance.

Transmission/reception priority LoRaWAN GWs cannot receive and trans-

mit simultaneously. In commercial GWs, if there is the need to send

an ACK, the reception of any incoming signal will be immediately inter-

rupted to start the DL transmission. In this section, we call this standard

behavior “transmission (TX) prioritization.” In addition to this mecha-

nism, here we also consider the RX prioritization option, according to

which DL transmissions are performed only if the GW is not engaged in

any packet reception. In case the GW is receiving an UL message at the

time when it should be sending an ACK, it will continue the reception
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procedure and postpone the DL transmission to the second receive win-

dow, if available. If a reception is also occurring when the second receive

window opens, the ACK is definitively dropped. This feature could easily

be implemented in future LoRa chips, only requiring minimal changes to

the behavior of the NS and GWs.

Sub-band prioritization The LoRaWAN standard requires that RX1 is opened

on the same channel where the corresponding UL was received, while

RX2 is opened on a dedicated DL channel, which in Europe also features

more lenient DC restrictions (10% instead of the 1% allowed on the

other channels). In the simulator, we have enabled a mode that switches

this setting, making it possible to open RX1 on the dedicated DL channel,

and RX2 on the channel used for the UL communications. The effect of

this trick will be illustrated in Sec. 4.3.4.

Acknowledgment data rate The LoRaWAN specifications recommend that

ACKs transmitted on RX1 should use the same SF for the UL transmission,

while transmissions on RX2 use the lowest available data rate (SF=12).

To explore other options, the simulation module has been modified to

enable the use of higher data rates on both the reception windows. This

setting involves a trade-off between robustness and efficient use of the

available DC and time resources. Note that such an option can actually

be implemented in LoRaWAN through a dedicated MAC command.

Number of transmission attempts For confirmed traffic, the maximum num-

ber m of transmission attempts for the same message is configurable,

and can take values in the set {1, 2, 4, 6, 8}. The number of transmission

attempts for unconfirmed traffic, instead, is fixed to h = 1.

Full-duplex GW As mentioned, currently GWs cannot transmit and receive

simultaneously. However, it might be interesting to investigate the

potential performance gain obtained by implementing a full-duplex GW.

This functionality may be realized by co-locating two GWs or combining

a GW with a simple LoRa chipset to be used for transmissions only,

leaving the GW free to receive messages. Note that, because of this,

whenever the Full Duplex Gateway (FDGW) configuration is employed,

the distinction between RX and TX prioritization loses meaning. In order

to test this functionality, we added a new mode to the lorawan module

in the ns-3 simulator that allows for ideal full duplex communication.
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Figure 4.11.: Distribution of Data Rates for different channel models.

Number of reception paths The number r of parallel reception paths in the

GW is a parameter that can be toggled in the simulator. Beside the

standard value r = 8, we also considered the values r = 3 and r = 16 to

study how the parallel reception capabilities of the GW can affect the

overall system performance.

4.3.2 Reference scenarios

We considered two main simulation scenarios. Since we are interested on

the optimization of MAC layer parameters, we assume a single GW serving

multiple EDs, which generate packets periodically, with equal period but ran-

dom phases. Furthermore, the traffic generated by the devices can be either

confirmed, unconfirmed, or mixed, i.e., with half of the devices requiring

acknowledgments and the other half sending unconfirmed packets.

In the first scenario, we assume that EDs are randomly distributed within the

coverage range of the GW, and we only consider path loss.

The second scenario consists of a more realistic urban deployment, where EDs

are randomly located outside or inside buildings having different height and

wall width, following the model described in [16]. Here, the channel propaga-

tion is affected by path loss, spatially correlated shadowing, and attenuation

due to the presence of buildings, as described in [39]. To obtain a realistic

setup, we consider the traffic model described in the Mobile Autonomous Re-

porting (MAR) reports [16], according to which the devices send packets with

periods that vary from 30 minutes to 24 hours, as described in Tab. 4.3. The

number of devices is also varied to estimate the capacity (in terms of number

of active devices) that can be supported by a GW in a realistic scenario.
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Table 4.3.: Interarrival times in realistic simulations.

Inter-arrival time % of devices

1 day 40%
2 hours 40%
1 hour 15%
30 minutes 5%

To ease the interpretation of the results, we neglect short-term fading phenom-

ena that may affect the received signal power, also considering that the chirp

modulation is rather robust to multi-path fading. The effects of the channel

model on the distribution of the SFs (and, thus, of DRs) can be observed in

Fig. 4.11, where dots show the position of randomly placed EDs around the

central GW, while colors are used to represent the bitrate of each device, i.e.,

its DR value (see Tab. 2.9). The bitrate is the highest permitted by the signal

received power at the GW, according to the sensitivity thresholds in Tab. 2.9.

Note that the rate distribution becomes more erratic in presence of long-term

shadowing and wall attenuation factors that affect the propagation.

4.3.3 Performance metrics
A packet transmission at the PHY layer can have five possible outcomes:

• Success (S): the packet is correctly received by the GW.

• Lost because under sensitivity (U): the packet arrives at the GW with

power lower than the sensitivity, and the GW can not lock on it.

• Lost because of interference (I): the packet is correctly locked-on by the

GW, but its reception fails because of the interference from overlapping

packets with enough power to disrupt signals orthogonality.

• Lost because of saturated receiver (R): as mentioned, a GW usually has

multiple reception paths, each configured to listen to a specific channel

frequency. A packet transmitted on a certain channel is lost because

of saturated receiver if it gets disregarded by the GW because all the

reception paths for that channel are already locked receiving some other

signals. Note that such a packet would be correctly received, if not for

the saturation of the receiver. In other words, this error event would

never occur if the GW had a sufficient number of reception paths for

each frequency channel.
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• Lost because of GW transmission (T): the packet reception gets disrupted

by the transmission of a DL packet (which could either be ongoing at the

packet arrival time, or started during the packet reception, in case the

GW gives priority to transmission).

In the case of unconfirmed traffic, we label a packet as successful when it is

successfully received at the GW that, in turn, forwards it to the NS through a

reliable connection. For confirmed traffic, we distinguish two cases, depending

on whether the DL packets carry information (e.g., the UL packet is a query to

the NS, and the corresponding DL packet is the reply), or are just an ACK used

to stop retransmissions of the UL packets. In the first case, the transmission

is successful when both the UL and the successive DL packet are successfully

received by the NS and ED, respectively, within the available transmission

attempts. In the second case, instead, we assume that a transmission is

successful if at least one of the generated UL packets is delivered to the NS,

irrespective of whether the ACK is received by the device.

Accordingly, we define two performance metrics:

CD probability that both the confirmed UL packet and the corresponding

DL packet are correctly received in one of the available transmission

attempts;

UL-PDR probability that an UL packet is correctly received (whether or not

the ACK is requested), in at least one of the available transmission

attempts (which are just 1 for unconfirmed traffic, and m for confirmed

traffic). Note that this is analogue to the sum of UU and CU metrics as

defined in Sec. 4.2.8.

4.3.4 Performance evaluation
In this subection we first provide the baseline for our performance analysis

considering the default settings, which reveals some issues with the current

LoRaWAN standard. Then, we study the impact of the configurable parameters,

and finally validate the effectiveness of the proposed improvements using the

simulator described in Chapter 3.

Baseline performance analysis
To begin with, it is interesting to compare the performance attained by con-

firmed/unconfirmed traffic in the mixed and homogeneous scenarios, for the

same offered traffic at the application level. For these results, we used the
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Table 4.4.: Default parameter settings.

Parameter Value

GW DC On
TX/RX priority TX priority
Sub-band prioritization Off
RX2 data rate Lowest (SF 12)
Number of TX attempts m 8
Full-duplex GW No
Number of reception paths r 8
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Unconfirmed-only traffic
Confirmed-only traffic
Mixed traffic, unconfirmed
Mixed traffic, confirmed

Figure 4.12.: Baseline UL-PDR performance for different kinds of traffic.

default settings, as described in Tab. 4.4. The solid lines in Fig. 4.12 show the

UL-PDR for the confirmed-only and unconfirmed-only cases (crossed and circle

markers, respectively), while the dashed lines refer to the performance experi-

enced by the two types of traffic sources in the mixed scenario. It is apparent

that the mixture of confirmed and unconfirmed traffic sources favors the first

class of sources, but penalizes much more severely the latter, with respect to

the corresponding homogeneous traffic cases. Focusing on the homogeneous

traffic scenarios, we can see that the use of confirmed traffic maximizes the

UL-PDR index up to an aggregate traffic load of almost λ = 0.8 pkt/s at the

application layer (not including retransmissions). Beyond this point, it is

more convenient to use unconfirmed-only communications. The reason behind

this behavior becomes apparent in Fig. 4.13, which reports the fraction of

packet losses caused by different events (I, R, T, see Sec. 5.1.2) for the two

homogeneous scenarios. The results are obtained for an offered traffic of

4.3 A thorough simulation study of LoRaWAN performance under different parameter
settings 81



I R T
0

0.2

0.4

0.6

0.8

1

Fr
ac

ti
on

of
lo

st
pa

ck
et

s
(%

) Unconfirmed
Confirmed

Figure 4.13.: PHY outcomes for traffic achieving the same UL-PDR.

λ = 0.8 pkt/s, for which the UL-PDR is the same for both the homogeneous

scenarios. We can observe that, with only unconfirmed traffic packet losses

are mainly due to the interference (I) produced by multiple UL transmissions.

Instead, confirmed traffic (with m = 8), in addition to losses caused by inter-

ference, also suffers from other impairments, such as the saturation of the

GW’s reception paths (R), and collision with ACKs (T), which plays a major

role among the causes of failure. Therefore, confirmed traffic may enhance

the data collection capabilities of the network as long as the overall load is

light, but it can yield significant degradation of the PHY layer performance

for higher loads, which in turn impairs scalability. In the remaining of this

subsection we will investigate the impact that the parameters introduced in

Sec. 4.3.1 can have on the performance metrics, and explore some simple

precautions that can significantly improve both performance and fairness in

LoRaWAN.

Gateway DC

The impact of the DC restriction at the GW is visible only when confirmed traffic

is required by the EDs. The solid line with cross markers in Fig. 4.14 shows

the baseline CD performance obtained in the case of only confirmed traffic.

The solid line with circle markers, instead, gives the CD that can be obtained

by removing the DC constraint at the GW. Comparing the two curves it is clear

that the DC restriction at the GW represents a severe bottleneck in terms of

CD since successfully received UL packets may not be acknowledged by the

NS in the due time because of the DC limitations of the GW. Furthermore,

the missed ACKs exacerbate the UL traffic load, triggering retransmissions of

otherwise successfully delivered UL packets.
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Figure 4.14.: CD of a network with only confirmed traffic sources.

Priority of transmission over reception

The effects of reception (RX) prioritization at the GW have been investigated

both in terms of CD (Fig. 4.14) and UL-PDR (Fig. 4.15). It is worth to observe

that RX prioritization can be implemented at the GW by simply avoiding

transmissions of DL packets if at least one of the eight parallel receive chains

is occupied.

Fig. 4.14 shows that giving priority to RX yields a CD loss. In fact, as λ

increases, the number of UL packets that are successfully received by the GW

increases more rapidly than in the default case where TX is prioritized, and

the probability that the GW is in the reception state quickly approaches 1,

thus preventing the GW from transmitting ACKs. This, in turn, triggers packet

re-transmissions from the devices. On the other hand, as shown in Fig. 4.15, in

mixed traffic scenarios, the RX prioritization improves the performance of both

confirmed and unconfirmed traffic sources in terms of UL-PDR. In summary,

giving priority to RX at the GW makes it possible to receive more UL packets,

but this can yield to congestion in the DL channel.

More generally, DL packets could be marked by the NS based on their im-

portance for the ED (which can either be explicitly signaled through a MAC

header bit or inferred by the NS based on the application that is generating the

data flow). If ACKs are required, the DL packet could be marked as prioritized

over reception, and immediately sent by the GW. If, on the other hand, confir-

mation is merely used to stop retransmissions and the ED is only interested in
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Figure 4.15.: UL-PDR performance for confirmed and mixed traffic when RX or TX is
prioritized.

maximizing its UL-PDR, then ACKs could be marked as low priority, and the

GW would send them only if idle.

ACK variations

We now analyze the effect of two variations to the standard acknowledgment

mechanisms, named Sub-band swapping and ACK Data Rate, that try to

alleviate the bottleneck due to the DC restrictions at the GW and improve the

system performance in terms of throughput and energy efficiency.

1) Sub-band swapping: As mentioned before, RX1 is always opened on the

same sub-band used for the UL transmission, while RX2 is opened on a sub-

band reserved to DL transmission, whose DC is 10%. Therefore, ACKs sent

in RX1 will compete with other UL transmissions, generating and suffering

interference, and can rapidly consume the 1% DC of that sub-band. We

hence explored whether any benefit could come from swapping the sub-bands

used for RX1 and RX2: we hence implemented a sub-band swapping scheme,

according to which RX1 opens in the DL-reserved sub-band, while RX2 opens

in the shared sub-band used for the UL transmissions.

2) ACK Data Rate: By default, LoRaWAN devices use the highest available SF

(and thus the lowest DR) in RX2, in order to increase the probability that the

downlink packet is received correctly. However, this can be detrimental, since

longer transmission times of ACKs will rapidly consume the DC budget at the

GW. To study which effect is dominant, we implemented the “ACK Data Rate
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Figure 4.16.: Effect of improvements on CD.

scheme”, where all DL transmissions are always performed at the same DR

used for the corresponding UL transmission.

In Fig. 4.16 we report the CD achieved by using the default setting (solid line

with cross markers), each one of the ACK improvement schemes (dotted lines

with square and diamond markers, respectively), and both the improvements

together (dashed line without markers). We can observe that the sub-band

swapping has a very marginal (yet positive) impact in terms of CD, which

implies that the interference produced by UL transmissions on DL reception

is not very significant. Conversely, the use of the same DR in all receive

windows brings a significant gain in terms of CD over the baseline. We can

hence conclude that the use of the lowest DR in RX2 can severely limit the

performance of the system, in particular when the missed reception in RX1 is

not due to channel impairments, but rather to DC limitations of the GW in that

sub-band.

A better strategy to provide efficient and reliable DL transmissions is hence to

implement independent rate-adaptation strategies on all DL sub-bands, rather

than following the very conservative policy of retransmitting at the basic rate

to increase robustness, but at the cost of lower spectral efficiency.

The two ACK improvement schemes also have a positive impact on the energy

consumption of the EDs. Indeed, the sub-band swapping mechanism makes it

possible to return a larger number of ACKs in RX1, thanks to the looser DC

constraint of the DL-reserved sub-band, thus avoiding the need to open RX2.

This effect can be observed in Fig. 4.17, which shows the average number

of times RX1 (above) and RX2 (below) are opened by the EDs, with the
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(b) Average number of opened RX2.

Figure 4.17.: Effects of the proposed ACK improvements on the average number of
opened RX1 and RX2 windows.

max number of retransmissions set to m = 8. The gain, however, tends to

vanish as the traffic increases, since both sub-bands will then be used to return

ACKs. We can also notice that, by using the same DR in both receive windows

we significantly reduce the average number of opened receive windows per

transmission, also for a relatively high traffic. Indeed, transmitting DL packets

at a higher rate contributes to alleviate the DC impairments, allowing the GW

to serve more devices. In turn, this reduces the number of retransmissions and,

consequently, the number of RX1 and RX2 that need to be opened.

The effect of the proposed ACK variations on the UL-PDR metric are depicted

in Fig. 4.18 for a network of only confirmed traffic sources. In this case, both
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Figure 4.18.: UL-PDR performance in case of only confirmed traffic, when ACK im-
provements and RX priority are applied.

sub-band swapping and ACK Data Rate mechanisms yield worse performance,

when the GW adopts the standard TX prioritization policy. This is easily

explained if we consider the type of DL traffic that a saturated network (i.e.,

one where the ACKs queues are always full) will generate when the proposed

improvements are turned on and off: in the default case, long DL transmissions

using low data rates will be followed by long waiting times due to the DC.

During these silence periods, the GW will be forced to listen to the network,

resulting in an improved UL-PDR performance. If, on the other hand, the

GW sends short DL packets, it can do so more frequently, and in turn lose

more UL packets because of DL transmissions. This behavior, however, can

be counteracted by prioritizing RX over TX: as Fig. 4.18 shows, with this

configuration we get the best of both worlds, achieving simultaneously the

improvements on UL-PDR and the energy saving benefits obtained with the

sub-band swapping and use of the “ACK Data Rate” schemes.

One final consideration regards networks in which some devices are interested

in the UL-PDR metric, while other need to maximize their CD: in this case, the

considerable improvement in CD brought by the proposed acknowledgment

variations would yield a slight loss in UL-PDR, which could be further reduced

by implementing the dynamic transmission prioritization scheme proposed in

Sec. 4.3.4.
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Figure 4.19.: UL-PDR for mixed traffic, different values of m.

Number of transmission attempts
Our results showed that increasing the maximum number m of transmission

attempts improves the CD by 5-10% (though with sharply diminishing returns

as m grows larger). On the other hand, as we can see in Fig. 4.19, smaller

values of m can slightly improve the fairness in terms of UL-PDR in mixed

traffic scenarios. In particular, at λ = 1 pkt/s, choosing m = 4 instead of m = 8
does not change significantly the UL-PDR for confirmed traffic, but yields an

improvement in the UL-PDR of unconfirmed traffic, proving the sensitivity of

the network performance to the setting of this parameter.

Full-duplex gateway
The impact of a full-duplex GW scheme described in Sec. 4.3.1 is shown in

Fig. 4.20, where UL-PDR performance is reported both for the standard GW

configuration and for the FDGW. As expected, this solution achieves a rather

marked gain in terms of UL-PDR performance.3

Number of available demodulators
Our simulation results (not reported here due to space constraints) showed

that UL-PDR performance increases with the number of demodulators in the

GW, but with diminishing returns after 8 reception paths, as interference still

causes a relevant portion of locked-on packets to be lost. Having a chip with

3Note that, when FDGW is employed, packets that are being received by the GW are still lost
if a transmission on that same channel is performed due to the strong interference.
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Figure 4.20.: Effects of Full Duplex GW on UL-PDR.

only three parallel demodulators, on the other hand, may enable cheaper

gateways, and yield a slightly lower but still appreciable performance. The

number of available demodulators, on the other hand, has no impact on the

CD, for which the bottleneck is the DL channel due to the DC constraints: by

the time the additional demodulators can make a difference in the reception

probability of UL packets, DL channels at the GW will already be saturated,

limiting the maximum achievable CD.

Best configurations in realistic scenarios
A final simulation campaign had the objective of estimating the impact of the

settings described in Sec. 4.3.1 on the performance of a sensor network in a

realistic urban scenario. Fig. 4.21a and Fig. 4.21b show the UL-PDR and CD

performance obtained in this scenario with baseline and “optimal” parameter

settings. The optimal setting actually depends on the target performance

index. More specifically, to optimize the UL-PDR, the GW was set in the RX

prioritization mode and the maximum number of transmissions was set to

m = 4, while to optimize the CD, we set m = 8 and the GW in TX prioritization

mode. In both cases, the GW applies sub-band swapping and ACK Data Rate

mode. Note that the results have been plotted against the number of devices in

the cell, in order to give an idea of the gain in network size that is achievable

through a clever setting of the network’s operational parameters.

Fig. 4.21a shows how the UL-PDR can improve by using the proposed settings

configuration, and accommodate up to 4 times the number of unconfirmed
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devices that it would be possible to serve with standard settings. Similarly,

Figure 4.21b shows that the number of devices that can be provided a CD

larger than 0.95 doubles when the proposed variations are applied.

Additional observations
EDs locking on uplink packets The LoRaWAN standard does not allow di-

rect transmission between EDs. Nonetheless, the simulation outcomes

revealed that, when an ED opens its receive window to listen for DL

packets, the device can actually lock onto a message sent in UL by a

second ED. Experimental trials with real LoRa devices confirmed this

incorrect behavior. This is due to the fact that the same preamble is used

in both UL and DL transmissions, so that a receiver is not aware of the

transmission source until the packet is completely received and inspected.

At the same time, an ED can also lock on a DL message intended for

another receiver, experiencing, thus, a waste of energy and time, as the

packet will eventually be discarded. The problem of EDs locking on

UL messages could be easily avoided by using different preambles for

UL and DL transmissions: in this way, the receiver would completely

avoid the reception of UL packets and could return to sleep mode for the

remaining duration of the ED receive window.

Sensitivities asymmetry In Sec. 2.4.7 and Tab. 2.11 we had introduced the

sensitivity requirements of GW and EDs. We can observe that the require-

ments for EDs are more relaxed, mainly to reduce the manufacturing cost.

However, the gap between the capabilities of the two kinds of device

causes an asymmetric coverage range between UL and DL transmissions,

and it may happen that the SF used by an ED to reach the GW is not suffi-

cient to correctly deliver the return packet to the same ED because of its

worse sensitivity: as an example, an UL transmission that arrives at the

GW with a power of -128 dBm and SF=7 may generate a DL transmission

that, assuming a symmetric channel, will arrive with the same power at

the ED, and thus below its sensitivity. While such an asymmetry is not

an issue when all nodes send unconfirmed UL traffic, it may become a

problem in case of confirmed traffic, since some EDs could be prevented

from receiving a DL packet in the first receive window, in which the NS

uses the same SF and carrier frequency of the UL message, forcing the

systematic opening of the second receive window. This problem can be

easily mitigated at the NS by checking that the reception power of the
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Table 4.5.: Proposed setting configurations to increase network performance for
different types of traffic.

Parameter setting
Unconfirmed Confirmed Mixed

UL-PDR UL-PDR CD UL-PDR CD

GW prioritization RX RX TX RX TX
Sub-band swapping – – Yes Yes Yes
ACK data rate – Yes Yes Yes Yes
Number of transmissions m 1 8 8 4 8

packets coming from one ED is not in an interval such that the situation

described above can occur (assuming symmetric channel). In such a case,

the NS can use the appropriate MAC commands to inform the device

that future DL transmissions in RX1 will use a higher SF than that one

used in the UL.4

4.3.5 Conclusions
In this section we presented a systematic analysis of the impact of the tunable

parameters in LoRaWAN some of which proved to be particularly meaningful.

We observed that with a standard configuration, the presence of confirmed

traffic sources can significantly degrade the performance of unconfirmed

traffic, due to the additional interference generated by DL (ACK) transmissions.

Considering only confirmed traffic, instead, the most critical factor appeared

to be the DC constraint of the GW, which throttles the DL channel that soon

becomes the bottleneck of the system in presence of bidirectional flows. On the

other hand, giving priority to RX at the GW can bring benefits to the network

when most of the traffic is in the UL direction, but can be detrimental when

the GW needs to transmit frequently in DL. Furthermore, we have shown that

a rate adaptation strategy and the swapping of the frequencies to be employed

in the two DL opportunities can significantly reduce the time the EDs spend

in the reception state, thus improving their energy efficiency. Conversely,

simulations showed that other system parameters, such as the maximum

number of transmission attempts and the number of parallel received paths,

appear to be already well configured and dimensioned. Thanks to the analysis

described above, we can identify the best settings configurations for various

combinations of traffic type and metric of interest, as summarized in Tab. 4.5.

4The simulations in this section were performed by setting the ED’s SF based on the ED
sensitivities, as to avoid this asymmetry problem.
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Note that this analysis has been carried out by considering a single GW. In a

multi-GWs scenario, UL transmissions are successful when correctly received

by at least one GW. Similarly, DL packets can be transmitted, in principle, by

any GW in the coverage range of the target receiver. Therefore, we expect

better performance for both UL and DL traffic. It is also expected that most

of the observations made in the single GW scenario will hold for the multi-

GW case. Incrementing the number of GWs, and hence the number of data

collecting devices in the network, however, is expected to diminish the gains

brought by solutions that attempt at improving the GW’s capacity in the

UL, e.g., full-duplex GW and RX priority. Finally, we note that the degrees

of freedom in system configuration grows considerably with the number of

GWs. Although not all configurations are meaningful, the optimization space

becomes significantly larger, making the analysis of the possible interactions

among different configurations even more complex. A discussion about proper

parameter setting in a multi-GW case, therefore, requires an in-depth analysis,

which we left for future work.

Overall, the analysis conducted in this section shows how the interplay among

the different tunable parameters provided by the system is often subtle and

difficult to predict, calling for the development of efficient system design and

configuration tools, and motivating the investigation of possible side effects of

new policies before deployment.
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Figure 4.21.: Simulation results for a realistic scenario.
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5LoRaWAN in
non-traditional IoT
applications

Although LoRaWAN technology has been designed for traditional IoT scenarios,

with no strict requirements in terms of communication reliability, delays and

targeting sporadically generated traffic, it is interesting to test it also in non-

traditional applications, evaluating whether its low-power and long-range

features can be leveraged in other systems. In this chapter, we consider two

application scenarios where the LoRaWAN technology has to work under

stricter requirements: an industrial IoT scenario, where the communication

reliability should be close to 1 while minimizing the communication delay, and

a drone tracking application, where the traffic is generated very frequently (up

to the DC limitation).

The evaluation of the performance of a LoRaWAN network in industrial sce-

narios is presented in Sec. 5.1. In this case, several Industrial Internet of

Things (IIoT) nodes communicate to a central controller in order to provide

monitoring and sensing information that can be used to optimize the efficiency

of industrial processes and reduce costs. In particular, we consider confirmed

and unconfirmed traffic, multi-gateway deployments, the usage of different

classes of devices, and a non-standard channel plan. Furthermore, we analyze

the higher-layer impact of different models of LoRa PHY layer with industrial

channel models. We show that, with proper configuration, LoRaWAN is able to

serve IIoT sensing applications with a packet success rate over 90%, providing

at the same time limited communication delays.

In Sec. 5.2, instead, we focus on a drone tracking application. A typical sce-

nario consists in the use of Unmanned Aerial Vehicles (UAVs) for surveillance

or target-search missions over a wide geographical area. In this case, it is

fundamental for the command center to accurately estimate and track the

trajectories of the UAVs by exploiting their periodic state reports. In Sec. 5.2,

we design an ad hoc tracking system that exploits the LoRaWAN standard

for communication and an extended version of the Constant Turn Rate and

Acceleration (CTRA) motion model to predict drone movements in a 3D en-

vironment. We analyze the trade-off in setting the main parameters of the
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communication system and ADR scheme, showing how our tracking system

can handle large swarms of drones at distances up to 4 km. Simulation results

on a publicly available dataset show that our system can reliably estimate

the position and trajectory of a swarm of UAVs, significantly outperforming

baseline tracking approaches.

5.1 Performance analysis of LoRaWAN in industrial
scenarios

One of the key concepts in Industry 4.0 is that of Industrial Internet of Things

(IIoT), with the aim of connecting production machinery to information sys-

tems and business processes, in order to optimize the industrial operations and

quickly reconfigure the production chains to respond to demand changes [85].

The industrial scenarios differ from other IoT environments in three specific

aspects: the industrial wireless channel, the traffic patterns, and the QoS

requirements. Indeed, when compared to a typical IoT smart city scenario, a

smart factory scenario presents higher interference and stronger signal atten-

uation. Furthermore, packets are generated more frequently and need to be

delivered with higher reliability and controlled latency.

The most popular LPWAN technologies are LoRaWAN, Sigfox and NB-IoT:

these solutions are typically employed in IoT scenarios such as smart cities,

but their robustness to channel impairments and high energy efficiency also

appeal to the monitoring use cases of IIoT.

Differently from other IoT technologies such as Sigfox, LoRaWAN allows for the

creation of a proprietary network, giving full control of the infrastructure and

of the network configuration. In general, a tighter control of the network makes

it possible to improve the communication latency and reliability compared to

public networks, which normally target a large number of diverse use cases.

Despite the growing body of literature in this field, a number of key questions

remain unanswered:

1. Which channel and interference models are appropriate to accurately

simulate a LoRaWAN deployment in an industrial scenario? How does

this choice affect higher-layer performance?

2. How many infrastructure nodes (gateways) do we need to support IIoT

applications?
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3. What kind of influence do deployment decisions such as channel plan

and class of LoRaWAN devices have on the network performance?

4. To improve reliability, is it more convenient to use confirmed traffic or to

blindly replicate uplink transmissions?

5. Is LoRaWAN compliant with key communication service requirements

for asset and process monitoring in IIoT applications?

The aim of this section is to address such questions and provide insights on

the potential and limits of legacy LoRaWAN technologies in the IIoT domain.

To this end, we will present a set of detailed simulation results that focus on

the most significant high-level performance metrics for industrial applications,

using the realistic, measurement-based channel model [86].

In particular, we introduce some specific PHY aspects that have not been

studied in the literature so far, such as the presence of Out-Of-Band (OOB)

emissions. Moreover, we analyze the MAC features affecting the system

level performance that are most relevant for industrial scenarios, such as

transmission reliability and latency.

The rest of the section is structured as follows: Sec. 5.1.1 reviews the literature

that deals with this topic. Our simulation setup is presented in Sec. 5.1.2,

while in Sec. 5.1.3 we analyze the network performance by considering the

questions presented above, and discuss the corresponding results. Finally,

Sec. 5.1.4 contains our conclusions and presents possible future developments.

5.1.1 State of the art
Even though different works present applications of wireless communications

in industrial scenarios (e.g., [87, 88, 89]) it is a common opinion that, because

of the multiple and contrasting requirements of IIoT applications, there is no

unique solution that fits all the use cases [90, 91]. In [92] Queralta et al.

compare different LPWAN technologies for the Machine-to-Machine (M2M)

scenario from the technical point of view, and concludes that LoRaWAN is

suitable for both smart city applications and industrial use cases where a small

volume of data is required, but in this work no evaluation results are provided.

The works in [40, 45] evaluate LoRaWAN networks where confirmed traffic

is used to increase the reliability of the communication. However, the au-

thors recongnize that it is potentially damaging for the system performance

if transmission and reception parameters are not properly configured. For

instance, repetitions can decrease the network throughput and scalability, mak-
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ing devices unnecessarily consume more energy. A study on how the network

parameters could be set to reduce these negative effects is proposed in [84],

where extensive ns-3 [93] simulations analyze the impact of many network

configurations on the system performance when using both confirmed and

unconfirmed traffic; however, only a smart city scenario with a single GW is

considered. In [94], instead, Hoeller et al. propose time and antenna diversity

to increase LoRa performance in terms of communication reliability. Repetition

coding in particular is proven to be an effective choice, provided that SFs and

the number of replicas are always chosen in order to avoid flooding the net-

work with useless repetitions. Improving the underlying network infrastructure

is another approach that can be used to achieve a higher reliability. In [46],

for example, Van den Abeele et al. simulate in ns-3 a multi-GW LoRaWAN

deployment with confirmed traffic in a smart city scenario. As expected, the

availability of a multi-GW infrastructure brings several benefits to the network.

In addition to the possibility of employing lower SFs in a dense deployment, a

higher number of GWs makes it possible to share the load of downlink traffic,

overcoming DC limitations and increasing the number of reply messages sent

in RX1, which prevents sensor nodes from opening both receive windows.

The aforementioned works target an urban scenario, since the LoRaWAN

technology was first proposed as a solution for IoT in large areas and open-air

environments. Measurements of LoRa coverage range and SNR within an

industrial plant are presented in [52]: here, Haxhibequiri et al. find that a

single GW is sufficient to cover an area of 34000 m2, and simulations based on

the measured values estimate a network capacity of about 6000 nodes. The

performance in terms of robustness to the noise and packet loss at the PHY

layer is presented in [95], which analyzes the LoRa technology in an industrial

setting, where machinery is deployed. The work proposed in [96] explores

LoRa performance in different indoor settings, also providing a characterization

of the channel. In [97], Neumann et al. present the results of an experimental

campaign assessing the LoRaWAN performance in an indoor deployment

with single-GW and only unconfirmed UL traffic, exploring different metrics,

such as throughput, coverage and power consumption. Energy efficiency

of LoRaWAN devices in an industrial scenario and the trade-off between

transmission periodicity and battery replacement costs are also investigated

in [98]. In [42], Luvisotto et al. compare the performance of LoRaWAN and

IEEE 802.15.4 for an industrial scenario with unconfirmed traffic, proving the

effectiveness of LoRaWAN.
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Recent works have considered possible improvements of the LoRaWAN tech-

nology to address industrial requirements, such as latency and reliability, with

new techniques. In [99], Rizzi et al. show that a scheme combining Time

Division Multiple Access (TDMA) and frequency hopping is compatible with

soft real-time applications, and that proper time, frequency and SF planning

makes it possible to obtain the same performance of well-established tech-

nologies for industrial applications, such as WirelessHART and ISA100.11a,

achieving a network capacity of 6000 EDs transmitting a packet every minute.

Similarly, in [100], Leonardi et al. ameliorate the network performance by

using cyclically scheduled super-frames split in intervals reserved for different

types of communications. The authors of [101] consider the integration of

a LoRaWAN deployment with 4G/5G networks for the IIoT, with a LoRa GW

acting as a base station connected to the cellular network, and performing all

the required LTE signaling, control and security procedures.

In the work presented in this section, instead, we investigate the performance

of a LoRaWAN deployment, as defined in the specifications, and show how

it performs in industrial scenarios when using multi-gateway deployments,

confirmed traffic, Class C devices, and alternative channel plans. Different from

previous works that suggest deeper changes to the medium access logic of the

LoRaWAN protocol, all the solutions explored in this work can be implemented

by simple configurations that can be applied also to already widely available

devices, and can thus be more easily deployed and maintained.

5.1.2 Modeling of an industrial scenario
In this section, we describe in detail the scenario and the models we con-

sidered in our simulations. We use the ns-3 lorawan module, described in

Chapter 3. Finally, we describe additional information regarding the LoRaWAN

configurations.

The industrial scenario
We consider a LoRaWAN deployment in an industrial plant and assume that

nodes are uniformly spread in a rectangular area with size 200x200 m2, similar

to the case considered in [52]. We assume EDs are wireless sensor nodes for

process and asset monitoring, e.g., collecting measurements of temperature,

pressure, or flow rates. We simulate a network composed of 300 EDs, i.e.,

one device every ∼133 m2, that transmit periodic updates with a period

T ∈ {30, 300000} s, thus getting an application-layer offered traffic load of
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λ ∈ {0.001, 10} pkt/s. Note that this deployment is quite different from a

typical smart city use case [16], where a GW serves thousands of devices over

an area with a radius of several kilometers. We simulate networks with only

unconfirmed or only confirmed traffic. In the latter case, the number m of

maximum transmissions per packet is typically set to 1 or 4. Similarly, we

consider the possibility of repeating the transmission of unconfirmed packets k

times, as a measure to increase robustness of UL communication. This simple

repetition coding increases the reliability and does not occupy the GW with DL

ACK transmissions, which have been proved to be a bottleneck when the goal

is to maximize the delivery of UL data [84, 46]. Application-layer packet size

is set to 20 bytes for UL messages, while DL packets are assumed to carry only

the ACK contained in the LoRaWAN header. When a single GW is simulated, it

is placed on the middle point of one of the edges of the rectangle containing

the EDs, while uniform random allocation within the limits of the rectangle

is chosen for scenarios with multiple GWs. Given the short distance between

the EDs and the GWs, all EDs are configured to employ SF 7. Similarly, RX2

SF is set to 7 to maximize the data rate. This choice is motivated by some

preliminary tests which showed that, for the simulated values of the offered

traffic λ, this is the most efficient solution.

Channel model
In this study, we assume that LoRaWAN works in the 863-870 MHz band,

employing the minimum set of channels required by the specifications (see

Tab. 2.7). The industrial wireless channel is particularly complex, and models

need to take into account the presence of obstacles, signal reflections, delays,

and intermittent noise caused by machines. In this work we account for three

main effects typically present in this environment: (i) path loss and large-scale

effects, which consider the signal attenuation caused by the distance between

transmitter and receiver and by the presence of obstacles, (ii) small-scale

effects, which consider reflections of the signal in the surrounding environment,

and (iii) shot noise.

The total loss due to large-scale effects, L(d), can be expressed in dB as the

sum of path loss and shadowing, i.e.,

L(d)dB = PL(d)dB + χdB. (5.1)

The term χdB is usually modeled as a zero-mean Gaussian random variable

with standard deviation σ, as defined in Tab. 5.1. For the path loss component,
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Table 5.1.: Path loss coefficients for industrial propagation channel.

Reference Scenario d0 [m] L0 [dB] η σ [dB]

[103]
Assembly Room 2 25 1.72 3.8
Electronics Room 2 26 1.96 2.29
Mechanical Room 2 26 1.79 5.07

[86]
LOS 15 57.67 2.25 5.65
NLOS, lightClutter 15 64.42 1.94 4.97
NLOS, heavyClutter 15 69.73 2.16 5.16

PL(d), the loss is commonly computed according to the distance from the

transmitter using a single-slope propagation loss model [86, 102]:

PL(d)dB =

⎧⎪⎪⎨⎪⎪⎩
L0 + 10ηlog10

(︄
d

d0

)︄
, d > d0

L0, d ≤ d0

. (5.2)

The estimation of the path loss coefficients in industrial scenarios has been the

subject of many studies, such as [86, 102, 103]. In this study, we compare the

system performance in multiple propagation scenarios, for which the path loss

and shadowing terms have different values. In [103] test transmissions are

performed from a height of 15 m, with the receiver placed near the ground,

and the path loss coefficients are estimated for three rooms in a plant, which

differ for the density of machines, the position of objects in the space and the

material they are made of. We refer to the three scenarios modeled in this

study as Assembly Room, Electronics Room, and Mechanical Room. In [86] the

receiver is placed at a height of 6 m, while transmitting sensors are placed

2 m above the ground level. This work defines three additional propagation

scenarios: line-of-sight (LOS) when a direct path exists between transmitter

and receiver, and Light/Heavy Clutter when the height of the obstacles which

obstruct the path are comparable to/much higher than the height of the sensor,

respectively. The parameters for the selected models are listed in Tab. 5.1; in

Section 5.1.3 we compare the behavior of the LoRaWAN system when using

these models with the outcome of experimental measurements obtained from

the literature [52], and motivate the choice of a model that will be used

throughout the remainder of the section.

Small-scale effects account for the reflections of the transmitted signal in the

propagation environment. These variations in the signal strength are mod-

eled through a Nakagami-m distribution [104]. The value of the coefficient

for the Nakagami-m distribution mN is computed according to the channel
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model we implement. The channel model provided in [86] estimates temporal

fading coefficients with log-normal distribution with mean 12.3 dB and stan-

dard deviation 5.4 dB. In the other cases, we used mN = 1.41, as estimated

in [105].1

Finally, we take into account the fact that an industrial environment may

contain machinery creating additional background noise. In [106] and [107]

the authors characterize the shot noise in an industrial setting, estimating

the Cumulative Distribution Functions (CDFs) of the peak amplitude with

respect to the noise floor, of the pulse duration and of the interval between

consecutive pulses. The duration of the pulses turns out to be between tens

of nanoseconds and a few microseconds, while the pulse spacing ranges from

100 ns to 204 µs. In our simulations, with a LoRa packet lasting tens of

milliseconds, the introduction of an interference source with these features

would lead to a high increase of the computational cost, which would be un-

necessary given the interference model we consider (see Sec. 5.1.2). Although

PHY level simulations showed that shot noise has no tangible impact on the

demodulation performance of a single LoRa symbol, aggregate effects might

still be present when an entire LoRa transmission is taken into consideration.

Thus, here, we take a conservative approach, and account for the effect of

shot noise by increasing the additional average noise power within a typical

LoRa transmission, by a value of 3 dB based on the statistical description of

the noise provided in [106].

Interference models
The literature features several approaches to model the interference in Lo-

RaWAN networks. According to [32], the interference among the spreading

factors can be modeled through a “co-channel rejection matrix,” where each

element ei,j represents the power gap in dB that a signal transmitted with SF i

must have to survive an interferer using SF j. As in [39], we assume that the

interleaver will spread out the interferer’s energy on the entire received packet.

Thus, if two received signals overlap for a certain time TI , the interference

power will be multiplied by the ratio TI/T , where T is the duration of the

desired signal, before being compared to the threshold. In the following, we

will call this approach Simple, as it only employs this threshold matrix to decide

whether a packet is lost because of interference.

1We recall that the coefficient mN for the Nakagami propagation model can be obtained
from the K-factor of Rician channel models as mN = (K2 + 2K + 1)/(2K + 1).
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A different solution is proposed in [46, 42]. Here, the received signal is divided

into chunks with constant Signal to Interference plus Noise Ratio (SINR). The

error rate of each chunk is computed by multiplying the length of the chunk

by the BER corresponding to the SINR and SF of the signal, and the packet

success probability is derived as the product of each individual chunk’s success

probability. Additionally, [42] leverages the two aforementioned approaches

by combining Signal to Interference Ratio (SIR) and SNR in a measure called

“equivalent SIR,” for which the BER for different SFs are computed. In the

following, this approach will be referred to as Spectrum, as it employs the

spectrum framework provided by ns-3.

Finally, in this study we also consider the effect of OOB emissions. OOB is

an undesired effect in radio systems that consists in the emission of power

in frequency bands adjacent to the nominal transmission band. In particular,

OOB emissions for LoRa are described and measured in [108]. Although the

OOB power level is much lower than in the nominal band, the OOB emissions

contribute to increasing the amount of interference, and this could be relevant

in particular situations, e.g., when two devices are in close proximity, or when

a strong signal coming from an ED in one channel interferes with a weak signal

coming from a different ED operating in a neighboring channel. The impact of

OOB can be exacerbated by the so-called Carrier Frequency Offset (CFO), i.e.,

the offset that affects low-cost frequency oscillators. The CFO can shift the

carrier frequency up to 30 kHz. GWs, which employ more expensive circuitry,

are designed to be robust to these impairments and can still correctly demodu-

late transmissions whose frequency error falls within a range of ±30 kHz [24].

However, such an overlap may increase the effect of OOB. We hence introduce

the SpectrumOOB, where out-of-band emissions contribute to the interference

suffered by the desired signals. In this model, we add side-lobes to trans-

missions in the frequency domain, possibly spilling into adjacent channels.

Similarly to the Spectrum interference model, the decrease in performance

caused by this additional interference is then modeled through the “equivalent

SIR” method employed in [42].

LoRaWAN settings
In the analysis here reported, we focus on the minimum frequency set man-

dated by the specifications for EU region (cfr. Tab. 2.7). In this analysis, we

assume that EDs access the channel according to a pure ALOHA scheme and,

hence, are subject to the duty cycle limits that, in Europe, are specified by the

ETSI recommendations [109]. Note that, by using a combination of LBT and
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Adaptive Frequency Agility (AFA) access schemes, the DC constraint can be re-

laxed to 2.8% for any 200 kHz spectrum [109]. A comparison between ALOHA

and LBT+AFA access schemes in LPWANs is presented, e.g., in [110, 111,

112], where the authors generally conclude that LBT+AFA can indeed bring a

(limited) performance gain over ALOHA, in particular in green-field scenarios

(i.e., when all nodes use the same access method), even though [110] shows

that ALOHA turns out to be more robust than LBT+AFA in mixed scenarios. In

this study, we choose to focus on the ALOHA mode only, which is the chosen

access scheme for LoRa in Europe.

In this study, we assume that all devices will use the same data rate, either SF

7 on a 125 kHz channel (DR 5) or SF 7 with a 250 kHz channel (DR 6) for UL

communication. When devices employ SF 7 with a 125 kHz bandwidth, three

channels at 868.1, 868.3 and 868.5 MHz are available for UL transmissions.

Instead, when SF 7 is used with a 250 kHz bandwidth, all UL transmissions

will use the same frequency at 868.3 MHz, foregoing the benefit of frequency

orthogonality within the considered network deployment.

Note also that, as previously described in Sec. 2.4.3, for both Class A and Class

C devices, a re-transmission is triggered if no reply is received within 2 s after

the end of the transmission plus the time needed to detect a LoRa signal. This

guarantees that the ACK delay performance of Class C devices is, at worst,

equal to that of Class A devices within a time interval that extends to the end

of the second receive window.

Performance metrics
For the network evaluation, we define the following metrics, with the aim of

capturing the communication performance, and assessing the capabilities and

effectiveness of a LoRaWAN deployment for sensing purposes in an industrial

plant.

• The Uplink Packet Delivery Ratio measures the fraction of UL packets

successfully delivered to the GW over those generated by the applications

at the EDs. A success corresponds to the correct delivery of at least one

copy of a UL packet. According to whether the UL traffic is carried

by confirmed or unconfirmed packets, this metric is named CU or UU,

respectively.

• The delay of a UL transmission is defined as the time between the packet

generation and the moment it is successfully received by at least one GW

and becomes then available to the NS.
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• The Confirmed Packet Success Rate (CPSR) is the probability that both the

UL packet and the corresponding ACK are correctly received by the NS

and by the ED, respectively. This metric is meaningful only for confirmed

traffic, and represents the capability of the system to communicate to the

EDs, i.e., transmitting short control messages in response to UL updates

or queries, or assessing the reliability of the connection, avoiding further

re-transmissions.

• Finally, the ACK delay is defined as the time from the generation of a

confirmed UL packet to the successful reception of the corresponding

ACK at the ED.

5.1.3 Simulation results
This section describes the simulation results and analyzes the trade-offs in-

volved in the design of a LoRaWAN solution for industrial applications. Given

the large number of error and propagation models available in the literature,

a first batch of simulation results explores their impact on the network perfor-

mance in the considered scenario. Based on these considerations, an error and

a propagation model are chosen for the rest of the simulations to investigate

the higher-layer effects of the density of GW deployment, the class of device

and the chosen channel plan.

Comparison of error and propagation models
Fig. 5.1 shows the simulation outcomes when the Simple, Spectrum and

SpectrumOOB interference models are used to evaluate the CU and CPSR

performance. When confirmed traffic and re-transmissions are considered, the

different interference models yield quite similar performance. This suggests

that the additional interference due to OOB emissions has limited impact

on the MAC performance in the considered scenario. It should be noted

that a slight increase in the SINR experienced by devices was observed in

simulation, especially for higher values of λ. In these cases, however, the

MAC level performance is largely dominated by direct collisions between

transmissions overlapping in time and frequency. Similarly, the overall effect

of OOB emissions at the network level when frequency shifts due to imprecise

oscillators were included in the simulator was found to be negligible. These

results motivate us to neglect the effects of OOB and imperfect oscillators,

and to use the Spectrum interference model in the following analysis. This

model is preferred to the SpectrumOOB model for its lower computational
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Figure 5.1.: Comparison of different interference models in terms of CU and CPSR,
in a network served by a single GW.

complexity, while maintaining the effects of propagation environments that

the Simple model ignores.

Fig. 5.2 shows the distribution of the simulated Received Signal Strength Indi-

cator (RSSI) according to the different propagation models listed in Tab. 5.1.

The figure shows that the models described in [103] and [86] provide quite

different outputs. When we compare these results with the outcomes measured

experimentally in [52], also shown in Fig. 5.2 for distances of 50 m and 150

m, it becomes apparent that the models in [86] provide better estimates of

the experimental RSSI measurements. In particular, the samples collected

in [52] at 50 m, which were almost always in LOS conditions, are closely

represented by the LOS model, while measurements at over 150 m, in non

line-of-sight (NLOS) conditions, can be matched using the Heavy Clutter prop-

agation model. Based on this, the results presented in the remainder of this

section have been obtained by considering a piecewise propagation loss model,

in which the LOS parameters are used when the transmitter-receiver distance

is lower than 100 m, and the Heavy Clutter model is used for distances over

100 m.

We also remark that, in addition to RSSI measurements, [52] provides SNR

values. When comparing such values with those computed in our simulations,

we found that the latter were consistently 20 dB above the experimental ones.

The reason is that the SNR provided by LoRa chipsets saturates to around 12
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Figure 5.2.: RSSI computed from different propagation models and experimental
measurements.

dB for RSSI values significantly above sensitivity, irrespective of the actual

RSSI value [113].

Increasing the number of deployed GWs

In this section, we evaluate the network performance for different GW densities.

The GWs are uniformly placed inside the same area of the EDs. Having multiple

GWs improves the network performance by increasing the DL transmission

capacity and the diversity in the wireless channels. The former advantage

alleviates the effect of the duty cycle limitations that impose silent periods to

the GWs: with multiple GWs, the probability that at least one is available to

transmit a DL packet increases.

Fig. 5.3 shows that a larger number of GWs positively affects the ACK delivery

rate for confirmed traffic (CPSR) even with m = 1. Although we have not

reported the plots for space constraints, we also ran simulations for m = 4 and

high traffic load, i.e., λ = 10 pck/s in this specific scenario, obtaining a CPSR

of 99.7% with 10 GWs, and above 99.99% with 20 GWs. Very similar gains

were observed for the UU and CU metrics.
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Figure 5.3.: Effect of gateway deployment density in terms of CPSR for m = 1.

Fig. 5.4 shows the Empirical CDFs of UL and ACK delays for confirmed traffic

in a network served by 10 GWs, with m = 4 and λ = 1 pck/s. Despite the fact

that, with these settings, the network is able to eventually deliver over 99.9%

of its UL MAC-layer packets and 99% of its DL messages, the plot highlights

the large delay due to duty cycle limitations and the receive window design for

Class A devices, for which the minimum possible ACK delay is a little over 1

second. For a fraction of devices, the first receive window remains empty, and

therefore they have to wait for a DL message in the second receive window.

If this reception fails, the next re-transmission opportunity is available well

over 9 seconds after the generation of the first UL message, due to duty cycle

restrictions. In addition to this forced pause, in which the ED is in sleep mode,

the standard requires an additional back-off, uniformly distributed between

1 and 3 seconds before the re-transmission attempt, further increasing the

delay experienced by the EDs, which corresponds to the slope of the curve in

Fig. 5.4. These results confirm that increasing the number of GWs can be a

very effective strategy to increase the probability of correct message delivery

in both the UL and DL directions, as predicted. Furthermore, coupling this

setting with an increase of the re-transmissions is shown here to be a viable

strategy to improve reliability in industrial scenarios.

Although increasing the GW density is a very simple and straightforward way

to boost the reliability of the transmissions and to reduce the packet delay,

placing GWs uniformly over the coverage area in industrial deployments might

not always be possible, and companies might be forced to place GWs at the
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Figure 5.4.: Empirical CDFs for different delay metrics and network configurations.

edge of the facility, as done in [52]. This configuration was actually proven to

be beneficial because of the increased channel diversity in [64].

Class C devices and DR6
In this section, we describe the simulation results obtained when Class C EDs

and DR6 are employed in the network. Employing a bandwidth of 250 kHz

halves the duration of the transmissions, yielding a very small gain in both the

UL and ACK delay metrics with respect to the default configuration. However,

this shorter time on air also cuts roughly by half the waiting times before

re-tries caused by duty cycle restrictions, allowing the devices to re-transmit

about 5 seconds after their initial attempt, instead of around 9 seconds when

DR5 is employed. This advantage comes at the cost of additional interference,

because all the EDs contend for the same frequency. Therefore, the application

of this single-channel plan may not always be beneficial for all the devices.

Indeed, in Fig. 5.4, the CDF of ACK delay for DR6-Class A setting is lower

than for a DR5-Class A setting up to a delay of approximately 6.2 s. The

combination of Class C and DR6, instead, provides very significant gains for

both the delay metrics, reducing the minimum possible ACK delay from 1 s

to the bare transmission time of a pair of UL and DL packets, which is in the

order of a hundred milliseconds. This gain requires the LoRaWAN sensor node

constantly attached to a main power source, or at least accepting a drastic

reduction of battery lifetime. Nonetheless, this result proves that satisfactory

delays both in the UL and in the DL are possible for over 99% of the devices in
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LoRaWAN with the right combination of network settings, for an offered traffic

of λ = 1 pck/s. Finally, the CPSR with DR6-Class C setting is more effective

than doubling the number of GWs in the network, as can be seen from Fig. 5.3

Confirmed traffic and repetitions for reliability
In this section, we assess the effect on the UU metric of employing k “blind”

repetitions of each UL packet in a network using unconfirmed traffic, as

opposed to employing up to m transmissions per packet when using confirmed

traffic. In the first case, we assume that the application always transmits each

packet k times. In the second scenario, instead, re-transmissions are performed

by the EDs only if no ACK is received. For these simulations we consider Class

A devices with three channels to transmit. Furthermore, we set λ = 10 pck/s

to better highlight the differences between the two approaches.

In both cases, we can observe that increasing the number of GWs has a positive

effect on the UU performance, albeit with diminishing returns. With confirmed

traffic, a sufficient number of GWs is necessary to have a stable network: if the

NS is not able to promptly respond to every ACK request, UL traffic can quickly

increase because of re-transmissions, further worsening the situation. The

number of repetitions k, instead, is a critical parameter for the unconfirmed

traffic case. In general, we can see that the blind repetition of UL messages

yields better performance than relying on confirmed transmissions because

the former can leverage the time diversity in the repetitions, without suffering

from the GW unavailability due to DL transmissions.

Fig. 5.5 shows the difference between the unconfirmed and the confirmed

solutions, for different values of k = m and of the number of GWs serving the

network. Especially for under-provisioned networks, the unconfirmed scenario

provides significant gains with respect to the confirmed scenario, provided that

the number of re-transmissions is well dimensioned. It should also be noted

that, for a sufficiently large number of GWs, the difference between the two

approaches becomes negligible, as the GWs can serve all devices, also when

the traffic is increased because of repetitions.

Evaluation of communication service metrics
In this section, we evaluate the performance reached by LoRaWAN with

respect to the service requirements for process and asset monitoring as defined

in [114]. In particular, we consider sensors generating periodic measurements

of a continuous value, such as temperature or pressure. In this case, the
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Figure 5.5.: Improvement in UU performance when using repetitions instead of
confirmed traffic.

maximum allowed end-to-end latency is 100 ms, and the period between

consecutive data transmissions is 60 s with uniformly distributed deviations

of ±25% around the target value. When a packet delivery is not completed

within the specified end-to-end latency, the system is said to experience a

failure. Two metrics are considered:

• Communication service reliability: ability of the communication system

to perform as required for a given time interval [114]. In our case, the

reliability is quantified with the mean time between failures;

• Communication service availability: fraction of time during which the

communication service operates without failures over the total amount

of time the system is expected to deliver the service, in percentage.

Due to the heavy duty cycle limitation and the slow bit rate, only a single

transmission can fit within the end-to-end latency requirement described

above, considering that LoRa transmissions typically last in the order of tens

of milliseconds. In this case, since SF orthogonality is not leveraged (only DR

5 and DR 6 are used, in order to limit the delay and channel occupation), and

since the LoRaWAN MAC protocol targets applications with sporadic traffic,

only a few tens of devices can be supported with a communication reliability

of 10 minutes, and an availability over 90%. These results are obtained with

the best configuration we identified, i.e., Class C devices and 10 GWs with 3

frequency channels.
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If the application requirements are more lenient, with an end-to-end latency

of 60 s (thus allowing up to m = 8 repetitions), the best configuration can

instead obtain a service reliability of 12 hours, with a communication service

reliability above 99.99%.

5.1.4 Conclusions
The requirements of IIoT are stricter than those of other IoT services: therefore,

LoRaWAN networks should be carefully configured in an industrial setting. In

this subsection, we assessed the capability of the LoRaWAN technology in such

scenarios by answering some key questions about how to properly configure

the network.

The first outcome concerns the choice of an appropriate channel model, which

is validated through empirical measurements for LoRa devices in industrial

settings found in the literature. Results showed that, for a high-level perfor-

mance analysis, the Spectrum interference model provides a good balance

between accuracy and computational complexity. Secondly, we showed that

the increase of the GW density can improve all the metrics, and reduce the

negative effect of duty cycle limitations: this, in turn, ameliorates the capability

of transmitting DL messages, which brings benefits in terms of both ACK delay

and reliability. Indeed, with a proper deployment and parameters configura-

tion, and considering more lenient but reasonable application requirements,

we have shown that it is possible to achieve a delivery probability of over 99%,

both in the UL-only and in the bi-directional communication. The frequency

plan was a third point of investigation: using DR6 (i.e., employing a wider

channel instead of three separate narrower channels) brings a slight degrada-

tion in the delay performance for the first transmission attempt, but improves

it when more transmissions are needed, since the waiting time imposed by the

duty cycle and the collision probability are both reduced. The combination

of this frequency plan with the usage of Class C devices makes it possible to

further reduce the delays for both UL and DL reception. Furthermore, we

also demonstrated that, when a few GWs are deployed, the usage of blind

repetitions provides better performance than using confirmed traffic in terms

of UL message delivery.

A LoRaWAN deployment can, therefore, meet the requirements of monitoring

IIoT applications, if combined with a mindful choice of the devices and the

network topology as well as a careful tuning of the parameters. Network

designers must consider both the specific application requirements and the

metrics of interest in order to devise a network deployment that satisfies
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the industrial needs without over-provisioning. However, if the envisaged

applications dictate strict requirements, as presented in Sec. 5.1.3, LoRaWAN

still struggles to achieve such performance.

In the future, this work can be extended with the inclusion of Class B devices,

which trade energy efficiency for latency of DL messages. This, combined with

the introduction of longer data packets in the DL direction, would address

those industrial applications that require periodic communication with the

sensor nodes. Another interesting possibility of extension is the simulation of

an outdoor industrial scenario, such as an industrial harbor, where the larger

distances force nodes to use different SFs, which is advantageous because

of the quasi-orthogonality between SFs but, at the same time, could require

further analysis for the choice of optimal channel plan and GW positioning.

5.2 Remote tracking of UAV swarms
Over the last few years, UAVs have entered the mainstream: the commercializa-

tion of low-cost drones for amateur and professional use is quickly increasing

the number of flying units, which will soon be measured in millions, according

to the U.S. Federal Aviation Administration (FAA)2. Their integration in cellu-

lar networks, both as end-users and as coverage extension devices [115], is

already being discussed, and 5G systems are expected to make use of UAVs of

different sizes, from small-scale low-altitude drones to communication satel-

lites [116]. Although energy and battery concerns are still critical [117], the

use of UAVs is being proposed for several kinds of scenarios, from remote

infrastructure monitoring [118] to disaster monitoring [119] and relief [120].

The popularity of UAVs has grown exponentially over the past few years, and

their widespread use could enable a real Internet of Flying Robots [121] in the

near future. Drones are used for environmental monitoring in a wide range of

scenarios, from traffic jam detection [122] to industry and agriculture [123],

and are posed to become a key Smart City infrastructure [124]. UAVs are also

being used in combination with ground-based robots to help them perform

complex tasks [125]. However, disaster management and relief is perhaps

the most interesting application for UAVs: drones can easily avoid ground-

level obstacles and flooded areas by flying over them, surveying the extent of

the damage [119] or helping with search and rescue operations [120] and

communications.

2FAA Aerospace Forecast, Fiscal Years 2019-2039: https://www.faa.gov/news/updates/
?newsId=93646
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As the capabilities of UAVs evolve towards the full support of safety-critical

civilian applications, as well as military battlefield support operations [126],

accurate positioning of drones is going to become more and more important.

UAVs often have on-board Global Positioning System (GPS) receivers, and

filtering [127] and data fusion techniques, often integrating camera image

processing [128], can significantly improve the positioning accuracy by com-

bining several measurements into a single solution that is more robust and

precise than any individual approach. However, in order to track or control

a swarm of several UAVs, mission control must be able to follow and even

anticipate the drones’ trajectories. This requires the UAVs to frequently report

their position to mission control, often with no available infrastructure and

over a range of several kilometers.

The required accuracy of positioning algorithms largely depends on the applica-

tion: wildlife monitoring [129], mostly concerned with counting animals, can

accept a wide error as long as the UAVs register images of the packs or swarms,

while urban pollution monitoring [130], precision agriculture [131], and hy-

drogeological monitoring [132] can require precision between 10 m and 50 m,

since they usually involve the reconstruction of 2D or 3D models from multiple

images, and the accuracy of the position of the point of view can determine the

quality of the final reconstruction. Finally, formation control usually requires

precision well below 10 m (and often even below 1 m [133]): in this case,

centralized solutions that communicate over a range of several kilometers are

suboptimal, and state of the art solutions use distributed optimization with

low-range and high-capacity communication technologies.

In this section, we propose a system that can remotely track the position of

a swarm of up to 50 UAVs, moving independently in a three-dimensional

environment. Our system is based on the LoRaWAN communication standard,

which is used by the UAVs to transmit short updates over a range of several

kilometers. This allows for the deployment of the drones over wide areas with

minimal infrastructure, enabling their use in remote or disaster-struck regions.

Due to the low bitrate and limited duty cycle imposed by the LoRaWAN

specifications in some regions (including Europe), tracking updates cannot

be extremely frequent, so our system uses predictive Kalman-based filtering

to track UAVs between updates, using a novel 3D motion model that we

developed, called 3D-CTRA. Our model extends the well-known Constant Turn

Rate and Acceleration (CTRA) model, widely used in vehicular scenarios, by

adding a third dimension which allows it to represent even complex banking

maneuvers accurately. We also study a simpler model, named CTRA+, which
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considers linear motion on the vertical axis. In both cases, the tracking

mechanism is the same: each UAV periodically transmits its state, including

the orientation, speed and acceleration, and the control station evolves the

motion model to estimate the drone’s position. In this way, even sporadic

updates allow the system to track the UAV.

As stated above, the management of swarms of drones presents some additional

challenges, as LoRaWAN uses random access and updates from different

UAVs can interfere. By exploiting the orthogonality of different SFs [52],

we can reduce interference. However, this comes at a price: increasing the

SF, the range of communication increases, but the time intervals between

transmissions required to respect the duty cycle constraint can last several

seconds, thus making the tracking more difficult.

This section analyzes the performance of such a system with different com-

munication parameters, e.g., when using a single channel with a bandwidth

of 250 kHz instead of three 125 kHz channels, as well as with different ADR

policies. The joint optimization of the motion model and communication

system presents some interesting trade-offs, which we explore in extensive

ns-3 simulations using the UAV mobility traces from the Mid-Air public dataset.

In our simulations, we compare the two mobility models we proposed against

a baseline Constant Speed (CS) motion model, in which the tracked position

evolves according to a uniform rectilinear motion. The results show that an

appropriate setting of the communication parameters and tracking model

can give significant performance gains, enabling accurate tracking over larger

swarms and longer distances.

In particular, the contributions of the analysis presented in this section can be

summarized as follows:

• We defined two mobility models in 3D space, whose adherence to real

drones’ trajectories was verified experimentally by using a public dataset.

We also derived the motion equations and designed a Kalman-based

solution to track the UAVs’ positions over time;

• We defined a tracking system based on LoRaWAN, considering differ-

ent frequency allocation schemes and ADR options in order to support

swarms of different sizes and in different scenarios. While LoRaWAN has

been studied for massive scenarios with thousands of sensors transmit-

ting infrequently, we consider a scenario where fewer nodes transmit at

the maximum duty cycle, showing interesting communication trade-offs;
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• We considered the effect of sending payload data as well as the tracking

information through the LoRaWAN link, effectively piggybacking sensor

readings;

• We ran extensive ns-3 simulations in several scenarios, considering

communications-related metrics as well as directly measuring the track-

ing error of the system.

A preliminary and partial version of the analysis presented in this section

appeared in the proceedings of the 2020 IEEE INFOCOM workshops [134],

which presented the basic features of our tracking system for a single UAV.

The analysis here reported significantly expands the conference version by

analyzing the communication system thoroughly and considering the effects of

interference when the tracking system is extended to swarms of UAVs instead

of a single one.

The rest of the section is organized as follows. Sec. 5.2.1 presents the state

of the art on UAV applications, focusing on the tracking frameworks that can

be used to estimate drone trajectories. Sec. 5.2.2 presents the CTRA+ and

3D-CTRA models, including the relative update equations, while Sec. 5.2.3

describes the LoRaWAN standard and the frequency plan needed for our

application. The simulation settings, including the different ADR solutions

we implemented, and the results are described in Sec. 5.2.4, while Sec. 5.2.5

presents our concluding remarks and ideas for future work.

5.2.1 Related works
The target tracking problem is a well-studied research topic, and is usually

solved by representing the target’s motion using simple models and estimating

its position with a Bayesian Filtering (BF) algorithm. The best-known BF

algorithms used in this context are the Kalman Filter (KF) [135] and the

Particle Filter (PF) [136]. Long-term forecasting can be achieved by simply

applying the predictive step of the BF to the last available state estimate.

However, this solution does not provide good performance when updates are

infrequent, especially if the model is inaccurate. In this perspective, our work

tries to minimize broadcasting operations while ensuring accurate position

estimation.

The tracking problem has been widely explored in 2D vehicular scenarios [137],

often using the CTRA model [138], which considers an accelerating vehicle

with constant turn rate. A similar model for drones moving horizontally was

presented in [139], including Gaussian noise on the motion parameters. A
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more complex model with several possible maneuvers was described in [140],

adapting the CTRA settings to draw the correct trajectory. In general, motion

models for drones are based on 2D CTRA or simpler models with constant

speed [141] or orientation [142]. To the best of our knowledge, CTRA+ and

3D-CTRA are the first models that can represent 3D maneuvers with the same

flexibility that CTRA has in the 2D space.

It is also possible to track passive UAVs, i.e., find their position without any

communication, although at a much shorter range. In [143], a visual system

is shown to detect and track a UAV with high accuracy for a distance of up to

200 m. This method has the advantage of having no communication overhead,

but is inherently limited by the capabilities of the visual system, and will only

work if the UAVs are in line of sight. It is also possible to use the degree of

arrival of external communication signals to allow the swarm to track the

relative position of its members by acting like an antenna array [144]: if

the UAVs share channel information and invert the channel, they can derive

their relative positions. However, this method only works for a high SNR, and

so it inherently limits the area that can be covered before the swarm loses

formation control. The same operation can be performed using Terahertz

communications [145], although only for very short distances (below 10 m in

the paper).

Although LoRaWAN is a communication technology designed for IoT applica-

tions [14], we tested its performance in this specific use case to verify if it could

adequately support control communication. To extend LoRaWAN capabilities

in the scenario of multiple UAVs in the same network, we leveraged the ADR

mechanism provided by the standard, as described in Sec. 2.4.4 and Sec. 5.2.4.

Several different implementations of this mechanism can be found in the

literature. In [74], the authors propose a mechanism based on a waterfilling

algorithm: by adequately setting the modulation parameters, it is possible to

equalize the time on air (ToA) of the packets transmitted by the system’s de-

vices, increasing the maximum network throughput. However, our application

would not benefit from this solution, since, as better described in the following

sections, devices using low bit rates would also transmit their packets very

sporadically, leading to poor tracking performance. ADR applied to moving

devices is studied in different works, as [79, 57, 146]. In particular, in [79] the

authors based the ADR implementation on the estimated RSSI of the device,

setting the modulation parameters accordingly. However, they assume to know

mobility patterns, which are directly related to the value of the RSSI. Although

this approach is useful for devices always moving on the same trajectory (or
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with only slight variations), it is not applicable to the case of drones exploring

an unseen area, or moving towards new objectives. In [146], ADR algorithms

employing a Gaussian and an Exponential Moving Average filter are explored

with ns-3 simulation, in a scenario of static or slowly moving devices. In this

scenario, however, the devices transmit only one packet per hour, which would

not be sufficient in a tracking application. Empirical measurements on the

performance of the ADR algorithm implemented by The Things Network (TTN)

are presented in [57]. In this analysis, devices are placed on trucks moving

in the center of a city, which may be different from the UAVs use case for the

application requirements, the characteristic of the communication channel and

the mobility patterns.

5.2.2 Tracking system model

In this work, we suppose that the UAVs in a swarm periodically transmit

their state to a control station using the LoRaWAN communication standard.

The aim of the control station is to track the UAVs’ positions in different

scenarios. To represent the drone motion in a 3D environment, we consider

three possible models, i.e., CS, CTRA+, and 3D-CTRA. In the rest of the section,

we recall the CS and CTRA models, and we extend them to obtain the system

equations for CTRA+ and 3D-CTRA. We also describe the Unscented Kalman

Filter (UKF) tracking system used by the control station to track the UAVs’

trajectories. In the following, we refer to a UAV’s position as the coordinates

(x, y, z) representing its position in space using a Cartesian coordinate system,

while its orientation is represented by the three angles (θ, ϕ, γ), which measure

the rotation with respect to a horizontal, North-facing position.

The CS, CTRA and CTRA+ models

While conventional systems only track the yaw, i.e., the angle θ between the

drone’s orientation and the reference direction on the horizontal plane, 3D

motion models must also consider the pitch, i.e., the vertical angle ϕ between

the drone’s orientation and the horizon. Moreover, the target state must

include the altitude z as well as the horizontal position (x, y), resulting in

the 5-tuple (x, y, z, θ, ϕ). These parameters are common to all the motion

models we implement. However, none of our models explicitly considers

the orientation on the roll axis: while rotorcraft UAVs typically use motion

on the roll axis to turn, we can model the three-dimensional drone as a

simple cylinder, which is not affected by rotations on the roll axis, making
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the representation more compact. Naturally, this does not correctly track the

precise orientation of the UAV, but we are only interested in its effects on

the future position in space of the drone, for which rotations on the roll axis

are irrelevant. Furthermore, the models do not consider the curvature of the

Earth, but a perfectly horizontal plane, which results in an error ∆h(d) when

measuring the altitude of an object:

∆h(d) = RE

(︄
1 − cos

(︄
d

RE

)︄)︄
, (5.3)

where RE = 6.371 × 106 m is the average radius of the Earth. This error is

negligible for distances below 1 km, as ∆h(1 km) = 7.8 cm. As we expect the

UAVs to cover distances much lower than 1 km between subsequent updates,

which come at a rate of 1 Hz, this error can be compensated for by GPS

measurements, which do account for the Earth’s curvature, and filtered out.

If we were to consider much faster UAVs or less frequent sensor updates, the

curvature of the Earth would become a significant factor.

The CS model assumes that the target moves with a constant speed v, without

any change of direction (see Fig. 5.6). This implies that the turn rate ω = dθ
dt

and the tilt rate ψ = dϕ
dt

are zero, while the model state is simply given by

xCS(t) = [x(t) y(t) z(t) θ ϕ v ]T . (5.4)

Two-dimensional CTRA revises this hypothesis by assuming the target to have

a constant tangential acceleration a = dv
dt

and a non-zero turn rate ω on a flat

plane. The CTRA+ model makes the same assumption, but the plane on which

the UAV moves is rotated by a constant pitch ϕ. As above, the tilt rate ψ is

zero:

v(t) = v(0) + at; (5.5)

θ(t) = θ(0) + ωt; (5.6)

ϕ(t) = ϕ(0), (5.7)

where v(0), θ(0) and ϕ(0) represent the initial velocity and orientation of the

target. Practically, CTRA+ can be described by an Archimedean spiral [147]

that evolves on a plane tilted by an angle ϕ with respect to the horizon. A

sketch of the resulting model motion is given in Fig. 5.7.
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Figure 5.6.: The CS motion model.

Figure 5.7.: The CTRA+ motion model.

To compute the equations of the CTRA+ model, we first need to separate the

components of the target’s velocity vector v(t):

vx(t) = dx

dt
= v(t) cos(θ(t)) cos(ϕ(t)); (5.8)

vy(t) = dy

dt
= v(t) sin(θ(t)) cos(ϕ(t)); (5.9)

vz(t) = dz

dt
= v(t) sin(ϕ(t)). (5.10)

Therefore, the velocity v(t) can be computed as v(t) =
√︂

(vx(t))2 + (vy(t))2 + (vz(t))2,

while the target position is given by the integral of the velocity components

over time:

x(t) = x(0) +
∫︂ t

0
v(τ) cos(θ(τ)) cos(ϕ)dτ ; (5.11)

y(t) = y(0) +
∫︂ t

0
v(τ) sin(θ(τ)) cos(ϕ)dτ ; (5.12)

z(t) = z(0) +
∫︂ t

0
v(τ) sin(ϕ)dτ. (5.13)
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Figure 5.8.: The 3D-CTRA motion model.

After solving the above equations, we get the following results:

x(t) = x(0) + cos(ϕ)
[︄
a

(︄
cos(θ(t)) − cos(θ(0))

ω
+ t sin(θ(t))

)︄

+v(0)
(︂

sin((θ(t)) − sin(θ(0))
)︂]︄

;
(5.14)

y(t) = x(0) + cos(ϕ)
[︄
a

(︄
sin(θ(t)) − sin(θ(0))

ω
− t cos(θ(t))

)︄

−v(0)
(︂

cos(θ(t)) − cos(θ(0))
)︂]︄

;
(5.15)

z(t) = z(0) + sin(ϕ)
(︄
v(t)t− at2

2

)︄
. (5.16)

We note that the procedure is equivalent to 2D CTRA [138] for the x and y

components, except for the constant multiplying factor cos(ϕ). Hence, the

CTRA+ state is given by:

xCTRA+(t) = [x(t) y(t) z(t) θ(t) ϕ v(t) a ω]T , (5.17)

which corresponds to the tuple representing the current attitude, with the

addition of the velocity v, the acceleration a, and the turn rate ω.

The 3D-CTRA model

The 3D-CTRA model extends the above description by adding a constant

tilt rate ψ = dϕ
dt

. Consequently, the target’s movement is represented as the

combination of two independent spiraling motions on the horizontal and

vertical planes, forming a curved helix. We represent the resulting trajectory

in Fig. 5.8
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While the evolution of θ(t) still follows (5.6), the pitch is given by:

ϕ(t) = ϕ(0) + ψt. (5.18)

This complicates the derivation of the motion equations considerably, since

ϕ(t) is now time-dependent. For the sake of simplicity, we report the procedure

only for x(t), which is given by the integral of vx(t) over time. Applying the

Werner formula, we obtain

x(t) = x(0) +
∫︂ t

0

v(τ)
2 (cos(θ(τ) + ϕ(τ)) + cos(θ(τ) − ϕ(τ)))dτ, (5.19)

which can be solved in closed form. The derivations for y(t) and z(t) follow

the same steps; the final results are given in (5.20)-(5.22), where we used the

compact notation [F (x)]ba = F (b) −F (a) to indicate that the primitive function

F (x) should be evaluated at the extremes a and b.

x(t) = x(0) +
[︄
v(τ)

2

(︄
sin(θ(τ) + ϕ(τ))

(ω + ψ) + sin(θ(τ) − ϕ(τ))
(ω − ψ)

)︄

+a2

(︄
cos(θ(τ) + ϕ(τ))

2(ω + ψ)2 + cos(θ(τ) − ϕ(τ))
2(ω − ψ)2

)︄]︄t
0
;

(5.20)

y(t) = y(0) +
[︄

− v(τ) cos(θ(τ) + ϕ(τ))
2(ω + ψ) − v(τ) cos(θ(τ) − ϕ(τ))

2(ω − ψ)

+a sin(θ(τ) + ϕ(τ))
2(ω + ψ)2 + a sin(θ(τ) − ϕ(τ))

2(ω − ψ)2

]︄t
0
;

(5.21)

z(t) = z(0) +
[︄

− v(τ)cos(ϕ(τ))
ψ

+ a
sin(ϕ(τ))

ψ2

]︄t
0
. (5.22)

The equations (5.5), (5.6), (5.18) and (5.20)-(5.22) define the full non-linear

version of 3D-CTRA. In the special cases in which |ω| = |ϕ|, we need to substi-

tute some terms in the derivation, as the standard equations are undefined:

we deal with this case in the Appendix. In general, the 3D-CTRA state is given

by:

x3D-CTRA(t) = [x(t) y(t) z(t) θ(t) ϕ(t) v(t) a ω ψ]T , (5.23)

which is equivalent to the CTRA+ state as defined by (5.17), with the addition

of the tilt rate ψ.

We remind the reader that 3D-CTRA considers constant values for both ω and

ψ. This does not reflect the real behavior of an aircraft, as dives and climbs are

usually relatively short. To make the model more realistic, the tracking system
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reduces the value of ψ by a factor η after every prediction step. In other words,

the model implicitly assumes that the drone will gradually reduce its tilt rate

and stabilize its pitch until it receives an explicit update from the UAV.

Remote tracking
As in [138], the tracking process is implemented by following a Bayesian

approach. Hence, the state x of each UAV is modeled according to:

⎧⎪⎨⎪⎩ x(t+ T ) = f(x(t))) + ζ(t),

o(t) = h(x(t))) + η(t).
(5.24)

In (5.24), the first equation describes the evolution of x(t), while the second

describes the relation between x(t) and the state observation o(t). Particularly,

f(·) depends on the considered motion model F ∈ {CS, CTRA+, 3D-CTRA},

while h(·) depends on the measurement system. Besides, ζ(t) and η(t) are

the process and measurement noises at time t, and are modeled as indepen-

dent Gaussian processes with zero mean and covariance matrices Q and R,

respectively.

In this work, we exploit an Unscented Kalman Filter (UKF) with the Van Der
Merwe parameterization [148] to estimate the drone state. The UKF algorithm

is an extended version of the original KF able to model the non-linear evolution

of the drone state. In particular, the system information is summarized by a

set of particles, named sigma points, which are processed through functions

f(·) and h(·) at each step of the algorithm. Each particle is associated with

a weight that decreases as its distance from the state estimation is larger.

Hence, the UAV’s estimated state can be computed as a weighted average of

the sigma points used by the filter. The operation of the filter is described in

Appendix B.2, with a detailed mathematical definition.

In our model, we consider that each UAV implements a UKF to estimate its own

state, and the control station implements an additional UKF to estimate the

state of each UAV in the system. In particular, the UAVs are provided with on-

board sensors that provide an update of their state estimation in each timeslot.

Instead, the control station’s UKF has no input but the information received

from the UAV. We adopt a periodic broadcasting strategy [137]: after a ran-

domized time at the beginning of the simulation, each UAV sends the estimate

of its own state to the control station with a constant inter-transmission period.

A small delay is also added between consecutive transmissions, in order to

mitigate the interference suffered by UAVs whose transmissions happen to be
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synchronized. After it receives an update, the control station updates its UKF

with the new information and exploits the predictive step to forecast the UAV’s

trajectory. Naturally, the errors will compound, causing long-term predictions

to become less and less accurate until the next update. In order to enable the

UAV to send the UKF parameters even at great distances, we considered the

LoRaWAN technology [26], which is better explained in the following section.

5.2.3 Communication system model
In the scenario we consider, we assume that the drone is equipped with a

LoRaWAN Class A ED. This class of devices is designed to consume a minimum

amount of energy, with nodes staying in sleep mode most of the time, trans-

mitting when necessary, and waking up for reception in two short windows

after each transmission. This feature makes the energy consumption of the

LoRaWAN system negligible for the UAVs, considering that even the lightest

quadcopter requires 50 to 100 W to hover or fly at low speed when carrying

no sensor payload. In our case, we can expect a power consumption to fly in

the order of hundreds of Watts, 3 to 4 orders of magnitude higher than the

communication .

The LoRaWAN protocol also supports the ADR mechanism, through which the

NS can control the transmission parameters of the EDs, that we will leverage

in the following analysis.

In Europe, LoRaWAN works in the unlicensed 868 MHz sub-band, which is

subject to duty cycle regulations. In particular, three 125 kHz channels are

allocated to UL transmissions, and must respect a duty cycle limitation of 1%.

Another option that we consider in this study is to use the available frequency

band to allocate a single 250 kHz channel, which does not bring the benefits

of frequency orthogonality but reduces the packet transmission time, and is

thus always preferable in case of a system with a single drone.

To maintain a good tracking performance, the packet generation (and transmis-

sion) frequency should be very high. However, when combined with multiple

transmitting devices, as in the scenario of a swarm of drones, this rapidly

increases the traffic injected in the communication channel, and the system

performance suffers from interference.

This scenario is highly different from the most common LoRaWAN applications,

which involve thousands of sensors transmitting sporadically. The massive

number of devices allows network designers to approximate the system as an

infinite-user ALOHA system, but this is not possible in our case. In our scenario,

a limited number of UAVs is transmitting periodically at the maximum allowed
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duty cycle of 1%: this case is more similar to the finite-user case, which has

been mostly studied for slotted systems [149, 150]. Furthermore, what is

interesting in our case is not just the throughput and delay [151], as in most

previous studies, but also the Age of Information (AoI) [152], and it is not just

the AoI that matters, but its effect on the tracking performance. Whether or

not LoRaWAN is suitable to sustain this type of IoT applications is unclear. In

this section, we show that, under certain conditions, it can indeed sustain both

control and data traffic, but a correct configuration of the system parameters

is crucial: a straightforward solution is to leverage orthogonality, both in the

frequency domain (i.e., using three channels instead of a single one) and by

employing different SFs. However, these choices can also have side effects:

the increased packet transmission time due to a narrower channel and/or the

use of higher SFs will reduce the number of packets that can be transmitted in

compliance with the duty cycle regulations. These trade-offs will be part of

the analysis in Sec. 5.2.4.

To partially contain the problem posed by the duty cycle limitation, we com-

press the system state to reduce the inter-transmission time and improve the

tracking performance. In order to minimize the payload size, we can represent

the position using 2 bytes, allowing movement in a square box with a size of

13 km while limiting the quantization error to 10 cm, significantly less than

the average GPS error. Angles and turn rates can be represented using just 1

byte, with a maximum error of 0.7 degrees. Since velocity and acceleration

are limited, they can also be represented with just 1 byte, with a negligible

loss of precision. Considering that the CS model requires the knowledge of

the attitude 5-tuple and the velocity, its minimum payload size is 9 bytes. The

CTRA+ state as given in (5.17) requires 11 bytes, and the 3D-CTRA state as

given in (5.23) requires 12 bytes. The different payload formats are reported

in Fig. 5.9. The LoRa transmission times for packets with these lengths are

reported in Tab. 5.2: to respect the duty cycle limitation, packets can be sent

only sporadically, with a transmission period in the order of a few seconds.

5.2.4 Simulation settings and results
In this section we describe the dataset providing the trajectory of a drone, how

this has been used to represent the simulation scenario and how simulation

parameters have been configured. Then, we present the results obtained,

discussing first the scenario of a single drone, and then the scenario where

multiple drones are involved, highlighting how the best settings differ for the

two cases.
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Table 5.2.: Transmission times for packets with different payload size and minimum
transmission interval to respect duty cycle regulations. Transmission
times are computed as in [28], considering an additional MAC header of
9 B.

SF B (kHz) Packet payload (B) TX time (s) Min TX interval (s)

7
125

9 0.0515 5.15
11, 12 0.0566 5.66

250
9, 11 0.0257 2.57
12 0.0283 2.83

8
125

9 0.0927 9.26
11, 12 0.1029 10.29

250
9 0.0463 4.63
11, 12 0.0514 5.14

CS

CTRA+

3D-CTRA

4 B 8 B 12 B

x(t) y(t) z(t) θ ϕ v

x(t) y(t) z(t) θ(t) ϕ v(t) a ω

x(t) y(t) z(t) θ(t) ϕ(t) v(t) a ω ψ

Figure 5.9.: Schematic of the payload format for the three tracking schemes.

Settings
To simulate the UAV mobility, we exploit the Mid-Air dataset [153], which

contains the flying records of a quad-copter moving in 3 different virtual

environments. Such data are divided into 54 trajectories of equal length, for

a total of 79 minutes of flight time. To strengthen our analysis, we randomly

combined the different trajectories, thus increasing the duration and the

variability of the drone traces. These data are used to represent the ground-

truth motion of the UAVs, while we synthetically generated noisy data to

represent the information acquired with the drones’ sensors. The sensor data

included the position, the attitude, and the velocity and acceleration vectors

of the UAV, combining GPS, accelerometer and gyroscope.

The process noise of the tracking system is described by the matrix Q = qI,

where I represents the identity matrix and q = 0.01. Instead, the error affecting

the drone measurements is given by a diagonal matrix R, whose elements

represent the accuracy of the various drone sensors. The noise matrices and

the UKF parameters are reported in Tab. 5.3. In particular, values of R were
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Table 5.3.: Tracking system parameters.

Parameter Value Description

Rx 0.8274 m2 Position accuracy along x
Ry 0.8274 m2 Position accuracy along y
Rz 3.7481 m2 Position accuracy along z
Rv 0.2500 (m/s)2 Speed accuracy
Ra 0.1521 (m/s2)2 Acceleration accuracy
Rθ 0.0085 rad2 Yaw accuracy
Rϕ 0.0085 rad2 Pitch accuracy
Rω 0.0003 (rad/s)2 Turn rate accuracy
Rψ 0.0003 (rad/s)2 Tilt rate accuracy
q 0.01 Process noise
η 0.9 Tilt reduction parameter

chosen according to [154, 155, 156]. We highlight that the UKF setting,

e.g., the state dimension, changes according to the chosen motion model. As

already stated, the UKF at the control station is used to estimate the target

trajectory by exploiting only the predictive step. This implies that, when a new

update is received, the filter state is substituted with the new information, and

the estimation process starts again.

The scenario of interest was studied with the network simulator ns-3 using

the lorawan module described in Chapter 3, with Nd drones moving in the

space according to the mobility traces of [153]. The drones are assumed to be

equipped with a LoRaWAN interface, which transmits packets at the maximum

frequency allowed by the duty cycle. These messages are collected by a GW

and forwarded to the NS. Unless otherwise stated, transmitted packets do

not require any acknowledgment, and the NS does not control any of the

communication parameters. For each packet, we recorded whether or not it

was successfully received, according to a log-distance propagation loss model

that also considers shadowing and to the interference model that determines

the correct reception probability in case of collisions [15].

Packet outcomes are then used to estimate the tracking performance. We also

moved the initial position of the GW to see how much the tracking performance

is affected by the communication limitations. In the rest of the section, we

will analyze the positioning error for different tracking and communication

scenarios. In particular, we investigate our tracking scheme for different values

of the SF and of the initial distance d between the UAV and the GW. We remark

that the UAVs will move from the initial point, so their distance from the
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GW will change over a simulated episode, but the initial distance can give a

qualitative idea of the range over which the drones will move.

We always initialize EDs to use the lowest SF setting that allows reliable

communications within at least a range d from the GW in the absence of inter-

ference. However, each UAV may change its SF according to the considered

ADR algorithm. We implemented the following ADR strategies:

• In the NO ADR setting, EDs do not set the ADR bit in their UL packets,

and implement no autonomous data rate adaptation scheme. When a

UAV travels out of the coverage zone, its packets are simply not received

until it comes back in range.

• In the NS ADR setting, all decisions regarding changes in the SF of an

UAV are taken by the NS (and conveyed to the device by the GW). In this

case, the NS will leverage one of the two receive windows opened by the

device after each UL transmission to send a DL packet containing the new

SF value to use. The NS will increment the SF when it senses that the

UAV is leaving the coverage zone for the current setting (based on the

receive power of the last communication), and will decrement the UAV’s

SF when the received power is above receiver sensitivity by a certain

margin (set at 3 dB in this work). Note that the control message will be

sent only if a change in the SF is required, otherwise no DL transmission

is performed.

• Finally, the ED+NS ADR setting has the UAV require confirmation of

correct reception for every UL packet it sends. If no ACK is received, the

UAV increases the SF on its own. Similarly to what happens in the NS

ADR setting, when the UAV comes back in range, the NS will instruct the

drone to decrement the SF through a DL communication.

Tracking a single UAV
First, we consider the 90 s drone path shown in Fig. 5.10a. In this scenario,

we consider the GW to be positioned in (0, 1000, 0), with an initial distance

d = 1000 m. The same figure includes the paths estimated by the control station

using the CS and 3D-CTRA motion models, considering a communication setup

with SF 7 and B = 250 kHz. Comparing the different paths, we observe how

the CS scheme has difficulty in following the target while 3D-CTRA ensures

smaller deviations from the real path. The sharp changes in the estimated

paths are due to updates received by the control station: if the model estimates
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(a) 3D path. (b) Error over time.

Figure 5.10.: Tracking performance of a single UAV with d = 1000 m, SF 7, and
B = 250 kHz.

the wrong attitude, updating it blindly makes it gradually diverge from the

actual path of the UAV. When the control station receives the next packet from

the UAV, it resets the state of its filter, resulting in a “jump” in the estimated

path. This is confirmed by the results in Fig. 5.10b, which shows the control

station tracking error over time for all the considered models: the updates

are clearly visible, as the tracking error instantaneously drops. We highlight

that the error of the CS model rapidly increases every time the drone performs

non-linear movements, as happens at time t ≃ 20 s. Instead, the error of

CTRA+ and 3D-CTRA presents a smoother trend, with fewer and lower peaks,

even though both such models require to transmit more data over the channel.

The performance of CTRA+ is almost identical to that of 3D-CTRA, but the

latter better addresses vertical drone movements (as occurs at time t ≃ 40 s).

In what follows, we evaluate the performance of our system in tracking a

single drone starting from a distance d = 1000 m from the GW. In particular,

we examine the cumulative results over multiple virtual trajectories for a total

of 2.5 hours of flight time. Fig. 5.11a shows the distribution of the position

error along the three axes with SF 7, and B = 250 kHz. In particular, we adopt

the boxplot representation, where the white line at the center of the box is the

median of the distribution, the box edges are the 25th and the 75th percentile,

while the box whiskers represent the 5th and the 95th percentile, respectively.

When considering the X and Y axes, the CS model is outperformed by both

CTRA+ and 3D-CTRA, which ensure a richer representation of the drone’s

movements. In particular, 3D-CTRA shows a slightly lower position error with

respect to CTRA+, which uses less information than 3D-CTRA to estimate the

drone state. When considering the vertical Z axis, the error of CS is similar
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(a) Error on the three axes. (b) Error on the orientation.

Figure 5.11.: Tracking error with d = 1000 m, Nd = 1, SF 7, and B = 250 kHz.

to that obtained with CTRA+, since both models consider that the target

maintains a constant tilt. On this axis 3D-CTRA performs best, because it is

the only one that can accurately track the drone maneuvers in all directions.

This is confirmed by Fig. 5.11b, which shows the tracking error on the UAV

orientation. It is easy to see that the CS model cannot correctly track the

orientation of the drone on the horizontal plane, as it assumes it will never

change. On the other hand, CTRA+ and 3D-CTRA have similar performance,

but 3D-CTRA manages to track the orientation better on the vertical plane, as

it can represent the movement of the UAV more accurately.

Swarm tracking performance
Fig. 5.12 shows the distribution of the inter-reception time for a swarm of

drones starting 1 km away from the control station, with different tracking

systems and communication settings. This parameter almost corresponds

to the Peak Age of Information (PAoI), i.e, the maximum value reached by

the AoI before a new update is received, as the transmission delay is much

smaller than the inter-reception time. We can observe that the CS model

ensures the lowest inter-reception time since its state is constituted by only

6 variables. On the other hand, CTRA+ and 3D-CTRA need to transmit

more data over the channel and are characterized by similar communication

statistics. Furthermore, the size of the swarm is critical to determining the

inter-reception time, as collisions can multiply the time between successful

packet receptions. We can easily see that increasing the size of the swarm

from Nd = 1 to Nd = 10 has almost no effect, while a system with Nd = 30 is

significantly different. The choice of the bandwidth is also extremely important,

as using B = 250 kHz allows UAVs to transmit data faster, but also reduces the
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(a) Nd = 1. (b) Nd = 10.

(c) Nd = 30. (d) Nd = 50.

Figure 5.12.: Inter-reception time when using different communication settings with
d = 1000 m.

number of orthogonal channels from 3 to 1, increasing the number of drones

competing for the same channel. In fact, the increase in the inter-reception

time for systems with Nd = 30 and B = 125 kHz is almost imperceptible. In

general, the average inter-reception times are often still lower for B = 250 kHz,

as the packet frequency is doubled, but the worst-case performance is much

worse for Nd = 30 and Nd = 50, as shown by the upper halves of the boxes.

In general, reducing the PAoI corresponds to more frequent UKF updates at the

control station, thus improving the tracking performance, but the relationship

between PAoI and tracking error is not linear. Fig. 5.13 shows the tracking error

distributions in the same scenario: in this case, choosing B = 250 kHz provides

a better performance even for Nd = 30, but not for Nd = 50. Interestingly, we

can see that 3D-CTRA outperforms the other models when the inter-reception

time is low, but the simple CS model becomes the best whenever the average

inter-reception time goes over 10 seconds. This is due to the non-linear nature

of CTRA+ and 3D-CTRA, which can accurately track the UAVs’ movements

over a short timespan but suffer from the accumulation of errors over longer
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(a) Nd = 1. (b) Nd = 10.

(c) Nd = 30. (d) Nd = 50.

Figure 5.13.: Tracking error when using different communication settings with d =
1000 m.

intervals: even without considering turns and maneuvers, a small error in the

estimated acceleration can lead to a quadratic increase in the tracking error

over time, while a constant speed model has no acceleration and thus will

have a somewhat bounded error. However, in these conditions, the error for

all the tracking models increases significantly, and might be too high for some

applications.

Spreading factor optimization

As we discussed above, interference and packet collisions can be a significant

issue in large swarms. However, LoRaWAN has another parameter that we

can tune to maximize performance, namely, the SF. Packets sent with different

SFs are orthogonal and can be received at the same time, providing additional

protection from interference. At the same time, higher SFs can increase the

packet transmission time significantly, leading to far longer inter-reception

times to respect the duty cycle constraint.
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However, inter-reception times of over 10 s severely degrade the tracking

performance. As such, we can limit the examined SFs to 7 and 8, i.e., the

lowest two. In this case, the optimal choice to reduce congestion would be to

have half of the UAVs use SF 7, while the other half use SF 8, but this would

lead the UAVs that use the lower setting to have a significant advantage, as

they have a shorter inter-reception time, and any collision for SF 8 packets

would lead to a very long inter-reception time for the affected drones. In order

to balance the two sets, we define a split system in which two thirds of the

drones use SF 7, while the others use SF 8.

Fig. 5.14 shows that, for Nd = 10, splitting the UAVs between the two SFs

is suboptimal, while it can provide a small performance bonus if Nd = 30
and B = 250 kHz. Interestingly, splitting the swarm is not a good choice

for the system with B = 125 kHz even with a swarm of Nd = 50 drones: as

reducing the bandwidth increases the number of orthogonal channels, but

also the time required for a transmission, avoiding collisions is not worth the

cost of further increasing the inter-reception times for the UAVs with SF 8. We

also note that the SF optimization cannot solve the fundamental issue of the

more complex models, as the updates are still not frequent enough to avoid

divergence, and the CS model is still the optimal one for Nd = 50, maintaining

the 75th percentile of the tracking error below 30 m.

However, SF adaptation algorithms are not just useful to reduce collisions,

but also for their original purpose: extending the range of the LoRaWAN

network. In Fig. 5.15, we analyze the results obtained using the ADR system

we described in Sec. 5.2.3, for different values of Nd. If the ADR is not active

(NO ADR), drones do not vary their communication settings regardless of the

scenario conditions. Instead, the NS ADR and the ED+NS ADR systems allow

UAVs to vary the SF according to the policies described in Sec. 5.2.4.

The figure clearly shows that using the ED+NS ADR scheme results in much

higher inter-reception times and, consequently, a higher error. This is caused

by multiple factors: firstly, UAVs using ED+NS ADR will increase the SF as

soon as the GW misses an ACK to the UL message. The fact that ACKs need

to employ the same SF as UL packets further exacerbates this problem, by

increasing the duty cycle consumption by the GW and further limiting the

amount of ACKs that can be sent.

As shown in Fig. 5.15, the good inter-reception time performance achieved

by the NS ADR scheme results in a better tracking error, which makes the NS

ADR scheme the best choice for the specific scenario we considered. However,

we remark that different ADR policies might be implemented to also take
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(a) Inter-reception time with CS. (b) Tracking error with CS.

(c) Inter-reception time with CTRA+. (d) Tracking Error with CTRA+.

(e) Inter-reception time with 3D-CTRA. (f) Tracking error with 3D-CTRA.

Figure 5.14.: Performance when using different SF settings and d = 1000 m.

into account available knowledge of the UAV’s mobility patterns for a smarter

configuration of the SF parameter.

Joint tracking and sensing
We can now look at the consequences of piggybacking the tracking update

on sensor communications. Naturally, LoRaWAN is a low-bitrate technology,

so the sensor updates will themselves have a limited size. We analyze sensor

payloads of 16, 32, and 64 bytes, combined with the three tracking systems
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(a) Inter-reception time with CS. (b) Tracking error with CS.

(c) Inter-reception time with CTRA+. (d) Tracking error with CTRA+.

(e) Inter-reception time with 3D-CTRA. (f) Tracking error with 3D-CTRA.

Figure 5.15.: Performance when using different ADR settings with d = 3000 m.

we have presented. We first look at the inter-reception time, which roughly

corresponds to the PAoI for the sensor data, as the transmission takes up

less than 1% of the total value. Fig. 5.16 shows a boxplot for a swarm with

Nd = 10, using two different bandwidths, as above. Naturally, inter-reception

time grows with the payload, but it is still below 10 s even with the 64 B

payload when using B = 250 kHz.

As we discussed above, this has an obvious effect on the tracking error:

Fig. 5.17 shows the tracking error as a function of the payload size. If we
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(a) B = 125 kHz. (b) B = 250 kHz.

Figure 5.16.: Inter-rx time when using different communication settings with d =
1000 m, Nd = 10, and SF 7.

(a) B = 125 kHz. (b) B = 250 kHz.

Figure 5.17.: Tracking error when using different communication settings with d =
1000 m, Nd = 10, and SF 7.

consider the system with B = 250 kHz, the tracking error grows as the payload

size increases, but is still often within acceptable parameters most of the time.

It is interesting to note that, while CS is always the best choice with a non-zero

payload and B = 125 kHz, CTRA+ is the best choice for small payloads with

B = 250 kHz, as the inter-reception times are still within acceptable bounds to

benefit from a more accurate model.

We can also look at the goodput generated for each payload size, which also

increases as the payload size grows: Fig. 5.18 shows the received bytes per

second for the sensor application, considering only the payload bits. There is a

trade-off between goodput on one side, and PAoI and tracking performance on

the other: smaller payloads can be delivered more frequently, correspondingly

improving the tracking, but also reduce the overall goodput. We also analyzed

the packet erasure probability, which was similar for all payload sizes and

tracking schemes, around 5% for B = 125 kHz and 15% for B = 250 kHz.
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(a) B = 125 kHz. (b) B = 250 kHz.

Figure 5.18.: Goodput when using different communication settings with d = 1000 m,
Nd = 10, and SF 7.

This difference is due to the far larger number of collisions that the drones

experience with a single, higher-throughput channel, with respect to having 3

orthogonal ones with a lower capacity.

5.2.5 Conclusions
In this section, we presented a tracking system for UAVs, based on a novel

3D-CTRA mobility model and on periodic transmissions over LoRaWAN. Our

system can track a drone’s trajectory with high accuracy even when the drone

is at 3 km from the LoRaWAN GW, and the mobility models we propose signif-

icantly outperform standard CS. In particular, the choices of SF allocation and

channel bandwidth were found to significantly impact tracking performance

when drone swarms are considered.

Moreover, despite LoRaWAN’s duty cycle limitations, simulations conducted in

this work show that the technology is suited to manage swarms of dozens of

drones, provided that an appropriate ADR scheme is implemented to handle

scenarios in which UAVs move out of the coverage area. As we discussed

in the introduction, the accuracy reached by our system can enable several

applications, from urban pollution monitoring to precision agriculture, which

are relatively tolerant to imprecisions in the positioning.

Several extensions of this work are possible. The movement model could be

refined by including maneuver and mission-level information to reduce the

tracking error. Moreover, it would be interesting to explore features that are not

part of the LoRaWAN standard up to now, like the use of a different frequency

plan or of listen-before-talk instead of applying the duty cycle. Finally, the

study of the behavior of swarms, and strategies to avoid packet collision,
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are interesting options that would enable new applications by improving the

tracking accuracy at low cost.
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6Enabling Green IoT:
evaluation of battery-less
LoRaWAN nodes

A problem that arises when considering large IoT deployments is the powering

of devices that, nowadays, is mainly faced by adopting battery-based solutions.

However, this approach is not sustainable from both an ecological perspective,

due to the dangerous chemicals still present in batteries, and an economical

standpoint, as battery replacement is a costly operation. Therefore, a possible

alternative to realize Green IoT solutions is to make devices self-sustainable in

terms of energy. This can be done by employing a battery-less approach, where

the energy is harvested from renewable sources, such as solar light or wind,

and is stored into capacitors. However, the limited and inconstant energy

supply and the limited energy storage capacity of such devices require special

care in the design of communication and computational processes, which have

a major impact on the energy consumption of the devices.

In this chapter, we continue the study of the LoRaWAN technology by evaluat-

ing the feasibility of a Green IoT solution with energy harvesting, with the aim

of reducing the environmental footprint of IoT systems [157, 158].

In this perspective, it is fundamental to limit the use of batteries (both dispos-

able or rechargeable) to power sensor devices, since their replacement is costly

from a time, economic and environmental perspective, and motivates the

migration towards greener solutions. An eco-friendly alternative to batteries is

using energy harvesting techniques, where energy is derived from renewable

sources (e.g., solar power, thermal/wind energy), and is stored in (super)

capacitors to power the devices. Unfortunately, the variability of harvested

energy and the small energy density of capacitors can potentially cause an

intermittent behavior of the device, affecting its performance and capabilities,

including communication.

The remainder of this chapter is structured as follows. Sec. 6.2 describes

our ns-3 implementation of a battery-less IoT node, which is combined to the

lorawan module presented in Chapter 3 while the specific ns-3 implementation

and integration with existing modules are discussed in Sec. 6.3. In Sec. 6.4

we validate the capacitor’s implementation applying it to LoRaWAN nodes,

and discuss the obtained results. Then, we leverage such ns-3 implementation
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to investigate the performance of a battery-less LoRaWAN node with energy

harvesting. In particular, we highlight the need for energy aware approaches,

where packet transmission is conditional on the energy level of the device,

making the best use of the available energy resources. We investigate the

impact of various parameters, such as packet length and capacitor size under

different environmental conditions. In Sec. 6.5, we propose and compare

different energy-aware packet scheduling algorithms, that make it possible to

better use the energy resources and to prevent the device from switching off.

We test them in scenarios with various energy harvesting capacities, also using

measurements of harvested power collected from real testbeds. Furthermore,

in Sec. 6.6 we present some preliminary experimental results obtained by

evaluating the performance of a real setup, where the power is harvested by a

solar panel. Finally, Sec. 6.7 presents final considerations on the feasibility of

battery-less LoRaWAN for Green IoT implementations.

6.1 State of the art
The adoption of battery-less approaches and energy-harvesting techniques

have started gaining interest in the last few years, but have not been deeply

evaluated yet. Therefore, works that deal with IoT networks with battery-

less devices and energy harvesting [159, 160, 161, 162], mainly address

theoretical analysis (i.e., mathematical modeling) or empirical evaluations.

Instead, the use of simulations can provide a precious help in the evaluation

of the interplay between the network state, the system configuration and the

device’s energy capabilities. For example, the communication could benefit

from the robustness provided by message repetitions or the use of a higher

transmission power, but this will impact the energy autonomy of the device;

conversely, low energy levels may prevent the correct transmission of some

packets. These aspects are further complicated when considering the variability

of the energy source in nodes with harvested power and the interference of

many communicating devices.

The inclusion of energy harvesting techniques in IoT devices has started gain-

ing interest in the last years. As reported in [163], many contributions present

LPWAN architectures with integrated energy harvesting, and LoRaWAN is one

of the most tested technologies. In [164], Mabon et al. propose the archi-

tecture of an energy harvesting sensor node powered with solar panels, not

related to a specific application. Instead, other contributions contextualize the

system deployment in specific scenarios and with different energy harvesting
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sources: in [165, 166] the authors integrate solar panels for a structural health

monitoring system for buildings, and for earthquake detection, respectively.

In [167] the authors investigate the usage of Kinetic Energy Harvesting to

convert motion/vibration energy into electrical energy to power IoT devices,

and, through prototypes evaluation, show the efficiency of the proposed so-

lution. In [168] Finnegan et al. explore the feasibility of a LoRaWAN sensor

powered with radio-frequency (RF) ambient resources, and identify design

and environmental constraints such as the hardware implementation, the avail-

ability of wireless energy (which depends on the specific scenario the system

is deployed) and the distance between transmitter and receiver. Similarly,

in [169], Loubet et al. describe a prototype implementation of a LoRaWAN

monitoring network where devices are powered with energy harvested from

RF sources, and propose to control the periodicity of the measurement and

data transmission by tuning the availability of RF resources. In [170] Orfei

et al. describe a system to monitor the asphalt of a bridge through LoRaWAN

sensors powered by the bridge vibrations.

Differently from the aforementioned works, which face the problem using an

empirical/hardware evaluation, other contributions leverage more theoretical

approaches, drawing more general considerations. In [160] Delgado et al.

employ Markov chains to model the intermittent behavior of a single LoRaWAN

device with energy harvesting, including the effects of parasitic resistances of

the capacitor, evaluating feasibility and performance when using UL and DL

traffic, and validating it with a C++ simulator. The work presented in [161]

considers battery-less capacitor-based LoRaWAN devices, and investigates a

proper scheduling of sensing and transmission tasks, comparing a turn-off

and a sleep-based approach. Furthermore, it studies the optimal turn-on

voltage threshold that allows the node to complete such tasks for a given

setting (capacitor size, energy harvesting rate), and validate the results using

an environment emulator connected to a real device.

With respect to state-of-the art, in the analysis presented in this section, we

consider energy-aware approaches that can work (and exploit) variable energy

harvesting rates. In particular we focus on a single-node scenario and analyze

the impact of different parameters (i.e., capacitor size and packet size) on

the device’s performance. We compare different energy aware scheduling

approaches and employ various energy-harvesting traces obtained from real

measurements.
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Figure 6.1.: Electrical circuit model of a battery-less IoT device [160].

6.2 Battery-less IoT devices with energy harvesting
To model a battery-less IoT device, we consider the approach used in [160].

The device consists of several components: a Micro Controller Unit (MCU), a

radio unit, some peripherals (e.g., for sensing purposes), a capacitor to store

energy, and a harvester mechanism to recharge the capacitor. The overall

device can be modeled as an equivalent electrical circuit with three parts: (i)

the harvester, (ii) the capacitor, and (iii) the load, as represented in Fig. 6.1,

and better described next.

The harvester it is the only energy source in the system. The harvester is

modeled as an ideal constant voltage source (denoted by E) with a

series resistance (ri(t)) that determines the maximum power that can be

produced by the harvester, which is given by

Pharvester(t) = E2

ri(t)
. (6.1)

In general, the resistance ri(t) can change in time, according to the

fluctuations on the energy harvesting process. By coupling the harvester

with a voltage regulator, however, the output voltage E can be stabilized.

Our model makes it possible to either generate the harvested power

values as independent random samples taken from a given distribution,

or to read them from a pre-loaded trace file. In the following, indeed, we

will consider both an ideal harvesting source, characterized by a constant

harvesting rate, and realistic energy sources, whose harvested power is

given by the input traces obtained from solar panels, better described in

Sec. 6.5.2.
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The load it models all the components of the system that consume energy.

According to the activity performed by each component, it is possible to

define different states of the load, which are characterized by a specific

power consumption. For each state, we can therefore define a load

resistance RL(s), which is computed considering the total current Iload(s)
absorbed by the load in the specific state s:

RL(s) = E

Iload(s)
. (6.2)

The capacitor it stores the energy generated by the harvester and releases

it to the load when required. The behavior of the system can be repre-

sented by a series of intervals corresponding to different events/activities

(e.g., MCU active and radio transmitting), corresponding to the different

states of the load. For each state s, the voltage of the capacitor can

be represented by (V0, vC(t)), where V0 is the capacitor voltage when

entering the state, and vC(t) is the voltage of the capacitor after t seconds

spent in state s. As depicted in Fig. 6.1, V0 is included in the circuit as

an ideal voltage source, while vC(t) is the voltage over time of an ideal

capacitor.

The voltage provided by the capacitor to the load after t seconds in state

s can thus be computed as

v(t, s) = E
Req(s, t)
ri(t)

(︂
1 − e

− t
Req(s,t)C

)︂
+ V0e

− t
Req(s,t)C , (6.3)

where C is the capacitance of the capacitor [in Farads], and

Req(s, t) = RL(s)ri(t)
RL(s) + ri(t)

. (6.4)

To model real devices, we consider that they may switch off at anytime because

of an energy level too low to continue their functioning. Therefore, we define

two voltage thresholds for v(t, s): Vth_low, and Vth_high. When the capacitor’s

voltage drops below the Vth_low value, the device switches off, and it cannot

perform any operation. In this state, the current consumption is minimal

(5.5 µA, due to the circuitry [160]), and most of the harvested energy will

hence be used to recharge the capacitor. When the stored energy exceeds the

voltage threshold Vth_high > Vth_low, the device goes back to the active state.
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Figure 6.2.: Example of the device’s voltage when it enters different phases.

As an example, Fig. 6.2 shows the voltage level of a device over time, high-

lighting the on/off phases with different background colors. The figure has

been obtained by setting C = 5 mF, Pharvester = 0.001 W, packet generation

period of 60 s, and LoRa DR 3. The voltage thresholds determining the switch

to on/off states have been set to Vth_low = 1.8 V and Vth_high = 3 V . Markers

correspond to the beginning of the state, which will be better explained in

Sec. 6.4.

6.3 Code implementation in ns-3
In this section, we present our ns-3 implementation of a battery-less node

with a (super) capacitor coupled with an energy harvester, which enables

the performance evaluation of IoT networks with battery-less devices. This

is built as an extension of the native ns-3 energy model, and can be easily

integrated with existing ns-3 modules, supporting the intermittent behavior

of devices that can turn off or on according to their energy level. Also, a

supplementary class makes it possible to import values for the harvested power

from external files, which can be obtained from real measurements. The

implemented code is available at [171]. In Figure 6.3, a scheme depicts the

relation between the different components. We point out that the presented

framework can be extended and/or tuned to consider also different behaviors

of the device (e.g., states), or values for current consumption. Indeed, the

application considered in this work is based on the LoRaRadioEnergyModel
class and inherits its specificities.
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Table 6.1.: Relevant attributes of the CapacitorEnergySource class.

Attribute Description

Capacitance capacitance [F]
CapacitorEnergySourceInitialVoltage initial voltage of the capacitor [V]
CapacitorMaxSupplyVoltage Maximum supply voltage for the capaci-

tor energy source [V]
CapacitorLowVoltageThreshold Vth_low, as fraction of the maximum sup-

ply voltage
CapacitorHighVoltageThreshold Vth_high, as fraction of the maximum sup-

ply voltage
PeriodicVoltageUpdateInterval Time interval between periodic voltage

updates [s]

6.3.1 Capacitor
The ns-3 class implementing the storage of the energy in a capacitor is called

CapacitorEnergySource, as it extends the EnergySource class available in

ns-3.1 Thus, it is used as done for the classes implementing the Lithium Ion

Battery or the non-linear battery model. As such, it can be easily connected to

energy harvester components (EnergyHarvester) and to the class modeling

the energy consumption behavior of the device (DeviceEnergyModel). 2 The

capacitor’s features can be set using the class attributes and methods; the most

relevant attributes are reported in Table 6.1.

The value of the energy stored in the capacitor and the corresponding voltage

can be updated periodically by calling the appropriate function: UpdateEner-
gySource. This function computes v(s, t) as for Eq. (6.3) according to the

current state s, with V0 being the voltage computed at its previous call. It is

recommended to call the function also before switching the device to a new

state, in order to keep the voltage up-to-date with the correct value of RL(s)
and guarantee that the device’s energy is not depleted, preventing the correct

switching to the new state.

Besides the common “setters” and “getters” methods, and the auxiliary func-

tions to compute the voltage level, the class also provides the following:

• IsDepleted, a function returning true if the current voltage value is

below Vth_low;

1https://www.nsnam.org/doxygen/classns3_1_1_energy_source.html
2To avoid compilation errors, in ns3/src/energy/model/energy-source.h, the private

variables should be moved to protected.
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Figure 6.3.: Diagram illustrating the relation between different code components.

• ComputeLoadEnergyConsumption, a function computing the energy dis-

sipated only by the load where a given current flows for a given time

interval, and the initial voltage level of the capacitor is given as input;

• TrackVoltage, a function producing a file with the value of the voltage.

The use of a trace source connected to the variable indicating the remain-

ing voltage may instead have incorrect behavior because of the small

difference between consecutive updates, which may not be detected by

ns-3 native implementation;

• Traced values, to inspect their evolution through the simulation (e.g.,

the voltage level).

6.3.2 Variable energy harvester
The class VariableEnergyHarvester extends the EnergyHarvester class pro-

vided by ns-3, taking harvested power values from a .csv file given as input.

The harvested power is periodically updated, and the energy source object(s)

(e.g., the capacitor) connected to the harvester are updated accordingly.

The implementation of the function reading the .csv file is specific to the file

we considered as input to our scripts. The code can be easily modified to

consider data saved in a different format, since it only needs a pair (timestamp,

Pharvester). Note also that, when running simulations, the length of the trace

provided to the energy harvester should be as long as the simulated time. In

case of mismatch, an error is raised during the simulation.

6.3.3 Integration with an existing module: lorawan
To validate the capacitor model, we employ the lorawan ns-3 module [40, 39].

In particular, we extended the class LoraRadioEnergyModel, a child class of

the DeviceEnergyModel, to work with the capacitor’s implementation, and

added some states and variables to improve its compliance to real devices.

Furthermore, the module’s classes representing the MAC and PHY layers of
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the devices have been modified to update and verify the energy level before

switching to a new state. The on/off behavior is implemented as follows:

if the stored voltage is below Vth_low, the capacitor enters in the “depleted”

state, the LoraRadioEnergyModel is notified, and the device enters into the Off

state, interrupting ongoing transmissions, if any. In this case, the transmitted

signal is considered only as interference by all the receivers. Conversely, when

enough energy is harvested, and the voltage is above Vth_high, the capacitor

switches from the “depleted” to the “recharged” state, trigging some events

from the LoraRadioEnergyModel class (usually, the switch to the Sleep state)

and enabling again packet transmission.

Furthermore, we also implemented the behavior of a smarter device, which

is able to predict the energy cost of a packet transmission: if the predicted

voltage after the operation is below Vth_low, the transmission at the MAC layer

is not performed since, being incomplete, it would be unsuccessful.

6.4 Application and validation
In this section, we consider the LoRaWAN technology to validate the Capaci-
torEnergySource class presented in Sec. 6.3, and consider the analysis as first

results evaluating the feasibility of a battery-less approach applied to LoRaWAN

devices. In the following, we first introduce the states that characterize the

LoRaWAN device operations. Then, we show preliminary results where the

proposed framework is applied to LoRaWAN nodes, and validate the approach

with a comparison with state-of-the-art approaches. Then, we expand the

analysis to observe mutual relations between capacitor’s properties and the

configuration of the technology, and how they impact on the success of the

communication.

In the following discussion, we assume only UL traffic. Furthermore, to

measure the quality of the communication, we will indicate as UL cycle the

interval between the beginning of the ED’s packet transmission till the moment

when it is successfully delivered to the GW, and UL + DL cycle the interval from

the moment when the ED starts the UL packet transmission till the successful

reception of the corresponding ACK.

6.4.1 LoRaWAN device states
As discussed in Sec. 6.3, the different states the device goes through are

important to determine the energy consumption of the device. According to

the LoRaWAN protocol described above, the following states are identified.
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Table 6.2.: Current consumption in the different states [160].

State MCU Radio current Total current

Off Standby 0 5.5 µA
Turn On Active not considered 15 mA
Sleep Standby 0.1 µA 5.6 µA
Tx Active 28 mA 28.011 mA
Idle Standby 1.5 µA 7 µA
Standby Standby 10.5 mA 10.5055 mA
Rx Active 11 mA 11.011 mA

Sleep

Tx

Idle

RX1

Idle

RX2

Sleep

Figure 6.4.: Example of ED’s state transitions.

The respective current consumption is reported in Tab. 6.2, considering the

load composed by the MCU and radio units. The contribution of the MCU is

considered only in terms of current consumption, and corresponds to 11µA in

active state, 5.5 µA in standby state.

• Off(*): the ED’s radio is switched off, and the MCU is in standby, main-

taining only the clock synchronization;

• TurnOn(*): the device wakes up from the Off state, with a certain energy

expenditure. In our implementation we consider a current consumption

of 15 mA and a state duration of 300 ms, but the values can be tuned

according to specific devices considered;

• Sleep: the radio is in sleep state, saving power, without performing any

activity, and the MCU is in standby mode;

• Tx: the device is transmitting data;

• Idle: “waiting” period before the opening of the receive window;

• Standby: listening to idle channel when the receive windows are open.

Also, the standard defines the ED to switch to Standby (for a very short

time) after transmission and reception operations;

• Rx: the device is receiving data.

The Off and Turn On states, marked with (*), are not part of the standard,

but are present in real devices. In Fig. 6.4 a diagram depicts the operational
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states of the device. In this case, the device wakes up from the Sleep state to

transmit data requiring an ACK, which is successfully received in RX2, after a

short time spent in Standby mode. The light-grey-colored regions represent

the Standby phase. Note that the device will be able to complete an UL cycle

if the voltage level is enough to complete the transmission procedure (no

impairments from the channel/network are considered), while an UL + DL

cycle is successfully executed if the energy stored in the device is enough to

complete all the operations from transmission to reception, which can happen

in either RX1 or RX2, including also the intermediate Idle and Standby states.

6.4.2 Results
To test our ns-3 implementation, we consider a simple LoRaWAN network

composed of a NS, a GW and a single ED provided with a capacitor with

variable size. Furthermore, we consider Vth_low=1.8 V and Vth_high=3 V, and

different values for Pharvester, from 0 W to 0.01 W, which are constant in time.

The device periodically generates packets with a payload length of 10 bytes,

and can use either unconfirmed or confirmed messages, with m=1. The smart

option preventing a packet transmission if the energy cost is not supported by

the device is used. The LoRa settings are as considered in [160].

Fig. 6.2 shows the capacitor’s voltage together with the states of the device.3

The initial voltage of the capacitor is 3.3 V, which is almost constant for the

first part of the simulation, when the device is in Sleep mode. At t =80 s,

the ED performs the first transmission, entering the Tx state, which causes

a first drop in the capacitor’s voltage, bringing it to 2.44 V. The traffic type

is unconfirmed, therefore, no DL transmission is expected. Nonetheless, as

dictated by the standard, the two reception windows are opened, which cause

the voltage drop around time 81 s. Note that, as it can be seen also in Fig. 6.5a,

the energy drop during RX1 is smaller than that experienced during RX2,

whose duration is 26 = 64 times longer than that of RX1. In the simulated

scenario, the harvesting rate is EH=0.001 W, which allows the capacitor to

recharge during the sleeping period from 81 s to 160 s, reaching almost 3 V.

Note that this is not visible during the initial sleeping period, because the

voltage level is very close to the maximum voltage supported by the device.

At 160 s a second transmission occurs, followed by the opening of the two

reception windows. In this case, the voltage at the beginning of the cycle

was lower than in the previous case, and the long duration of RX2 makes

3Markers signaling when entering in Standby and Idle states are not plotted for clarity.
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the voltage drops below Vth_low, so that the ED enters the Off state. Then, a

recharging phase follows, and when v(t, s) reached Vth_high =3 V, the ED starts

the TurnOn phase, entering into the Sleep state. This enables it to successfully

perform the next transmission, at time t=240 s.

Fig. 6.5 shows the voltage level for different capacitor sizes and Pharvester

values, which have a determinant impact on the communication capabilities.

As a benchmark, in Fig. 6.5a we report the case with no harvesting. From this,

we can appreciate the impact of different capacitors’ sizes: a smaller capacitor

discharges much faster than a bigger one, and can rapidly make the device

switch off. However, when using smaller capacitors, also the recharging phases

are faster, as it can be observed in Fig. 6.5b and Fig. 6.5c: this behavior may

cause the device to swap between On and Off states, preventing proper com-

munication. Conversely, a larger capacitance will charge and discharge more

slowly, allowing better communication performance (in terms of successful

transmissions) also in the case of lower harvesting rates, since it will reduce

the number of times the node enters in Off state and, consequently, the energy

cost for taking it back to the active state. The downside is that, whenever the

capacitor voltage drops below the lower threshold, it will take a longer time

to accumulate enough energy to pass again the high threshold and bring the

device back to an operational state. Therefore, while the Vth_low is typically

hardware-dependant, a proper tuning of the Vth_high threshold should also

consider the capacitor’s size.

The minimum capacity size that makes it possible to complete an UL (resp.

UL + DL) cycle for different UL packet sizes, harvesting rates and DRs is

presented in Fig. 6.6, and compared with mathematical results obtained

from the model proposed in [160], which are represented with lines, while

markers represent simulation outcomes. The results of the model had been

confirmed by comparison with real devices in [161]. The DL packet size is

fixed to 39 bytes (at APP layer). Also, the initial capacitor voltage is computed

taking into account the current in the Off state. Since there is a single ED

in the network, the GW can always use RX1, sparing the device the energy

consumption due to additional states. In both plots, we can observe that the

minimum required capacitance increases for bigger payloads of the UL packet,

as expected. Moreover, the lower the DR, the larger the required capacitance,

because of the longer transmission time. For lower harvesting rates, a larger

capacitor should be employed to successfully complete a cycle, as discussed

previously. Similar trends can be observed for the minimum capacitance

needed to accomplish an UL + DL cycle: in this case, the values are higher
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(a) Pharvester = 0 W.

(b) Pharvester = 0.001 W.

(c) Pharvester = 0.01 W.

Figure 6.5.: Voltage for different values of Pharvester and capacitor’s size.
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(a) UL cycle.

(b) UL and DL cycle.

Figure 6.6.: Minimum capacity to complete a cycle compared to mathematical results,
computed as in [160].

than for the UL cycle only, since additional actions must be performed by the

device, including the reception of a DL packet. From these plots we can finally

observe that there is a strong agreement between model and simulation results,

with the small discrepancy between the two only due to the quantized step

used in the simulator.

A final batch of simulations was run to reproduce a realistic scenario where an

IoT application periodically generates packets of fixed size. In particular, we

evaluated the success probability (in terms of delivered packets) when varying

the capacitor size, for an application sending confirmed/unconfirmed traffic
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for 6 hours, with different packet generation periods. Note that the success

probability is computed as the ratio between the number of delivered packets

and the total number of packets generated at the application level.

Fig. 6.7 and Fig. 6.8 show the results for different values of the packet gener-

ation period and harvesting rate. Also in this case, we can observe a strong

dependence on the DR: while lower DR values improve the transmission ro-

bustness to possible channel impairments, they are more costly in terms of

energy, strongly affecting the number of packets that are successfully received

by the GW. This can be mitigated by storing more energy, as happens for bigger

capacitors charged with higher harvested power (Fig. 6.7b). Instead, using

higher DR values require smaller capacitors, in the order of a few mF. Further-

more, transmitting packets more sporadically leaves enough time to recharge

the capacitor, obtaining a higher success probability for a given capacitor’s

size.

For example, increasing the interval between consecutive packet transmissions

from 60 s to 300 s makes it possible to halve the minimum capacitance when

using DR 3 and Pharvester = 0.001 W (Fig. 6.7a). Fig. 6.8 reports similar results

for the probability of also receiving the ACK: in this case, similar considerations

on the relation between minimum capacity, DR and Pharvester values can be

drawn. However, it is interesting to note that, for low values of Pharvester
(Fig. 6.8a), the capacitor’s size that maximizes the success probability is lower

in the case of confirmed traffic than when using unconfirmed traffic, despite

the reception of DL packets occurs. This confirms that using an ACK (with no

payload) to prevent the opening of RX2 brings some benefit on the ED’s energy

consumption and communication performance, specially when the harvested

power is low. These aspect could be taken into account for a proper network

configuration that targets energy efficiency: using shorter RX2 by employing

higher DRs, or even preventing their use, could have a significant effect on the

device’s energy performance.

6.5 Energy-aware scheduling approaches and
simulation settings

In this section, we introduce some scheduling algorithms that implement dif-

ferent energy-aware algorithms to determine when to transmit sensor data.

Then, we describe the settings employed in our simulations and the perfor-
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(a) Pharvester = 0.001 W. (b) Pharvester = 0.01 W.

Figure 6.7.: Success probability for unconfirmed traffic.

(a) Pharvester = 0.001 W. (b) Pharvester = 0.01 W.

Figure 6.8.: Success probability for confirmed traffic.

mance metrics that we leverage to evaluate the different packet scheduling

approaches.

6.5.1 Packet scheduling approaches

To evaluate the feasibility of battery-less LoRaWAN devices powered with en-

ergy harvesting systems, we investigate the design of different packet schedul-

ing approaches that take the device’s energy level into account, and make

the best use of the available energy resources. To this aim, we compare the

following approaches, generating UL data packets in different ways.

• Unaware Sender (US): it generates packets with a period I, indepen-

dently of the device’s energy level. This energy unaware approach will

be used as baseline for comparison with energy aware approaches.
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• Energy Aware Sender with Fixed Threshold (FS): it generates packets

when the voltage level of the capacitor is above a fixed threshold and at

least I seconds have passed from the previous transmission.

We also consider other energy aware senders where the threshold voltage for

generating packets corresponds to the minimum voltage needed to successfully

complete the transmission cycle, preventing the device from switching off. This

threshold is computed dynamically, taking into account the communication

parameters: packet size, SF, and whether or not an ACK is required. Further-

more, when computing the expected energy cost of the cycle, recharging of

the capacitor during the cycle is also considered. In particular, the expected

harvested power can be computed according to different algorithms that, in

turn, determine the following sending algorithms:

• Conservative Sender (CS): it computes the threshold considering no

energy harvesting, i.e., conservatively assuming a worst case scenario.

• Simple moving Average Sender (AS): it considers that the harvesting

during the cycle equals the mean harvested power in the last x seconds.

As discussed in Sec. 6.5.5, we tested different values for x, whose impact

was not very significant. In following, we will show the results for x = 5 s.

constant for the duration of the whole cycle, and x = 5.

• Optimal Sender (OS): in this case, perfect knowledge of the harvested

power during the whole cycle is considered. While this assumption is not

realistic, results obtained with this algorithm represent a performance

upper bound for the considered harvesting scenario.

constraints are immediately dropped. This assumption results in different

behaviors between US and the energy aware approaches. When setting I to

be lower than the minimum silent time imposed by the DC, an ED whose

transmission has been prevented by the DC will wait I more seconds before

the generation of the next packet under US algorithm, while with the energy

aware algorithm, once the silent time has passed, the packet will be generated

(and transmitted) as soon as the energy level permits.

6.5.2 Energy harvesting traces
In the following analysis, we test the device’s performance with different packet

scheduling approaches, considering different kinds of harvesting sources,

namely: (i) an ideal energy harvesting source providing constant harvested
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Figure 6.9.: Harvested power Ph for different traces.

Table 6.3.: Main features of harvested power traces.

Trace Day of collection Position Power
(avg±std)
[mW]

Reference

Trace A sunny day in
September

West-facing
windowsill

7.2±8.2 self-collected in
Antwerp (BE)

Trace B cloudy day in
September

West-facing
windowsill

4.0±2.0 self-collected in
Antwerp (BE)

Trace C 12th June, 2010 North-facing
windowsill

27.5±8.1 [172], Setup C

Trace D 12th December,
2009

North-facing
windowsill

3.8±3.3 [172], Setup C

power, (ii) several empirical traces of solar power harvested in indoor environ-

ments. For the second case, we consider 4 power traces collected from 10:00

to 19:00 in different periods of the year, different locations and with different

hardware. As it can be seen in Fig. 6.9, the harvested power is quite different,

providing us with various scenarios that make it possible to appreciate the

system performance. Further details about these traces are reported in Tab. 6.3.

All measurements have been collected by employing 6-cells mono-crystalline

(4x2 cm2) solar panels.

6.5.3 Simulation settings
For our simulations, we leverage the lorawan ns-3 module and the capacitor

implementation described in Chapter 3 and Sec. 6.3, extended to evaluate

different packet schedulers. We simulate a single-gateway single-ED network,

with the ED transmitting packets with different data payloads (PL) using SF 7.

Note that, since a single device is employed, the effect of using different
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SFs would only be on the transmission and RX1 durations. Since in case of

unconfirmed traffic the duration of RX1 is assumed to be negligible compared

to the time on air of UL packets, we decided to investigate the impact of

variable PL size with fixed SF. Indeed, in the specific scenario considered in

this study, varying the SF would only yield a rescaling of the results, without

changing the considerations that can be drawn from the analysis.

The ED is provided with an empty capacitor, which is charged by the harvesting

process. The duration of the simulations was set to 9 hours, based on the

available energy harvesting traces. The device switches off if the voltage

falls below Vth_low = 1.8 V, value that are in line with off-the-shelf LoRa

devices [160], while the turn on threshold is set to Vth_high = 3 V. The minimum

interval between the generation of consecutive packets is set to I = 4 s, that

yields a maximum transmission rate larger than what is actually allowed by the

DC constraint for PL≥ 5 B, which hence sets an upper bound to the achievable

throughput. In this way, we can better appreciate the effect of the different

scheduling algorithms. In the results shown below, the voltage threshold for

generating packets with the FS scheduling algorithm is set to 1.82 V, slightly

above the Vth_low threshold.

6.5.4 Performance metrics
To compare the different scheduling algorithms, we will employ the following

metrics:

• Number of UL packets successfully transmitted by the ED. Note that it

may be possible that a packet is successfully transmitted, but the ED is

not able to complete the cycle because of a low voltage value. In this

case, the packet transmission is successful, but the device will switch off,

possibly preventing future transmission if not able to recharge on time.

• Since the capacitor is initially empty, during the simulation the device

can be in operational state (ON) or not (OFF), or in the initial charging

phase (Charging). We measure percentage of simulation time the ED

spends in each of these states.

• Mean time between consecutive transmissions, neglecting the initial

charging phase. Note that, in the best case (i.e., no energy constraints),

this is lower bounded by the DC limitation.
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Figure 6.10.: Performance for different configurations, with constant Ph.

6.5.5 Results
In the following, we present the simulation results that showcase the im-

portance of considering energy aware algrithms for packet generation, and

compare the performance of the algorithms previously proposed.

Importance of energy awareness
We begin our discussion by assessing the maximum gain in number of sent

packets that can be obtained moving from an energy unaware algorithm (US)

to the best possible energy aware scheduling approach (OS). Also, we show

the impact of multiple parameters, with the assumption of constant harvesting

power Ph. From Fig. 6.10 we first notice that, as expected, the ED is able to

transmit more packets for higher values of harvested power, converging to

a maximum value for high values of Ph. A second element that impacts the

performance is the amount of data generated by the application: indeed, when

PL=50 B (dashed lines), the number of sent packets is smaller, because of

both the higher amount of energy required to successfully complete the cycle

and the DC limit, as better explained later. To be noted that the maximum

number of packets that can be transmitted in the considered period (9 hours),

within the DC constraint is 6997 when PL=5 B, and 2870 when PL=50 B (see

Tab. 2.8), which explains the convergence to these values for high harvested

energy. Finally, a third factor to consider is the dimension of the capacitance,

which however has a more limited impact. Bigger capacitors take longer to

charge/discharge, but are then able to complete more transmission cycles.
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Comparison of scheduling approaches

Assessed the potential of energy-aware policies over energy unaware ones, we

now look for the best energy aware scheduling approach, evaluating different

settings. In Fig. 6.11 we report the number of packets transmitted by the

ED over time (upper plots), and the fraction of time the device spends in

the ON/OFF states (lower plots). The transitory time needed to charge the

capacitor, before the node becomes operational is considered separately and

indicated as “Charging”. More in detail, the upper plots show the evolution

of the harvested power for trace A over time, and the number of packets

sent by the device in this scenario, with each bar representing the aggregated

number of packets sent during two-minute intervals for different schedulers

and capacitor sizes. First, we can notice a correlation between the number of

transmitted packets and the harvested power, with both of them increasing

between 15:30 and 18:30, when the device was lighted by direct sunlight.

Indeed, higher harvested power allows the ED to charge the capacitor faster,

thus maintaining a voltage above the threshold set for transmissions (energy-

aware approaches), or preventing the switch off. Secondly, we compare the

performance for two capacitance values, i.e., C=20 mF and C=100 mF. As

expected, the larger the capacitor, the longer it takes to charge, as it can be seen

comparing Figs. 6.11c, 6.11d and observing the number of packets sent over

time. Indeed, in Fig. 6.11b, for each scheduling algorithm, there is an initial

part of the simulation where no packets are sent. Then, when the ED reaches

Vth_high, there is a spike of sent packets, since the high voltage (3 V) reached is

above the threshold set by the sender, and makes it possible to transmit more

packets in a short time. After this initial transitory phase, from all the graphs in

Fig. 6.11, we can see that CS and the optimal OS algorithms transmit packets

rather homogeneously in time, while the other scheduling algorithms make

the device switch off rather often, particularly when the energy harvesting

rate is low. In particular, US yields periodic switching off of the device because

it transmits regardless of the energy level; however, when the capacitor is

large, it can operate it can keep the device operational for a longer period,

during which it can transmit more than what allowed by a small capacitance.

However, also OFF periods are longer, which results in the larger gaps between

transmissions for C=100 mF than for C=20 mF. Similar considerations hold

for FS and AS. In particular, given the high variability of the energy harvested

in time, the moving average estimate of the harvested power over a window

of few seconds is not a good predictor of near future harvested power. As such,
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(a) Number of transmitted packets for differ-
ent algorithms, C=20 mF.

(b) Number of transmitted packets for differ-
ent algorithms, C=100 mF.

(c) Fraction of time spent in different states,
C=20 mF.

(d) Fraction of time spent in different states,
C=100 mF.

Figure 6.11.: Comparison of scheduling behaviors for different capacitances, using
trace A.

AS frequently overestimates the harvested power, causing the capacitor voltage

to drop below the lower voltage threshold and thus making the device turn

off. It is worth noting that, a more accurate prediction of harvesting power

would provide some gain, but in these scenarios the CS approach is already so

close to optimal that the possible gain when using other prediction techniques

would be minimal.

Performance evaluation
In Fig. 6.12 we explore the joint impact of capacitor size and harvested

power (different traces) on the number of packets successfully sent by the

different packet scheduling approaches. First, we can notice that, for all energy-

harvesting traces, the number of sent packets increases with the capacitance

up to values around 40 mF, though the absolute number of transmitted packets

depends on the harvesting rate. Indeed, for trace C, which has the highest

mean harvested power (cf. Tab. 6.3), the number of successfully sent packets
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(a) Trace A. (b) Trace B.

(c) Trace C. (d) Trace D.

Figure 6.12.: Comparison of scheduling behavior in terms of number of successfully
sent packets, for different capacitances and power harvesting traces,
PL=5 B.

reaches 7000, while in the other scenarios it does not exceed 5000. The Ph
variability plays a role, too. Trace A has a higher mean Ph, but also higher

variability, as it was observed in Fig. 6.11. Indeed, periods with low Ph

correspond to a low amount of transmitted packets, so that the performance

obtained with trace A is lower than that obtained with trace B.

From Fig. 6.12 we can also appreciate the difference between the scheduling

approaches. US always performs the worst, transmitting about 40% less

packets than the OS. The reason is twofold: on the one hand, the ED turns

off more often; on the other hand, the scheduler drops packets that cannot

be transmitted because of DC constraints, waiting I more seconds before

generating a new packet, as will be better investigated below. CS, instead,

is able to achieve a performance very close to the optimal because, due to

the higher threshold value, the ED never turns off. Notice also that, for very

small capacitors, no packets are transmitted: because CS sets a higher voltage

threshold, that is not achievable by a device equipped with only a small 2 mF

capacitor assuming no harvesting during the cycle (as conservatively done

by CS). The performance of FS and AS algorithms, instead, are similar, both
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transmitting between 70 and 80% of the packets with respect to OS. FS also

transmits more packets for high capacitance values, due to the fact that, in that

case, the capacitor will discharge slowly, staying above the 1.82 V level for a

longer time and without falling below Vth_low. Other results, not reported here

due to space constraints, also compared different versions of the AS approach,

which considered different time-averaging intervals for the harvesting power

prediction, i.e., 1, 5, 30 and 300 seconds. The performance difference, however,

turned out to be negligible, except for trace C, where x = 300 s reached slightly

better performance, thanks to the slower variations of the energy harvesting

process in of this trace, which yields better moving-average estimates with

longer averaging intervals.

We now explore the impact of PL and, implicitly, of the DC limitations, on the

device capabilities, for unconfirmed (Figs. 6.13a, 6.13c) and confirmed traffic

(Figs. 6.13b, 6.13d). To obtain these results, we selected the CS approach,

and a capacitance of 40 mF, which, according to the previous discussion, was

the minimum value obtaining good performance for all 4 traces. In Fig. 6.13

we compare the benchmark approach (US), with the CS solution, plotting

also the performance bounds imposed by DC limitations. From Fig. 6.13a, we

can see that the number of successfully sent packets decreases for increasing

values of PL, with US and CS both converging to the limit imposed by the

DC. It is interesting to notice that, from Fig. 6.13b, the best performance

is obtained when transmitting confirmed packet. This is somehow counter

intuitive, since the ACK reception consumes energy. However, a successful

ACK reception in RX1 prevents the opening of RX2, thus reducing the energy

expenditure and allowing more packets to be transmitted. We can also notice

that, when employing confirmed traffic and US (Fig. 6.13b), curves have a

step shape. This happens because US blindly transmits packets with a fixed

period. Therefore, if the packet transmission is prevented because of the

DC, the following transmission opportunity will occur I seconds later. This is

visible, in particular, by inspecting the mean transmission time (see Fig. 6.13d),

and it yields in a step-shaped curve also in the number of sent packets. Note

that this behavior is not clearly visible for US with unconfirmed traffic because

of the higher mean transmission time. Also, in Fig. 6.13c the colored regions

represent the variability of the mean transmission time: it is apparent that,

while for CS the packets are transmitted quite regularly, with US there is

no a clear transmission pattern, and intervals between transmissions can be

sometimes very long due to the device switching off, as already observed in

Fig. 6.11. Instead, confirmed traffic yields better results for both metrics, and
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(a) Number of packets transmitted, uncon-
firmed traffic.

(b) Number of packets transmitted, con-
firmed traffic.

(c) Mean transmission time, unconfirmed
traffic.

(d) Mean transmission time, confirmed traf-
fic.

Figure 6.13.: Performance comparison for different PL sizes, using trace A, C=40 mF.

makes it possible to have a mean inter-transmission time closer to the DC

limit, with negligible variance, in the order of tens of milliseconds, with no

switching off of the device even for the US approach. Finally, we should also

consider that, although the DC regulation limits the throughput performance,

it provides advantages for energy-harvesting approaches, since by spacing

transmissions apart, it allows the device to stay in sleep mode, charging the

capacitor with minimum current consumption.

These results confirm the benefits of using confirmed traffic to reduce the

energy consumption, as already observed in other literature works, such

as [160]. However, for high traffic loads, ACK transmission may be prevented

by the limited GW capabilities, as observed in [84], and the use of confirmed

traffic may only produce packet re-transmissions, causing a dramatic drop

on the devices’ energy level, and in the system performance. Therefore,

we tested a solution where, instead of using confirmed traffic, the sender

transmits unconfirmed packets, but RX2 is set to use the same SF as RX1,

i.e., SF 7 in our simulations. Results (not reported here for space constraints)

showed that this approach achieves basically the same performance as using
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Figure 6.14.: Number of successfully sent packets for different sizes of the DL packet,
using trace A, C=40 mF.

confirmed traffic, pointing out that the long duration of RX2 is a major cause

of energy consumption. This solution can be easily implemented in real

systems by modifying the expected value of RX2’s SF through appropriate NS

commands. Note that, in general, the ED will use the lower SF that makes

the communication with the GW possible, and the SF for RX2 should be

consistent with that. When using SFs different from SF 7, although the energy

improvement is not maximized, the usage of a lower SF for RX2 still represents

an improvement compared to the standard behavior.

Finally, we inspected the impact of the DL packet size. Notice that, in general,

the ED can not be aware of it, and in the threshold computation, when

a DL message is expected, the ACK is assumed to carry no payload. As

observed in Fig. 6.14, for some payload lengths of the reply packet (2-9 B),

CS outperforms OS, since the conservative assumption on no harvested power

makes it possible to store additional energy, which is then employed for packet

reception. However, from the figure, it can be noted that using confirmed traffic

is beneficial only for DL packet sizes below 10 B, after which the assumption

of a DL packet with no payload has a significant impact on the estimate of the

energy consumption, and the usage of unconfirmed traffic is preferable.

6.6 Experiments with real devices
During the collaboration with the IDLab research group of the University

of Antwerp, BE, it has been possible to test the feasibility of a battery-less

approach for LoRaWAN nodes with real hardware. Some first experiments

had the objective of evaluating the energy-unaware approach. We recall that,
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Figure 6.15.: Scheme of the experimental setup.

in this case, the device switches on and starts to transmit UL packets as soon

as enough energy is stored in the capacitor, If the energy is not sufficient to

maintain it operational, the device switches off. Note that, differently from the

setup modeled and described in Sec. 6.2, in these real experiments we needed

a power management board to connect the different components of the circuit

and provide the device with a constant voltage. Indeed, the device would not

work properly if powered with variable voltage.

Preliminary investigations showed that the natural sunlight was an unreliable

energy source due to its inconsistent behavior, and the corresponding har-

vesting power was usually not high enough even to guarantee the switching

on of the device, also due to the inconsistent weather conditions. Therefore,

we opted for a solution where the solar panel was powered by artificial light:

in this way we could get a constant harvesting power, which allowed us to

perform experiments in a more controllable manner. In the following, we

describe the experimental setup and employed hardware, and present the

obtained results.

6.6.1 Experimental setup
To perform experiments with battery-less LoRaWAN nodes we used the experi-

mental setup depicted in Fig. 6.15 and Fig. 6.16, placing it in a dark room to

prevent other light sources from affecting the correctness of the experiments.

We employed the following hardware:

Power Management Board We employed the integrated energy manage-

ment circuit e-peas AEM1091, which extracts DC power from a solar

panel, stores the energy in a rechargeable energy storage element, and

supplies the system with a regulated voltage, whose values can be con-

figured. Note also that the employed solar panel performs the tracking
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Figure 6.16.: Picture of the experimental setup.

of the maximum power point, maximizing energy extraction. For our

setup, we configured this circuit to supply constant 3.3 V. Among the

possible configurations of the working intervals provided by the board,

we selected that where the output power is provided only when the volt-

age stored in the capacitor is in the interval [3.60 V, 4.12 V]. Additionaly,

the minimum voltage required on the storage element before enabling

the output is 4.04 V.

Solar panel We employed a Panasonic AM-5608 solar panel, having size of

60.1 x 40.3 mm, and consisting of six amorphous silicon solar cells.

Storage element We employ capacitors of different sizes: 0.1 F, 0.5 F, 1.0 F,

2.5 F.

LoRaWAN device The LoRaWAN node we used is the LoRa Discovery kit B-

L072Z-LRWAN1 [173], which employes the ultra-low-power STM32L072CZ

microcontroller and the SX1276 LoRa transceiver [29]. The board has

been configured to work at 3.3 V, desoldering the bridges specified in the

manual. In the board, we flashed an application transmitting messages

according to predefined configurations. The measured values of the

current consumption of the board with this setup, powered at 3.3 V, are

reported in Tab. 6.4. Note that it may be possible to further reduce the

current consumption in Standby state: in this way, also lower values of

the harvested power may be sufficient to support the device functioning.
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Table 6.4.: Measured current consumption in the different states.

State
Current consumption [mA]
average max

Off 0 0
Standby 3.90 18.65
Tx 40.42 53.64
Rx 14.86 30.37

Table 6.5.: Voltage and current provided by the solar panel for different light intensi-
ties and corresponding power.

Light intensity Voltage [V] Current [mA] Power [mW]

25% 4.44 8.9 4.80
50% 4.72 9.5 5.13
100% 5.05 10.2 5.51

When powered, the device is connected to The Things Network [36] with

the ABP joining procedure. Data collected from the GW are recorded

using a Python script that retrieves data from The Things Network server

through the Paho Message Queue Telemetry Transport (MQTT) protocol.

Also note that the ED was placed at a distance of some meters from the

closest GW, preventing packet losses due to interference and channel

impairments.

Energy source To obtain a constant harvested power we employed a dimma-

ble Philips Hue light bulb A27 providing warm white light (2700 K) and

1600 lm. In Tab. 6.5 we report the voltage and the corresponding power

provided by the solar panel placed below the light for different values of

light intensity.

6.6.2 Results
The experiments aimed to evaluate the feasibility of the battery-less solution

with LoRaWAN devices, investigating the parameters affecting the performance,

as previously evaluated through simulation studies (see Sec. 6.4). The explored

configurations are reported in Tab. 6.6. In particular, the application flashed

into the device started functioning as soon as the LoRaWAN node was powered

up, transmitting unconfirmed data with a fixed SF for the whole duration of

the experiment. The interval between packet generation is called appPeriod
and can be 10 s or 20 s according to the experiment of interest. The packets

had a MAC payload of 2 B, corresponding to a packet time on air duration
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Table 6.6.: Parameters configuration.

Parameter Value

Experiment duration 1:33 h / 1:00 h
appPeriod 10 s, 20 s
Packet time on air 46.336 - 61.696 ms
Spreading factor 7, 8
Capacitance 0.1, 0.5, 1.0, 2.5 F
Light intensity 25, 50, 100%

of 51.456 ms when transmitting with SF 7. However, it was observed that,

in some cases, the packet time on air reported in the data collected from the

GW varied during the same experiment, also taking values of 46.336 ms and

61.696 ms, although settings and configurations remained the same. In this

first test campaign, we opted for a short packet duration (small payload and SF

7) to start with low requirements for the energy required for the transmission.

Future work can also evaluate the impact of other configurations of these

values.

In Fig. 6.17 we report the number of packets that have been received at the

GW for different light intensities and capacitor sizes, starting from empty

capacitors (V0 = 0 V), with appPeriod=10 s. Each bar represents the number

of packets sent during one minutes, which, given the duration of appPeriod can

be 6 at most. Note that the behavior is generally consistent with that observed

in Sec. 6.5.5, with the duration of the initial charging phase depending on

the capacitor size, and the intermittent behavior for lower light intensities

(corresponding to low harvesting powers). Interestingy, when the harvesting

power is sufficiently high, also smaller capacitors are able to support an almost

continuous functioning of the device (this was experimentaly observed also

with capacitors of even smaller size). However, when the harvesting power

decreases, there are no packets transmitted during the duration of the whole

experiment (see Fig. 6.17, light intensity equal to 25%, 50%). Indeed, in this

case, when the voltage level required to turn on the device is achieved, the

starting of the turning on phase quickly depletes it, due to the small capacitor’s

size, preventing the node to correctly switch to the operational mode. As

expected, for lower values of the harvesting power (50% of light intensity)

the ON phase lasts longer when the capacitor size is larger. At the same

time, also the charging time is longer, and this is particularly visible when the

light intensity is equal to 25%: in the case of C=2.5 F the device is not even

switching on during the duration of the whole experiment.
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(a) C=0.1 F. (b) C=0.5 F.

(c) C=1 F. (d) C=2.5 F.

Figure 6.17.: Number of received packets for different values of light intensity and
capacitor sizes, appPeriod = 10 s, SF 7, V0 = 0 V.

In Fig. 6.18 we see the cumulative number of received packets for the different

configurations. As expected, a major role is played by the light intensity:

the higher its value, the more packets are transmitted for any capacitor size.

However, we can notice that the charging phase really impacts the performance,

and the larger the capacitor, the less packets are transmitted. However, when

the light intensity is equal to 50%, increasing the capacity from 0.5 to 1 F,

brings some benefits because of the longer duration of the ON phase; instead,

with C=2.5 F, the effect of the initial charging phase becomes dominant.

To remove the impact of the initial charging phase, the next results focus on

the activity of capacitor and device from the first transmission i.e., the first time

the capacitor’s voltage reaches the 4.04 V threshold required to activate the

power managment board, and considered the performance over a 60 minutes

period.

As we can observe from Fig. 6.19 and Fig. 6.20, when the light intensity

is 100% and a high amount of power is harvested, similar performance are

obtained for any capacitance value, since the device is always operational.

Conversly, with lower values of the harvested power, the bigger the capacitor,
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Figure 6.18.: Total number of packets received, when using SF 7 and appPeriod=10 s.

the higher the number of packets that can be sent, because of the slower

depletion of the stored energy.

Then, we explored the impact of the SF. Since by increasing the SF, the packet

time on air duration doubles, to have a fair comparison, we increased the

appPeriod to 20 s, and run experiments for SF 7 and 8, with capacitance equal

to 0.5 F. In this case the maximum number of packets that can be sent in

one minute is 3: thus, with maximum harvesting power (light intensity of

100%), the number of total packets that is sent is approximately half that in

the case with appPeriod=10 s (e.g., Fig. 6.20 and Fig. 6.22a). Interestingly,

instead, for lower values of the light intensity, the number of packets sent for

appPeriod=20 s is higher than half of that obtained when appPeriod=10 s.

This is probably because the capacitor can recharge more during the longer

transmission interval, preventing some switching off events of the device.

Then, we can compare the results for SF 7 and SF 8 when appPeriod=20 s

(Fig. 6.21 and Fig. 6.22). As it can be seen from the plots, the increase of the SF

in this scenario does not have an impact on the performance, and the number

of packets that is sent is approximately the same. In this case, therefore,

doubling the packet duration does not affect much the energy consumption

of the device, and the tested harvesting powers are sufficient to recover from

the increased energy drain during the 20 s time interval between consecutive

packets, with no additional switching off of the device.

The limited effect of the SF is probably due to the small packet size, which

limits the impact of the energy drain during the transmission. However, it is
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(a) C=0.1 F. (b) C=0.5 F.

(c) C=1 F. (d) C=2.5 F.

Figure 6.19.: Number of received packets, since the first transmission (V0 = 4.04
V) for different values of light intensity and capacitor sizes, SF 7,
appPeriod=10 s.

likely that if the current consumption in the standby phase was a few orders

of magnitude lower, the transmission phase would have a larger impact on

the total energy consumption, and the choice of the SF, as well as the packet

length, would be the determining factors for the device performance.

The preliminary experimental results showed in this section represent a proof

of concept of the battery-less solution for LoRaWAN devices, demonstrating

the feasibility of this approach. However, these evaluations can be further

expanded with a deeper comprehension of the different components of the

evaluation board, to minimize the energy consumption, by testing other con-

figurations and implementing an energy-aware packet scheduler to make the

best use of the available energy sources, as described in Sec. 6.5.
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Figure 6.20.: Total number of packets received since the first transmission, for dif-
ferent values of light intensity and capacitor sizes, SF 7 and appPe-
riod=10 s.

(a) SF 7, C=0.5 F. (b) SF 7, C=1 F.

(c) SF 7, C=0.5 F. (d) SF 8, C=1 F.

Figure 6.21.: Number of received packets since the first transmission, for different
values of light intensity and capacitor sizes, appPeriod=20 s.
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(a) SF 7. (b) SF 8.

Figure 6.22.: Total number of packets received since the first transmission, for differ-
ent values of light intensity and capacitor sizes, appPeriod=20 s.

6.7 Conclusions

In this chapter, we have considered the problem of powering IoT devices with

batteries, and contemplated the feasibility of a battery-less, capacitor-based

approach. To this aim, we described an ns-3 implementation of a (super-)

capacitor IoT node that considers the presence of a generic harvesting source

to power battery-less devices. We applied it to LoRaWAN EDs, evaluating the

feasibility of this solution. From the results obtained, it is apparent the impact

of the harvested power and capacitor size on the communication performance,

as well as the effect of the technology settings on the energy requirements.

Furthermore, we proposed some energy-aware algorithms for packets schedul-

ing, and provided simulative results assessing the impact of the environmen-

tal scenario (available energy), and design choices (capacitor size, message

payload, sender application) on the capability of the node to send packets.

Although the availability of harvested power has a major impact on the perfor-

mance, we identified that a good behavior could be obtained by employing a

capacitor of C=40 mF size with the CS approach, which, thanks to a conserva-

tive assumption on the harvested power, prevents the ED from switching off,

reaching performance close to the optimal. We showed that, although larger

PL sizes increase the transmission time, the effect on the performance is mostly

limited by the DC constraint which, on one hand bounds the amount of packets

that can be transmitted, but, on the other hand, helps charging the capacitor

by imposing silent periods. Finally, energy and communication performance
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can be increased with the usage of confirmed traffic or by controlling the SF

employed in RX2.

Finally, the battery-less solution has also been investigated through empirical

measurements, for which we showed here preliminary results. In particular

when using real devices, it has been noted the impact of the environmental

conditions (available solar energy), and device settings (excessive current

consumption due to unused components of the device, capacitor size), which

can be determining factors for the proper functioning of the system.

The resuts presented in this chapter can be extended following different direc-

tions. First, simulations can help in assessing the performance of LoRaWAN

networks with battery-less devices. When considering a network with multiple

battery-less devices with harvesting capabilities, it can be noted that EDs lo-

cated close enough will likely have similar power availability, which may lead

to correlated transmission patterns, possibly increasing the collision probability.

One solution could be the usage of different SFs which, however, will impact

on the device’s energy (and, thus, communication) performance. Our future

work will therefore consider the analysis of this trade-off in large LoRaWAN

networks, and investigate possible improvements and solutions. Simulations

couls also be leveraged to test smart ADR algorithms which allocate SFs con-

sidering both the network performance and also the stored voltage and the

harvesting capabilities. Furthermore, more accurate preditction algorithms for

energy availability could be investigated in other scenarios, possibly showin

the efficancy of other solutions for packet generation.

Secondly, the experimental evaluation can embrace the evaluation of fur-

ther communication and device settings, as well as implementing smarter

approaches for packet transmission and tasks scheduling accorfding to the

energy availabilty.
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7Dissecting energy
consumption of NB-IoT
devices empirically

Among the main requirements, IoT devices feature low power capabilities,

that allow the minimization of maintenance costs and the extension of devices’

lifetime. Therefore, although many communication technologies and device

manufacturers claim to provide power efficient solutions, it is recommended

to test their capabilities before actual installation, to identify possible flaws

and find ameliorations and/or parameter configurations that enhance energy

performance. In this section, we analyze the energy performance for two of

the most common IoT technologies, namely LoRaWAN and NB-IoT.

In this chapter we focus on NB-IoT, a communication standard recently intro-

duced by 3GPP, which offers a robust and energy efficient connectivity option

to the rapidly expanding market of IoT devices. To unleash the full potential

of the technology, devices are expected to work in a plug and play fashion,

with zero or minimal configuration of parameters, still exhibiting excellent

energy efficiency. In the following, we present the results of an extensive

experimental campaign comparing the energy consumption of two commercial

IoT devices and different operators, and quantifying the impact of several

parameters. Furthermore, the analysis also provides insights on the effects

of the parameters affecting the current consumption, proving that a proper

configuration is actually necessary, and also sheds light on the relation between

the channel quality and energy consumption.

The remainder of this chapter is structured as follows: in Sec. 7.1 we give

a general overview, providing the context and explaining the main concerns

that motivated this study. Sec. 7.2 describes our experiment workflow, while

Secs. 7.5 and 7.6 break down the parameters that affect energy consumption.

Sec. 7.7 discusses network KPIs. Sec. 7.8 looks into how the above affect typical

NB-IoT use cases, Sec. 7.9 condenses the existing literature and Sec. 7.10 draws

the final conclusions.
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7.1 Introduction
The recent explosion in the number of IoT devices has been supported by a few

proprietary low power wide area systems, which rely on unlicensed spectrum.

Their popularity caused 3GPP to investigate cellular IoT technologies, resulting

in the development of LTE-M and NB-IoT standards. A main focus area for

these technologies is high energy efficiency, enabling devices operated by

tiny batteries to operate for prolonged periods of time. The main advantages

of the 3GPP standards are the use of licensed spectrum and the fact that

they build upon existing 3GPP technologies, allowing for more stable and

predictable performance, and reuse of infrastructure. LTE-M and NB-IoT are

critical in enabling future 5G networks to support the density and latency

requirements of massive machine type communications [174]. They can also

seamlessly coexist with the upcoming New Radio (NR) access technology, since

the latest standards allow the reservation of NR time-frequency resources for

LTE-M and NB-IoT transmissions. During 2019, the number of LTE-M and

NB-IoT connections increased by a factor of 3, reaching close to 100 million

connections. These technologies are projected to account for 52% of all cellular

IoT connections, by the end of 2025 [175].

In particular, we focus on NB-IoT, which provides lower throughput but

more robust connectivity than LTE-M, and is hence geared towards massive

deployments of IoT devices. As of January 2020 there are at least 94 NB-IoT

Networks deployed commercially in over 45 markets [176, 177]. Early NB-IoT

deployments have been used for smart parking, water metering and smart

lighting [178]. NB-IoT modules are already integrated in devices offering

solutions in areas as diverse as smart locks, intelligent road management, asset

tracking, animal monitoring and smart home appliances [179].

Energy efficiency is certainly a major concern for typical IoT deployment

scenarios, since batteries of IoT devices are not meant to be recharged or

replaced, tying the lifetime of the battery to the lifetime of the device itself.

Our analysis aims to quantify the impact of several parameters to energy

consumption in NB-IoT nodes, and reveals that network configurations may

greatly affect the device lifetime, without offering performance gains. For

example, we show that setting a flag may reduce the energy needed to transmit

an UL packet and receive a response under good signal conditions from 0.82 J

to 0.12 J, with no performance penalty. In a scenario where 6 messages per day

are transmitted, the device’s lifetime is extended from 8.5 years to 30. NB-IoT

users though, are naturally inclined to believe that, in analogy with broadband
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cellular services, NB-IoT services can also be accessed in a plug–and–play

fashion, without or with minimal set-up of the end devices. In the same

fashion, application developers should not rely on default settings but instead

carefully pick parameter values that best match the tradeoff between delay

and device lifetime of their use case. These findings can be further extended

and used as a guideline to design algorithms or mathematical models to define

the optimal parameter configuration with the correct metadata metrics (i.e.,

ECL, SNR, RSRP) as input. These algorithms could be applied by networks

operators to tune the UE/network settings to fit a specific type of traffic,

transmission frequency and requirements in an IoT application, increasing

both user experience and network efficiency.

To the best of the authors’ knowledge, literature research is more focused

on optimizing energy efficiency through improved scheduling strategies or

predicting traffic needs, which have general applicability [180, 181, 182].

The purpose of this analysis is to go beyond these and other early studies of

empirical NB-IoT performance characterization, most notably [183, 184, 185],

whose findings and limitations are discussed in detail in Sec. 7.8. Compara-

tively, the experiments presented here are more comprehensive: we 1) test

more operators and / or more modules, thus revealing inefficiencies of specific

module-operator combinations 2) use the latest NB-IoT features and 3) study a

bigger variety of scenarios. In particular, we analyze the intricacies of operator

configuration and strategies that greatly affect key metrics and battery life,

while also deep diving into the performance of Release-13 enhancements.

We conduct the first exhaustive experimental study of its kind, exploring the

NB-IoT ecosystem, under various power management configurations. The

experiments involved two different NB-IoT boards and two main telecommu-

nication operators in a western European country, enabling us to appreciate

the impact of implementation choices on the system energy efficiency. Since

we focused on parameter tuning the main findings can be generalized to other

networks and devices. Our measurements are spread across several months in

the period between October 2018 and October 2019.

Our main contributions are:

1. A thorough presentation of the power-saving mechanisms supported by

the latest commercially available NB-IoT release;

2. Experimental study of the different configurations and operator strate-

gies, where we quantify their impact on energy consumption and network
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KPIs at the Radio Resource Control (RRC) state level and, when applica-

ble, within a state;

3. Analysis of which metadata metrics better reflect the device behavior

and

4. An algorithm for extracting the state of a device directly from current

time series logs.

In the sequel, we elaborate on some rather surprising findings. The energy

consumption of NB-IoT devices does not seem to be strongly affected by

channel conditions, except under extremely harsh conditions. Furthermore,

the packet size’s impact on the overall device power consumption is negligible

when parameters are set to default values but becomes more significant when

energy saving mechanisms are in use.

Based on such empirical observations, we recommend device-side and network-

side parameter configurations that yield similar application-level performance,

while preserving the device battery. We have communicated the findings to

the measured operators, and they reconfigured their networks accordingly,

resulting in a boost in energy efficiency for end users.

7.2 Methodology
In the following, we first discuss our experimental setup, motivating our

choices with respect to: (i) experimental boards; (ii) tools for measuring energy

consumption; (iii) measurement setup and (iv) collection of metadata for

contextualizing the measured performance. Then, we describe the experiment

scenarios.

7.2.1 Experimental setup
Experimental boards (UE) During the measurement period, both operators

deployed NB-IoT using 15 KHz single-tone over band B20 (800 MHz) in

Guardband. We have used two off-the-shelf NB-IoT modules, compati-

ble with this configuration, namely u-blox SARA-N211-02B [186] and

Quectel BC95-G [187]. These modules are among the first commercially

available LTE Cat NB1 UEs and they have been certified by a number of

mobile operators. The first module supports data rates up to 27.2 kbps in

DL and 31.25 kbps in UL. Quectel BC95, when operating in single-tone,

supports up to 25.2 kbps in DL and 15.625 kbps in UL. Since the form

factor of these modules does not lend itself to experimentation, they
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Figure 7.1.: Experiment setup.

are sold as a part of a development board (i.e., dev-kit) that facilitates

powering the module and interfacing with it via USB.

Measuring energy consumption We have employed the Otii Arc power

measurement device for tracking energy consumption.1 This device

can be used as both a power supply unit for the tested IoT device and

a current and voltage measurement unit. It provides up to 5 V with a

high resolution current measurement with a sampling rate up to 4000

samples per second in the range from 1 µA to 5 A. To characterize the

energy consumption associated with different NB-IoT operations, we

need to ensure that the meter measurements correspond to the current

drawn by the module only, and not to the entire dev-kit. When using

SARA-N211-02B, this can be obtained by powering the module directly

with the Otii Arc power measurement device. Quectel BC95 does not

readily allow for a similar setup. In this case, we had to remove three

resistors from the dev-kit and solder a zero-ohm resistor on the power

path to isolate the module power supply from the dev-kit.2

Measurements We have connected each dev-kit to a laptop, where we run a

set of scripts to manage the NB-IoT UE’s authentication, registration to

the network, and RRC configuration. The NB-IoT modules use commer-

cial subscriptions to connect to two major mobile operators in a European

country. Both operators deploy NB-IoT in guard band, which reduces the

1https://www.qoitech.com/products/standard
2A zero-ohm resistor acts simply as a jumper or a wire.
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likelihood of interference with LTE. To measure power consumption, we

send UDP packets of various sizes (12, 20, 128, 256 and 512 bytes) to

a well-provisioned server that echoes them back. The packets are sent

at different frequencies depending on the experiment. Fig. 7.1 shows

our experiment setup. Our goal is measuring a baseline performance,

thus we avoid generating traffic through applications (e.g., Message

Queuing Telemetry Transport [MQTT], Constrained Application Protocol

[CoAP]), as this would add the complexity of the application on top of

an already complex setup. We have repeated the measurements under

various power management configurations, which we describe below.

Further, we have run the experiments at various locations, which we then

group based on their coverage condition into “Good coverage” and “Bad

coverage”. We create poor coverage conditions in two ways: 1) by using

signal attenuators and 2) by placing the modules in a specially designed

metallic box. This setup allows for repeatability of experiments. For some

of the experiments we used a different method to simulate poor coverage

in a real-life scenario: we placed the modules in a deep basement, in a

similar fashion to a metering device use case. The performance at the

basement is similar to the performance when using the attenuators and

the special box. In these bad conditions, normal LTE mobile devices are

out of coverage. Fig. 7.2b presents the RSRP values of each group of

locations, which can be used as a guide to reproduce our experiments.

Data collection We use the same laptop to control both the dev-kit and

the Otii Arc power measurement device. Besides measuring power

consumption, we also track RTT, packet loss and throughput. We used a

set of AT commands for collecting connection metadata. These include

RRC Connection and Release events, SNR, TX Power, ECL, Physical Cell

Identity (PCI), RSRP and Reference Signal Received Quality (RSRQ). In

addition, we use a software called UEMonitor, developed by Quectel,

to collect and decode debug messages generated by the UEs, as well as

NB-IoT control plane messages such as the Downlink Control Indicator

(DCI) messages.

Our measurements are spread over several months between October

2018 and October 2019, which gives us the opportunity to track the

maturing of the measured deployments. Overall, we have sent about

13000 packets, which corresponds to 9 days at the rate of one packet per

minute. 70% of these experiments were run using the default settings
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and 30% using the RAI flag. Furthermore, 75% of the experiments

were conducted in good coverage conditions. Also, one third of the

experiments involved sending a 20-byte UDP packet, the remaining two

thirds were split among packet sizes of 12, 128, 256 and 512 bytes.

7.3 Experiments
We focus on three operation modes / scenarios corresponding to the possible

setting of the RAI flag (see Tab. 2.3):

TX/RX default timers (RAI-000) The UE sends an UL packet to a remote

server, which echoes it back. During this operation it remains in the

Connected state, monitoring the channel for paging messages until the

inactivity timer expires. Then, after the RRC Release, it enters the

PSM. This scenario corresponds to applications that require two-way

communication, e.g., reliable monitoring or alarm services.

TX/RX and release (RAI-400) Here, the RRC connection is released once the

response from the server is received. The application scenario is again a

two-way communication service. The immediate release is intended for

optimizing energy consumption.

TX and release (RAI-200) In this case, the RRC connection is released after

sending the UL packet, without waiting for a server response. This

corresponds to services without strict reliability requirements.

As described in Sec. 2.2, each of these scenarios comprises two distinct states:

Connected and Idle. We examine the energy consumption during the Con-

nected and Idle state separately. To do this, we need to identify which state and

phase the device is in at any particular time point. We present our algorithm

for automatically identifying the device state from the experiment logs in

Appendix C.

7.4 Metadata as a proxy for performance
It is important to collect accurate and frequent metadata, as they are an

indication of performance and help diagnose problems. Both devices report

metadata through AT command requests. These requests consume energy

(around 15 mJ in our measurements) and may take several seconds to fulfill.

The response time increases with worsening signal conditions. For instance,
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at locations with very bad coverage the request may time out and some of

the metadata might not be reported or have obviously wrong values (e.g.,

SNR value of -30000). In this section, we examine the metadata reporting

accuracy and investigate which metadata metrics better reflect network and

energy performance, so that users can get the most value out of this costly

operation. Both devices report power ratios in cB (1dB = 10cB) and power

in cBm (1dBm = 10cBm). We start by comparing the behaviour of the most

commonly used metadata metrics: SNR and RSRP. Fig. 7.2, presents the

distributions of SNR and RSRP when we group the measurements based on the

expected signal quality of the measurement location. As we will present in the

sequel, the biggest effect on performance is caused by the choice of operator

and module, thus in this figure and the rest of the section, we control our

measurements for these two variables. The SNR distributions are very wide,

with a significant overlap between the good and the bad locations. Further, the

median values between the two locations show a small difference between 30

and 80 cB. In contrast, the RSRP distributions better reflect the signal quality

at each location, there is significantly less overlap in the distributions and the

distributions are also narrower.

SINR and RSRP are connected by SINR = S
I+N = 12∗RSRP

Itot+Ntot
[188], where

we assume that RSRP is free from noise and interference and includes only

useful (reference signal) power. Itot and Ntot are the interference and noise

computed over the whole 180 kHz bandwith, and since RSRP is the power

of a single 15 kHz subcarrier we multiply it by 12, which is the number of

subcarriers. Both operators deploy NB-IoT in the guard band, thus there

should be no interference from normal LTE traffic. Also, the measurements

were performed soon after the NB-IoT was deployed, so the number of other

users is very small, minimizing interference from neighboring NB-IoT cells.

Thus, the main component of the denominator is noise, which is affected by

temperature and the noise figure of the receiver, so we expect the noise to not

fluctuate much. Under these assumptions, RSRP and SNR should have a linear

relationship when expressed in cB. Fig. 7.3 shows the connection between

RSRP and SNR. Assuming no interference, the red line is the ideal mapping of

RSRP values to SNR for typical values of thermal noise density and receiver

noise figure, Nthermal = −1740cBm/Hz and NFreceiver = 70cB, respectively:

SNRcB = RSRPcBm + 1252 (proof in Appendix C.2). This relationship is

verified for the bad coverage measurements, but not for the good coverage

measurements.
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(a) SNR.

(b) RSRP.

Figure 7.2.: Distributions of metadata in locations with weak signal (bad coverage)
and good signal (good coverage).

We briefly report our observations for the rest of the metadata. Both modules

log the following metadata: RSSI, SNR, RSRP, RSRQ, ECL and TX Power. RSSI

values have similar distributions to the RSRP values and are typically between

-470 and -600 cBm in good locations and around -1030 cBm in bad. Thus, they

are typically 60 cBm higher than RSRP in good and around 100 cBm higher

than RSRP in bad conditions. The RSRQ values are around -108 cBm for good

conditions and slightly worse between -108 and -113 cBm for bad conditions.

RSRQ has very small variation across different conditions, making it poorly

correlated with performance. Since RSSI does not provide further information

over RSRP, we can safely disregard it.

Only the RSRP and RSRQ are reported to the eNodeB and from these the

eNodeB can estimate the RSSI [189]. The RSRQ measurement provides

additional information when RSRP is not sufficient to make a reliable handover

or cell reselection decision. In contrast, RSRP is the most important metadata

metric. During the Random Access Procedure (RACH), the UE sets its ECL and

TX Power based on the RSRP thresholds it receives from the eNodeB. If the
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Figure 7.3.: Mapping of SNR and RSRP. The red line represents the ideal mapping
assuming no interference (applies only to bad coverage data).

UE is unable to connect, it increases its TX Power by 2 dB increments, until

it achieves connectivity or until it reaches a predefined number of preamble

transmission attempts per ECL supported in the serving cell. Then, it increases

its ECL by 1 and sets the TX Power to maximum and repeats the process. The

RSRP thresholds and the number of transmission attempts per ECL are set by

the operator [17]. For the above reasons, we will focus mostly on RSRP in

the sequel, as it is the metric that best reflects the performance and energy

consumption.

Fig. 7.4 presents the RSRP values observed for every ECL level. From this

figure, we can empirically estimate the RSRP thresholds per operator. Op 2

is switching faster to higher ECL. Even though the difference between the

thresholds among the operators is small, as we will present in the next sections,

it has a big effect on all the KPIs. Energy consumption and other KPIs increase

marginally between ECL 0 and ECL 1, but deteriorate sharply between ECL 1
and ECL 2, due to the huge number of repetitions and use of maximum TX

Power. Some of the metrics that are affected are: device lifetime, throughput,

RTT and packet loss. Using a higher ECL when not necessary, has a big impact

on battery lifetime, without affecting robustness. As we will discuss in the next

chapters, Op 2 performs poorly in locations with bad coverage. This is due to

its more aggressive ECL 2 threshold.

Finally, we study how TX Power is connected to ECL and RSRP in Fig. 7.5

and 7.6, respectively. In Fig. 7.5, we observe the range of possible TX Power per

ECL. Empirical measurements show the minimum TX Power of a normal LTE

device to be -22 dBm [190], in contrast the NB-IoT modules may transmit with

as low as -290 cBm (≈ -29 dBm) and the transmit values have a granularity
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Figure 7.4.: Distributions of RSRP based on ECL value.

of 10 cBm. NB-IoT utilizes less bandwidth thus, needs less TX Power to reach

similar SNR values to LTE. ECL 0 uses the full range of values and rarely the

maximum value of Cat NB1: 230 cBm. ECL 1uses the maximum value for

79.3% of the samples. This is due to the RACH algorithm discussed above: if

the initial value is ECL 0 and the RACH procedure fails, the UE will attempt

again with ECL 1 and maximum TX Power. As expected, ECL 2 uses maximum

power in 98.4% of the samples. Fig. 7.6 reveals a linear relationship between

RSRP and TX Power and also shows the more aggressive TX Power choices

of Op 2, since it usually uses higher TX Power for the same RSRP value. The

linear relationship holds for the RSRP range typically associated with ECL 0,

between -1000 and -500 cBm. Worse RSRP values, mostly related with higher

ECLs, use almost exclusively maximum power.

Takeaways. We conclude that of the available metadata metrics, the most

useful ones are ECL and RSRP, which are directly related. Other metrics either

correlate weakly with performance or do not involve enough variability to

be useful. Operators should carefully choose the mapping between ECL and

RSRP.

7.5 Energy consumption in Connected state
We now turn to examining whether the actual energy consumption by NB-IoT

UEs, while in Connected state, in the real world conforms with the standard

behavior outlined in Sec. 2.2.
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Figure 7.5.: Relationship between ECL and TX Power.

Figure 7.6.: Relationship between RSRP and TX Power.

7.5.1 Connected state with default settings
Fig. 7.7 shows the distribution of energy consumption for the first experiment

scenario with no RAI (i.e., UL and DL activity with default timers, see Sec. A.2)

for the different combinations of operator and module in the Connected state.

In this scenario, we send a UDP packet, which is echoed back by the server. As

we will show in the sequel, packet size has minimal impact in this configuration,

so we include in the default settings analysis all the packet sizes. We split the

dataset into two groups, depending on the coverage conditions at the location

of the measurements, as discussed in Sec. 7.2.1.

Good coverage We record a clear difference between both operators and

modules. Op 1’s energy consumption is 3x or more than Op 2’s. Also,

SARA-N211 consumes more power than Quectel-BC95, though the dif-

ference depends on the operator! Tab. 7.1 presents the median energy
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Figure 7.7.: Energy consumption distribution of Connected state, grouped by cover-
age conditions. All packet sizes, no RAI.

Table 7.1.: Median energy consumption of Connected state under good coverage.
Includes samples of all packet sizes.

Module Operator Energy [J]

Quectel - BC95
Op1 2.39
Op2 0.82

SARA - N211
Op1 4.17
Op2 1.27

consumption for all operator module combinations. Digging deeper into

our data, we find that the difference between the operators stems from

the fact that Op 1 does not enforce any quiet period while paging during

the inactivity timer period, like Op 2. Instead, Op 1 is mostly in a high

energy paging state. Fig. 7.8a and 7.8b, illustrate the behavior of Op 1

and Op 2 respectively, during the inactivity timer.

Fig. 7.9 shows the median values of the consumed energy for every sub-

state of the Connected state. Recall that the Connected state comprises

three substates: synchronization with the network (sync), data plane

transmission and reception (TX) and inactivity timer. In the inactivity

timer, the UE performs paging and, ideally, enforces cDRX.

The inactivity timer substate dominates the energy consumption. Thus,

it is critical to consider whether it is necessary, and if so, cDRX should be

used. This also hints at that the size of the transmitted packet becoming

irrelevant, since the increase in energy consumption for the extra bytes is

minuscule compared to the total energy consumption of the Connected
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Table 7.2.: Median energy consumption of Connected state under poor coverage.
Includes samples of all packet sizes.

Module Operator ECL Energy [J]

Quectel - BC95

Op1
0 2.71
1 2.80
2 4.04

Op2
0 0.88
1 1.03
2 3.44

SARA - N211

Op1
0 4.15
1 4.10
2 5.50

Op2
0 1.28
1 1.40
2 3.77

(a) Op 1 constantly monitors paging dur-
ing the inactivity timer.

(b) Op 2 performs cDRX during the inac-
tivity timer.

Figure 7.8.: Current draw during the inactivity timer period.

state. Fig. 7.10 illustrates the energy consumption for different packet

sizes. The cost increases sub-linearly with packet size – the bigger the

packet, the less energy is spent per byte. Increasing the packet size from

20 to 512 bytes results in an increase in energy consumption by a few

tens of mJ, negligible when compared to the energy consumed in the

inactivity timer substate, which is in the order of Joules.

Poor coverage Fig. 7.7 shows no clear differences in the median power con-

sumption between locations with good or poor coverage. However, the

latter ones are characterized by stronger variability with the inter-quartile

difference several times the median. The difference in coverage results in

picking different ECL levels. A higher ECL means extra repetitions when

sending data, to increase the likelihood of successful delivery, which

translates into a higher energy consumption. In brief, there is a slight

increase in energy consumption between ECL 0 and ECL 1 and a big

increase between ECL 1 and ECL 2. The devices at good signal locations
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Figure 7.9.: Break down of energy consumption per Connected state substate for
locations with good coverage. We used the median value of each substate.
All packet sizes.

Figure 7.10.: Distributions of the consumed energy of the TX substate, grouped by
the packet size of the transmission, for locations with good coverage. Y
axis is in logarithmic scale.

are almost always using ECL 0 and in about 1% of the cases they use

ECL 1. This explains the compactness of the energy consumption dis-

tribution. At bad signal locations the devices are on ECL 2 for about

30% of the samples, with the rest of the samples being split between

ECL 0 and ECL 1. These proportions vary according to the device and

operator combinations. This 70/30 split explains why the median energy

consumption in areas with poor coverage is close to the median energy

consumption in areas with good coverage. Tab. 7.2 presents the median

energy consumption for all operator module combinations further split

according to the ECL level. The values in the table confirm that the

difference between poor and good coverage is chiefly evident for ECL 2.

There are small variations in the consumed energy, even between sub-

sequent transmissions with the same ECL level, which can not be fully

7.5 Energy consumption in Connected state 189



explained. Both operators use a fixed number of repetitions per channel

across all their base stations. For example, for Uplink data transmissions

the repetitions are 2, 8 and 32 for ECL 0, ECL 1 and ECL 2 respectively.

Thus, the number of repetitions is not a factor in the energy consumption

variation within the same ECL. We have also shown that ECL 1 and ECL
2 typically use the maximum TX Power and the variability increases

in poor coverage, so TX Power can not be the only factor contributing

in the variability within an ECL level. Upon closer inspection of the

power traces, we observe that especially in bad conditions the power

consumption patterns (e.g., peak current, staying in a high current draw

level for longer, etc.) within substates, show big variations, even if we

control for TX Power and ECL. Further, they become more pronounced

with worsening signal conditions. We are not able to find the route

cause of these patterns, but we assume that it is related to the module

implementation. These patterns are also observed during the inactivity

timer period, which is the dominant contributor to energy consump-

tion, under default settings. Thus, under default settings, we observe

higher variability in our results compared to when we use energy saving

features, as we will present in the sequel.

7.5.2 Connected state with RAI
Now we move to discuss the energy consumption when the RAI flag is set.

Is the RAI flag respected? We observe that both operators may ignore the

flag and proceed to perform an inactivity timer procedure. For Op 1,

this is a rare occurrence, it just happened for 3 packets in our dataset. A

plausible cause could be corrupt signaling packets. For Op 2, however,

the RAI-200 flag was ignored for 50% of all packets of all measurements

performed before April 2019, regardless of the module. More specifically,

one in every two packets would consistently utilize the inactivity timer

after transmission, instead of dropping to Idle state. Fig. 7.11 illustrates

this behavior. The short spikes are transmissions where the flag was

respected, while the periods with intense activity (e.g., the one starting

around t = 200000) are instances where the flag was ignored. Following

the discovery of this anomaly, we informed Op 2 who then corrected the

misconfiguration that caused it. Fig. 7.12 shows the energy consumed

when transmitting 20 bytes, while setting RAI-200, before and after

our feedback to the operator. In the “before” case, the distributions are
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Figure 7.11.: Current draw of Op 2 over SARA-N211 when using the RAI-200 flag in
early 2019. 20 bytes packets. Good coverage.

Figure 7.12.: Energy consumption of Op 2 when sending 20 bytes using RAI-200 in a
location with good signal before and after our feedback.

broader, exhibiting values similar to those measured when the RAI is not

in use (see Fig. 7.7). Fixing this bug has led to a reduction in the median

value by 80%. The gains are even higher for larger transmissions and/or

challenging signal conditions. In the rest of the section, we only present

measurements collected after the correction.

Energy consumption Fig. 7.13 and 7.14 present the energy consumption for

several combinations of packet sizes and coverage locations while setting

the flags RAI-200 and RAI-400, respectively. Using RAI leads to great

savings in energy. Tab. 7.3 presents the median energy consumption,

for all operator, module and RAI combinations. The median energy

consumption without RAI can be 20 times higher for Op 1 and 15 times

higher for Op 2. Furthermore, the choice of the module influences the

energy consumption greatly. SARA-N211 consumes about twice as much

as Quectel-BC95.

Interestingly, in most cases, using RAI-400 results in only a slight ex-

tra energy consumption compared to RAI-200. This may partially be

attributed to the locality of the echo server, offering short round trip
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Figure 7.13.: Distribution of energy consumption for RAI-200, grouped by coverage
conditions and packet size.

Figure 7.14.: Distribution of energy consumption for RAI-400, grouped by coverage
conditions and packet size.

times, and by extension reducing the total duration of the Connected

state. For example, let us consider the best performing pair of operator

and module which is Op 1 and Quectel-BC95, under good conditions.

When sending a 20-byte packet, the median Connected state duration

(i.e., time between two Idle states), is 3.13 seconds for RAI-200 and

3.23 seconds for RAI-400. The median duration when transmitting 512

bytes remains unaffected at 3.12 seconds with RAI-200, but reaches 4.06

seconds with RAI-400. Under poor coverage, transmitting 512 bytes

requires 3.94 (RAI-200) or 4.95 seconds (RAI-400).

With the inactivity timer substate being removed, the impact of the

payload size increases. We have tested two very different packet sizes:

20 and 512 bytes (see Fig. 7.13 and 7.14). The larger packets result in a

larger energy consumption. This increase hovers around 60% and never

exceeds 100%. Hence, although payload size plays an important role,

the choice of the module has more impact. For example, if we focus on

the median energy consumption of Op 1 over RAI-400 (i.e., the two left

quadrants of Fig. 7.14), keeping the packet size constant and changing

the module from Quectel-BC95 to SARA-N211, it will result in an 115%
increase in good locations and a 70% increase in bad locations. Finally,
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Table 7.3.: Median energy consumption when sending 20 bytes with RAI under good
coverage (Joules).

module operator RAI-200 RAI-400

Quectel-BC95
Op 1 0.12 0.17
Op 2 0.11 0.12

SARA-N211
Op 1 0.27 0.31
Op 2 0.31 0.33

we observe that Op 2 draws significantly more power at places with poor

coverage, compared to Op 1. Digging deeper into this, we find that Op

2 uses ECL 2 more frequently than Op 1, as was expected based on Op

2’s more aggressive ECL thresholds we detected in Fig. 7.4 of Sec. 7.4.

This results in repeating each transmission several times, causing an up

to tenfold increase of the overall energy cost compared to Op 1 under

similar conditions.

Takeaways. The use of RAI flag leads to significant savings in energy con-

sumption. The choice of the UE is key to energy consumption, which suggests

the need for a UE certification process. Operators must thoroughly test and

confirm that their implementation and configuration conform to the expected

standard behavior. We have highlighted a few cases of misconfiguration that

translate into excessive energy consumption. Interestingly, the measured NB-

IoT deployments seem to fare well under poor coverage conditions except for

the extremes. Payload size becomes important only when the RAI flag is set

and the network is correctly configured.

7.6 Power consumption in Idle state
The majority of the NB-IoT devices’ lifetime is spent on Idle state and mostly

on PSM and the sleep phase of Idle state DRX (iDRX), if available. This

section quantifies power consumption in the PSM and eDRX modes.3 Note

that these modes do not have a specific time duration, thus we present the

power consumption rather than the energy.

3iDRX can be either DRX or eDRX (i.e., DRX with PTW and prolonged sleep periods). Our
analysis applies to both, but we use eDRX in this section, since this is expected to be more
popular in NB-IoT.
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7.6.1 PSM
During PSM, the radio is OFF and the device is in a “deep sleep” mode. Thus,

the only parameter affecting power consumption is the module itself (i.e., the

combination of the hardware and firmware). Both modules consume around

10 µW, with the median values being 10.61 µW for Quectel-BC95 and 9.35 µW

for SARA-N211. In rare occasions (< 2% of the PSM samples in the dataset),

the modules fail to reach the typical PSM current levels of 2-5 µA, resulting in

an elevated power consumption that may exceed 30 µW. Hence, the power

distributions (not shown) are fairly compact, with 98% of all samples centered

around the median.

7.6.2 eDRX
eDRX consists of listening and sleep phases (see Sec. 2.2.1). The eDRXCycle
parameter determines the overall duration of an eDRX cycle, which is the time

between the starting points of two consecutive listening phases. However, the

total duration of the sleep phase is not standardized, because the listening

phase may vary in length due to channel conditions. To estimate the energy

consumption, while on eDRX, we measure the time spent listening teDRX−L

as well as the consumed power PeDRX−L. Multiplying these two gives the

energy consumed while listening: EeDRX−L. The time spent sleeping equals

the total time spent in eDRX minus the time spent listening (teDRX−S =
teDRX−total − teDRX−L). The power consumed while sleeping (PeDRX−S), is in

the same range as PSM. Hence, the overall energy consumption in eDRX is

given by

EeDRX = (EeDRX−L + PeDRX−S · teDRX−S) ·Ncycles, (7.1)

where Ncycles is the number of listening-sleep cycles in the eDRX mode, which

can be derived by the configuration. Next, we examine each of the two phases.

Listening The duration of the listening phase depends chiefly on coverage

conditions, with listening phases in bad coverage lasting significantly

longer. More specifically, it is affected by the ECL, which is in turn

determines the number of control channel repetitions the UE should

listen. Tab. 7.4 presents the median values of teDRX−L and EeDRX−L for

different operator, module and coverage combinations.

Listening starts with a low power synchronization period and ends with

a more power demanding period of listening to paging occasions (PO).
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Figure 7.15.: Current draw of the buggy eDRX listening phase implementation. The
listening phases should end at the dashed vertical lines.

Table 7.4.: Median values of energy consumption and duration of eDRX listening
phase.

Coverage Module Operator Energy [mJ] Duration [ms]

Bad
Quectel - BC95

Op1 21.4 470.2
Op2 24.6 476.7

SARA - N211
Op1 33.7 536.5
Op2 39.1 552.2

Good
Quectel - BC95

Op1 6.4 215.0
Op2 6.3 215.2

SARA - N211
Op1 10.3 (20.0) 224.5 (300.0)
Op2 10.1 222.8

There is a bug observed in both devices, where they may remain at

an elevated power level after the PO period ends, shown in Fig. 7.15,

increasing the phase’s duration and energy. The proper ending points of

the PO periods are marked with red lines in the figure. This bug appeared

mostly when using SARA-N211 over Op 1 and in later measurements

appears much less frequently. Tab. 7.4 uses only recent measurements,

where the bug is rarely observed (in the parenthesis we present the

values while the bug was still frequent).

Under good conditions we do not observe any difference between the

operators for the same module. The device though has a major effect

on energy consumption, with SARA-N211 consuming a median 10 mJ

and Quectel-BC95 a median 6 mJ. Under bad conditions, the power

consumption mostly depends on the ECL. Op 2 has a tendency switching

to ECL 2 faster than Op 1, as conditions get worse, and this is reflected

in the energy consumption. As in good conditions, the most important

factor in the energy consumption is the module, with Quectel-BC95
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showing better efficiency. Tab. 7.4 also shows that listening time duration

evidently increases under poor coverage.

Sleeping As with PSM, the deciding factor of the energy consumption in the

sleeping phase is the module. The median of PeDRX−S is 10.01 µW for

SARA-N211 and 10.36 for Quectel-BC95.

Takeaways. In deep sleep, energy consumption is only affected by the choice

of the module. Energy consumption while listening is determined by coverage

and the choice of the module under good conditions. Under bad conditions,

operator choice becomes important as well.

7.7 Network Performance: RTT, Throughput and
Packet Loss

Finally, we examine the network KPIs: packet loss, RTT and throughput.

Tab. 7.5 presents a summary of these metrics, as well as some of the metrics

discussed in the previous sections, allowing for a complete overview of the

performance.

Packet Loss In our experiments we transmit a single UDP packet to a well

provisioned server and, if applicable, echo it back to the device. We

embed each packet with a unique ID. If the packet never reaches the

server we assume it was lost in the UL direction. In the experiments

where the UE is expecting a response, if a packet reaches the server

but the corresponding reply is never received by the UE, we assume a

loss in the DL direction. LTE UEs (e.g., smartphones) experience almost

null packet loss when they are immobile / stationary and connected to

uncongested LTE networks ([191], Fig. 3.1 and Tab. 3.1). In contrast,

we observe that packet loss rates in commercial NB-IoT deployments

are between 0.5% and 1%. The majority of the losses happen in the

UL, and worsening signal conditions cause a slight increase, as expected.

Surprisingly, the more aggressive use of robust ECL levels by Op 2, does

not translate into better packet delivery, compared to Op 1.
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Figure 7.16.: RTT per location coverage when sending a 20-byte packet. All packet
sizes.

This might indicate that the losses are not happening in the Radio Access

Network. If guaranteed delivery is important, the use of a higher layer

protocol such as MQTT or CoAP is needed.

RTT We measure RTT through the device logs. Fig. 7.16 and 7.17 present

how signal quality affects RTT. Under good conditions, despite the dif-

ferences in energy consumption presented in Sec. 7.5, round trip delays

show small variability among the combinations examined. On the other

hand, higher ECL values increase the duration of both transmission and

reception, due to the big number of repetitions, consequently increasing

RTT. In Fig. 7.16, the higher values of delay under bad signal conditions

for Op 2 compared to Op 1 are attributed to the much more frequent use

of ECL 2. Fig. 7.18 presents the effect of packet size on RTT, where we

observe Op 2 having a bit longer delay than Op 1. As expected, longer

packets require more transmission and reception time, increasing RTT.

Throughput Fig. 7.19 and 7.20 break down the parameters that affect through-

put in the UL. In our calculations, transmission starts from the scheduling

time and ends when the packet is transmitted. Due to the signaling over-

head, larger packets tend to have a higher average transmission speed,

as shown in Fig. 7.19. Both operators are using 15 KHz single-tone mode,

which has a theoretical maximum UL peak rate for Cat-NB1 devices of

16.9 Kbps. We observe Op 2 being significantly slower than Op 1, even

in good locations, indicating inefficiencies in the signaling procedures

and only Op 1 consistently gets measurements close to the theoretical

maximum. Signal quality has a great effect in measured speed, with

experiments in bad coverage locations resulting in less than half the

speed.
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Figure 7.17.: RTT per ECL level when sending a 20-byte packet.

Figure 7.18.: RTT per packet size under good signal.

Takeaways. The NB-IoT networks we measure have higher packet loss rates

than ordinary LTE networks. ECL and packet size are the main factors affecting

RTT, since they increase the time of all the RAN procedures. Throughput is

affected primarily by the operator and the packet size.

The previous sections have presented our comprehensive measurement cam-

paign, over real commercial networks in a variety of conditions, devices and

configurations. We have shown that NB-IoT offers greater configuration flexi-

bility compared to LTE, due to the recent NB-IoT specific enhancements and

that there are clear differences between operators and modules. Most of the

energy per transmission is consumed during the Active Timer phase, thus it is

critical for application developers to consider using the appropriate RAI flag.

Operator misconfiguration may waste significant amounts of energy and it

is hard to detect without low level study of the energy traces. The devices

consume disproportionate energy, while meeting their expected network KPIs

(i.e., RTT, packet loss), therefore there is no indication of a problematic

behavior. For example, Op 1 did not enforce quiet periods during the Active

Timer and Op 2 consumed more power under RAI because of a bug that

frequently ignored the flag.
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Figure 7.19.: Throughput per packet size in good locations.

Figure 7.20.: Throughput per location coverage when sending a 20-byte packet. All
packet sizes.

Both operators perform reasonably well under poor coverage. The difference

in median energy consumption between well and poorly covered locations is

attributed to ECL choice. Operators should carefully select their ECL thresholds

to avoid wasting energy. Packet loss is very rare, even when operating in

extremely challenging conditions, where normal LTE devices would be “out

of signal”. We could not find a correlation between packet loss and ECL level.

Instead, the operator with the more aggressive ECL thresholds exhibits higher

packet loss, while also suffering from increased RTT due to the high number

of repetitions associated with transmissions with ECL 2. Payload size only

matters if RAI is in use and the dominant factor dictating energy consumption

is the module choice, especially under poor coverage.

Tab. 7.6 attempts to prioritize the impact of several factors affecting energy

consumption. This table can be used as a starting point for building a power

model estimating an NB-IoT device’s lifetime. The choice of the module is a

decisive factor in both Idle and Connected states. The operator choice has the

least, but still measurable, importance, unless there are bugs present or the

devices operate in locations with very poor signal, where fine tuning of ECL
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Table 7.6.: Parameter importance hierarchy per state.

State Parameter Importance

PSM 1) Module

eDRX - sleep 1) Module

eDRX - listening 1) Signal Quality 2) Module 3) Operator

Connected
1) RAI flag 2) Signal Quality
3) Module 4) Operator (assuming no bugs)
5) Packet Size (Only with RAI flag)

thresholds is important. Based on the above, applications’ developers should

carefully select their platform.

In brief, we conclude that NB-IoT deployments need careful parameter tuning.

The use of Active Timer should be thought through. A slight misconfiguration

can result in excessive energy consumption and finally, the measured NB-IoT

deployments seem to fare well under poor coverage conditions except for

extreme cases.

7.8 Discussion
7.8.1 Device lifetime
In order to have an estimation of the device lifetime for a given battery capacity,

network configuration, and transmission frequency, we need to quantify the

energy consumption for the three distinct states of an NB-IoT device lifecycle:

1) PSM, 2) eDRX and 3) Connected state. Thus, the expected lifetime Tlifetime
of the device, assuming no battery degradation and a fixed transmission

interval Tti is:

Tlifetime = EbatteryCapacity
(ECon + EeDRX + EPSM) ∗ Tti, (7.2)

We sketch a toy example, to explore how different configurations and the

choice of the UE impact device lifetime. In this example, a UE under good

coverage sends a 20-byte UDP packet to an echo server, which responds

to it. This activity is repeated in 3 different intervals, with each interval

being representative of an NB-IoT use case. The intervals are: i) 1h (e.g.,

environment monitoring), ii) 4h (e.g., irrigation) and iii) 24h (e.g., vehicle

automation) [192]. The UE spends the rest of the day in Idle state. We explore

two different configurations: default timers (i.e., the RAI flag is not set) and

RAI-400. We make two simplifications. First, we ignore the energy consumed
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Table 7.7.: Expected battery lifetime, in years, grouped by transmission intervals,
for good signal conditions. We assume a battery with the 3GPP target
size of 5 Wh (18000 Joule) and no battery degradation over time. The
transmission is a single 20-byte UDP packet, which is echoed back.

Module Op. Default timers RAI-400
1h 4h 24h 1h 4h 24h

Quectel-BC95
Op 1 0.8 3.2 9.9 6.1 25.5 45.4
Op 2 2.4 8.5 13.0 6.4 30.1 47.6

SARA-N211
Op 1 0.5 1.9 6.0 6.0 18.5 44.1
Op 2 1.6 5.9 5.7 5.9 17.7 43.3

in the eDRX mode. This is a reasonable assumption for a big number of

NB-IoT use cases, where a sensor reports data (Uplink), but is not needed

to be contacted (Downlink), thus eDRX can be disabled. Second, we ignore

the energy consumption associated with periodic TAU updates. Given the

frequency of Uplink messages, TAU is not needed in this scenario. According

to 3GPP’s objectives for NB-IoT, devices should be able to achieve “up to ten

years battery life with battery capacity of 5 Wh (Watt-hours), even in locations

with adverse coverage conditions” [16]. Thus, we assume a 5 Wh (18000

Joule) battery, which does not suffer from degradation. To estimate ECon, we

use the median values from tables 7.1 and 7.3, which is a good approximation

given the compactness of the respective distributions. The energy consumption

during PSM is calculated by multiplying the median power consumption

values from Sec. 7.6.1 with the duration spent in Idle state.

Tab. 7.7 shows the expected battery lifetime in years for different operator,

module and configuration combinations. Misconfiguring energy saving proce-

dures, for example the lack of cDRX in early measurements of Op 1, drastically

reduces the expected lifetime. Using RAI leads to significant energy saving

extending the battery lifetime by several years. Even in this favorable scenario

(i.e., good signal, small packets), the use of RAI is necessary to achieve the

10-year lifetime goal of 3GPP. Also, the differences between modules translates

to months of difference in battery lifetime, even in the 1h interval scenario.

Note that most of the energy consumption takes place while the UE is in

deep sleep, because it spends the bulk of its lifetime in that state. We have

also evaluated other experiment conditions to gauge their impact on battery

lifetime. Taking the best case in Tab. 7.7 above, that is Quectel-BC95 with

Op 2, we increase the payload size to 512 bytes, which consumes 0.20 J per

message for RAI-400. The expected lifetime per interval becomes: i) 8.6 ii)

23.3 and iii) 44.2 years. If we further assume bad signal conditions, with
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RAI-400 and payload 512 bytes, the median consumption becomes 3.09 J,

thus making the expected lifetime i) 0.7, ii) 2.5 and iii) 12.3 years.

The above logic may be applied to a plethora of other NB-IoT use cases. For

example, a home alarm is expected to be in Idle state, until a very infrequent

trigger (e.g., once every three months), that is safe to ignore in our calculations.

In this case, we would have to take into account the periodicity of TAU updates,

(TTAU) which energy-wise can be assumed to be equal to a 20 byte packet

transmission with RAI-200, as these are the only other events that provoke a

transition to the Connected state. The expected lifetime would be given by

Eq. (7.2) with Tti = TTAU . On the other hand, a door lock use case would

be dominated by random triggers. We can get an estimate for the Tti from

the expected number of triggers per week. Eq. (7.2) is not affected by the

distribution of Tti, so using the average value is sufficient. In both use cases, we

would also be interested in one-way delay and packet loss. As we have shown,

RTT is rarely above 10 seconds, even in extreme cases, and we may ensure

delivery through an application layer protocol. In the rare Downlink-heavy

use cases, such as unlocking city bikes, the dominant factor in Eq. (7.2) would

be EeDRX , because continuous reachability is needed and thus, the heavy use

of eDRX is a necessity. eDRX is given by Eq. (7.1) and Tti could again be an

average value based on the expected number of triggers per week.

Based on the above, the use of default timers should be carefully thought

through, employing the RAI flag whenever possible. Any use case that does not

involve multiple communication from the server side, following the initiation

of an UL transmission, should do away with it. It is the default configuration,

however, which means that most users might end up using it unknowingly. It

is not reasonable to assume that application developers will be well versed

in all aspects of energy saving in NB-IoT. However, they need to familiarize

themselves with the terms in Eq. (7.2). Furthermore, the UE vendors need to

publish power ratings for their devices when in deep sleep. Operators need to

publish details on how they implement energy saving and to certify common

UEs chipsets. The availability of such information will make it easier for use

case owners to come up with reasonable battery lifetime estimates.

7.8.2 Feedback to operators
Our findings were reported back to both operators, which took appropriate

actions to correct the deficiencies we observed. Op 2 had a bug with RAI-200,

that was fixed after reporting it during our main measurement campaign,

achieving 80% better energy efficiency (see Sec. 7.5.2). During the measure-
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ment period, Op 1 did not support some NB-IoT power saving mechanisms,

resulting in higher energy consumption than Op 2. During the Inactivity

timer period, instead of performing cDRX, the modules were constantly on a

high-power paging state. We have informed Op 1 of this anomaly, they later in-

formed us that it has now been fixed. We have then collected a complementary

dataset in the first half of July 2019, where we observe clear improvements.

The new measurements confirm that Op 1 now implements cDRX. In these

experiments we use SARA-N2 to send 20 bytes, from a location with good

coverage, using the default timers. The median energy consumption of the

Connected state is now 0.912 Joule, having improved by 77%. Actually, the

energy consumption has become lower than Op 2’s, because the cDRX mode

of Op 1 has fewer and more spaced out listening occasions. Op 2 supported

these power saving features from the beginning of our measurements, thus we

do not observe any differences at the newer dataset. The immediate impact of

our study highlights the need for similar studies as NB-IoT is being rolled out

and soon 5G will be.

7.8.3 Comparison with other IoT communication technologies
As we discussed in Sec. 7.5.1, NB-IoT’s energy consumption is highly vari-

able, especially under poor conditions. Other competing IoT communication

technologies such as LoRaWAN may have a similar median consumption,

but significantly smaller variance [183], making them more attractive to ap-

plication developers, due to their more predictable battery life expectancy.

The main advantage of NB-IoT over these technologies is the use of licensed

spectrum. This will be increasingly important as the number of IoT devices

increases, and thus the possibility of interference becomes higher. Further, the

use of unlicensed spectrum is typically associated with higher delay and does

not offer delivery guarantees. In contrast, the HARQ mechanism of NB-IoT

offers increased robustness and the centralized scheduling at the base station

minimizes delay and interference.

7.9 Related works
Experimental analysis close to our work are [183, 184, 185], which use the

same devices but over different networks and in a smaller variety of scenarios.

The authors of [183] performed measurements over a single commercial

network in Spain with the same devices. Similarly to us, they observe that

Quectel has better energy consumption than Ublox and that packet size does
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not affect energy consumption. In contrast, they report significant gains by

using the RAI flag only for Ublox, and considerably less energy needed to listen

for PO during eDRX for both modules. We expand on their work, by comparing

the performance of two operators and attempt to identify the parameters

mostly affecting lifetime. In [184], the authors use the same devices, but

with older firmware that supported only release 13 features. The experiments

reported are an integration study for the network of Telekom Malaysia, where

they also study energy efficiency. They reach the same conclusion as us:

in order to achieve the promised lifetime a careful set up of the NB-IoT

device’s firmware is necessary. In contrast, we perform our experiments over

commercially available networks with the latest firmware of both devices that

supports all the current-generation power saving features and under a variety

of signal conditions. In [185], the authors perform a small scale experiment

to measure the expected lifetime of an NB-IoT device, based on SARA-N2,

in the context of aviation use cases. Their testbed connects over one private

and two commercial networks and they discover that using PSM in Idle state

has the highest impact on achievable battery lifetime. Compared to the three

studies above, our experiments are more thorough and use the latest NB-IoT

features commercially available. We further attempt to provide explanation of

the artifacts we observe, identify key parameters for enhancing lifetime and

cooperate with operators to improve their networks.

In the literature, various works have attempted to model NB-IoT power con-

sumption and device lifetime. The authors of [193, 194] presented a Markov

chain analysis of the average energy consumed to transfer one uplink report

using the Control Plane procedure. In [195] an emulator has been used to

create an empirical lifetime model, based on device configuration. The same

testbed has been used in [196], where authors measured two early NB-IoT

device prototypes and used the results to make lifetime estimation projections.

An early simulation study of various IoT technologies’ coverage, including

NB-IoT, based on a Danish region’s topology has been presented in [197].

In [198] Sultania et al. proposed an analytical model to estimate the average

energy consumption of an NB-IoT device using the Release 14 power saving

enhancements. The work in [199] presented an analytical model to explore the

trade-offs between repetitions and the built-in MAC layer retransmission mech-

anism of LTE, concluding that fewer repetitions with more retransmissions

achieves higher successful probability. Recently, [200] presented a theoretical

mathematical model to predict performance and propose optimal network

configuration in different scenarios.
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El Soussi et al. [201] evaluated the overall performance of NB-IoT in the

context of a smart city. They proposed a theoretical model for calculating

the energy consumption and concluded that a lifetime of 8 years is possible,

under poor coverage, while sending one message per day. Finally, the authors

of [202] studied the relationship between signal strength and delay through a

small number of experiments performed in a laboratory testbed measuring a

device prototype based on the SARA-N2 module. These works rely either on

emulating parts of the network or simulations. In contrast, we perform large

scale experiments in the wild, using two different modules and two operators.

Compared to [183, 184, 185], discussed in the previous section, our work is

more thorough and uses the latest NB-IoT features available. Finally, to the

best of our knowledge, there is no other empirical study on NB-IoT packet loss

under real conditions.

7.10 Conclusions
We conducted a comprehensive measurement study of the energy consumption

of two popular NB-IoT boards that connect to two commercial deployments in a

European country. Our findings indicate that NB-IoT is far from being plug and

play and requires careful setting for improved energy efficiency. Since we focus

on configuration parameters and their impact on the energy consumption,

our recommendations can be generalized to any NB-IoT deployment. We

observe that the main factors determining energy consumption, and thus

battery life, are: 1) module; 2) operator; 3) signal quality; 4) use of energy

saving enhancements such as RAI and eDRX and 5) in a limited number of

scenarios, packet size. Furthermore, our analysis has helped the measured

networks identifying and fixing a couple anomalous configurations, and we

could finally track the effectiveness of this adjustments. Finally, we have

indicated strategies for improving energy efficiency, pointing out the elements

that could bring to energy waste without improving the reliability, such as

too aggressive ECL thresholds or not using the RAI flag. We also identified

the key parameters needed for estimating the battery lifetime, and which of

the metadata reported by the device are more meaningful. Possible future

research directions include the energy impact of application layer protocols

such as MQTT and CoAP, as well as recommendations for parameter tuning of

these protocols.
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8Conclusions

IoT-enabled services and applications are becoming more common and wide-

spread. The analysis of IoT networks performance offers useful insights that

according to the scenario considered, can help in the choice of the communica-

tion technology and its best configuration, while respecting the requirements

dictated by the specific use case.

In this thesis, we studied two LPWAN technologies, namely LoRaWAN and

NB-IoT. For LoRaWAN we considered the network performance, whether the

technology could fit also non-traditional applications, and whether it could

be supported by battery-less devices. Additionally, we evaluated the energy

consumption of NB-IoT devices.

In the first part of the thesis (Ch. 4), we tested the performance of LoRaWAN

networks in traditional IoT use cases (i.e., monitoring applications in open air

and urban scenarios). One of the main contribution has been the formulation

of a mathematical model, which captures features from the protocol (uncon-

firmed/confirmed traffic, presence of re-transmissions), but also specificities

of the chipsets (limited number of GW’s demodulators) and local restrictions

(DC regulations). Additionally, the validation of the model with the ns-3 sim-

ulator outcomes made it possible to identify the assumptions that impacted

the most on the model performance. Finally, the model provides a compu-

tationally efficient tool to investigate the parameters space, also to optimize

some combination of metrics of interest. The results obtained from the model,

together with those provided by ns-3 simulations, showcased the impact of

the communication settings on different metrics, from the packet delivery rate

to the fairness, from the delay to the number of reception windows that are

opened. In particular, we found that the two elements that played a major role

in determining the system performance are the use of confirmed traffic and

the SF used in RX2. Furthermore, with this analysis, we could link optimal

network configuration to quantities such as node density and generated traffic,

obtaining the range of performance that can be expected in a real network.

Further simulation studies, reported in Ch. 5, showed that, with a proper

configuration of the aforementioned parameters and a denser network infras-

tructure, LoRaWAN can also support applications that are out of the classical

use cases it was designed for. It should be noted that, however, LoRaWAN

struggles to achieve the delay and reliability performance required by the IIoT
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use cases, and that when considering a drone patrolling application, accept-

able performance of the drone tracking could only be achieved with a careful

choice of the communication settings. Nevertheless, these applications can

still take advantage of the long-range and low-power communication features

of LoRaWAN.

In Ch. 6, we described the ns-3 implementation of a battery-less IoT node with

harvesting capabilities, facing one of the hot topics in the current society: the

exploitation of renewable energy sources for power supply. Therefore, in the

perspective of enabling Green IoT solutions, the developed code provides a

tool to evaluate whether such approaches are, or not, viable. Although the

ns-3 code can be applied to different low power technologies, such as WiFi

802.11ah HaLow, in this thesis, we validated the implementation by consid-

ering LoRaWAN devices. The results presented in the chapter unveiled the

potential of this approach, showing how the environment (i.e., harvesting ca-

pabilities) and the device hardware (i.e., capacitor size) affect the feasibility of

such a solution. Furthermore, preliminary algorithms for smart energy-aware

packet scheduling were proposed. The outcomes of preliminary experiments

run in real testbeds have also been presented, prooving the feasibility of a

battery-less solution for LoRaWAN devices. Finally, in Ch. 7 we considered

energy consumption of NB-IoT devices, through extensive measurement cam-

paigns. From this analysis, it was apparent that these devices can not be

employed in a plug-and-play fashion, and many aspects, such as the position

of the device with respect to the infrastructure, have a strong impact on the

performance. Furthermore, it should be noted that, differently from LoRaWAN,

NB-IoT and other cellular technologies can not be deployed in private net-

works, but only with the support of a telecommunication operator. Therefore,

the control of the whole network and of the communication parameters (such

as the timers enabling power saving features) do not depend on the user, who

then may suffer from unwise network settings that could negatively affect

the device’s lifetime, with an impact on the maintenance costs (e.g., battery

replacement).

From these considerations, it is clear that preliminary analyses are of uttermost

importance to understand the functioning of a network and whether and how

specific applications can be supported. Also, the adoption of Green IoT would

make it possible to move towards more sustainable deployments, also limiting

the impact on the environment.
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8.1 Directions for future work
The analysis presented in this thesis aimed to include most of the tools that

are commonly employed to evaluate communication technologies, i.e., mathe-

matical formulation, simulative tools, and testbed experiments. Furthermore,

several aspects have been analyzed, from traditional network metrics to per-

formance in more specific scenarios, from Green IoT approaches to energy

consumption evaluations. Although the presentation tried to cover all these as-

pects thoroughly, every single contribution can be further extended, providing

more detailed insights.

First, the mathematical and simulative analysis presented in Ch. 4 can be

enhanced to also consider multiple-GWs scenarios, and leveraged as tools to

find optimal configurations. Secondly, the simulative framework employed

throughout this thesis could be extended implementing also Class-B EDs, which

could represent a good compromise in IIoT networks. Additionally, outdoor

scenarios could be further investigated, both for industrial applications (e.g.,

an industrial harbor), or for tracking applications: in both these use cases,

the communication technology would be further pushed to its limits, also

applying features that are currently not part of the LoRaWAN standard to

increase the communication reliability and minimizing the latency metrics.

Finally, energy consumption turned out to be a critical element also in those

devices conceived to minimize it, as LPWAN devices should be. Therefore,

empirical studies that consider this aspect in real scenarios are always a useful

method to evaluate energy performance previous actual installation and can

help in identifying possible bugs in new network deployments. However,

the increasing number of connected devices also motivates the migration

towards Green IoT. However, this solution is still in its first phases and different

directions should be explored. Firstly, the feasibility of this approach should be

assessed, since the strict requirements imposed by the limited and inconstant

energy may prevent the implementation of some types of services or the usage

of some IoT technologies that have more costly operations in terms of energy.

Secondly, the available technology parameters and communication protocol

should be optimized to proficiently work in such conditions. Finally, we can

observe that the usage of renewable sources is certainly an advantage for the

environment and complies with a responsible vision of the long-term impact

of the IoT technologies. However, it must be noted that there is no one-fits-all

solution, and each deployment should be carefully configured also according to

the different environmental conditions that characterize each specific scenario.
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AAppendix A

In this appendix, we prove the convergence of the model presented in 4.2,

which aims at estimating the LoRaWAN network performance in a single-

gateway scenario. In Sec. A.1, we provide an analytical proof of the existence

of a fixed point solution for such a system. Then, in Sec. A.2, we report

experimental results, showing that the system of the two inter-dependent

equations provided by the model can be solved through fixed-point iterations,

and that a limited number of iterations is enough to reach convergence.

A.1 Proof of existence of fixed point solution
For ease of writing, let x = [x1, . . . , xn] be the vector of unknowns to be

determined by solving the set of fixed point equations fi(x) = xi. From the

derivation of the model presented in the Sec. 4.2, it is apparent that the

functions fi() result from the combination of a number of continuous (and

differentiable) functions, and are themselves continuous (and differentiable)

in all the unknowns xi in the compact interval (0, 1).
We can apply the following reasoning iteratively.

Let’s start from i = 1. By fixing all the parameters other than x1 we can define

the functions F1(x1; p1) = f1(x1, . . . , xi, . . . xn) where p1 = [x2, . . . , xn] is the

vector of parameters x without the first term.

Now, analyzing the functions that yield to the expression of F1(x1; p1), we can

see that F1(x1; p1) is greater than zero when x1 tends to zero, and lower than

one when x1 tends to one. Therefore, there must exist a point x∗
1 ∈ (0, 1) such

that F1(x∗
1; p1) = x∗

1. Clearly, this point in general depends on the parameter

vector p1. We hence denote by F ∗
1 (p1) the fixed point solution x∗

1 of F1(x1; p1)
for a certain p1. We will later prove that this function is continuous in p1.

We can now define the function

f ◦
2 (x2;x3, . . . , xn) = f2(F ∗

1 (x2, x3, . . . , xn), x2, x3, . . . , xn).

Since f2 is continuous in all the parameters, and F ∗
1 is continuous in [x2, x3, . . . , xn],

then f ◦
2 is also continuous in [x2, x3, . . . , xn].

Furthermore, the function turns out to be greater than zero when x2 tends to

zero and lower than one when x2 tends to one. Therefore, we can repeat the
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reasoning iteratively, until we reach the function f ◦
n(xn) that hence admits a

fixed point x∗
n.

Hence, we get that the fixed point solution of the original problem is given by

the values {F ∗
i (x∗

i+1, . . . , x
∗
n)}, for i = 1, 2, . . . , n.

A.1.1 Proof of continuity of F ∗
1

Theorem
The function F ∗

i (xi+1, . . . , xn) is continuous in p∗
i , where p∗

i = (xi+1, . . . , xn).

Proof
We need to prove that ∀p∗

i , ∀ϵ > 0, ∃δ > 0, such that

|F ∗
i (p∗

i ) − F ∗
i ( ˜︁pi)| < ϵ,∀ ˜︁pi : |p∗

i − ˜︁pi| < δ.

Recalling that F ∗
i (p∗

i ) = x∗
i such that f ◦(x∗

i , p
∗
i ) = x∗

i , then we can write

⇒ |F ∗
i (p∗

i ) − F ∗
i ( ˜︁pi)| = |x∗

i −˜︂xi|
where ˜︂xi is the fixed point of fi(xi, ˜︁pi), i.e., f ◦(˜︂xi, ˜︁pi) = ˜︂xi.
We hence need to prove that ˜︂xi ∈ (x∗

i − ϵ, x∗
i + ϵ), i.e., that

g˜︁pi
(xi) = f ◦

i (xi, ˜︁pi) − xi = 0

for some point ˜︂xi ∈ (x∗
i − ϵ, x∗

i + ϵ) ≜ B(x∗
i , ϵ).

Let’s call B(p∗
i , δ) the ball of radius δ centered in p∗

i , i.e, B(p∗
i , δ) ≜ (p∗

i − δ, p∗
i +

δ).
Assume, by contradiction, that ∀δ > 0, ∃pî ∈ B(p∗

i , δ) such that g˜︁pi
(xi) > 0,

∀xi ∈ B(x∗
i , ϵ). (The case g˜︁pi

(xi) < 0 is similar).

Let

gmin = min
xi∈B(x∗

i ,ϵ)
g˜︁pi

(xi).

Therefore, g˜︁pi
(xi) ≥ gmin ∀xi ∈ B(x∗

i , ϵ).
In particular,

g˜︁pi
(x∗

i ) ≥ gmin ⇒ gmin ≤ f ◦
i (x∗

i , ˜︁pi) − x∗
i = f ◦

i (x∗
i , ˜︁pi) − f ◦

i (x∗
i , p

∗
i ).

Recalling that f ◦(xi, pi) is continuous, then by taking ϵ̂ < gmin, ∃δ̂ such that

|f ◦(x∗
i , ˜︁pi) − x∗

i | < ϵ̂,∀ ˜︁pi ∈ B(p∗
i , δ̂).
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⇒ ∃ δ̂ > 0, such that ∀p ∈ B(p∗
i , δ̂), g˜︁pi

(x∗
i ) < gmin.

which contradicts the assumption that gmin does not admit zeros in the ball of

radius ϵ around x∗
i . This concludes the proof.

Q.E.D.

A.2 Experimental results showing system’s
convergence

In order to provide some estimates on the convergence speed of the proposed

model, we ran a series of experiments in which we solved the model through

a fixed-point iteration procedure. First, we sampled the parameter space,

varying each parameter (such as α, m, p, C, λ), thus obtaining a set of models

to solve. Then, we solved each instance of the model starting from a randomly

chosen point x in the solution space (i.e., the 12-dimensional space of SULi
and SDLi , with i ∈ SF). We define

xi =
[︂
SULi , SDLi

]︂
=
[︂
SUL7 , . . . , SUL12 , S

DL
7 , . . . , SDL12

]︂
.

We stop the fixed-point iteration when ||xi − xi+1||2 < 10−3, where xi is the

solution found at the i-th step in the procedure, and ||·||2 is the Euclidean

norm.

Fig. A.1 contains the results of such analysis: the box plots show the distribu-

tion of the number of iterations necessary to reach convergence. The data is

plotted here for various values of α, to highlight how the number of iterations

might depend on the value of some parameters, while never exceeding 40

in the worst case, ensuring, thus, a quick convergence for all the explored

combinations of the parameters and choice of the initialization point.

A.2 Experimental results showing system’s convergence 213



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

20

25

30

35

40

Ite
ra

tio
ns

Figure A.1.: Distribution of the number of iterations necessary to reach convergence
for a range of values of α.
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BAppendix B

B.1 Special conditions for 3D-CTRA
The 3D-CTRA model equations are well-defined with some conditions on the

tilt ψ: it must be different from 0 and from the turn rate ω or its inverse. In

those cases, the equations need to be derived separately in order to arrive at

a valid mathematical result. First, when ψ = 0, the model is equivalent to

CTRA+ and the value of z(t) is given by (5.16). Then, when ω = ψ, i.e., the

rotations on the two axes have the same period, the values of x(t) and y(t)
become:

x(t) = x(0)+
⎡⎣v(τ) sin(θ(τ) + ϕ(τ))

2(ω + ψ) + a cos(θ(τ) + ϕ(τ))
2(ω + ψ)2

+ 2v(τ) − aτ

4 τ cos(θ(τ) − ϕ(τ))
⎤⎦t

0

;
(B.1)

y(t) = y(0)+
⎡⎣a sin(θ(τ) + ϕ(τ))

2(ω + ψ)2 − v(τ) cos(θ(τ) + ϕ(τ))
2(ω + ψ)

+ 2v(τ) − aτ

4 τ sin(θ(τ) − ϕ(τ))
⎤⎦t

0

.

(B.2)

The case in which ω = −ψ produces a similar result, with switched terms:

x(t) = x(0)+
⎡⎣v(τ) sin(θ(τ) − ϕ(τ))

2(ω − ψ) + a cos(θ(τ) − ϕ(τ))
2(ω − ψ)2

+ 2v(τ) − aτ

4 τ cos(θ(τ) + ϕ(τ))
⎤⎦t

0

;
(B.3)

y(t) = y(0)+
⎡⎣a sin(θ(τ) − ϕ(τ))

2(ω − ψ)2 − v(τ) cos(θ(τ) − ϕ(τ))
2(ω − ψ)

+ 2v(τ) − aτ

4 τ sin(θ(τ) + ϕ(τ))
⎤⎦t

0

.

(B.4)
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Along with the standard equations, these results complete the model, which is

valid for all values of the relevant parameters.

B.2 The Unscented Kalman Filter
Assuming that the process and measurement noises are purely additive1,

the UKF algorithm involves the following operations. Let us call x̂(t) and

Px(t) = E[(x(t) − x̂(t))(x(t) − x̂(t))T ] the system state estimation and the

related covariance matrix at time t, respectively. First, the state statistics are

encoded into 2L+ 1 sigma points χ0(t), χ1(t), ..., χ2L(t), which are computed

according to the so-called Unscented Transformation (UT):

χ0(t) = x̂(t); (B.5)

χi(t) = x̂(t) +
(︃√︂

(L+ λ)Px(t)
)︃
i
, i = 1, ..., L; (B.6)

χi(t) = x̂(t) +
(︃√︂

(L+ λ)Px(t)
)︃
i−L

, i = L+ 1, ..., 2L. (B.7)

In the above equations, L is the dimension of x,
(︂√︂

(L+ λ)Px(t)
)︂
i

indicates

the i-th row of the square root of (L+ λ)Px(t), λ is a scaling parameter, and

α ∈ R represents the sigma points spread around χ0(t). The value of the

scaling parameter is computed as λ = α2(L + k) − L, where k is another

tuneable parameter, which is customarily set to 0. Each of the sigma points is

then associated to a set of scalar weights wmi and wci , whose values are given

by:

wm0 = λ/(L+ λ); (B.8)

wc0 = λ/(L+ λ) + 1 − α2 + β; (B.9)

wmi = wci = λ/ (2(L+ λ)) , i = 1, ..., 2L. (B.10)

In (B.9), β is a constant value that has to be tuned according to the system

state distribution; if x is Gaussian, the optimal value for β is 2.

When the UKF algorithm performs the prediction step, each sigma point is

propagated through the (possibly non-linear) function f(·), given in the first

equation of (5.24), thus generating a new set of sigma points: f (χi(t)) , i =

1The UKF formulation for the case in which ζ(t) and η(t) are not additive is more complex
and out of the scope of our research; for a deeper insight into the UKF algorithm, see
[203].
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0, 1, ..., 2L. The new sigma points are used to compute the a priori state

estimation x̂(t+ T |t) and the related covariance matrix Px(t+ T |t):

x̂(t+ T |t) =
2L∑︂
i=0

wmi f (χi(t)) ; (B.11)

Px(t+ T |t) = R +
2L∑︂
i=0

wci (f (χi(t)) − x̂(t+ T |t))(f (χi(t)) − x̂(t+ T |t))T ;

(B.12)

where R is the process noise covariance given in (5.24).

At the beginning of the update step, the original sigma points are propagated

through the measurement function h(·), given in the second equation of (5.24).

Hence, the new points h (χi(t)), i = 0, 1, ..., 2L, are used to predict the future

observation ô(t+ T |t) and the related covariance matrix Po(t+ T |t):

ô(t+ T |t) =
2L∑︂
i=0

wmi h (χi(t)) ; (B.13)

Po(t+ T |t) = Q+
2L∑︂
i=0

wci (h (χi(t)) − ô(t+ T |t))(h (χi(t)) − ô(t+ T |t))T ;

(B.14)

where Q is the measurement noise covariance. Hence, the optimal Kalman
gain is computed as K = Pxo (Pxo)−1, where (·)−1 indicates the inversion

operation and Pxo is the residual covariance matrix:

Pxo =
2L∑︂
i=0

wci (χi(t+ T |t) − x̂(t+ T |t))(ξi(t+ T |t) − ô(t+ T |t))T . (B.15)

Finally, given the new observation o(t+ T ), the a posteriori state estimation

x(t+ T ) and the related covariance matrix Px(t+ T ) are obtained as

x(t+ T ) = x̂(t+ T |t) +K (o(t+ T ) − ô(t+ T |t)) ; (B.16)

Px(t+ T ) = Px(t+ T |t) −KPo(t+ T |t)KT . (B.17)
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CAppendix C

In this appendix, we detail how current consumption traces and log traces

for a NB-IoT device have been syncronized to obtain an automatic matching

of the current consumption values and phase reported by the log messages.

Furthermore, we describe how current consumption traces have been automat-

ically processed to extract the current consumption in each phase of the device.

Finally, we discuss how to compute the mapping between SNR and RSRP.

C.1 Data pre-processing
In this section we present how we synchronize the logs of the Otii Arc power

measurement device with the logs of the UEs. The UEs report network meta-

data such as RRC connection state and DRX. These must be synchronized with

the Otii power measurements to avoid misattributing energy consumption,

connection state-wise. A listening phase in Idle state typically lasts less than

300 ms and a cDRX one less than 30 ms, thus the synchronization ideally

should have an error of a few ms at most. Unfortunately, the UE and the

power meter clocks could not be synchronized to the required accuracy. In-

stead, we resort to time series analysis to dissect the current consumption time

series into phases. We leverage the fact that the power consumed in different

phases is markedly different, as well as characterized by different patterns (see

Sec. 2.2). For example, we are able to isolate the DRX listening phase or the

synchronization procedure.

Fig. C.1 presents an example of how our phase detection algorithms operate

when detecting an eDRX listening phase. Other events are detected in a

similar fashion. Depending on which phase we are trying to detect, we can

set a current threshold, above which we assume the device is within that

phase. Thus, the edges of each phase are the points where the time series

cross this threshold. The threshold is determined by the value of the 95th

percentile of the current of a typical phase. As can be seen in Fig. C.1a, the

original power monitor time series (T = {T1, . . . , Tn}, where n is the number

of observations) is very volatile, crossing the threshold multiple times within a

single phase, which makes phase detection hard. Based on T , we create two

smoothed time series, each aimed to properly detect one edge of the target

phase. The window size of the smoothing functions is determined empirically
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per measurement at a value that removes fluctuations, while avoiding overlap

with neighboring listening phases. These are combined to create a Final
Smoothed Time Series: FSTS, where both edges of every phase are well

defined and we use this as a guide to time stamp the start and end of each

phase. Then, we use the original time series T to get the energy consumption

and the rest of the target metrics of the now well defined phases.

For example, to identify the eDRX listening phase, of Fig. C.1 we have to

calculate: A) The moving max of all the values ahead of the current one in

the window, aimed to detect the phase end. Each element of this time se-

ries: Moving Max Forward: MMF , is given by: MMFi = max{Ti, . . . , Ti+W},

where W is the window size of the function. B) The moving max of all the

values before the current one in the window Moving Max Backward: MMB,

aimed to detect the phase start. The elements ofMMB are given by: MMBi =
max{Ti−W , . . . , Ti}. C) Calculate the FSTS, by overlapping MMBi and

MMFi. We do so by taking their minimum: FSTSi = min(MMBi,MMFi).
FSTS has the property of increasing as soon as the current increases, while

not being sensitive to current fluctuations, thus creating a tight mask around

the phase we want to detect. The resulting FSTS and the phase borders it

generates for the eDRX listening phase detection example are seen in Fig. C.1b.

Finally, we apply some filtering on the detected events, to remove artifacts,

such as current spikes when we poll the modules for metadata.

Detection of other events, with more distinct patterns, such as the transition

between Connected and Idle state, can be simpler. For example, to identify

Connected and Idle states, a single smoothed time series of a moving median

around the central value of the window is enough to properly identify both

the beginning and the ending of a state. This is possible due to the bigger

difference in the power consumption between the two states and the bigger

duration and periodicity of these events.

The smoothing functions used depend on the event. The parameters depend

on the behaviour of the current time series, which is affected by experiment

conditions and settings, thus might need adjustment per measurement. An

added benefit of this method is that it is very computationally efficient, since it

utilizes time series libraries instead of loops, providing fast results in processing

the very big files provided by the power monitor tool.
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(a) Detection based on the original time series: T .

(b) Detection based on the final smoothed time series:
FSTS.

Figure C.1.: Results of the phase detection algorithms when trying to detect an
eDRX listening phase. The red vertical lines signify the borders between
different phases.

C.2 SNR to RSRP mapping
NB-IoT devices calculate SINR over the whole 180 KHz channel: SINR =
12∗RSRP
Itot+Ntot

. In contrast, RSRP is calculated over a single Resource Element

(RE), which has 15KHz bandwidth and is assumed to be free of noise and

interference. Thus, to map SINR and RSRP we need to modify the above

equation to take into account only 15KHz: SINR15KHz = RSRP
I15KHz+N15KHz

. In

our experiments, due to the limited adoption of NB-IoT and the nature of

GuardBand deployment, we can safely assume that interference is minimal,

especially in the poor coverage scenarios, thus: SNR15KHz = RSRP
N15KHz

The

N15KHz depends on the thermal noise density and the receiver noise figure,

which have typical values of Nthermal = −1740cBm/Hz and NFreceiver = 70cB,

respectively. Thus the thermal component of the noise is:

Nthermal_15KHz = −1740cBm/Hz + 100log(15000Hz)

≈ −1322cBm.
(C.1)

N15KHz then becomes:
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N15KHz = Nthermal_15KHz +NFreceiver

= −1322.39cBm+ 70cB = −1252cBm.
(C.2)

Finally the ideal mapping of SNR values to RSRP under our assumptions in

logarithmic scale is:

SNR15KHz = RSRP

N15KHz
⇒

SNRcB = RSRPcBm + 1252.
(C.3)
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