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Abstract
Cells and tissues generate and are exposed to a variety of mechanical forces that act across

scales of tissues, cells and organelles and provide critical signals to influence cell behavior

during development and adult homeostasis. Consequently, a large number of common diseases

involve alterations in these mechanical forces, triggering feedback loops that have the potential

to influence disease progression. Recent technical advances that have facilitated measuring

and manipulating biologically relevant forces have led to identification of mechanosensitive

pathways and TFs with key roles in regulating cell states and behaviors. This review highlights

the mechanisms by which forces regulate transcription and the emerging roles of these

mechanisms in mammalian physiology and disease.



Introduction
A hallmark of tissue morphogenesis is the patterning of groups of cells into communities with

defined common properties, including expression of specific genes that determine cell state,

unique morphological features, and specialized behavioral patterns. These functional units of

patterned tissue are maintained in adult tissues, some of which undergo constant homeostatic

renewal or can self-repair after injury. The generation, maintenance, and repair of functional

tissues thus requires intricate coordination of cell fate and position, and the ability of cells to

respond and adapt to dynamic changes in their microenvironment. The close, highly

reproducible correlation between cell type- specific morphology and cell identity points to

constant, bidirectional feedback between microenvironmental signals, the contractile

cytoskeleton that responds to these signals and determines cell shape, and the transcriptional

circuitry that establishes and maintains cell identity 1–3.

One central microenvironmental signal modality is mechanical force [G] that acts on scales of

tissues, cells, organelles and molecules, and that has fundamental impacts on cell behavior

through regulating gene transcription. This review will discuss how mechanical signals are

propagated and relayed into the nucleus to regulate transcription, and critically evaluate the

current evidence for the physiological relevance of this regulation.

Mechanisms of force sensing
Tissue structures and cell morphologies are adapted to their specialized functions. While

executing these specialized functions, tissues and single cells are exposed to and generate

tissue-specific mechanical forces such as compression, shear [G], tensile stress [G], or

hydrostatic pressure [G] (Figure 1). To generate and sustain their distinct force environments,

tissues display specific mechanical properties, dictated by cells and their surrounding

extracellular matrix (ECM), including elasticity, viscosity, and friction [G]. Importantly, the manner

in which cells interact and respond to these dynamic forces is determined by the physical

properties of the cells and ECM (for recent reviews see for example 4–7. As many diseases lead

to alterations in tissue function and architecture, they almost invariantly also change the

mechanical properties and forces within tissues, for example through fibrotic reactions 8.

Further, a large number of common diseases such as atherosclerosis [G], arthritis, osteoporosis,

and cardiomyopathies, as well several developmental disorders, including Hutchinson-Gilford

progeria [G] and Duchenne’s muscular dystrophy [G], entail abnormal physiological responses
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to mechanical forces 9,10. This highlights the importance of understanding biological forces and

their effects on cell state and behavior.

As in any three-dimensional structure, forces within cells are transmitted across

structures that are physically interconnected - the ECM, adhesions, cytoskeleton, and the

nucleus (Figure 1). Thus, all cells contain structures that respond to these local forces, resulting

in changes in cell behavior. In this review we refer to coupling of extrinsic forces to the

intracellular force sensing machineries as mechanotransmission. A central location for

mechanotransmission is the plasma membrane, where transmembrane receptor complexes,

such as integrin-based cell-matrix adhesions and cadherin-based cell-cell adhesions connect

with the contractile actomyosin cytoskeleton, to both exert forces on their surroundings, and

sense mechanical properties or dynamic deformation of neighboring cells or the ECM substrate
11–13 (Figure 1). Mechanical forces applied on these multiprotein adhesion complexes can be

converted into biochemical signals, for example through mechanical unfolding of individual

proteins/complexes (referred to as mechanosensing) and subsequent activation of signaling

molecules (mechanotransduction) 14,15 (Figure 2a, b). Another central mechanism of force

sensing at the plasma membrane is the stretch-induced activation of ion channels such as

Piezo1/2 or TRPV (Figure 2c). They are activated in response to stretch, compression, shear

and possibly even hydrostatic pressure to trigger ion-dependent intracellular mechanosignaling
16–21. Also other plasma membrane structures such as caveolae, as well as membrane tension

itself, are involved in mechanotransmission 22–24 (Figure 2d).

In addition to the plasma membrane, recent evidence points to the nucleus as a

mechanosensor that senses its own deformation to trigger mechanosignaling. Nuclear

deformation can occur downstream of extrinsic forces as a result of force transmission from

adhesions, via the cytoskeleton and the LINC complexes, to the nuclear envelope, nuclear

lamina and chromatin, resulting in mechanosignaling in a manner similar to what occurs at cell

adhesions 10,25,26 (Figure 2d). The nuclear lamina, composed of the intermediate filament

proteins Lamin A/C and Lamin B, participates in the regulation of mechanosensitive

transcription factors (TFs) 27–31. In addition, Lamin A protein levels scale with increasing ECM

stiffness, providing a mechanism that couples tissue and nuclear stiffness and amplifies

mechanosensitive transcription 27,31–33. Due to its high stiffness compared to the rest of the cell,

the nucleus also undergoes direct deformation in response to cell compression or stretch. This

nuclear deformation triggers nuclear membrane stretching and subsequent Ca2+ and

phospholipase signaling, which activates migratory escape responses and mechanoprotective

changes in nuclear and chromatin stiffness in conditions of genotoxic compression 20,34–37

https://www.zotero.org/google-docs/?jAHX5b
https://www.zotero.org/google-docs/?y5cZQy
https://www.zotero.org/google-docs/?sdRnxI
https://www.zotero.org/google-docs/?Z3GEJp
https://www.zotero.org/google-docs/?pnGjVB
https://www.zotero.org/google-docs/?mRHlME
https://www.zotero.org/google-docs/?fwokcp
https://www.zotero.org/google-docs/?PUXfKj
https://www.zotero.org/google-docs/?Ok5DI1


(Figure 2d). In addition to membrane stretching, nuclear deformation may regulate nuclear pore

distribution and permeability to impact intranuclear levels of TFs as a means of nuclear

mechanosensing 38–40. This possibility is particularly interesting in light of the recent observation

that the diameter of the pore opening is gated by membrane tension 41 (Figure 2d).

Finally, emerging evidence further suggests that other organelles such as the Golgi and

mitochondria display mechanosensitive properties and respond to mechanical forces and

actomyosin contraction by changing their structure and function, resulting in propagation of

downstream biochemical signals ultimately impacting the activity of TFs (see below, Emerging

concepts) 42–46. Collectively, current evidence indicates that mechanical stress results in strain

(deformation) of a broad range of mechanosensitive structures and potentially organelles,

triggering downstream signaling. What determines which mechanosensory organelle/structure is

activated is unclear but most likely depends on the type and magnitude of the biological force as

well as the properties of the cell itself, including contractile state of the cytoskeleton and tension

of the plasma and nuclear membranes. It could also be envisioned that multiple

mechanosensors can be activated simultaneously, after which their signals will be integrated

further downstream. In the following sections we will discuss how mechanical signals are

relayed into the nucleus, what is the nature of these signals, and how they regulate transcription

to produce physiologically meaningful responses.

Chromatin responses to nuclear force transmission
Chromatin is a disordered, variably compacted polymer chain that is assembled into a complex,

hierarchical 3D configuration through interactions with itself on multiple scales (compartments,

topologically associating domains, loops) as well as with the nuclear periphery 47–49. The

organization of chromatin determines its accessibility to TFs and thus represents an important

layer of transcriptional regulation. Consequently, cell fate transitions involve changes in

chromatin organization, where histone- and DNA-modifying enzymes and chromatin remodelers

collaborate with TFs to generate cell-type specific gene expression patterns, and to and

maintain these patterns across cell divisions 50–52. The association of chromatin with the nuclear

lamina provides a direct mechanical link all the way from the extracellular environment through

adhesion complexes, the cytoskeleton, the LINC complex to chromatin (Figure 3a). The

potential functional role of this direct mechanical link in regulating chromatin organization and

the various post-translational modification states of histones in response to mechanical force

has been under intense investigation in recent years. Although our understanding of this
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process remains rudimentary, emerging data indicates that the impact of force on chromatin is

time-, magnitude- and cell type-dependent.

Mechanical force transmitted from cell adhesions to the nucleus has indeed been shown

to result in immediate displacement of chromatin, which correlates with activation of

mechanosensitive gene expression 53,54. How this specificity of force-mediated activation of only

certain genes is achieved remains a key open question. One possibility is that it depends on the

positioning of the genes. For example, the epidermal differentiation complex (EDC) gene cluster

is inactive in epidermal stem cells, where the locus resides in close proximity to the lamina.

Application of tension on the lamina through the LINC complex is critical for maintaining the

compaction of chromatin at this locus and gene silencing, preventing precocious expression of

differentiation genes 55.

On longer time scales of minutes, both cell-extrinsic (dynamic tensile loading) and

cell-intrinsic (elevation of cellular contractility) mechanical stimulation triggers ATP-dependent

condensation of euchromatin into heterochromatin in mesenchymal stem cells, leading to a

suppression of gene expression in the condensed regions 56,57. In contrast, cyclic uniaxial

mechanical stretch in epidermal stem cells leads to a decrease in H3K9me3-marked condensed

heterochromatin within 30 minutes of force application, but this decrease has no substantial

impact on expression of protein-coding genes as the changes occur mainly at non-coding

regions. Instead, the decrease in stiff, lamina proximal heterochromatin contributes to nuclear

softening that is required to dissipate mechanical energy to prevent DNA damage 20. If this

mechanical stretch stimulus persists for several hours, cells align perpendicular to the direction

of stretch, thereby minimizing strain of the nucleus, allowing the cells to restore steady state

chromatin architecture 20. Interestingly, if the stretch is biaxial and thus cells are not able to align

to avoid strain, the regions that have lost H3K9me3 will, in the scale of days, gain H3K27me3,

which is also a silencing mark, most likely as a compensatory mechanism to ensure proper

silencing of these regions 58. The application of long-term biaxial stretch will further deplete free

nuclear G-actin to trigger transcriptional repression accumulation of H3K27me also at promoters

of genes that are expressed at low levels, preventing epidermal stem cell differentiation 58. The

potential of nuclear strain to trigger heterochromatin changes thus appears cell type- and cell

state-specific, determined by the steady state nuclear stiffness 20,56,59. For example cancer cell

lines with low Lamin A and thus low nuclear stiffness and membrane tension are refractory to

force-induced changes in H3K9me3 and in some cases even increased H3K9me3 in response

to force, but could be rendered mechanosensitive by overexpressing Lamin A 20 (Figure 3a).
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The notion that histone modifications respond to changes in cell geometry [G] are

supported by studies using extrinsic constraints on cell morphology. Forcing mammary epithelial

cells into rounded shapes using adhesive micropatterns resulted in global histone deacetylation,

chromatin condensation, and overall reduction in gene expression 60. Similarly, forcing

mesenchymal stem cells into elongated shapes led to increased histone deacetylase activity

and subsequent decreased histone acetylation 61, whereas increasing cell spread area of

fibroblasts triggered increases histone acetylation and changes in gene expression of

cytoskeletal genes through effects on actomyosin contractility 62. Studies in melanoma cells

further showed that tissue curvature, most likely through increasing mechanical stress,

promotes increased deposition of H3K4me2 and H3K9ac to enhance expression of

pro-oncogenic genes 63. Intriguingly, chromatin architecture can feed back to regulate the

nuclear mechanical state as it has been shown that haploinsufficiency of the chromatin modifier

MLL4/COMPASS complex in Kabuki syndrome leads to increased H3K27me3 and polycomb

complex clustering, leading to increased nuclear stiffness 64.

The mechanisms by which stretch, compression and changes in cell and nuclear shape

drive epigenetic and transcriptional changes are still unclear but some mechanistic insights are

beginning to unravel. As changes in cell and nuclear shape trigger stretch-induced ion channels,

intracellular Ca2+ signaling has been implicated in heterochromatin regulation downstream of

mechanical deformation 20,59,65 (Figure 3a). Interestingly, formation of the perinuclear actin ring

that mediates nuclear actin levels is also driven by elevation of intracellular Ca2+, linking

nuclear strain with actin-driven effects on transcription 20,58,66,67. In addition, actomyosin

contractility and subsequent local tension on the nuclear envelope is likely to play a role, as

illustrated by the effects of manipulating LINC complex or Lamin A on chromatin and gene

expression in response to force 31,55,68. Whether these effects of local tension are driven by

nuclear strain, thus converging with the above described mechanisms involving nuclear

deformation, remains an intriguing open question. Another alternative or parallel layer of

regulation could impart from more local nuclear deformations, driven by the perinuclear

cytoskeleton and leading to highly localized nuclear invaginations and intranuclear polarization
69. The amount of perinuclear actin-rich invaginations correlates with the degree of

dedifferentiation in a variety of cell types 70. Compressive forces from the microtubules have also

been recently shown to trigger lobulated nuclear shapes and local loss of H3K9me3

heterochromatin from within these NE invaginations, resulting in gene expression changes in

human hematopoietic stem cells during their early differentiation 71. Similarly, the

cytomegalovirus has been shown to utilize positioning of the microtubule organizing center to
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regulate the nuclear lamina and intranuclear polarization to spatially segregate viral DNA from

compact chromatin of the host DNA, thus maximizing virus replication 72.

Collectively these studies emphasize the intimate, functionally relevant connection between cell

and nuclear shape changes and 3D chromatin organization and epigenetic state to regulate

gene expression. The key question is how these changes interface with biochemical signals to

provide specificity while preventing uncontrolled changes in activity that could result from the

constant exposure of cells to mechanical force. This crosstalk between mechanical and

biochemical signals and their physiological relevance will be the focus of the rest of this review.

Actomyosin dynamics and nuclear actin in
transcriptional regulation
A large majority of the above-described mechanisms of sensing and responding to mechanical

forces converge on actomyosin dynamics either through direct regulation of the cytoskeleton or

by impacting signaling pathways that influence actin dynamics. There are three central

mechanisms by which actin can regulate transcription downstream of mechanical signals: i)

regulation of the core transcriptional machinery and chromatin modifiers by nuclear actin, ii)

regulation of the SRF/MRTF signaling pathway, and iii) regulation of YAP/TAZ mechanosensitive

transcriptional coactivators that respond to changes in actomyosin.

Nuclear actin in mechanical regulation of core transcription.

After initial controversy, it has become well accepted that actin is also found in the nucleus, both

as monomeric G-actin and as filamentous F-actin 73. Actin is transported through the nuclear

pore as a monomer, and the availability of monomers is rate-limiting for the transport in both

directions 74. Thus, any mechanochemical signaling process that impacts actin dynamics and

thus the ratio of free G-actin to bound filamentous F-actin in the cytoplasm, including processes

such as cell spreading, is likely to influence nuclear actin levels 75 (Figure 3a).

Nuclear actin plays multiple roles in regulation of transcription regulation and initiation,

chromatin reorganization, and DNA repair (for a recent comprehensive review see for example

Ref.73). Nuclear G-actin levels positively correlate with global transcription rates 58,76–80. Although

the precise molecular mechanism(s) still need to be worked out, interactome studies have

revealed association of actin with several proteins involved in transcription such as components

of the preinitiation complex, pre-mRNA splicing and processing factors, and transcription
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elongation factors 77,79,81 (Figure 3a). In Drosophila oocytes actin associates with RNA

Polymerase II (RNAPII) on gene bodies of actively transcribed genes 80, whereas specific actin

association with chromatin in mammalian cells awaits demonstration. Nuclear actin levels are

dynamically regulated by force, and decreased nuclear actin observed is in response to

substrate stretching. Here, formation of a tight perinuclear actin ring leads to a decrease in

RNAPII transcriptional elongation, subsequently allowing Histone 3 tri-methylation at lysine 27

(H3K27me3) at promoters to silence epidermal differentiation genes 58. Signals from the ECM

substrate can also reduce nuclear actin levels, suppressing transcription and promoting

quiescence in mammary epithelial cells 82. This signaling axis is disrupted in human breast

cancer cells resulting in continuous proliferation 76. Whether this laminin 111-dependent effect is

of mechanical or biochemical nature remains to be investigated.

G-actin has been also identified as a structural component and allosteric regulator of

several chromatin remodeling complexes including Ino80, SWI/SNF and Tip60/NuA4 83,84

(Figure 3a). Chromatin remodeling complexes control chromatin accessibility for replication,

transcription, and DNA damage repair. Functionally, the G-actin-containing structural modules

participate in allosteric control of the motor subunit of the complexes. Indeed β-actin-null mouse

embryonic fibroblasts display reduced chromatin association and activity of the ATPase subunit

of the BAF complex and show defects in gene expression 85–87. Curiously, these complexes also

contain an additional actin-like subunit, ACTL6A or BAF53, with no known cytoskeletal function,

suggesting evolution of a dedicated factor that might retain only the transcription-associated

functions of actin in this context. Whether these functions of actin and/or of ACTL6A are

impacted by dynamic regulation of nuclear actin, and thus could potentially be

mechanosensitive, remains an important open question.

Also the Wave Regulatory Complex (WRC) and Arp2/3 complexes, as well as certain

myosin motor proteins, have been linked to transcription or transcription-related processes,

indicating a role for nuclear F-actin in transcriptional regulation 88–90. Such F-actin-mediated

transcriptional processes include reactivation of the otherwise silenced Oct4 pluripotency gene

during oocyte-mediated nuclear reprogramming of somatic nuclei 91–93.

Taken together these findings indicate that the dynamic communication between the

cytoplasmic and nuclear actin pools can transmit information from the extracellular environment

into the nucleus (Figure 3a). Further studies are needed to establish the biochemical basis of

actin-mediated transcriptional regulation, and the role of actin dynamics in functional regulation

of chromatin remodeling complexes. Advances in this field requires development of tools to

better dissect the causative relationships between co-occurring regulation of the transcriptional
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machinery, TF activity, and chromatin remodelling in response to changes in actomyosin

dynamics.

The SRF/MRTF system and transcriptional reinforcement of cell-ECM

adhesion and actomyosin.

The second main mechanism by which actin regulates gene expression is by controlling the

assembly of SRF/MRTF [G] TF complexes (Figure 3b). SRF can associate with different

transcriptional co-activators such as TCFs [G] and MRTFs [G] in response to ERK signaling and

RHO GTPase [G] activity, respectively 94–98. SRF/MRTF transcriptional complexes mediate gene

activation by either facilitating RNAPII recruitment, or promoter escape of pre-loaded RNAPII,

depending on the genomic context 99. G-actin directly binds to and inhibits MRTFs, so that upon

RHO activation and cytoplasmic F-actin polymerization (and subsequent a drop in free G-actin

level) MRTFs are set free to bind SRF 100. Evidence also indicates a specific role for the nuclear

F-actin pool in the regulation of SRF/MRTF 75,101,102. Upon higher demand of F-actin (e.g. due to

increased motility or in response to mechanical stress), the SRF/MRTF system is activated and

promotes expression ECM, cell-ECM adhesion and cytoskeletal genes to facilitate a feedback

mechanoadaptation [G] 103–109. This central role of SRF in regulating transcription of cytoskeletal

and ECM components and mechanoadaptation is also important for epidermal homeostasis and

skin barrier function 110–114, and in endothelial cells to promote vessel growth and maturation
115–117. Finally, SRF can additionally link mechanical cues to the regulation of cell proliferation

and differentiation, which depends on a balance between TCFs and MRTFs 118–121. The

SRF/MRTF system thus relays changes in extracellular forces and cytoskeletal actin dynamics

into the nucleus (Figure 3b).

The YAP/TAZ coactivators as a “mechanics to biology” transduction

module.

Changes in the actomyosin cytoskeleton also modulate the activity of the ubiquitously

expressed paralogous factors YAP and TAZ that play a central role in regulation of transcription

downstream of mechanical force, including cell geometry, ECM stiffness, stretching and shear

stress 122,123 (Figure 3c). YAP/TAZ dynamically shuttle between the cytoplasm and the nucleus in

response to multiple inputs including the Hippo pathway, a kinase cascade that controls tissue

and organ size across animals, and their subcellular localization approximates their

transcriptional activity. In the nucleus, YAP and TAZ act as transcriptional coactivators and bind
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the TEAD family of TFs (TEAD1-4). Moreover, the YAP/TEAD complexes can interact with

additional TF complexes that bind DNA in the vicinity of TEADs including AP1, SRF/MRTF, E2F

and Myc that cooperate with YAP/TEAD, or TRPS1 that dampens YAP/TEAD-regulated

chromatin remodeling and transcription. YAP/TEAD complexes are found preferentially at distal

super-enhancer elements, and regulate transcription by recruiting the Mediator and BRD4

epigenetic coactivators to drive RNAPII activity at proximal promoters 124.

The “mechanosensitive” control of YAP/TAZ is an integral part of the mechanisms that

coordinate local cell growth with global tissue size such as contact inhibition of growth [G] 125–127,

cell competition [G] within epithelia 128–135, the recently proposed “lateral inhibition” or “leader

selection” process 136,137, and compensatory tissue growth in response to mechanical expansion
110. YAP/TAZ respond to F-actin, rather than to G-actin, in a manner which is largely independent

of the type of adhesive ECM ligands and integrins involved, but dependent on the

mechanosensitive Talin1/2 proteins 122,123,138,139. Various mechanisms to control YAP

mechanoactivation have been proposed, and they likely act in parallel. These include the

regulation of LATS1/2 kinases downstream of the RAP2 small GTPase, of the nuclear

actin-binding ARID1A protein, and of nuclear pore permeability 38–40,140–142 (Figure 3c).

Interestingly, cells do not only passively respond to extracellular forces, but can actively

tune the cytoskeletal response to extracellular forces and the ensuing YAP/TAZ activation. Key

factors involved in this feedback tuning process are the F-actin capping and severing proteins

CAPZ, Cofilin1/2 and Gelsolin, the focal adhesion component CCM3 (Cerebral Cavernous

Malformation 3, also known as PDCD10), and the F-actin bundling protein Fascin1 125,143–146.

Regulated expression of these cytoskeletal factors by oncogenes provides transformed cells

with a cell-autonomous [G] mechanism to overcome a soft, tumor-suppressive mechanical

microenvironment 144,147.

Similar to SRF/MRTF, also YAP/TAZ signaling feeds back into the expression of

cytoskeletal genes, facilitating mechanoadaptation 148–151. However, YAP/TAZ differ from the

MRTF/SRF system as they translate mechanical inputs into broader biological responses.

Indeed YAP/TAZ communicate the degree of extracellular forces, and the corresponding

degree of intracellular tension, to the nucleus to regulate proliferation, apoptosis, differentiation

and their associated metabolic pathways 122,152. Thus, the relevance of the mechanically

regulated YAP/TAZ transcriptional response appears widespread and spans a large number of

organ systems in physiological and pathological scenarios.

In addition to MRTF/SRF and YAP/TAZ a number of other TFs have been shown in

certain circumstances to display mechanosensitivity (summarized in Table 1). However, the
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physiological relevance of these pathways is more specific or remains to be demonstrated.

Below we will discuss the most prominent examples of physiologically-relevant

mechanosensitive transcriptional pathways for which in vivo genetic evidence has been

provided, or which occur in tissues/organs that have been shown to display

physiologically-relevant mechanoresponses.

Mechanosensitive transcription during development

and in stem cells
During development, cell fate needs to be tightly coordinated with cell morphology and position.

In addition, morphogenetic movements generate dynamic stretching and compression forces as

well as changes in tissue curvature 1–3. Thus, it has been long speculated that changes in forces

and cell morphologies could impact TF activity to provide a feedback control of development.

Although the direct link between mechanical forces and the transcriptional response

downstream of the TFs still needs to be demonstrated in most cases, gene knockout studies of

mechanosensitive TFs have revealed essential roles for these pathways in development.

Tissue deformation, cell-cell tension and the regulation of β-Catenin.

A number of in vivo studies demonstrate the role of mechanical regulation of the WNT/β-Catenin

pathway in coupling morphogenetic movements and transcriptional regulation. In Drosophila

embryos, tissue compression rescues expression of the Twist mesoderm TF in mutants with

defective morphogenetic movements 153 (Figure 4a). Build-up of tissue tension results in Src

activation, leading to phosphorylation of β-Catenin to facilitate its release from cell-cell

adhesions for nuclear entry 154,155. Nuclear β-Catenin acts as a transcriptional coactivator for

TCF/LEF TF, and is mainly regulated by the WNT pathway 156. The coactivator function of

β-Catenin depends on recruitment of multiple transcriptional and chromatin regulatory factors
157,158. Tension-mediated regulation of β-Catenin also operates in vertebrate embryos during

mesoderm induction as well as in the mouse intestinal epithelium 159,160, and has been observed

in the skin of mice overexpressing active Rho kinase (ROCK) 161. In human pluripotent stem

cells, a soft ECM promotes the formation of cell-cell junctions that function as a “reservoir” for

WNT-induced β-Catenin activation, so that upon localized high cell-cell tension β-Catenin can

be locally activated to drive mesoderm specification 162,163. The precise mechanical input driving

such activation remains elusive, also because of conflicting studies where β-Catenin is shown
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not to be released but recruited to stabilize the junctions in response to tension 164. On the other

hand, mechanical stretch in endothelial cells can unmask a phosphorylation site on VE-cadherin

that is normally masked by β-Catenin binding, enabling increased turnover of cell-cell adhesions
165. Thus, a possible reconciliation of these different findings is that the ability of cell-cell tension

to release and activate β-Catenin depends on cell-type specific cell-cell adhesion dynamics 166,

and in cells with more dynamic, unstable adhesions such as endothelial cells, tension leads to

adhesion disassembly and β-Catenin release 167, whereas in cells with stable adhesions such as

epithelial cells, tension retains β-Catenin at junctions 164, resulting in opposing transcriptional

outcomes.

YAP/TAZ mechanotransduction in stem cell regulation.

YAP/TAZ promote cell proliferation in multiple cell types, including terminally differentiated cells

when overexpressed. The cell cycle re-entry of terminally differentiated cells is often linked to

cell de-differentiation, which has suggested a role for YAP/TAZ in regulating stem cells. Studies

in adult mice have indicated that YAP/TAZ are important in the context of “emergency” stem cell

activation for tissue regeneration after damage, rather than for homeostatic stem cell renewal
124,168–170. In human stem cells YAP activation can favor reprogramming to the naive pluripotent

state and their differentiation, but its requirement for hPSC self-renewal is rather limited 150,171,172.

This may reflect the physiological function of YAP/TAZ in the context of the early mouse embryo,

where YAP/TAZ promote differentiation of the trophectoderm [G] or trophoblast stem cell fate,

where they are active in response to ROCK and tissue tension, but do not control the pluripotent

inner cell mass [G] fate, where they are actively inhibited by the Hippo pathway 173–178. Indeed,

while Yap1-deficient mouse embryos arrest around E8.5 due to severe embryonic and

extraembryonic defects 179, and Taz (or WWTR1)-deficient embryos are viable but develop

multicystic kidney disease during development and rarely survive to adulthood 180–182, double

knockout embryos die at the morula stage, indicating that YAP and TAZ are redundant but

collectively essential for very early embryogenesis 176.

Exploiting mechano-responsive transcription for regenerative medicine.

In addition to critical roles in morphogenesis, mechanics of the cell microenvironment have

profound effects on ex vivo stem cell amplification and in vivo engraftment 183–186. In the case of

intestinal organoids [G] or intestinal injury in mice, a stiff ECM promotes stem cell expansion

and regenerative stem cell reprogramming through YAP/TAZ 187,188. Another example is the
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mechano-chemical regulation of mesenchymal stem cell differentiation on stiff substrata, which

occurs by regulating YAP/TAZ and RARG 31,33,123,146,189–191. This signaling axis is likely of

physiological relevance, as modulation of ECM rigidity or actomyosin contractility alter

mesenchymal stem cell differentiation trajectories also in vivo 192,193. These findings have

triggered interest in exploring the druggability of the ECM-YAP/TAZ-transcription axis, and some

studies have used actomyosin inhibitory drugs to shut down unwanted YAP/TAZ activity to

enable the in vitro differentiation of pancreatic β-cells 194–197 (Figure 4b). Conversely, the

availability of small-molecule compounds to activate YAP/TAZ 198–200 may enable a more efficient

expansion of stem cells from patients affected by genetic deficiencies in cell-ECM adhesion

receptors 201–203. Thus, the regulation of ECM mechanotransduction and the associated

transcriptional responses bears great potential in the context of regenerative medicine [G],

although the ability to target such a pleiotropic mechanism to drug specific

mechanotransduction processes while avoiding unwanted side effects remains a key challenge

in the field.

The cardiovascular system as paradigm for

mechanical force-mediated transcriptional regulation
The physiological relevance of force-mediated transcriptional control is probably most well

understood in the cardiovascular system, thus serving as an excellent paradigm for highlighting

the in vivo evidence for mechanosignaling. Tangential shear forces associated with blood flow

and sensed by endothelial cells (ECs) are major determinants of vascular morphogenesis

during development, and of vascular remodelling during adult life. Moreover, variations in the

magnitude and pattern of blood flow can contribute to inflammatory responses and to disease.

As with other mechanical inputs, these responses entail both morphological and cytoskeletal

rearrangements, and the modulation of TF activity 9,204 (Figure 4c).

Protective effects of high laminar flow.

High laminar flow guides angiogenesis during development, stabilizes vessels, promotes the

alignment of ECs in the direction of flow, decreases EC turnover, suppresses inflammation and

activates antioxidant pathways, preventing the formation of atherosclerotic plaques (Figure 4c).

On the level of intracellular signaling, high laminar flow promotes the activation of the NRF2 TF.

NRF2 regulates transcription by forming heterodimers with members of the sMaf protein family,
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and is activated by oxidative stress. Consequently, the main transcriptional targets of NRF2 are

antioxidant protective genes 205,206. Activation of NRF2 by blood flow not only empowers

endothelial cell antioxidant metabolism, but also suppresses inflammation. This

anti-inflammatory response depends on the transmission of shearing forces by the glycocalyx,

entails the activation of PI3K/AKT and the production of mitochondrial ROS, and is modulated

by COX2 activity and prostaglandins 207–213.

High laminar flow also promotes the activation of ERK5, which induces the activity of the

MEF2 TF and chromatin acetylation, leading to increased expression of KLF2 214–218. This

induction is further reinforced by flow-regulated expression of miR-92a 219. KLF2 is a TF whose

elevated expression in response to flow coordinates the expression of vasoactive compounds

that signal to smooth muscle cells to maintain the vascular tone, and also primes the expression

of NRF2 220–222.

Fluid shear stresses can also regulate gene expression through Notch. Tension across

the Delta/Notch signaling complex at cell-cell contacts facilitates its proteolytic cleavage and the

release of the Notch intracellular domain (NICD), which acts as nuclear coactivator for the RBPJ

DNA-binding factor 223–228. This mechanism is relevant for the regional specification of the

endothelium during development, for the cross-talk with vascular smooth muscle cells, and for

the formation of the heart structures 229–235. Interestingly, activation of Notch depends on the

extent and tugging force of cell-cell contacts in epithelial cells 236–239, suggesting the interesting

possibility that forces between adjacent cells in a monolayer can also regulate Notch.

Also the regulation of YAP/TAZ by mechanical cues is important for adjusting EC

proliferation 123,240,241, during the maintenance of tissue stiffness homeostasis 242, and during

developmental sprouting angiogenesis [G] where YAP/TAZ are required for the maturation of the

vascular barrier and for direct angiogenesis along a tissue stiffness gradient 243–247. In this

context, YAP/TAZ co-operate with the two antagonistic TFs TFII-I (also known as GTF2I) and

GATA2 to regulate the expression of the key angiogenic Vascular Endothelial Factor Receptor-2

gene 248.

Homeostatic remodeling in response to low laminar flow.

When arteries are subjected to low laminar flow, a homeostatic mechanism reduces lumen

diameter by inward remodeling to restore the optimal shear stress (Figure 4c). This mechanism

is based on the cross talk between two pathways: at low shear stress intensity, only SMAD2/3/4

are activated and induce inward remodeling; when higher levels of shear stress are reinstalled,

also the ERK5/KLF2 system is activated, leading to inhibition of SMAD2/3 249 . A similar
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cross-talk also occurs for the SMAD1/5/4 transcription complex. SMAD1/5/4 is activated in

response to shear stresses, downstream of the BMP type I receptor Alk1 and of its coreceptor

Endoglin 250–252. This is relevant for the stabilization of vessels by flow shear stress, and

contributes to arteriovenous malformations observed in HHT patients 250. At the same time,

activation of KLF2 prevents excessive BMP signalling, which accounts for the protective effects

of high laminar shear stress against vascular calcifications 253. Taken together, a number of

transcriptional regulators are activated by laminar flow to regulate vascular development and

homeostasis. A critical next step for the field is to understand the specific versus overlapping

roles of these pathways as well as the mechanisms of crosstalk and co-operativity by which

transcriptional specificity in response to specific flow magnitudes is achieved.

Pathological roles of mechanosensitive transcription

Pathological transcriptional responses to disturbed blood flow.

Not only the magnitude of shear stress, but also the type (i.e. disturbed vs. laminar flow) is a

fundamental regulator of endothelial homeostasis 254,255. Disturbances in fluid flow dynamics

associated with branching or turning points of the arterial tree facilitate the emergence of

pathological phenotypes including ECs misalignment, proliferation, and a low level of chronic

inflammation. This, over long periods and in cooperation with other risk factors, predisposes to

formation of atherosclerotic plaques at such regions (Figure 4c). Disturbed flow acting on the

apical surface of ECs is transmitted through the membrane and cortical cytoskeleton to cell-cell

junctions, where tension is sensed by a complex between VE-cadherin, PECAM-1 and

VEGFR2, and to the basal surface, where tension is sensed at integrin attachment sites 256,257.

In response to tension, several signalling mediators are activated including PI3K, SRC,

PLC/PKC, the small GTPase RAC1 and NOX. These in turn promote the activation of the

NFkappaB, AP1 and YAP/TAZ TF complexes, resulting in the promotion of proinflammatory

gene expression and enhancing proliferation 258–263. This may indicate YAP/TAZ inhibition as a

potential therapy against atherosclerosis, or to normalize vascular malformations in Hereditary

Hemorrhagic Telangiectasia [G] 264,265.

The interplay between shear stress and cell-ECM adhesions in regulating the response

to flow is complex, because specific ECM ligands that engage their specific integrin receptors

can have opposite effects on NFkappaB 266. This may also account for the opposite regulation of

NFkappaB in response to ECM stiffness observed in different cell types 267,268. Moreover,
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transmission of tension from cell-ECM attachment sites to the nucleus can regulate NFkappaB

in response to cell stretching 29,269,270.

A loop of mechanosensitive transcription in fibrosis.

A key paradigm of pathological mechanotransduction is the fibrotic response [G]. During

fibrosis, a self-sustaining loop between fibroblast activation/proliferation and ECM

secretion/contraction is key for pathological tissue remodeling and stiffening 8. This loop was key

to discovering how cells “read” ECM stiffness by developing active tension to resist extracellular

rigidity 12,271. Multiple mechano-sensitive TFs participate in this loop and establish an integrated

and multi-tiered feed-forward system (Figure 4d).

Several data indicate a role for YAP/TAZ in fibrotic reactions in mice and humans
45,148,272–275. This YAP/TAZ-driven mechanical feedback loop also maintains the activated

myofibroblast phenotype during the contraction model of alveolar formation and regeneration

and mediate the ECM-mediated crosstalk between cancer cells and cancer associated

fibroblasts [G] 146,148,276. Also the mechanoadaptive transcriptional function of SRF in promoting

transcription of cytoskeletal and ECM genes plays a key role during fibrosis, and is amplified in

fibrotic disease. Thus, small-molecule modulators of SRF/MRTF can be used to prevent tissue

fibrosis or, conversely, to promote wound healing 277–290. During fibrosis, SRF/MRTF cooperates

with YAP/TEAD transcription complexes at adjacent promoter elements 104,105,291. This crosstalk

is also hijacked in cancer cells to sustain malignant growth [G] 292–296.

Another example of the role mechanosensitive TFs in the fibrotic response is the

activation of Smad2/3/4 [G] TF complexes 297 upon liberation of TGF-β signalling molecules from

“ECM traps” by active pulling of cells on the ECM via integrin complexes 298–305, which

cooperates with mechanically-regulated SRF/MRTF 106,107. Finally, also the SNAIL1 and

ZNF1416 TFs can be activated in the context of fibrosis and contribute to this self-amplification

loop 306,307 (Figure 4d).

YAP/TAZ as mediators of mechanically-induced breast cancer progression.

ECM stiffness plays an important role for breast cancer development, often dominating over the

cell’s genetic and oncogenetic makeup to promote the loss of epithelial polarity and

epithelial-to-mesenchymal transition [G] (EMT), the acquisition of migratory and invasive

behavior, and proliferation 308–310. YAP/TAZ can promote several of these phenotypes in cancer

cells 311–319 and are relevant in the crosstalk between ECM stiffness and oncogenes in promoting
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pro-tumorigenic phenotypes 147,320 (Figure 4e). Moreover, YAP/TAZ lay at the center of a

multi-layered feed-forward loop between high mammographic density / ECM stiffness, EMT and

microRNAs 312,321–324. In line with these data, YAP/TAZ promote breast cancer progression in

mice, even if genetic evidence for a role of ECM mechanotransduction components in mammary

tumorigenesis, and on their effects of YAP/TAZ, awaits stronger experimental evidence 314,325–329.

Mechanical control of liver homeostasis and cancer through YAP/TAZ.

Hepatocytes were among the first cell types used to study ECM stiffness mechanoresponses 330,

and the liver tissue is a model system for organ-size regulation by the Hippo pathway 331.

Recent data indicate that control of YAP/TAZ by the soft tissue mechanical properties are key to

maintain hepatocyte proliferative, metabolic and cell fate homeostasis, and to control liver organ

size 143. This could relate with the recent finding that mechanical pressure homeostasis of liver

sinusoids is important during tissue regeneration 332. Liver tissue softness also represents a

tumor-suppressive mechanism that can be bypassed by cell-autonomous and oncogene-driven

regulation of the Fascin1 actin bundling protein, which supports YAP/TAZ mechanotransduction,

cholangiocellular transdifferentiation and the formation of cholangiocarcinomas 144.

Overall, experimental evidence obtained by the cross-contamination of several fields of

research has led to the definition of multiple molecular mechanisms by which tissue mechanics

can influence genome organization, chromatin epigenetics and gene expression, and in

particular genetic ablation experiments in model organisms point to the importance of these

mechanisms in the context of normal and diseased cells. As most of the factors highlighted in

this section can also be activated by purely biochemical signals, the challenge in the field is now

to more precisely dissect the precise, direct role of mechanical forces in modulating these

pathways in physiological and pathological scenarios in vivo.

Emerging concepts
The direct transmission of forces through the actin cytoskeleton, and its structural remodelling in

response to forces, is a powerful mechanism by which mechanical information can be

communicated inside the cell. This is interesting in light of the notion that not only the nucleus,

but several other organelles are surrounded by actin filaments, which are important for their

subcellular localization, transport and dynamics.
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We already discussed evidence implying force transmission to the nucleus, which results

in calcium release from the nuclear envelope and/or in response to deformation of the ER

proximal to the nucleus 20,34–37. This could perhaps affect the activity of TFs that originate as

ER-resident transmembrane proteins 333. Another example of organelle mechanosensitivity is

the Golgi apparatus, whose rheology mirrors cell tension in response to extracellular mechanical

cues 42,45. This tensional adaptation links extracellular mechanical cues with activation of the

SREBP1/2 TFs, by regulating trafficking of the SREBP1/2 transmembrane precursors between

the Golgi and the ER 45,334 (Figure 4f). This mechanism accounts for lipid accumulation in cells

on a soft ECM, and couples the promotion of mesenchymal stem cell differentiation into

adipocytes with switching on the corresponding lipogenic metabolism program.

In other recent studies, mitochondrial morphology has been shown to be regulated by

the interplay between peri-mitochondrial actin and mechanical cues from the ECM 44,46,335–341

(Figure 4f). Mechanical forces can even bypass the requirement for actin for mitochondrial

fission, by directly inducing mitochondrial deformation 43. Cells on a soft ECM display enhanced

DRP1-dependent mitochondrial fission, which likely depends on cooperation between multiple

mechanisms, and which mediates activation of the NRF2 TF to empower antioxidant

metabolism, ultimately making cells on a soft ECM able to better resist oxidative stress
44,46,336,342–344. The finding that a similar pathway is relevant for neural stem cell commitment in

the mouse brain, the softest among tissues, suggests this link may have multiple physiological

roles beyond redox homeostasis 345,346.

These studies collectively suggest the notion that forces may regulate peri-organelle actin pools,

an emerging concept in the field of mechanotransduction with potentially significant relevance in

mediating mechano-responsive signalling and downstream transcriptional responses.

Concluding remarks
Taken together, recent advances in the field of mechanical regulation of transcription indicate

that multiple organelles including the plasma membrane, nucleus, mitochondria and ER display

mechanosensitivity and are capable of activating downstream signaling to regulate transcription.

Going forward it will be critical to determine under which scenarios/in response to what kind of

forces these various organelles are triggered to respond and how they cooperate to determine

coherent and integrated transcriptional outputs. In addition, the molecular mechanosensors that

are responsible for direct sensing of forces within the specific mechanosensitive organelles and

thus the mechanisms of initial conversion of mechanical force into a biochemical signal remain
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elusive, in particular in vivo. One key obstacle to progress is the absence of tools that allow

direct visualization and quantification of tension and stress in intact tissues in vivo. Such tools,

in combination with single molecule imaging of transcriptional output will allow establishment of

quantitative relationships between specific mechanical forces and their transcriptional outputs.

This would also allow distinguishing the force-mediated effects of mechanosensitive TF systems

from their non-mechanosensitive functions. In addition, how TFs cooperate with the pleiotropic

effects of force on chromatin and transcription remains an important open question. Unraveling

the molecular details of these processes will facilitate understanding if the specific mechanical

properties of tissue could function as a layer of “epigenetic” regulation to maintain stable gene

transcription and cell identity, as a mechanism to “template” appropriate transcriptional

responses during regeneration and repair.
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Glossary
mechanical forces: cells in tissues are subjected to multiple forces including applied, frictional,

tension and spring (i.e. stretch or compression) forces

shear: shear occurs when a fluid applies a tangential force that pushes one part of the cell in one

direction, and the rest of the cell is dragged in the opposite direction by adhesion to the ECM or to

other cells

tensile stress: the action-reaction forces acting at the cell-ECM or cell-cell contact sites, and the

opposite of compression

elasticity: the ability of a material to return to its original shape after the deformation-inducing

force is removed

viscosity: The ability of a material to resist deformation. Most biological materials are considered

visco-elastic, i.e they display properties of both elastic and viscous materials. Viscoelastic

materials have a strain (deformation) rate that is dependent on time and they dissipate energy

when a load is applied and removed whereas a purely elastic material does not.

friction: a resistance a surface encounters when its moving over another surface, eg. in joints,

tendons, eye or skin.

Hutchinson-Gilford progeria: a rare autosomal-dominant genetic disorder characterized by

premature aging symptoms and caused by mutations in the gene encoding for the Lamin-A/C

nucleoskeletal protein.

Duchenne’s muscular dystrophy: a genetic disorder characterized by progressive muscle

degeneration and weakness and caused by mutations in the gene encoding for the Dystrophin

cytoskeletal protein.

cell geometry: intended here as the degree of cell spreading on an adhesive substrate, which

regulates actomyosin tension accordingly.

SRF/MRTF: a transcriptional protein complex composed of the DNA-binding Serum Response

Factor (SRF) protein and of one of the MRTFs

TCF: Ternary Complex Factor family members Elk1, Net and SAP1 ETS-domain TFs

MRTF: Myocardin-Related TF family members Myocardin, MRTFA and MRTFB

RHO GTPase: small monomeric GTPases that function as molecular switches in response to

chemical or mechanical stimuli to regulate actin polymerization and its organization in contractile

bundles.

mechanoadaptation: the process by which a cell subjected to mechanical forces reinforces its

force-bearing structures



fibrotic response: tissue remodelling characterized by the deposition of collagenous ECM. This

can have a physiological function during wound healing (scarring) or a pathological function

which can interfere with or totally inhibit the normal architecture and function of the underlying

organ or tissue.

malignant growth: the ability of cancer cells to grow without control and to invade neighboring

tissues

Smad2/3/4: a heterotrimeric DNA-binding transcriptional protein complex composed of one

Smad4 and two Smad2 and/or Smad3 subunits, whose association is regulated by

phosphorylation of Smad2 and Smad3 in response to extracellular TGF-β ligands.

contact inhibition of growth: the process by which cell crowding, through the establishment of

cell-cell contacts and the reduction of cell geometry, inhibits cell proliferation.

cell competition: the active elimination of a viable but undesirable cell population by competitive

interactions within a tissue

Endomitosis: the division of chromosomes not followed by nuclear and cell division that results

in a bigger cell with an increased number of chromosomes

cell-autonomous: a property conferred by gene mutation or activation to a cell in a multicellular

structure, which is not observed in neighboring cells

cancer-associated fibroblasts: a population of cells found in tumors that are negative for

epithelial, endothelial and leukocyte markers, with an elongated morphology, lacking the

mutations found in cancer cells, and likely deriving from the fibroblast lineages(s).

keloid fibroproliferative disorders: benign growth of dermal cells, associated to continuous

deposition of collagen, that spreads beyond the margin of the original wound, commonly recurs

following excision, and rarely regresses spontaneously.

Hereditary Hemorrhagic Telangiectasia: a genetic disorder that results in the development of

multiple abnormalities in the blood vessels, often leading to hemorrhages.

sprouting angiogenesis: the growth of new capillary vessels out of preexisting vessels.

epithelial-to-mesenchymal transition : the differentiation process by which cells lose epithelial

identity and the ability to form stable cell-cell adhesions, and gain expression of mesenchymal

markers associated with increased migratory ability.

trophectoderm: the tissue of the preimplantation mammalian embryo that will contribute to

formation of the placenta

inner cell mass: the tissue of the preimplantation mammalian embryo that will contribute to

formation of the tissues of the fetus



regenerative therapy: the clinical use of stem cells to stimulate repair mechanisms and restore

function in damaged body tissues or organs

organoids: three-dimensional structures obtained by culturing stem cells in vitro, which

recapitulate key morphological and differentiation aspects of the real tissue/organ

glossary term



Table 1. The main transcription factors (TF) regulated in response to mechanical stimuli.

TF DNA binding motif Mechanical input

SRF/MRTF 5’-CC(A/T)6GG-3 ECM stiffness; Cell geometry;
Cell stretching

SMAD2/3/4 5’-GTCTAGAC-3’ (Smad
Binding Element motif),
5’-CCAGACA-3’ (CAGA
motif)

Traction force-mediated
unfastening of TGFβ from “ECM
traps”; Shear stresses (laminar
flow)

TEAD/YAP and TEAD/TAZ 5’-(G/A)CATTCC(A/T)-3’ ECM stiffness; Cell geometry;
Cell crowding; Cell stretching;
Cell compression; Shear
stresses (disturbed flow)

β-Catenin/LEF/TCF 5’-AGATCAAAGG-3’ Tissue compression

NRF2 5′-TGACtcaGCa-3′
Antioxidant Response
Elements

Shear stress (laminar flow); ECM
stiffness

NICD/RBPJ 5’-GTGGGGAA-3’ Cell-cell tugging forces, Shear
stress (laminar flow)

MEF2C (driving expression
of KLF2)

5’-(C/T)TA(A/T)4TA(G/A)-3’ Shear stress (laminar flow)

SMAD1/5/4 5’GGC/AGCC-3’ (GC-rich
SBE) in the vicinity of a
5’-AGAC-3’ (SBE)

Shear stress (laminar flow)

DNA binding motifs are based on a consensus from the literature, and do not take into account
alternative binding sites identified through chromatin-immunoprecipitation experiments.



Figure legends

Figure 1. Diagram of an epithelial cell subjected to extracellular or extrinsic forces, and

developing opposing intrinsic tension in response to these by contraction of the actomyosin

cytoskeleton. Multiple adhesion complexes can mediate the transmission of forces between the

cell and the surrounding ECM or other cells, including integrin-based focal adhesions,

cadherin-based adherens junctions and tight junctions (based on Tetraspanins, i.e. occludins

and claudins). These receptors are directly connected to F-actin by junctional proteins such as

Talin, α- and β-Catenin, and Zonula Occludens proteins. Shear stress results from blood flowing

on the cell surface, and is transmitted through the glycocalyx and actin cortex, and on opposing

resistance provided by cell attachment.

Figure 2. Mechanotransduction of forces into biochemical information. a. Cells attach to the

ECM through integrin receptor complexes, which are connected to the F-actin cytoskeleton via a

number of adaptor proteins, here depicted for simplicity by the Talin protein. On soft ECM,

absence of resisting forces and of opposing cytoskeletal tension leave Talin in a closed

conformation, limiting the maturation of Focal adhesions. On a stiff ECM, higher forces lead to

Talin unfolding, and recruitment of additional proteins to focal adhesions, depicted here by

Vinculin. Recruitment of these proteins in response to force initiates signalling within the cell. b.
Cells attach to neighboring cells' cadherin receptors, connected in the cytoplasm with F-actin via

Catenin adaptor proteins. Analogous to Talin, higher forces flowing across cell-cell adhesions

lead to unfolding of α-Catenin and recruitment of Vinculin and possibly of other signalling

molecules (purple). c. Membrane tension induced by direct deformation of the lipid bilayer, or

indirectly by application of forces on the ECM and/or cytoskeleton, causes a structural

rearrangement of the Piezo channel protein and allows inward ion currents. d. Forces can be

transmitted to the nucleus either directly (deformation) or indirectly through the actin

cytoskeleton, which is tethered to the nuclear envelope and to the nuclear lamins (lamina) by

LINC complexes. The inward permeability of Nuclear Pore Complexes (NPC), associated to

transmembrane nuclear-associated actin (TAN) lines, is promoted upon nuclear compression.

Nuclear membrane tension can trigger the release of calcium ions from intracellular reservoirs,

which synergistically induce the recruitment of Phospholipase (cPLA2) at the Inner Nuclear

Membrane and its activation. The resulting increase in Arachidonic Acid stimulates cytoplasmic

actin dynamics. Formation of endocytic caveolae also responds to membrane tension, acting as



a membrane reservoir to accommodate stretching, and regulating signaling pathways. Adhesion

receptors indicate both cell-ECM and cell-cell adhesions.

Figure 3. Mechanisms by which mechanical forces can regulate gene expression. a. Forces can

influence chromatin structural organization, epigenetic modifications and gene transcription.

Peripheral chromatin is physically connected, via the nuclear lamins (Lamina) and LINC

complexes, to the cytoplasmic actomyosin cytoskeleton. Several chromatin and DNA-associated

factors interact with, and are regulated by, nuclear globular and filamentous actin. Nuclear and

cytoplasmic actin dynamics are connected by the rate-limiting transport of G-actin across the

Nuclear Pore Complexes (NPC). Tension-dependent release of calcium within the cell can also

influence such processes. P, Ac and Me exemplify chromatin modifications. b. Binding of

monomeric globular actin to the MRTF coactivator protein precludes the interaction of MRTF

with the DNA-binding SRF TF. When cells are subjected to forces that induce cytoskeletal

tension and F-actin polymerization, the decrease of G-actin results in activation of

SRF/MRTF-dependent gene expression. c. Actomyosin tension regulates the nuclear

localization of the YAP/TAZ (Y/T) coactivators and their association with the TEAD family of TFs

via multiple parallel mechanisms. Force applied through focal adhesions leads to activation of

the RAP2 small GTPase, which relieves the inhibitory action of the LATS1/2 kinases on

cytoplasmic YAP/TAZ. Deformation of the nucleus in response to adhesion forces facilitates the

nuclear translocation of YAP/TAZ through Nuclear Pore Complexes (NPC). Binding of the

ARID1A protein to nuclear F-actin titrates away ARID1A from YAP/TAZ, facilitating the

interaction with TEAD TFs. Y/T indicates either YAP or TAZ proteins.

Figure 4. Selected functional implications of mechanically-regulated transcription for physiology,

regenerative medicine, and disease. a. Deformation of Drosophila embryonic tissues, which

occurs as a result of morphogenetic movements, reinforces expression of the Twist TF in

mesoderm cells, coordinating cell fate specification with morphogenesis. Lower, left: a field of

cells undergoing localized compression activate Twist expression (red nuclei). Lower, right: a

section of a Drosophila embryo stained for Twist in mesoderm cells undergoing folding and

invagination movements. b. The in vitro production of functional pancreatic endocrine β-cells is

a key objective for cell-based replacement therapies. Terminal differentiation of human induced

pluripotent stem cells (iPS) into insulin-secreting β-cells is hampered by culture on stiff Tissue

Culture plastics (gray line). Disabling YAP/TAZ mechanotransduction in pancreatic progenitors

with the F-actin inhibitor latrunculinB enables expression of Neurogenin3 and efficient terminal



differentiation (red arrow). Y/T indicates YAP/TEAD or TAZ/TEAD complexes. c. The TF network

that controls endothelial responses to shear stresses. High intensity laminar shear stress (LSS)

maintains endothelial homeostasis by flow-dependent regulation of multiple pathways and TFs.

Low intensity LSS leads to activation of Smad2/3/4 (SM2/3) transcription complexes and inward

vessel remodeling. Disturbed shear stress (DSS) activates a distinct set of pro-inflammatory and

pro-atherosclerotic TFs. LSS can modulate activation of the indicated membrane

receptors/coreceptors for the TGFβ (Alk5, Neuropilin1), BMP (Alk1, Endoglin) and Notch

pathways. d. TF and signalling networks controlling tissue fibrosis. Deposition and remodeling

of a collagenous ECM activates multiple mechano-sensitive TFs that cooperate to maintain

fibroblast activation and to further amplify ECM remodeling. Increased ECM stiffness and cell

contractility also facilitates the liberation of extracellular TGFβ1-2-3 ligands from ECM-bound

«traps» composed of the Latency Associated Peptide (LAP) and Latent TGFβ Binding Protein

(LTBP), by pulling via αVβ integrins, leading to activation of pro-fibrotic Smad2/3/4 TFs. MRTF

indicates MRTF/SRF complexes. e. During breast cancer development, cancer cells and cancer

associated fibroblasts (CAF) cooperate to remodel and stiffen the ECM. This maintains the

activated state of CAFs, enables metabolic cross-talk between CAFs and cancer cells, and

promotes malignant cancer cell behavior by regulating mechano-sensitive TFs. f. Metastatic

breast cancer cells often disseminate to organs with a soft ECM microenvironment. Reduced

actomyosin tension reverberates on peri-organelle F-actin pools, leading to decreased rigidity of

the Golgi apparatus, and to increased peri-mitochondrial F-actin. The resulting alterations of

organelle dynamics activate the SREBP1/2 and NRF2 TFs, which mediate metabolic

reprogramming and influence chemotherapy resistance.
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