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Summary

In the last century, the application of innovative high specific stiffness materi-

als like composites and nanocomposites has rapidly increased due to the need of

the aerospace industry to employ lighter and more efficient components for aircraft

structures. The reduction of aircraft mass has consequently contributed in decreas-

ing fuel consumption and, therefore, in cutting costs and carbon emissions. The

main problems, which have however come to light, derive from the difficulty in pre-

dicting events that are described by complex laws, and concern the understanding

of damage initiation and evolution mechanisms. In order to achieve an accurate

description of these complex materials, several approaches based on the classical

theory have been employed during the past years. However, their application for

damage propagation introduces some difficulties related to the presence of spatial

derivatives of displacements in the governing equations, which are undefined wher-

ever continuity of displacement fields is not verified. Many scientists have therefore

tried to equip these methods with the capability to simulate crack formation and

propagation, but all the proposed strategies present some drawbacks.

Innovative methods based on the peridynamic theory, which is a nonlocal re-

formulation of classical continuum mechanics, have recently been proposed to over-

come these limitations. Considering that the theory deals with integral equations

rather than spatial differentiation, peridynamics-based approaches can handle mate-

rial discontinuities, thus allowing for the modelling of the interfaces between different

phases and for the treatment of fracture as a natural material response. Moreover,

the introduction of a length parameter enables the analysis of material response at

different length scales, from macroscale to nanoscale, thus making the theory suited

also to the study of nanocomposite materials. However, peridynamic models are
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computationally more expensive than classical continuum ones due to their non-

local nature, which hinders their application in large-scale simulations. Moreover,

since the application of boundary conditions in peridynamics is nonlocal, it is more

challenging than that in the classical theory framework. Hence, it is convenient to

couple computational methods based on classical continuum mechanics with those

based on peridynamics.

In this context, the main purposes of the thesis are the study of local-to-nonlocal

coupling, with a focus on the analysis of overall equilibrium issues, and the applica-

tion of peridynamics for modelling nanocomposite mechanical properties.

The first part of the thesis, i.e., Chapter 2, addresses, for the first time, the prob-

lem of the overall equilibrium in the coupling of classical continuum mechanics and

peridynamics. The main original contributions of this work are the analytical and

numerical evidences that the main reason for the existence of out-of-balance forces is

a lack of balance between the local and nonlocal tractions at the coupling interface.

Other important contributions are represented by the study of the impact of the

shape of the coupling interface on the overall equilibrium, and by the analysis of the

effect of the location of the coupling interface in the context of damage propagation

problems.

In the second part of the thesis, i.e., in Chapter 3, peridynamics is exploited

to model the tensile modulus of polymer-based nanocomposites. The main original

contribution of this work is the development of a new approach capable of simu-

lating randomly distributed nanofillers with different sizes and orientations, and of

modelling different interphase properties, nanofiller agglomeration phenomena, and

nanofiller curvature. The work provides the fundamental bases for a future study of

crack formation and propagation in nanocomposite materials.



Sommario

Nel corso dell’ultimo secolo, l’applicazione di materiali innovati ad elevata rigi-

dezza specifica, come compositi e nanocompositi, è aumentata rapidamente a causa

della necessità da parte dell’industria aerospaziale di utilizzare componenti sempre

più leggeri e performanti. La riduzione della massa degli aeromobili ha contribuito

alla diminuzione del consumo di carburante e, quindi, al taglio di costi ed emissioni

di anidride carbonica. I maggiori problemi che sono tuttavia emersi derivano dalla

difficoltà nel predire eventi che sono descritti da leggi complesse, e riguardano la

comprensione dei meccanismi di innesco ed evoluzione delle cricche. Per ottenere

una descrizione accurata di questi materiali sono stati impiegati diversi approcci ba-

sati sulla teoria classica del continuo. Tuttavia, la loro applicazione allo studio della

propagazione di cricche introduce alcune difficoltà legate alla presenza di derivate

spaziali degli spostamenti nelle equazioni del moto, le quali non sono definite laddove

la continuità dei campi di spostamento non sia verificata. Molti ricercatori hanno

perciò dotato questi metodi della capacità di simulare la formazione e propagazione

delle cricche, ma tutte le strategie proposte presentano delle criticità.

Per superare questi limiti, sono stati proposti dei metodi basati sulla teoria del-

la peridinamica, una riformulazione non-locale della teoria classica del continuo.

Considerando che questa teoria prevede l’utilizzo di equazioni integrali anziché di

derivate spaziali, essa è efficace anche in corrispondenza di discontinuità del ma-

teriale, e permette quindi la modellazione delle interfacce tra diverse fasi e della

frattura come risposta naturale del materiale. L’introduzione di un parametro di

lunghezza interno consente inoltre l’analisi della risposta del materiale a diverse

scale di grandezza, dalla macroscala alla nanoscala, rendendo la teoria adatta an-

che allo studio di nanocompositi. Tuttavia, a causa della loro natura non-locale, i
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8 Sommario

modelli peridinamici hanno un costo computazionale superiore a quello dei modelli

basati sulla teoria classica del continuo, e sono quindi difficilmente applicabili allo

studio di strutture di grandi dimensioni. La natura non-locale della teoria causa

complicazioni anche nell’applicazione delle condizioni al contorno. Di conseguenza,

è conveniente accoppiare metodi basati sulla teoria classica del continuo con quelli

basati sulla peridinamica.

In questo contesto, gli obiettivi principali della tesi sono lo studio dell’accoppia-

mento tra meccanica classica del continuo e peridinamica, con particolare attenzione

all’analisi dell’equilibrio globale, e l’applicazione della peridinamica allo studio delle

proprietà meccaniche dei nanocompositi.

La prima parte della tesi, cioè il Capitolo 2, tratta per la prima volta la questione

dell’equilibrio globale in sistemi accoppiati. La maggiore innovazione è rappresentata

dai risultati analitici e numerici ottenuti, che provano che la mancanza di equilibrio

tra trazioni locali e non-locali nella zona di interfaccia tra i due metodi è la causa

del disequilibrio statico strutturale. Altri importanti contributi derivano dallo studio

dell’impatto della forma e della posizione della zona di interfaccia sull’entità delle

forze di disequilibrio e in problemi che coinvolgono la propagazione di cricche.

Nella seconda parte della tesi, ossia nel Capitolo 3, la peridinamica è utilizzata

per studiare le proprietà a trazione di nanocompositi. La maggiore innovazione è

costituita dallo sviluppo di un approccio in grado di simulare la distribuzione ran-

domica di nanocariche di diverse dimensioni e orientazioni, e di modellare diverse

proprietà di interfaccia, l’agglomerazione e la curvatura delle nanocariche. Que-

sto studio fornisce le basi fondamentali per una futura analisi della formazione e

propagazione delle cricche in materiali nanocompositi.
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Introduction

Material properties modelling and failure analysis in the

framework of classical continuum mechanics

Accurate material properties modelling is a major issue for many practical appli-

cations. Considering that experimental testing is very expensive and time-consuming,

numerical analysis is an essential tool for characterising the properties of various ma-

terials and modelling their performance, thus enabling the increase of their reliability

and the expansion of their application fields. During the past years, several ana-

lytical and numerical approaches based on classical continuum mechanics (CCM)

have been employed to these ends. Despite the effectiveness of CCM-based methods

in dealing with the modelling of the macroscopically relevant properties of various

materials, CCM approaches lack an internal length parameter which could enable

the modelling of materials and structures at different scales [1]. Furthermore, the

unavoidable presence of small or large cracks in many engineering structures still

represents a major challenge for the simulation of a full structural life cycle [2, Chap-

ter 16], [3–6]. Even though classical continuum mechanics-based numerical methods

are extensively used for the simulation of different structural problems, their appli-

cation for damage prediction introduces some challenges arising from the presence

of spatial derivatives of displacements in the governing equations, which are unde-

fined when the displacement fields are discontinuous [7], [8, Chapter 1]. Since cracks

are, in fact, discontinuities in the domain where the problem is defined, they do not

satisfy the basic underlying continuum hypothesis of classical continuum mechanics.

In order to achieve an accurate description of large and complex structures, which

can be affected by different levels of damage in their various parts or components,

many scientists have tried to equip CCM-based numerical methods, in particular
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the finite element method (FEM), with the capability to simulate crack formation

and propagation [9]. The most popular approaches that have been developed in

the last years are: partition of unity finite element method [10, 11], extended fi-

nite element method [12, 13], element erosion [14, 15], phase field model [16–19],

and interface elements with a cohesive zone model [20–22]. Even if these different

strategies have all been used so far, they all present some drawbacks [8, Chap-

ter 10], [9]. The computational burdens and complexity of the partition of unity

finite element method prevent its implementation in three-dimensional problems as

well as its application for the solution of problems involving dynamic crack branching

and multiple crack growth and interaction in complex patterns. Moreover, another

inherent drawback of this method is the unavoidable presence of a blending region

in correspondence with the neighbouring elements of the tip element in which the

crack tip is positioned. Since the partition of unity does not hold for those elements,

the blending region is characterized by a lower solution accuracy [23]. The issues

related to the use of the extended finite element method to model propagating cracks

are manifold. First, in dynamic brittle fracture problems, one may need to signifi-

cantly modify the input fracture energy in the numerical method in order to match

the values of the crack propagation speeds obtained from experimental investiga-

tions [24, 25]. Second, this method requires crack path tracking, phenomenological

damage models, extra damage criteria regarding the angle of propagation and the

stress state around the crack tip, and branching criteria, which are not reliable in

practice [25, 26]. Third, the implementation of this method may introduce some

computational burdens related to the need to subdivide the cut elements to perform

the numerical integration process [8, Chapter 10], [25]. Although element erosion

has been extensively used to simulate fracture in a number of application areas, this

approach suffers from the problem of nonconvergence of the numerical solution un-

der mesh refinement [8, Chapter 10]. The phase field model presents instead issues

concerning spurious branching formation and inconsistency of branching patterns

and angles with respect to the ones observed in experiments [27–29]. In addition,

the relationship between quantitative phase field model predictions of dynamical

branching instabilities and experimental observations is not yet clear and well un-
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derstood [30]. Even though interface elements coupled with cohesive zone models

have been successfully implemented, their application is limited due to the need of

an a priori knowledge of the crack path, since cracks can only propagate along the

element boundaries [22, 31, 32]. Furthermore, as in the case of the extended finite

element method, cohesive zone models require extra damage criteria [26].

Alternative approaches: from classical continuum mechan-

ics to peridynamics

In recent years, innovative computational methods based on peridynamics have

been proposed and implemented in order to solve complex problems involving dis-

continuities, such as damage initiation, crack propagation and material interfaces.

The peridynamic (PD) theory is a nonlocal reformulation of classical continuum

mechanics based on integro-differential equations, since it defines the equation of

motion by substituting the divergence of the stress tensor, involved in the classical

theory formulation, with an integral operator. Considering that the theory deals

with integral equations rather than spatial differentiation, the peridynamic govern-

ing equations are valid even in presence of discontinuous displacement fields, and are

therefore defined even at crack surfaces, allowing fracture and failure to be treated

as a natural material response. Peridynamics introduces a concept of damage for a

material point, allowing to predict the evolution of cracks, including their nucleation,

their propagation direction, and the points where they start and stop, without hav-

ing to define any criteria for triggering, bifurcation, and deviation phenomena [9].

The PD theory was proposed in the year 2000. The original bond-based version

of the theory was presented in [7], and then extended in the year 2007 to its final

form, called state-based PD theory, in [33]. Other nonlocal models were previously

proposed in [34–37].

The name of the theory derives from the Greek roots for near ("peri") and force

("dyna"), and reflects its main assumption, which is that the body is composed of

material points which can interact with each other provided that they are located

within a finite distance called PD horizon. The concept of horizon is introduced in

the PD formulation to indicate the size of the region where nonlocal interactions of a
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material point with other points take place. The introduction of this length param-

eter is another important feature of peridynamics, since the horizon size assumes

the role of characteristic length scale of the materials and the phenomena under in-

vestigation [38]. As a consequence, PD enables the modelling of material properties

and the analysis of material response at different length scales, from macroscale to

nanoscale [39].

In recent years, peridynamics has been exploited to model several material sys-

tems, including ductile metals [40], ceramics [41, 42], polycrystalline materials [43],

concrete [44] and composite materials [45–50]. PD theory has also been employed

for the analysis of impact [51,52], fatigue [53], and dynamic fracture [54–57], and for

the modelling of other physical fields, including thermal [58,59] and diffusion [60–62]

fields, and of corrosion damage mechanics [63, 64].

Several PD models have also been developed to study multiphysics problems includ-

ing thermo-mechanical [41,42,65], chemo-mechanical [65,66], hydro-mechanical [67],

and electro-mechanical [68] phenomena. Moreover, as already stated, peridynamics

is not limited to macroscale analysis, but can also be applied to model microscale

and nanoscale systems and to implement homogenization and multiscale schemes.

Despite the effectiveness of PD models in solving problems concerning crack

propagation [46, 51, 55, 56, 69–78], PD models are computationally more expensive

than CCM models due to their nonlocal nature. The computational expense issue is

even more evident when implicit time integration is considered, since the number of

nonzero elements in the PD tangent stiffness matrix is typically much bigger than

that in the corresponding CCM model solved with the FEM [8, Chapter 14]. There-

fore, the considerable computational cost of PD models hinders their application

in large-scale, geometrically complex simulations [61]. Furthermore, PD numerical

implementations may be affected by some additional difficulties related to the defi-

nition of nonlocal boundary conditions [7]. In nonlocal theories the boundaries are

fuzzy, so that prescribed displacement or load conditions have to be imposed in fi-

nite volumetric regions rather than on boundary surfaces [79–82]. Most of the time,

such extension of classical boundary conditions is not clearly defined [8, Chapter 14].

Another weak point of PD models is the so called surface effect, which consists in



41

the presence of some spurious effects affecting the numerical solution in the region

close to the boundary of a finite domain [55, 83]. The occurrence of these effects

is related to the fact that the peridynamic material parameters are derived under

the assumptions of a infinite domain and of a fully embedded neighbourhood for

each material point in the solution domain, which are not valid for material points

close to the boundary. In a PD model, the mechanical properties of the portion

of the domain close to the boundary result to be artificially different from those

of the bulk region. Hence, it would be convenient to couple PD and CCM mod-

els in order to take advantage of the benefits of both models while avoiding their

drawbacks [9, 84,85].

Following the analysis of the various features, benefits, drawbacks, and appli-

cation fields of the peridynamic theory, we decided to concentrate our attention on

two particularly interesting and topical aspects, that is the study of local-to-nonlocal

coupling, with a focus on the analysis of the overall static equilibrium issues affecting

CCM-PD coupled systems, and the application of PD for modelling the mechanical

properties of polymer-based nanocomposites.

Local-to-nonlocal coupling

In CCM-PD coupling, usually small areas of a domain, which might be af-

fected by the presence of discontinuities, are described with a PD model, whereas

the remaining parts of the domain are represented through a more efficient CCM

model [9, 86, 87]. In particular, it is common practice to couple PD models based

on the meshfree discretization of [51] with CCM models discretized using the FEM.

Even though PD models can be also discretized with the FEM [88], in the work

presented in this thesis FEM is used only to denote discretization of CCM models.

Coupling FEM meshes with PD grids (or, more generally, coupling local and nonlo-

cal models) is not as simple as sharing nodes between meshes, as it is frequently done

in FEM codes when different types of elements are connected to each other [9, 89].

As summarized in [9], local-to-nonlocal coupling has led to a great research ef-

fort (much of it concerning the coupling of CCM and PD models) resulting in the

development of a variety of techniques, including the optimization-based [90–92],
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partitioned [93,94], Arlequin [95], morphing [96–99], quasi-nonlocal [100,101], blend-

ing [102, 103], splice [104], variable horizon [104], and partial stress [104] methods,

among others; a recent comprehensive review of these methods can be found in [105].

In the context of the PD theory, the first paper to deal with this type of coupling

was [106], in which bond-based PD grids and FEM meshes were coupled by em-

bedding PD nodes within FEM elements. Other early works on the coupling of

FEM meshes and PD grids can be found in [107–110]. CCM-PD coupling is still an

area in which active research is carried out, because most of the coupling methods

proposed in the above listed papers are affected by some kind of arbitrariness or

spurious effects that need to be overcome [9]. In the first part of this thesis, i.e., in

Chapter 2, we are interested in the coupling technique proposed in a series of pa-

pers [57,84,111–113], which can be seen as an application of the splice method. For

the first time, we address the problem of the overall equilibrium in CCM-PD coupled

models by studying the origin of out-of-balance forces and discussing possible ways

to reduce them [9].

The analysis presented in Chapter 2 shows that the absence of overall equilibrium

in a CCM-PD coupled system results from the lack of balance between the local

and nonlocal tractions at the coupling interface [9]. The concept of lack of force

reciprocity in CCM-PD coupled models and how it leads to failure of Newton’s

third law between two given objects was discussed in [102]. However, a thorough

investigation of this effect and its manifestation in global structural equilibrium in

CCM-PD coupled systems has not been presented. The closest studies in this regard

from the literature concern patch-test consistency and the so-called “ghost” forces;

these are non-physical forces that arise in the transition between local and nonlocal

regions whenever a coupling method does not pass a patch test [105]. Unfortunately,

such studies generally provide only a qualitative assessment of whether a CCM-PD

coupled model passes or not a patch test and often limit the analysis to a simple

constant strain solution (i.e., a linear patch test) [9]. In Chapter 2, in contrast, we

present a detailed analysis of the balance between local and nonlocal tractions at

coupling interfaces along with a practical quantitative way to assess the resulting

out-of-balance error through computation of the reaction forces. Part of the work
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presented in Chapter 2 has been published in [9].

Peridynamics as a tool for modelling nanocomposite properties

In the second part of this thesis, i.e., in Chapter 3, we are interested in the

study of nanocomposite mechanical properties. Following the ever-increasing inter-

est shown by the scientific community for polymer-based materials reinforced with

nanoclay platelets, we decided to focus our investigation on this specific class of

materials, although the PD-based approach presented in Chapter 3 can be easily

exploited for the analysis of different types of nanocomposites.

The enhancement of the performance of polymer-based nanocomposites and the

increase of their reliability require a proper understanding of their properties. Sev-

eral investigations focused on the experimental characterization of polymer-based

nanocomposites are reported in literature [114–117]. The analytical and numerical

approaches that have been developed and employed for the modelling of nanocom-

posite properties can be in principle divided into three categories, i.e., atomistic,

continuum, and multiscale modelling techniques. As concerns atomistic modelling

approaches, their capability is limited to the performance of simulations at very short

time and small length scales [118,119]. The results obtained through these molecular-

scale analyses cannot be easily scaled up, since the selected model domains (i.e., unit

cells) are not statistically representative of the whole material. Moreover, atomistic

modelling techniques neglect the interaction between different particles and cannot

capture nanofillers orientation and agglomeration phenomena [120]. In continuum

mechanics, the phenomena taking place at nanoscale are not directly modeled, since

the starting point of continuum simulations is moved to the microscale and the rein-

forcing filler is treated as a continuum medium. From analytical point of view, both

micromechanics rules and homogenization techniques were and still are employed

to model the mechanical behaviour of polymer-based nanocomposites. Some of the

most widely used models are the dilute concentration approximation [121], the Mori-

Tanaka approach [122–125], the double inclusion model [126] and the self-consistent

techniques [127,128], which are all developed based on Eshelby equivalent inclusion

approach [129,130]. Apart from these Eshelby-type micromechanical models, various
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micromechanics rules have also been employed to study nanocomposite properties.

Among them, the most commonly used are the rule of mixture [131–133], Halpin-

Tsai [134–137] and Tsai-Hahn [138] models. However, an important limitation which

affects conventional micromechanics rules is the incapability to model the interac-

tions between different particles. From numerical point of view, the modelling of

polymer-based nanocomposites was and still is most of the time accomplished us-

ing finite element-based techniques [139–143]. Even though FE-based approaches

are widely employed both in academia and industry, they present some limitations.

For instance, some meshing problems could arise when modelling regions containing

particles characterized by an high aspect ratio (i.e., the ratio between nanofillers

characteristic length and thickness) due to elements distortion issues, which cause a

huge decrease of the precision of the computations [143]. Another complexity lies in

the modelling of the interphase region, since it is the portion of the domain where the

stress transfer mechanism takes place, thus requiring a proper selection of element

types, geometrical and mechanical properties. Moreover, in some FEM-based analy-

ses reported in literature, the interphase between nanofillers and polymer matrix was

neglected and a perfect bonding condition was assumed [140,144,145]. The accurate

modelling of this peculiar region cannot be overlooked, due to its strong influence

on the overall properties of the nanocomposite material [127,146–150]. In multiscale

analyses, atomistic and continuum mechanics-based approaches are merged together

in the same computational framework [127,151–156]. The need to develop bridging

methods to transfer structure-property relations between different length and time

scales over several orders of magnitude introduces, however, some complexities and

is considered the main challenge of these modelling techniques.

In the work presented in Chapter 3, peridynamics is exploited for modelling

the tensile modulus of polymer/clay nanocomposites. As already stated, peridy-

namics is not limited to macroscale analyses, but can instead be applied to model

microscale and nanoscale systems and to implement homogenization and multi-

scale schemes. The growing interest in composite and nanocomposite technolo-

gies has in fact given a boost to the development of computational homogenization

schemes based on the representative volume element (RVE) or unit cell (UC) con-
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cepts [157–159]. In [160], a PD-based unit cell model was developed to compute the

effective properties of composites trough a microstructure informed homogenization

scheme, whereas, in [161], the authors presented a new PD-based homogenization

approach to model microstructures with orthotropic constituents in a finite element

framework. In [162], bond-based PD was employed to develop an RVE-based model

to study fibre reinforced composites, whereas, in [163] and [164], the RVE concept

was exploited to model polymer-based nanocomposite properties.

In Chapter 3, a mesoscale representative volume element homogenization is im-

plemented in a bond-based PD framework to model the effective tensile modulus

of polymer/clay nanocomposites. The inherently stochastic nature of nanocompos-

ites, originating from the stochastic properties of the nanofillers and the randomness

involved with the manufacturing processes, is taken into account by selecting the

most suitable probability distribution function for each random geometrical or me-

chanical property in the model. The proposed method has the capability to model

randomly distributed nanofillers with different sizes and orientations, and to eas-

ily simulate interphase regions characterized by different properties, including both

strong and weak interfacial adhesion and compatibility, and nanofiller agglomeration

phenomena without the need to implement multistep homogenization procedures

or to define equivalent homogenized particles or effective particles [139, 165–167].

Thanks to these features, the tensile modulus of nanocomposites with different nan-

oclay contents and various interfacial, dispersion and distribution characteristics,

resulting from the employment of different processing techniques, can be accurately

reproduced. In addition to the possibility to simulate the effect of nanoclay ag-

glomerations, which is an aspect which is often overlooked in the literature, a fur-

ther innovative feature of the newly developed algorithm is the capability to model

nanofillers curvature. Even if the non-straight shape assumed by clay platelets when

dispersed within a host matrix (as a result of their inherently high aspect ratio) is

clearly visible from electron microscopy images [168–172], the modelling of nanoclays

curvature is almost absent in literature. Almost all studies conducted so far have

in fact assumed and simulated straight nanoplatelets, except from [145], where the

authors simulated the clays curvature using FEM, and [164], where bond-based PD
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was instead exploited to model a polymer matrix nanomodified through a different

kind of filler, i.e., carbon nanotubes.

Moreover, the meshless nature of the proposed method avoids elements distortion

issues affecting FEM-based models dealing with high aspect ratio of nanofillers, and

makes it possible to easily simulate common high aspect ratio values without expe-

riencing any reduction in the accuracy of calculations [143]. In order to validate the

capabilities of the newly developed approach, we compare the numerical results with

experimental data reported in literature. In addition, the effectiveness and versatil-

ity of the proposed PD-based technique are further demonstrated by performing an

experimental characterization of clay-loaded epoxy resins, whose results are reported

in Chapter 3 together with a comparison with the numerically computed data.

The effective tensile moduli obtained through the mesoscale RVE analysis pre-

sented in Chapter 3 represent the fundamental bases for a future study focused on

the modelling of crack nucleation and propagation in polymer-based nanocomposites

and on the investigation of the dependence of the material fracture toughness on

the nanofiller weight content. Appendix B reports some preliminary experimental

results obtained by performing fracture tests on clay-loaded epoxy resins, which can

be exploited in future for model validation purposes.



Chapter 1

Overview of the peridynamic

theory

1.1 Mathematical formulation of the bond-based version

of PD theory

In a domain B ⊂ R
r with r the spatial dimension, described with a PD model,

each material point x ∈ B interacts with all the other material points located within

a finite neighbourhood, Hx, of that material point. The bond-based peridynamic

equation of motion for any material point x ∈ B at time t > 0 is given by [7]:

ρ(x)ü(x, t) =

∫

Hx

f
(

u
(

x′, t
)

− u (x, t) ,x′ − x
)

dV
x
′ + b(x, t), (1.1)

where ρ is the mass density, ü is the second derivative in time of the displacement

field u, f denotes the pairwise force function, with units of force per unit volume

squared, that the material point x′ exerts on the material point x, and b is a

prescribed body force density field. The neighbourhood Hx is defined by:

Hx := {x′ ∈ B : ‖x′ − x‖ 6 δ}, (1.2)

where δ > 0 is the PD horizon radius (see Figure 1.1). For material points in the

bulk of the body, i.e., material points x ∈ B further than δ from the boundary of

the body, ∂B, the neighbourhood Hx represents a line segment in one dimension, a

disk in two dimensions, and a ball in three dimensions centered at x. As shown in

Figures 1.1 and 1.2, the relative position vector of the two material points x and x′

47
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x
′

x
ξ

δ

Hx

∂B

B

Figure 1.1: Representation of a generic PD domain B; each material point x interacts

directly with the material points in its neighbourhood Hx through bonds.

in the reference configuration (or initial relative position vector) is denoted by:

ξ := x′ − x, (1.3)

which represents the standard peridynamic notation for a bond. In the deformed

configuration at time t > 0, the two material points x and x′ would be displaced,

respectively, by u(x, t) and u(x′, t). As represented in Figure 1.2, the corresponding

relative displacement vector is denoted by:

η := u(x′, t)− u(x, t) = u′(t)− u(t). (1.4)

The force vector f , also called bond force, is required to satisfy the following condi-

tion [51]:

f(−η,−ξ) = −f(η, ξ) ∀η, ξ, (1.5)

in order to assure the conservation of the linear momentum, and it is also required

to assure the conservation of the angular momentum, which is expressed by the

following relation [51]:

(η + ξ)× f(η, ξ) = 0 ∀η, ξ. (1.6)
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x x′
ξ

u u′

η

η + ξ

Figure 1.2: Representation of the relative position vectors (initial and current) and

the relative displacement vector between the two material points x and x′.

As a direct consequence of (1.6), the force vector must act in the direction of the line

connecting the two material points x and x′, i.e., in the direction of their relative

position vector in the deformed configuration (η+ ξ), usually referred to as current

relative position vector (see Figure 1.2), so as not to produce any moment on them.

In light of (1.5) and (1.6), f(η, ξ) can be also expressed as [7]

f(η, ξ) = F (η, ξ)(η + ξ) ∀η, ξ, (1.7)

where F (η, ξ) is an appropriate scalar-valued even function.

1.1.1 Elasticity in bond-based PD

In bond-based peridynamics, the elastic behaviour of a material is defined by

introducing the concept of microelasticity. A material is described as microelastic if

it complies with the following condition [7]:
∮

Γ′

f(η, ξ) · dη = 0 ∀closed curve Γ′, ∀ξ 6= 0, (1.8)

where dη is the differential vector path length along the closed curve Γ′. Such condi-

tion states that, when dealing with a microelastic material, the line integral is path

independent, thus the net work done by the response force along any closed curve is

zero, as in classical elasticity. Furthermore, recalling Stoke’s Theorem, if the force

vector f = (f1, f2, f3) is continuously differentiable with respect to η = (η1, η2, η3),

then (1.8) is fulfilled when the following necessary and sufficient condition holds:

∇η × f =

(

∂f3
∂η2

−
∂f2
∂η3

)

i+

(

∂f1
∂η3

−
∂f3
∂η1

)

j+

(

∂f2
∂η1

−
∂f1
∂η2

)

k = 0 ∀ξ 6= 0, (1.9)



50 1. Overview of the peridynamic theory

where (i, j,k) represents the orthonormal base of the reference system Oxyz. More-

over, on the basis of Stoke’s Theorem, given that the peridynamic force field is

conservative and irrotational, the force vector f can be derived from a scalar-valued

and differentiable function w, called micropotential, as follows [7]:

f(η, ξ) =
∂w

∂η
(η, ξ) ∀η, ξ. (1.10)

The micropotential, which is defined as the energy in a single bond, has dimensions

of energy per unit volume squared, and depends only on the relative displacement

vector η through the scalar distance between the deformed points [51]. Consequently,

a scalar-valued function ŵ can be defined for an isotropic microelastic material as [7]:

w(η, ξ) := ŵ(‖η + ξ‖, ξ) ∀η, ξ, (1.11)

which, substituted in (1.10), allows to define a general peridynamic force function

aligned with the relative position vector [7]:

f(η, ξ) = f(‖η + ξ‖, ξ)(η, ξ) ∀η, ξ, (1.12)

where f(‖η + ξ‖, ξ) is a scalar-valued even function which is obtained by deriving

the micropotential such that [7]

f(p, ξ) =
∂ŵ

∂p
(p, ξ), p = ‖η + ξ‖, ∀η, ξ, (1.13)

and that actually corresponds to F (η, ξ) in (1.7), but with an highlight on the

dependence of the scalar part on the relative distance.

To conclude, the total elastic potential energy per unit volume at a given material

point x (i.e., the local strain energy density), W , can be computed by integrating

the micropotential in (1.10) over all the bonds connected to the material point x,

such that [51]

W =
1

2

∫

Hx

w(η, ξ)dV
x
′ , (1.14)

where the factor
1

2
is introduced because each of the two interacting material points

at the end of a bond possesses half the potential energy in the bond.



1.1 Mathematical formulation of the bond-based version of PD theory 51

1.1.2 Linearized version of the theory

The PD theory can be applied to study a wide range of problems without any

restriction on the magnitude of the deformation to which a system is subjected.

However, since the case studies addressed in this thesis are focused on the elastic

behaviour of materials, the assumption of small deformations and displacements is

made herein. In this sense, the linearized version of the force vector f can be derived

by assuming that (‖η + ξ‖ − ‖ξ‖) /‖ξ‖ ≪ 1 for all ξ, and by performing a first-order

Taylor expansion of f(η, ξ) in (1.7) about η such that

f(η, ξ) = C(ξ)η + f(0, ξ) ∀η, ξ, (1.15)

where C(ξ) is defined as the material’s micromodulus function, whose value is a

second-order tensor of the force vector f given by [51]:

C(ξ) :=
∂f

∂η
(0, ξ) =



















∂f1
∂η1

(0, ξ)
∂f1
∂η2

(0, ξ)
∂f1
∂η3

(0, ξ)

∂f2
∂η1

(0, ξ)
∂f2
∂η2

(0, ξ)
∂f2
∂η3

(0, ξ)

∂f3
∂η1

(0, ξ)
∂f3
∂η2

(0, ξ)
∂f3
∂η3

(0, ξ)



















. (1.16)

The second-order tensor from (1.16) can be expressed as (cf. (1.7)):

C(ξ) = ξ ⊗
∂F

∂η
(0, ξ) + F(0, ξ)I ∀ξ, (1.17)

where ⊗ is the dyadic or tensor product between two vectors which results in a tensor

of the second-order, and I is the identity matrix. On the basis of Stoke’s Theorem

(cf. (1.9)), for a linear microelastic material, the micromodulus C(ξ) results to be

symmetric, such that

C(ξ) = CT (ξ) ∀ξ, (1.18)

which implies the existence of a scalar-valued even function λ(ξ) that satisfies the

following relation [7]:

ξ ⊗
∂F

∂η
(0, ξ) = λ(ξ)ξ ⊗ ξ ∀ξ, (1.19)

where λ(ξ) is defined by:

λ(ξ) :=
ξ

‖ξ2‖

∂F

∂η
(0, ξ) ∀ξ. (1.20)
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Substituting (1.19) in (1.17), the micromodulus function of a microelastic material

can be expressed as:

C(ξ) = λ(ξ)ξ ⊗ ξ + F (0, ξ)I ∀ξ, (1.21)

and, consequently, the linearized version of the peridynamic force function vector f

can be written as:

f(η, ξ) = [λ(ξ)ξ ⊗ ξ + F (0, ξ)I]η + f(0, ξ) ∀η, ξ. (1.22)

Recalling (1.7) and (1.13), λ(ξ) can be reformulated as follows:

λ(ξ) =
1

‖ξ‖

∂f

∂p
(‖ξ‖, ξ) ∀ξ, (1.23)

and, therefore, the linearized force vector f for a microelastic material is ultimately

expressed as:

f(η, ξ) =

[

1

‖ξ‖

∂f

∂p
(‖ξ‖, ξ) + f(0, ξ)I

]

(ξ ⊗ ξ)η + f(0, ξ) ∀η, ξ. (1.24)

1.1.3 The concept of areal force density

This section briefly introduces the notion of areal force density, which is exploited

in the theoretical analysis presented in Section 2.5. The concept of force per unit area

in the framework of the peridynamic theory was first introduced in [7] to establish

a connection between the bond-based PD and the classical linear elasticity.

Consider an infinite, homogeneous, microelastic body B undergoing a homoge-

neous deformation and assume that a plane P, normal to the unit vector n passing

through a material point x of the body B, divides the body into two subregions,

namely B+ and B− (see Figure 1.3). Considering that material points belonging to

B+ exert some force not only on material points laying on the surface of B−, but

also on some material points located below the surface (depending on their relative

position ‖ξ‖), and dividing this force by the area of P ∩ B, the notion of force per

unit area can be introduced. To be more precise, the two subregions B+ and B−

are defined as follows [7]:

B
+ :=

{

x′ ∈ B : (x′ − x) · n ≥ 0
}

, B
− :=

{

x′ ∈ B : (x′ − x) · n ≤ 0
}

. (1.25)
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P

n

x

B+B−

L

x̂

s̄

x′

f

Figure 1.3: Schematic representation of the concept of areal force density.

Introducing L as a set of collinear material points belonging to the subregion B−

(see Figure 1.3), such that [7]

L :=
{

x̂ ∈ B
− : x̂ = x− s̄n, 0 ≤ s̄ < ∞

}

, (1.26)

it is possible to define the areal force density τ (x,n) at a point x in B in the direction

of the aforementioned unit vector n as [7]:

τ (x,n) :=

∫

L

∫

B+

f(u′ − û,x′ − x̂)dV
x
′dl̂, (1.27)

where dl̂ represents the differential path length over L.

In light of the hypothesis of homogeneous deformation, it is possible to introduce

a stress tensor σ, independent of x, such that [7]

τ (x,n) = σn ∀n, (1.28)

where σ can be referred to as a Piola-Kirchhoff stress tensor, since τ is evaluated

as force per unit area in the reference configuration.

1.1.4 Prototype microelastic brittle material model

In the peridynamic theory, the simplest constitutive model that has been devel-

oped is the prototype microelastic brittle (PMB) material model, which was first

presented in [51]. In this material model, the interaction (i.e., the bond) between
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two material points can be thought of as a spring in classical theory of solid me-

chanics, where the peridynamic force acting in the direction of the line connecting

these two material points is a linear function of the spring stiffness c, usually referred

to as bond stiffness. The relationship between the force vector f and this stiffness

coefficient is established through the scalar bond stretch s, which is defined by the

following relation:

s :=
‖η + ξ‖ − ‖ξ‖

‖ξ‖
. (1.29)

In the PMB model, failure can be introduced by establishing a predefined limit

value for the bond stretch s0, usually referred to as critical stretch, and considering

a bond to be broken when its current stretch exceeds this limit value [51]. A detailed

description on how this limit value is computed is presented in Section 1.1.5. The

rupture of a bond is an irreversible process, i.e., once the bond fails, the interaction

between the two material points at its ends cannot be recovered, and the contribution

of this bond is no longer taken into account in the computation.

For this material model, the previously defined function f is a linear function of

the bond stiffness c and the bond stretch s such that

f(‖η + ξ‖, ξ, t) =
c(ξ)µ(ξ, t)s

‖η + ξ‖
, (1.30)

where µ(ξ, t) is a history-dependent scalar-valued function which is introduced as

a bond-breaking parameter, and can therefore assume either of the following two

values:

µ(ξ, t) :=











1 if s < s0 ∀ 0 < t
′

< t,

0 otherwise.
(1.31)

For a PMB material, the force vector f can be expressed as follows:

f(η, ξ, t) = c(ξ)sµ(ξ, t)
η + ξ

‖η + ξ‖
. (1.32)

Furthermore, under the assumptions of linearity in terms of material response and

of small strains and displacements, and considering c(ξ) to be a constant function

with respect to ξ, the previous equation can be reformulated as follows:

f(η, ξ, t) = csµ(ξ, t)
ξ

‖ξ‖
, ‖η‖ ≪ ‖ξ‖. (1.33)
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The bond stiffness c can therefore be defined through the following strategy, which

considers the linearized form of the stretch s, i.e., s = ‖η‖/‖ξ‖. Assuming an

infinite, homogeneous, microelastic body undergoing an isotropic deformation such

that s is constant for all ξ, and defining, for simplicity, ξ = ‖ξ‖ and η = ‖η‖, it is

possible to observe that η = sξ and to express the scalar-valued function f in (1.30)

as [51]:

f = cs = c
η

ξ
. (1.34)

Recalling (1.10), the micropotential can then be rewritten as follows [51]:

w =

∫

fdη = c
η

ξ
dη =

cη2

2ξ
=

cs2ξ

2
. (1.35)

Substituting (1.35) in (1.14) and using spherical coordinates (three-dimensional

case), the strain energy density is reformulated as [51]:

W =
1

2

∫ δ

0

(

cs2ξ

2

)

4πξ2dξ =
πcs2δ4

4
. (1.36)

The bond stiffness c can be obtained by equating the strain energy density in (1.36)

to the strain energy density in the classical theory of elasticity for the same material

and deformation field, which is computed through the following relation:

W =
9Ks2

2
, (1.37)

where K represents the bulk modulus of the material. Setting the energy in (1.36)

equal to the energy in (1.37) and solving for c leads to the bond stiffness for a

three-dimensional PMB material model [51]

c =
18K

πδ4
=

6E

πδ4(1− 2ν)
, (1.38)

where E is the Young’s modulus, while ν indicates the Poisson’s ratio of the material.

It is important to highlight that, as a consequence of the bond-based PD formula-

tion, in which the bonds are characterized based only on pairwise interactions, the

Poisson’s ratio is restricted to a fixed value that depends on the case under study, i.e.,

two-dimensional (plane stress or plane strain condition) or three-dimensional case.

For three-dimensional and two-dimensional plane strain cases, the Poisson’s ratio is

fixed to ν = 1/4, whereas for the two-dimensional plane stress case it is constrained
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to ν = 1/3 [7, 173]. This limitation has been removed in the state-based version of

the theory presented in [33] and briefly introduced in Section 1.2. Considering the

Poisson’s ratio restrictions, (1.38) can be reformulated as:

c =
12E

πδ4
. (1.39)

Following the same procedure adopted for the three-dimensional case, it is possi-

ble to derive the bond stiffness for two-dimensional (both for plane stress and plane

strain conditions) and one-dimensional models, as presented in [173] and [174], re-

spectively. As regards the two-dimensional case, the spring constant is computed by

performing a surface-integration of a infinite plate subjected to a uniform expansion

loading and a pure shear loading, which are applied separately. The strain energy

density due to the uniform expansion loading derived from the conventional theory

of linear elasticity is required to be equal to the strain energy density derived from

the peridynamic theory for the same loading case. The same applies for the strain

energy densities corresponding to the pure shear loading case. By simultaneously

satisfying the previous two equalities (both for plane stress and plane strain condi-

tions), and considering that the bond stiffness value is required to be the same for

the two loading cases, the fixed value of the Poisson’s ratio can be obtained both for

plane stress and plane strain conditions [173], and the values of the bond stiffness

can be therefore computed as:

c =
9E

πhδ3
, plane stress condition, (1.40)

c =
48E

5πhδ3
, plane strain condition, (1.41)

where h indicates the plate thickness. As for the one-dimensional case, the spring

constant can be evaluated through the following relation [174]:

c =
2E

Aδ2
, (1.42)

where A is the cross-sectional area of the bar.

1.1.5 Failure criterion

The PD theory introduces a concept of damage for a material point, allowing to

predict the evolution of cracks, including their nucleation, their propagation direc-

tion, and their interaction, and allowing to manage material discontinuities without
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Figure 1.4: Peridynamic force versus bond stretch for the PMB material model.

Redrawn, with modifications, from [51].

having to define any ad hoc criteria [9]. As previously mentioned in Section 1.1.4, in

bond-based PD, the concept of material failure is introduced by defining a critical

value for the bond stretch, s0, after which a bond is considered to be broken and,

consequently, no tensile force can be sustained by the bond (see Figure 1.4). The

adopted failure criterion is therefore referred to as a maximum stretch criterion. The

critical stretch s0 can be related to measurable macroscopic quantities such as the

critical energy release rate of the material G0, which is defined as the dissipated

energy per unit area of fracture surface during the growing of a crack or as the value

assumed at fracture initiation by the energy release rate of a body undergoing an

isotropic extension. The relationship between s0 and G0 can then be derived by

assuming the complete separation of a planar fracture surface in the internal region

of a infinite homogeneous body and the absence of any other dissipative phenomena

near the crack tip [51]. In the framework of the PD theory, this translates into the

requirement of breaking all the bonds crossing the aforementioned fracture surface,

i.e., all the bonds connecting material points on the opposite sides of the fracture

surface. In the PMB material model, the work which is required to break a single
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Figure 1.5: Schematic representation of the variables involved in the computation

of the critical stretch s0 (see (1.44)). Redrawn, with modifications, from [51].

bond can be computed by the following relation (recall (1.34) and (1.35)):

w0(ξ) =

∫ s0

0
f(s)dη =

∫ s0

0
f(s)ξds =

cs20ξ

2
. (1.43)

Moreover, the total work per unit surface area required to break all the bonds

crossing the fracture surface is assumed to be equal to the critical energy release

rate G0 of classical continuum mechanics, as stated in Griffith’s theory [175]. The

criterion proposed in Griffith’s theory can be considered nonlocal, since it derives

from the computation of the energy balance of the whole material surrounding the

crack [175]. The relationship between the aforementioned energies is expressed as

follows [51]:

G0 =

∫ δ

0

∫ 2π

0

∫ δ

z

∫ cos−1(z/ξ)

0

(

cs20ξ

2

)

ξ2 sinφdφdξdzdθ =
πcs20δ

5

10
, (1.44)

where the variables involved in the computation are represented in Figure 1.5. The

critical stretch for a three-dimensional PMB material model can then be obtained

by solving (1.44) for s0 and by recalling (1.38) such that

s0 =

√

10G0

πcδ5
=

√

5G0

9Kδ
, (1.45)
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which in turn, considering the Poisson’s ratio restriction introduced in Section 1.1.4,

can be expressed as:

s0 =

√

5G0

6Eδ
. (1.46)

For two-dimensional PMB material models, s0 can instead be computed through the

following relations:

s0 =

√

4πG0

9Eδ
, plane stress condition, (1.47)

s0 =

√

5πG0

12Eδ
, plane strain condition. (1.48)

In the case of mode I crack opening displacement, the critical energy release rate can

be expressed as a function of the fracture toughness KIc, which is also a material

property, by [175,176]:

G0 =
K2

Ic

E′
, (1.49)

where E′ assumes either of the following two values:

E′ =











E, plane stress condition,

E

1− ν2
, plane strain condition.

(1.50)

To conclude, the concept of damage at a material point x is expressed by introducing

a local damage index, ϕ(x, t), which is defined as follows [51]:

ϕ(x, t) := 1−

∫

Hx

µ(x, ξ, t)dV
x
′

∫

Hx

dV
x
′

, (1.51)

where µ(x, ξ, t) includes x as one of its arguments, in order to remind that it is a

function of the location of the material point in the body. The damage index is

therefore defined as the ratio of the number of broken bonds to the total number

of bonds initially connected with the material point x. This index takes a value

between 0 and 1, where ϕ(x, t) = 0 represents the undamaged state of the material,

while ϕ(x, t) = 1 indicates the complete disconnection of the material point x from

all the material points located within its neighbourhood [51].
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1.2 Mathematical formulation of the state-based version

of PD theory

The state-based version of PD theory is a generalization of the bond-based formu-

lation introduced in [7] and briefly presented in the previous section (see Section 1.1).

This extended version, which was first proposed in [33], was developed in order to

overcome the intrinsic limitations of the original version of the theory, which can be

summarized in the following points [33,51]:

• The assumption that any pair of material points interacts only through a

central potential which is independent of the other local conditions is, in many

cases, an oversimplification. This assumption is the cause of the Poisson’s

ratio restrictions (see Section 1.1.4), since an isotropic, linear, microelastic

solid which involves only two-particle interactions is always characterized by

ν = 1/4. It is therefore necessary to improve the theory, to allow the strain

energy density to be dependent on local volume change in addition to pairwise

interactions.

• The theory needs to be modified to enable the modelling of plastic response.

In fact, even if it would be possible to model plasticity by allowing the bonds

to permanently deform, this would result in the permanent deformation of ma-

terials subjected to a volumetric strain (no shear deformation). This approach

could be suitable for modelling porous materials, whereas it would be unsuit-

able for modelling metals, since it has been experimentally demonstrated that

only shear deformations can induce a plastic response in these materials.

• The reformulation of material models in terms of the pairwise force function

makes it difficult to describe the constitutive behaviour of materials in terms

of a stress tensor, as it is usually done in classical continuum mechanics.

To overcome these limitations, it is necessary to rewrite the material-dependent part

of the original formulation, i.e., the part containing all the constitutive information,

which is represented by the pairwise force function f . The approach proposed in [33]

requires the introduction of the concept of force state, which is a mathematical
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B

Figure 1.6: Representation of the positions of two material points x and x′ in the

initial and deformed configurations and of the main states involved in the state-based

PD formulation.

object that shares some similarities with the stress tensor of CCM. Thanks to the

introduction of this notion, it is possible to equip the theory with the capability to

model materials with any Poisson’s ratio, and to incorporate constitutive models

from CCM directly in the PD framework [33]. In the following part, a brief outline

of the concept of peridynamic state and of the main features of the state-based

formulation is provided. More details can be found in [33], where the theory was

first presented, and in [177], where it was investigated more comprehensively.

In a domain B ⊂ R
r with r the spatial dimension, described with a PD model,

each material point x ∈ B interacts with all the other material points located within

a finite neighbourhood, Hx, of that material point. The state-based PD equation of

motion for any material point x ∈ B at time t > 0 is given by [33]:

ρ(x)ü(x, t) =

∫

Hx

{

T [x, t] 〈x′ − x〉 −T[x′, t]〈x− x′〉
}

dV
x
′ + b(x, t), (1.52)

where ρ is the mass density, ü is the second derivative in time of the displacement
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field u, T [x, t] 〈x′ − x〉 is the force vector state defined at the material point x at

time t mapping the bond x′ − x to force per unit volume squared, T[x′, t]〈x − x′〉

is the force vector state defined at the material point x′ at time t mapping the

bond x − x′ to force per unit volume squared (the values of the two force vector

states can be different), b is a prescribed body force density field, and Hx is a

spherical neighbourhood of radius δ, where δ > 0 is referred to as the horizon radius

and indicates the maximum interaction length for each material point x ∈ B (see

Figure 1.6). As for bond-based PD, the relative position vector of the two material

points x and x′ in the reference (or initial) configuration is defined as follows:

ξ := x′ − x, (1.53)

which represents the standard PD notation for a bond. As shown in Figure 1.6,

in the deformed configuration at time t > 0, the two material points x and x′

would be displaced, respectively, by u(x, t) and u(x′, t). The corresponding relative

displacement vector is therefore denoted by:

η := u(x′, t)− u(x, t) = u′(t)− u(t). (1.54)

Differently from the bond-based theory, in the state-based formulation the concept

of bond domain is introduced to define the peridynamic states, such that

H :=
{

ξ ∈
(

R
3
r 0

)

| (ξ + x) ∈ Hx ∩B
}

, (1.55)

which contains vectors, i.e., bonds, and is centred at 0 [33]. In general, a peridynamic

state can be described as a function, defined in the bond domain H, which can be

applied to one or more bonds in order to map them into a quantity. It is possible

to identify different types of states, depending on the nature of the output quantity.

Among them, there are three types of states which are involved in the state-based

PD formulation, i.e., the scalar state, characterized by a scalar output quantity, the

vector state, in which the output quantity is a vector, and the double state, which

maps pairs of bonds (ξ, ζ) ∈ H into second-order tensors [33]. It is important to

notice that, even if a vector state is the equivalent of a second-order tensor in CCM,

unlike the latter, it is not in general a linear and continuous function of ξ, but it

can instead be a nonlinear and noncontinuous function of the PD bond.
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Before proceeding with the derivation of the state-based formulation, it is neces-

sary to introduce some notations and mathematical definitions useful in the context

of peridynamic states [33, 177, 178]. As for the notations, the uppercase, bold font

with an underscore is usually employed to indicate a state, the bond on which the

function is applied is identified by angle brackets 〈·〉, the state on which the function

depends (if present) is shown in parentheses (·), while square brackets [·] are used

to indicate other quantities on which the state might depend, such as the time step

t and the material point x (cf. (1.52)). The main mathematical definitions which

are exploited in the state-based formulation are the sum and the difference of two

states, the composition of states, the point product, the dot product, the magnitude

state, the norm of a state and the Fréchet derivative [33, 177, 178]. As for the sum

and the difference of two states of the same order m, they are defined, respectively,

as follows:

(A+B) 〈ξ〉 := A〈ξ〉+B〈ξ〉 ∀ξ ∈ H, (1.56)

(A−B) 〈ξ〉 := A〈ξ〉 −B〈ξ〉 ∀ξ ∈ H, (1.57)

where A〈·〉 : H 7→ Lm, B〈·〉 : H 7→ Lm, and Lm is the set of all tensors of order m.

Concerning the composition of states, it is expressed as:

(A ◦V) 〈ξ〉 := A〈V〈ξ〉〉 ∀ξ ∈ H, (1.58)

where V〈·〉 : H 7→ L1, and L1 represents the set of all vector states. Moreover, the

point product of two states can be defined through the following expression:

(AB)i1,i2,··· ,im 〈ξ〉 := Ai1,i2,··· ,im,j1,j2,··· ,jp〈ξ〉Bj1,j2,··· ,jp〈ξ〉 ∀ξ ∈ H, (1.59)

where A : H 7→ Lm+p, B : H 7→ Lp, and Ai1,i2,··· ,im represent the m components of

an m-order state in a Cartesian coordinate system. As regards the dot product of

two states, it is defined through the following relation:

A •B :=

∫

H

(AB) 〈ξ〉dVξ, (1.60)

where the previous notation for the differential volume, dV
x
′ , has been changed

to dVξ to highlight the fact that the domain of states is composed of bonds, even
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though the two differential volumes are actually equivalent. The magnitude state,

also referred to as scalar state, is defined as:

|A|〈ξ〉 :=
√

(AA) 〈ξ〉 ∀ξ ∈ H. (1.61)

Differently from the states of order m ≥ 1, the scalar state is indicated by using a

lower case, non-bold font with an underscore, such as:

a := |A|〈ξ〉 ∀ξ ∈ H. (1.62)

The norm of a state is instead expressed as follows:

‖A‖ :=
√

A •A. (1.63)

In order to introduce the Fréchet derivative, it is first necessary to define the notion

of function of a state. The function of a state may be scalar-valued or tensor-valued,

and the quantity on which this function depends is enclosed in parentheses, such as,

for example, Ψ(B). Consider Ψ to be a function of a state, such as Ψ(·) : Lm 7→ Ln,

and suppose the existence of a state-valued function ∇Ψ ∈ Lm+n such that, for any

state A ∈ Lm and any ∆A ∈ Lm,

Ψ(A+∆A) := Ψ (A) +∇Ψ(A) •∆A+ o (‖∆A‖) . (1.64)

Then Ψ is differentiable and ∇Ψ is referred to as the Fréchet derivative of Ψ. Further

details concerning the peridynamic states and their mathematical framework can be

found in [33,177,178].

Going back to the state-based formulation, it is now possible to introduce two

important states, i.e., the reference position vector state X〈ξ〉, which associates each

pair of material points to their initial relative position vector, and the deformation

vector state Y〈ξ〉, which associates each pair of material points to their current

relative position vector (see Figure 1.6). These two vector states are defined through

the following expressions:

X〈ξ〉 := ξ ∀ξ ∈ H, (1.65)

Y〈ξ〉 := η + ξ ∀ξ ∈ H, (1.66)
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Figure 1.7: Representation of bond-based, ordinary and non-ordinary state-based

material response. Redrawn, with modifications, from [33].

while their scalar counterparts, i.e., the reference position scalar state x and the

deformation scalar state y, are expressed, respectively, as follows:

x := |X|〈ξ〉 = |ξ|, (1.67)

y := |Y|〈ξ〉 = |η + ξ|, (1.68)

where x and y associate each pair of material points to their bond length in the

initial and current configuration, respectively. Recalling 1.66 and 1.68, it is possible

to define another important peridynamic state, i.e., the deformed direction vector

state M (Y), which is a function that associates each pair of material points to their

relative position unit vector, such as:

M (Y) :=
Y〈ξ〉

|Y|〈ξ〉
=

η + ξ

|η + ξ|
. (1.69)

Moreover, recalling the force vector state T introduced in (1.52), if for any defor-

mation of a material there exist a scalar state t such that

T = tM, (1.70)

then the material is referred to as ordinary, and t is named the scalar force state,

otherwise the material is called non-ordinary (see Figure 1.7). A state-based PD

model which is developed only for ordinary materials takes the name of ordinary

state-based PD model. Since the modelling of non-ordinary materials is not ad-

dressed in this thesis, when referring to state-based PD, only the ordinary version

of the theory is considered. When dealing with ordinary materials, the following

relation applies:
T〈ξ〉

|T|〈ξ〉
=

Y〈ξ〉

|Y|〈ξ〉
, t〈ξ〉 6= 0, (1.71)
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which implies that, in ordinary materials, pairs of material points apply to each

other force vectors which have the same magnitude, are opposite in direction, and

are parallel to their relative deformed position [33] (see Figure 1.6). Furthermore,

it is required that T satisfies the balance of linear and angular momenta for any

bounded domain B, such that

∫

B

ρ(x)ü(x, t)dVx =

∫

B

b(x, t)dVx ∀t ≥ 0, (1.72)

∫

B

y (x, t)× (ρ(x)ü(x, t)− b(x, t)) dVx = 0 ∀t ≥ 0, (1.73)

where (1.72) and (1.73) express the balance of the linear and angular momentum,

respectively, and y (x, t) is defined as:

y (x, t) := x+ u(x, t) ∀t ≥ 0, x ∈ B. (1.74)

In ordinary materials, both (1.72) and (1.73) are automatically satisfied (see Fig-

ure 1.7). Moreover, consider a material characterized by a scalar-valued function

f (·, ·) : R3 × R
3 7→ R such that f (−η,−ξ) = f (η, ξ) for all η, ξ, and define an

ordinary material through

t [x, t] 〈x′ − x〉 =
1

2
f
(

u′ − u,x′ − x
)

∀x ∈ B,x′ ∈ Hx, t ≥ 0. (1.75)

Recalling (1.70) and substituting (1.75) in (1.52), (1.52) becomes equal to (1.1),

which then proves that the bond-based version of PD can be considered as a special

case of the state-based formulation (see Figure 1.7). The relation between the force

vector state T in state-based PD and the pairwise force function f in bond-based

PD can then be expressed as follows [33]:

T [x, t] 〈ξ〉 =
1

2
f (η, ξ) . (1.76)

1.2.1 Ordinary linear isotropic elastic models

In [33], the scalar force state t for a three-dimensional linear, isotropic, elastic

model is expressed as follows:

t =
3Kθ

m
ωx+ α′ωed, (1.77)
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where K is the bulk modulus of the material, and α′ indicates a positive constant

which is proportional to the shear modulus. Before defining the other quantities in-

troduced in (1.77), it is necessary to identify the two parts by which t is composed,

i.e., the co-isotropic and the co-deviatoric parts. The co-isotropic part, which corre-

sponds to the first term on the right-hand side of (1.77), is related to the part of the

force which determines a pure change of volume of the horizon sphere of a material

point, whereas the co-deviatoric part, which corresponds to the second term on the

right-hand side of (1.77), is related to the force which induces a pure change of shape

of the horizon sphere. The co-isotropic part of the scalar force state t is therefore

identified as follows:

tiso =
3Kθ

m
ωx, (1.78)

where ω is a nonnegative scalar state, called influence function, which has been

introduced in [33] as a mean to select which bonds, for a certain deformation state,

participate in the determination of the force state, and to assess the weight of each

bond contribution to the global behaviour of the material. ω can be defined as

ω := 1 [179], ω := exp

(

−
‖ξ‖2

δ2

)

[180], ω :=
δ3

‖ξ‖3
[179], and by other formulae

reported in [99, 181, 182]. m is a weighted volume which, taking into account the

number of bonds within the horizon sphere of a material point, indicates whether

the selected point is located near a free surface or in the bulk of the body, such that

m := (ωx) • x =

∫

Hx

ω‖ξ‖2dV
x
′ . (1.79)

The scalar-valued function θ, referred to as the volume dilatation, expresses the

deformation of the horizon neighbourhood of a material point by taking into account

how the horizon radius changes throughout the deformation, and is defined through

the following relation:

θ :=
3

m
(ωx) • e =

3

m

∫

Hx

(ωxe) dV
x
′ , (1.80)

where e represents the extension scalar state, which, in turn, is defined as:

e := y − x = |η + ξ| − |ξ|, (1.81)
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and associates each pair of material points to their bond elongation. The co-

deviatoric part of the scalar force state t is instead expressed as follows:

tdev = α′ωed, (1.82)

where ed is the deviatoric extension state, which associates each pair of material

points to the portion of their bond elongation which is linked to the change of shape

of the horizon sphere, and is identified by the following relation:

ed := e−
θx

3
= |η + ξ| −

(θ + 3) |ξ|

3
. (1.83)

The previous formulation was derived for three-dimensional isotropic linear elastic

models. As for two-dimensional isotropic linear elastic models, they were first de-

veloped and presented in [183], where the authors derived the strain energy in the

peridynamic framework starting from the strain and stress tensors of CCM. For

the plane stress case, the volume dilation θ can be obtained by rearranging the ex-

pression for the strain energy density in CCM in terms of volume dilatation, such

that [183]

W =

[

K

2
+ µ

(

ν + 1

3 (2ν − 1)

)2
]

(

dV

V

)2

+ µ
∑

i,j=x,y

εdijε
d
ij (1.84)

where µ represents the shear modulus, ν is the Poisson’s ratio, εdij is the ij component

of the deviatoric strain tensor, and

(

dV

V

)

represents the volume dilatation in the

CCM framework, which, assuming small homogeneous deformations, is equivalent

to the previously introduced PD scalar-valued function θ. For the two-dimensional

plane stress case, the volume dilatation θ is therefore computed as follows:

θ =
2 (2ν − 1)

ν − 1

ωx • e

q
, (1.85)

where q = ωx • x is the equivalent of the three-dimensional weighted volume m

in (1.79), but in two dimensions. After some calculations which are comprehensively

outlined in [183], it is possible to define the scalar force state t for two-dimensional

plane stress models such that

t =
2 (2ν − 1)

ν − 1

(

k′θ −
α′

3

(

ωed
)

• x

)

ωx

q
+ α′ωed, (1.86)
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where k′ and α′ are positive constants obtained by equating the classical and peri-

dynamic strain energy densities, which, for plane stress conditions, are expressed as

follows:

k′ = K +
µ

9

(ν + 1)2

(2ν − 1)2
, (1.87)

α′ =
8µ

q
. (1.88)

The classical strain energy density under plane strain conditions is instead expressed

by the following relation:

W =

[

K

2
+

µ

9

](

dV

V

)2

+ µ
∑

i,j=x,y

εdijε
d
ij , (1.89)

where the classical volume dilatation

(

dV

V

)

is equivalent to the PD scalar-valued

function θ, which, in this case, is computed through the following expression:

θ = 2
ωx • e

q
. (1.90)

After some mathematical manipulations which are, also in this case, thoroughly

discussed in [183], it is possible to derive the scalar force state t for two-dimensional

models under plane strain conditions such that

t = 2

(

k′θ −
α′

3

(

ωed
)

• x

)

ωx

q
+ α′ωed, (1.91)

where k′ and α′ are positive constants obtained by equating the classical and peri-

dynamic strain energy densities, which, for plane strain conditions, are expressed as

follows:

k′ = K +
µ

9
, (1.92)

α′ =
8µ

q
. (1.93)

1.2.2 Failure criteria

Material failure and crack propagation can be modelled by defining a suitable

failure criterion. Considering that, in the state-based theory, both the isotropic and

deviatoric parts of the deformation participate in the determination of the force

state, various failure criteria have been developed and exploited to describe the dis-

continuities in the material domain [51,184–187]. The three types of failure criteria
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which are commonly used are the critical bond stretch criterion [51], the bond-level

energy based failure criterion [184], and an alternative bond failure criterion based on

strain invariants [185]. It has been demonstrated that all three criteria are suitable

for studying mode I fracture problems and can accurately reproduce available ex-

perimental results [186]. Considering that, following the recommendations reported

in [180], the failure criterion adopted in this thesis is the critical bond stretch one

(see Section 2.7), only this criterion is discussed in detail in the following part of

this section. For a comprehensive derivation of the other criteria, please refer to the

aforementioned dedicated literature. As reported in [113], the stretch of a bond is

expressed as:

s〈ξ〉 :=
e〈ξ〉

x〈ξ〉
, (1.94)

while the critical stretch value is computed as follows [84,188]:

s0 =

√

5G0

6Eδ
, three− dimensional case, (1.95)

s0 =

√

4πG0

9Eδ
, two− dimensional plane stress case, (1.96)

s0 =

√

5πG0

12Eδ
, two− dimensional plane strain case, (1.97)

where E is the Young’s modulus of the material, and G0 represents the critical

energy release rate for mode I fracture. Even if (1.95), (1.96) and (1.97) have

been derived for bond-based PD models and their adoption in the state-based PD

framework is not fully justifiable, their use is usually accepted [180,186]. Moreover,

a history-dependent scalar-valued function, ̺, is introduced in the state-based model

as a bond-breaking parameter, i.e., with the function to indicate the status of the

bonds (cf. (1.31)). This scalar state can therefore assume either of the following two

values [84,188]:

̺〈ξ〉 :=











1 if s〈ξ〉 < s0 ∀ 0 < t̄ < t,

0 otherwise.
(1.98)

To conclude, the concept of damage at a material point x is introduced by defining

a local damage index, ϕx, such that

ϕx := 1−

∫

Hx

ω〈ξ〉̺〈ξ〉dV
x
′

∫

Hx

ω〈ξ〉dV
x
′

, (1.99)
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where ϕx takes a value between 0 and 1, where ϕx = 0 represents the undamaged

state of the material, while ϕx = 1 indicates the complete disconnection of the

material point x from all the material points located within its neighbourhood. A

crack can then be identified wherever ϕx ≥ 0.5.

1.3 Numerical discretization

The numerical discretization of peridynamic models can be pursued by employing

different numerical methods [189]. In all the examples presented in this thesis, the

meshfree approach introduced in [51] is adopted.

i

j

Figure 1.8: Example of a uniform spatial discretization of a peridynamic domain.

The neighbourhood of the source node i is set out as suggested in [190].

1.3.1 Spatial integration

The numerical approximation of the peridynamic equation requires the subdivi-

sion of the domain into a grid of points called nodes: in a domain B, described with

a PD model, each node i ∈ B is associated to a certain finite volume in the reference

configuration, such that the union of all volumes appropriately covers the volume

of the entire domain (see Figure 1.8). No elements or other geometrical connections

between nodes are foreseen [51]. The meshfree discretization implemented in this
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thesis considers a uniform distribution of nodes (see Figure 1.8), where the distance

between two nearest neighbouring nodes is referred to as grid spacing. A uniform

grid with ∆x = ∆y = ∆z = ∆ is therefore employed, where ∆x, ∆y and ∆z are

the grid spacings in the x-, y- and z-directions, respectively. The volume associated

to each node, referred to as node volume, is then computed as a cube of volume

V = ∆x ·∆y ·∆z = ∆x3 for three-dimensional models, or as a square cell of volume

V = ∆x·∆y ·h = ∆x2 ·h for the planar cases, where h represents the plate thickness.

For one-dimensional systems, the node volume is instead computed as V = A ·∆x,

where A is the constant cross-sectional area of the bar. The node of interest i at

which the volume is centred is termed source node.

The discretized form of the bond-based PD equation of motion (cf. (1.1)) for any

source node i ∈ B can be written as:

ρiü
n
i =

∑

j

f(un
j − un

i ,xj − xi)β(ξ)Vj + bn
i ∀j ∈ Hi, (1.100)

where the integral in (1.1) is replaced by a finite sum taken over all nodes j, referred

to as family nodes, such that ‖xj − xi‖ 6 δ, f is the pairwise force function that

the family node j exerts on the source node i (cf. (1.12)), n represents the time

step number, subscripts refer to the node number, e.g., un
i = u (xi, t

n), Vj is the

discretized volume associated to the family node j, and β(ξ) is a partial-volume cor-

rection factor used to evaluate the portion of Vj that falls within the neighbourhood

of the source node i, Hi, as recommended in [190, 191]. The use of this correction

factor is a consequence of the fact that the volumes associated to family nodes lo-

cated close to the boundary of the neighbourhood of i have only a partial overlapping

with Hi. The introduction of this factor helps to improve the accuracy of the spatial

integration, which is performed by adopting the one-point Gauss quadrature rule.

In this thesis, the assumption of small strains and displacements is made, so that,

according to [51], the linearized version of (1.100) can be expressed as:

ρiü
n
i =

∑

j

C(xj − xi)(u
n
j − un

i )β(ξ)Vj + bn
i ∀j ∈ Hi, (1.101)

where C is the material’s micromodulus function defined in (1.16).

Concerning the state-based formulation, the discretized form of the equation of



1.3 Numerical discretization 73

motion (cf. (1.52)) for any source node i ∈ B can be written as:

ρiü
n
i =

∑

j

{

T [xn
i ] 〈x

n
j − xn

i 〉 −T
[

xn
j

]

〈xn
i − xn

j 〉
}

β(ξ)Vj + bn
i ∀j ∈ Hi, (1.102)

where the integral in (1.52) is replaced by Riemann sums taken over all nodes j,

referred to as family nodes, such that ‖xn
j − xn

i ‖ 6 δ, n is the time step number,

T [xn
i ] 〈x

n
j − xn

i 〉 is the force vector state defined at the source node i at time tn

mapping the bond xn
j −xn

i to force per unit volume squared (cf. (1.70)), and β(ξ) is

the partial-volume correction factor previously introduced in (1.100) [190,191]. The

linearized version of (1.102) can then be expressed as:

ρiü
n
i =

∑

j

{(

T
[

xn−1
i

]

+K
[

xn−1
i

]

•U
[

xn
i

])

〈xn
j − xn

i 〉

−
(

T
[

xn−1
j

]

+K
[

xn−1
j

]

•U
[

xn
j

])

〈xn
i − xn

j 〉
}

β(ξ)Vj + bn
i ∀j ∈ Hi,

(1.103)

where U
[

xn
i

]

is the displacement state evaluated at the source node i at time tn,

which associates to the pair of nodes i and j their relative displacement vector and is

defined as U
[

xi, t
n
]

〈ξ〉 := u (xj , t
n)− u (xi, t

n) = η, and K
[

xn−1
i

]

is a double state

evaluated at the source node i at time tn−1 which is computed as the first Fréchet

derivative of the force state, such that K = ∇T.

1.3.2 Time integration

The time integration of peridynamic models can be performed by adopting dif-

ferent schemes, such as the explicit central time difference method and the velocity-

Verlet time integration algorithm. In [51], the authors adopted the following explicit

central difference formula for the acceleration:

ün
i =

un+1
i − 2un

i + un−1
i

∆t2
, (1.104)

where ∆t represents the constant time step size. The velocity-Verlet scheme is

instead commonly used in molecular dynamics and has been also extensively adopted

in the peridynamic framework thanks to its good numerical stability. Knowing the

initial conditions for each node i ∈ B, i.e., u0
i , u̇

0
i , ü

0
i , the time step ∆t and the time

increment law tn+1 = tn +∆t, the time integration can be performed as follows:
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1. Computation of the velocity at time tn+
1

2 : u̇
n+ 1

2

i = u̇n
i + 1

2 ü
n
i ∆t

2. Computation of the displacement at time tn+1: un+1
i = un

i + u̇
n+ 1

2

i ∆t

3. Computation of the acceleration at time tn+1, ün+1
i , from (1.100) or (1.102)

employing the updated configuration un+1
i

4. Computation of the velocity at time tn+1: u̇n+1
i = u̇

n+ 1

2

i + 1
2 ü

n+1
i ∆t

For numerical stability reasons, the time step ∆t adopted during the simulations

must be smaller than a predefined critical time step ∆tcrit. The computation of

this critical step size has been the subject of many studies reported in literature,

such as [51, 180]. In [51], the authors evaluated the critical time step for the PMB

material model as follows:

∆tcrit =

√

2ρ
∑

j VjCij
, (1.105)

where j iterates over all the family nodes of the source node i, and Cij represents

the micromodulus function of the bond connecting nodes i and j and is defined as

Cij = |C(xj−xi)|. An alternative solution is represented by the so called maximum

critical time step, which is evaluated through the Courant-Friedrichs-Lewy (CFL)

approach such that [180]

∆tcrit =
∆x

cw
, (1.106)

where cw represents the speed of sound in the material and is defined by the following

relation:

cw =

√

K

ρ
, (1.107)

where K is the bulk modulus of the material. Substituting (1.107) in (1.106), it is

then possible to express the critical time step as:

∆tcrit = ∆x

√

ρ

K
. (1.108)

1.3.3 Numerical convergence studies

The PD horizon, in its discretized form, is expressed by the following relation:

δ = m ·∆x, (1.109)
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δ
δδ-convergence

δ δ
m-convergence

δ
δδm-convergence

(a)

(b)

(c)

Figure 1.9: Schematic representation of (a) δ-convergence, (b) m-convergence, and

(c) δm-convergence in PD.

where m is the ratio between the horizon δ and the grid spacing ∆x and is usually

referred to as m-ratio. The value assumed by the m-ratio is related to the number

of family nodes which are located within the neighbourhood Hi of a source node i.

The horizon radius δ and the m-ratio are, therefore, the two parameters which

determine the number of interactions which have to be considered for each node in

a discretized PD model. Bearing this in mind, in order to compare the solutions of

PD and CCM models, it is necessary to perform some convergence studies. In [58]

and [174], the authors introduced three types of convergence, namely δ-convergence,

m-convergence, and δm-convergence (see Figure 1.9).
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The δ-convergence is performed by keeping fixed the value of m while decreas-

ing δ; in this way, the value of ∆x decreases, resulting in an increase in the total

number of nodes (see Figure 1.9a). Carrying out this kind of study, the numerical

solution converges to an approximated local classical solution.

Regarding the m-convergence, this study is performed by keeping δ fixed while

increasing the value of m, which again results in the decrease of the value of ∆x

and, consequently, in an increase in the total number of nodes (see Figure 1.9b). In

this case, the numerical solution converges to the exact nonlocal PD solution for the

given horizon radius.

The third type of convergence is the δm-convergence, in which the value of δ

is decreased while m is increased but with a higher rate of change than that of δ

(see Figure 1.9c). In this case, the numerical solution converges to both the exact

nonlocal peridynamic solution and the local classical solution.

1.4 Loading and boundary conditions in peridynamics

The nonlocal nature of peridynamics introduces an important issue regarding

the application of boundary conditions. Considering that the PD equilibrium equa-

tions are based on integral operators instead of partial differential operators, their

variational nature does not result in natural boundary conditions, as is the case of

CCM models [106]. As a consequence, in a domain described with a PD model,

the prescribed displacements or loads need to be applied through a finite volume of

boundary layers, rather than on a surface. The depth of the boundary layer along

the material boundary is usually set to be equal to δ, since this value enables an

accurate reflection of the imposed constraints in the model domain, as suggested by

the numerical investigations carried out in [106].

1.5 The peridynamic surface effect

Another issue which is encountered when considering a finite domain described

with a PD model is the so called surface effect, which consists in the presence of

some spurious effects affecting the numerical solution in the region close to the

boundary of the domain [55, 83]. The occurrence of these effects is related to the
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δ

B

∂B

x

x
′

δ
Hx

Hx′

Figure 1.10: Representation of the surface effect in a finite domain B described with

a PD model.

fact that the peridynamic material parameters are derived under the assumptions

of a infinite domain and, therefore, of a fully embedded neighbourhood Hx for each

material point x in the solution domain B, which are actually not valid for material

points close to the boundary. As shown in Figure 1.10, the neighbourhood H
x
′ of a

material point x′ located near the boundary ∂B is only partially contained within

the model domain B, and thus assumes a truncated shape. As a direct consequence,

the portion of the neighbourhood which falls outside the domain does not contribute

to the deformation energy of that material point, therefore resulting in a potential

energy density which is lower than that of a material point located in the bulk of

the domain (cf. (1.36)). As a global effect, the mechanical properties of the portion

of the domain close to the boundary result to be artificially different from those of

the bulk region.

Various studies reported in literature proposed some solutions to address this

issue, such as [82–84, 106, 192]. In this thesis, the surface effect is eliminated either

by exploiting the coupling approach outlined in Section 2.1 or by using a layer of

fictitious nodes surrounding the model domain with a depth equalling the horizon,

which can be also employed to impose the boundary conditions.





Chapter 2

Overall equilibrium in the

coupling of peridynamics and

classical continuum mechanics

Part of the work presented in this chapter has been published in [9].

2.1 Overview of the CCM-PD coupling method devel-

oped by the research group

The proposed coupling approach is based on the idea presented in [112], where

the coupled stiffness matrix is defined and used to solve linear static bond-based PD

problems, and then extended to dynamic problems in [84] and to models discretized

using a non-uniform grid size in [193]. A further extension of this coupling approach

to state-based PD models is presented in [113].

In the proposed CCM-PD coupling technique, the domain B is partially de-

scribed with a CCM model discretized using the FEM. The remaining part of the

domain is described with a PD model discretized with a meshfree method based

on [51]. The two parts of the domain have to be coupled in a way that ensures

an adequate transfer of force between the two regions. Figure 2.1 illustrates the

CCM-PD coupled model in a one-dimensional system, where diamonds represent

FEM nodes and circles represent PD nodes. Thick straight lines are FEM elements

and curved thin lines are PD bonds. Nodes are either of FEM type or of PD type,

and no overlapping region exists in the proposed approach in terms of the nature

79
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of the nodes. In this example, the horizon δ is taken as twice the grid spacing,

i.e., δ = 2∆x. In this case, each PD node is connected by PD bonds to four other

nodes. For instance, nodes 5, 6, 8, and 9 interact with node 7 and are called its

family nodes. FEM nodes are connected by FEM elements, whereas PD nodes are

connected by PD bonds. At the transition between the CCM and PD regions, it is

assumed that the last FEM node (i.e., node 4 in Figure 2.1) is connected to the PD

region by a single FEM element (i.e., element d in Figure 2.1), whereas the first PD

node (i.e., node 5 in Figure 2.1) is nonlocally connected by PD bonds to all nodes,

FEM or PD nodes, within its neighbourhood. In a similar way, all PD nodes, the

neighbourhood of which contains FEM nodes, are nonlocally interacting through

PD bonds with those FEM nodes.

1 2 3 4 5 6 7 8 9 ...

a b c d

Figure 2.1: Illustration of the CCM-PD coupled model in a one-dimensional sys-

tem. Blue diamonds are FEM nodes and green circles are PD nodes. Blue thick

straight lines represent FEM elements and green thin curved lines represent PD

bonds. Adapted from [112].

2.1.1 Assembly of the global stiffness matrix

The proposed CCM-PD coupling technique assumes that internal forces acting

on a node are of the same nature as the node itself: only internal forces evaluated

using the FEM approach act on FEM nodes, whereas only internal forces computed

through the PD formulation are applied on PD nodes. A coupling zone can be

defined where forces are exchanged between the CCM and PD parts of the domain.

In the example presented in Figure 2.1, the coupling zone is composed of the FEM

nodes 3 and 4; the PD nodes 5 and 6; the PD bonds 3 − 5, 4 − 5, and 4 − 6; and

the FEM element d. The coupling method assumes that the internal force exerted

by the FEM element d acts only on the FEM node 4, whereas the internal forces

exerted by the PD bonds 3− 5 and 4− 5 as well as 4− 6 act only on the PD nodes

5 and 6, respectively. Consequently, the assembly of the global stiffness matrix is
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performed by making sure that equilibrium equations of FEM nodes contain only

terms coming from the FEM approach while equilibrium equations of PD nodes

include only terms derived from the PD formulation.

The case of Figure 2.1 produces the following system of equations:
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, (2.1)

where l := EA/∆x [89], p := cA2∆x [174], N is the total number of nodes (including

FEM and PD nodes), {ui}i=1,...,N are the nodal displacements, {Fi}i=1,...,N are the

external nodal forces, E is Young’s modulus, c is the micromodulus constant, and

the cross-sectional area A is assumed to be A = 1; the same assumption applies

hereafter. To obtain (2.1), we assumed a CCM model given by (2.41) and a PD

model given by (2.48) with a micromodulus function c(|ξ|) = c/|ξ|. The meshfree

PD discretization employed in (2.1) uses a partial-volume correction [191], which

applies a factor of 1
2 to the contribution of second-nearest neighbours. The solution

of a single equation satisfies node equilibrium. The overall equilibrium of the whole

structure, however, requires the sum of the external nodal forces to be equal to zero.

In the numerical examples of Sections 2.4 and 2.6, a nodal displacement vector

will be input into the system and the relevant external nodal forces (i.e., ‘reactions’,

since the displacements are imposed) will be computed according to a system of the

type of (2.1) in the one-dimensional case and a corresponding system in the two-

dimensional case. In some cases of CCM-PD coupled systems, the force vector will

have a non-zero resultant, i.e.,
∑N

i=1 Fi 6= 0, and therefore overall equilibrium will

not be satisfied, even if this type of CCM-PD coupling exactly satisfies all standard
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Figure 2.2: Two-dimensional rectangular plate used to study the static equilibrium

issue. The arrow identifies the applied vertical force and the triangles indicate the

constrained points of the structure.

numerical tests for static coupling problems carried out by imposing rigid body

motions as well as uniform and linear strain distributions [84,112,113].

2.2 Statement of the problem: lack of overall equilibrium

in CCM-PD coupled models

In Figure 2.2, a two-dimensional homogeneous, isotropic linear elastic rectangular

plate is shown. This structure with dimensions 24× 34 (Lx and Ly, respectively) is

studied imposing as a load condition a vertical force (Fext = 10) acting at the centre

of the top edge. The plate is constrained so that the points of the bottom edge

with coordinates (−9,−17) and (+9,−17) cannot move in the vertical direction,

i.e., u2 = 0, whereas the central point of the bottom edge cannot move in the

horizontal direction, i.e., u1 = 0, where u1 and u2 are the horizontal and vertical

components, respectively, of the two-dimensional displacement field u = (u1, u2).

The values of the main problem parameters are E = 1 (Young’s modulus), ν = 1/3

(Poisson’s ratio), and h = 1 (plate thickness). Problem parameters such as Lx, Ly,

E, and h are in consistent units. This study considers a plane stress condition. In

order to numerically investigate the static equilibrium of this structure, three models

have been implemented: a fully CCM model, a fully PD model, and the CCM-PD
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coupled model described in Section 2.1. Since the problem is linear in terms of

material response and deformation, the CCM model used is based on classical linear

elasticity, whereas the employed PD model is given by a two-dimensional linear

bond-based model [7, 178].

The discretization of the domain employs a uniform grid with ∆x = ∆y = 1. All

three two-dimensional simulations are composed of 875 nodes as shown in Figure 2.3.

The region corresponding to the PD portion of the coupled model has a size of

LPDx = LPDy = 10, and its centre has coordinates (0, 0). The fully CCM model and

the CCM part of the CCM-PD coupled model are both discretized using four-node

square plane stress FEM elements for which the element stiffness matrix has been

evaluated with exact integration [194]. For the fully PD model and the PD portion

of the CCM-PD coupled model, we employ a meshfree discretization with a partial-

volume correction [190]. The PD horizon is taken as δ = 3 (i.e., m = δ/∆x = 3) and

the micromodulus constant c has been evaluated through (1.40), assuming a plate

thickness of h = 1. Table 2.1 reports the values of the reaction forces for the three

models and the resulting relative errors, defined by the following relation:

erel :=
Fext +

∑

Reactions

|Fext|
, (2.2)

where
∑

Reactions is the sum of the reaction forces generated on the vertically

constrained nodes, which is evaluated using the following equation:

∑

Reactions = RyL +RyR , (2.3)

where RyL is the resulting vertical reaction force at the bottom-left constrained node

and RyR is the resulting vertical reaction force at the bottom-right constrained node.

Table 2.1 clearly shows that the static equilibrium equations are not exactly fulfilled

by the CCM-PD coupled model.

The following sections of this chapter study the origin of out-of-balance forces

and discuss possible ways to reduce them. In the first part of the chapter, an exten-

sive analysis of the consistency between linear bond-based PD and CCM models is

presented, discussing its theoretical background in Section 2.3 and related numerical

examples in Section 2.4. The second part of the chapter focuses more thoroughly

on the overall static equilibrium issue, presenting a comprehensive analysis of the
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(a) (b)

(c)

Figure 2.3: Discretization of the two-dimensional example under investigation: (a)

fully CCM model, (b) fully PD model, and (c) CCM-PD coupled model. The blue

mesh is composed of conventional four-node plane stress FEM elements, while green

circles represent PD nodes. In (c), the dashed grey lines represent the interface

between the PD and CCM regions, while the portion of the domain bounded by

the dashed–dotted red lines is the coupling zone. In the figure, ∆x = ∆y = 1 and

m = δ/∆x = 3.

force balance in one-dimensional and two-dimensional CCM–PD coupled models in

Section 2.5. Some numerical examples to assess the out-of-balance in CCM-PD

coupled models and confirm the analytical results, involving one-dimensional and

two-dimensional cases, are provided in Section 2.6. In the last part of the chapter,

i.e., in Section 2.7, the numerical study of the out-of-balance issue is extended to

a two-dimensional and a fully three-dimensional crack propagation problem. In all

the cases considered in this chapter, the out-of-balance forces are ‘small’ compared

to the applied forces, but they are not as small as round-off errors.
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Computational technique Fext
∑

Reactions erel

Fully CCM model -10 9.9999 -2.51×10−13

Fully PD model -10 10.0000 5.55×10−13

CCM-PD coupled model -10 10.1425 1.42×10−02

Table 2.1: Reaction forces and relative errors resulting from each numerical simula-

tion.

2.3 Theoretical background: consistency between linear

bond-based PD and CCM models

In Sections 2.3.1 and 2.3.2, the consistency between CCM and PD models is

studied through the analysis of the corresponding governing equations.

The theoretical analysis presented in the following sections has been mainly

derived by Doctor Pablo Seleson, Research Scientist at the Oak Ridge National

Laboratory (ORNL), Oak Ridge, United States [9].

2.3.1 One-dimensional case

Assume a domain B ⊂ R and let a one-dimensional linear bond-based PD model

be given by (cf. (1.22)):

ρ(x)ü(x, t) =

∫

Hx

c(|x′ − x|)(u(x′, t)− u(x, t))dx′ + b(x, t), (2.4)

where ρ is the mass density, ü is the second derivative in time of the displacement

field u, c(|ξ|) is a micromodulus function with ξ = x′ − x a PD bond, Hx is the

neighbourhood of the material point x, and b is a prescribed body force density field.

The relation c(|ξ|) = λ(|ξ|)|ξ|2 (cf. (1.20)) holds in one dimension. For points in the

bulk of the body, the neighbourhood is Hx = [x−δ, x+δ] and we can use the change

of variable ξ = x′ − x to express (2.4) as

ρ(x)ü(x, t) =

∫ δ

−δ
c(|ξ|)(u(x+ ξ, t)− u(x, t))dξ + b(x, t). (2.5)

To establish a connection between (2.5) and the corresponding CCM model, given

by the classical wave equation

ρ(x)ü(x, t) = E
∂2u

∂x2
(x, t) + b(x, t) (2.6)
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with E Young’s modulus, we assume the displacement field is smooth and perform

a Taylor expansion of u(x+ ξ, t) about x:

u(x+ξ, t) = u(x, t)+
∂u

∂x
(x, t)ξ+

1

2

∂2u

∂x2
(x, t)ξ2+

1

3!

∂3u

∂x3
(x, t)ξ3+

1

4!

∂4u

∂x4
(x, t)ξ4+ . . . .

(2.7)

Substituting (2.7) in (2.5), we obtain

ρ(x)ü(x, t) =

∫ δ

−δ
c(|ξ|)

(

∂u

∂x
(x, t)ξ +

1

2

∂2u

∂x2
(x, t)ξ2 +

1

3!

∂3u

∂x3
(x, t)ξ3

+
1

4!

∂4u

∂x4
(x, t)ξ4 + . . .

)

dξ + b(x, t). (2.8)

We observe that terms with an odd power of ξ vanish due to their antisymmetry

and the symmetry of the integration domain. Then, we have

ρ(x)ü(x, t) =

[

1

2

∫ δ

−δ
c(|ξ|)ξ2dξ

]

∂2u

∂x2
(x, t) +

[

1

4!

∫ δ

−δ
c(|ξ|)ξ4dξ

]

∂4u

∂x4
(x, t) + . . .

+ b(x, t). (2.9)

Assuming fourth-order and higher derivatives of displacements are negligible, we

obtain

ρ(x)ü(x, t) =

[

1

2

∫ δ

−δ
c(|ξ|)ξ2dξ

]

∂2u

∂x2
(x, t) + b(x, t). (2.10)

This allows us to relate the micromodulus function c(|ξ|) in (2.5) to Young’s mod-

ulus E in (2.6):

1

2

∫ δ

−δ
c(|ξ|)ξ2dξ = E, (2.11)

so that the PD model (2.5) reduces to the CCM model (2.6).

We conclude that for a smooth displacement field, if fourth-order and higher

derivatives of displacements can be neglected, the one-dimensional linear bond-based

PD equation (2.5) reduces to the CCM equation (2.6), assuming relation (2.11) holds.

In particular, this implies that, given the same body force density field and consistent

boundary conditions, the PD and CCM models possess the same static solution for

problems with constant, linear, quadratic, or cubic solutions. To characterize the

model discrepancy between the PD and CCM models, we now assume a particular

form for the micromodulus function.
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Model discrepancy between PD and CCM models in one dimension

Assume a micromodulus function of the following form:

c(|ξ|) =
c

|ξ|α
(2.12)

with c a constant and α < 3 (see below). Then, we can compute the following

integrals appearing in (2.9):

1

2

∫ δ

−δ
c(|ξ|)ξ2dξ =

∫ δ

0
c ξ2−αdξ =

δ3−α

3− α
c, (2.13)

1

4!

∫ δ

−δ
c(|ξ|)ξ4dξ =

2

4!

∫ δ

0
c ξ4−αdξ =

2

4!

δ5−α

5− α
c. (2.14)

Equating (2.11) and (2.13), we obtain

c =
(3− α)E

δ3−α
. (2.15)

Note that the case α = 1 recovers the micromodulus definition reported in [174] for

a one-dimensional bar with unit cross-sectional area (cf. (1.42)). Using (2.13)–(2.15)

in (2.9), we get

ρ(x)ü(x, t) = E

[

∂2u

∂x2
(x, t) +

1

12

(

3− α

5− α

)

δ2
∂4u

∂x4
(x, t) + . . .

]

+ b(x, t). (2.16)

In the limit as δ → 0, we have

ρ(x)ü(x, t) = E
∂2u

∂x2
(x, t) +O(δ2) + b(x, t), (2.17)

so that the PD model (2.5) converges to the CCM model (2.6) at a rate of O(δ2).

The leading term in the model discrepancy is of order O(δ2).

2.3.2 Two-dimensional case

Assume a domain B ⊂ R
2 and let a two-dimensional linear bond-based PD model

be given by (cf. (1.22)):

ρ(x)ü(x, t) =

∫

Hx

λ(‖x′−x‖)(x′−x)⊗(x′−x)(u(x′, t)−u(x, t))dx′+b(x, t), (2.18)

where ρ is the mass density, ü is the second derivative in time of the displacement

field u, λ(‖ξ‖) is a micromodulus function with ξ = x′ − x a PD bond, Hx is the

neighbourhood of the material point x, and b is a prescribed body force density field.
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For points in the bulk of the body, we can use the change of variable ξ = x′ − x to

express (2.18) as

ρ(x)ü(x, t) =

∫

H

λ(‖ξ‖)ξ ⊗ ξ(u(x+ ξ, t)− u(x, t))dξ + b(x, t), (2.19)

where

H :=
{

ξ ∈ R
2 : ‖ξ‖ 6 δ

}

. (2.20)

We would like to establish a connection between the PD model (2.19) and the

two-dimensional classical linear elasticity plane stress model given by:1

ρ(x)ü1(x, t) =
9E

8

[

∂2u1
∂x2

(x, t) +
2

3

∂2u2
∂x∂y

(x, t) +
1

3

∂2u1
∂y2

(x, t)

]

+ b1(x, t), (2.23a)

ρ(x)ü2(x, t) =
9E

8

[

∂2u2
∂y2

(x, t) +
2

3

∂2u1
∂x∂y

(x, t) +
1

3

∂2u2
∂x2

(x, t)

]

+ b2(x, t), (2.23b)

where E is Young’s modulus and we assumed a Poisson’s ratio of ν = 1/3 [173,195].

For this purpose, we assume the displacement field is smooth and perform a Taylor

expansion of u(x+ ξ, t) about x:

uj(x+ ξ, t) = uj(x, t) +
∂uj
∂xk

(x, t)ξk +
1

2

∂2uj
∂xk∂xl

(x, t)ξkξl +
1

3!

∂3uj
∂xk∂xl∂xm

(x, t)ξkξlξm

+
1

4!

∂4uj
∂xk∂xl∂xm∂xn

(x, t)ξkξlξmξn + . . . , j = 1, 2, (2.24)

where repeated indices imply a summation by 1 and 2. Employing (2.24) for the ith

1In classical linear elasticity, the stress-strain relation for isotropic materials under plane stress

is given by:






σ11

σ22

σ12






=

E

1− ν2







1 ν 0

ν 1 0

0 0 1− ν













ε11

ε22

ε12






, (2.21)

where E is Young’s modulus, ν is Poisson’s ratio, σij are the components of the stress tensor, and

εij are the components of the infinitesimal strain tensor, εij = 1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

; both σ and ε are

symmetric tensors. The equation of motion is given, in component form, by

ρ(x)üi(x, t) =
∂σij

∂xj

(x, t) + bi(x, t), i = 1, 2, (2.22)

where repeated indices imply summation by 1 and 2.
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component of (2.19), we obtain

ρ(x)üi(x, t) =

∫

H

λ(‖ξ‖)ξiξj(uj(x+ ξ, t)− uj(x, t))dξ + bi(x, t)

=

∫

H

λ(‖ξ‖)ξiξj

(

∂uj
∂xk

(x, t)ξk +
1

2

∂2uj
∂xk∂xl

(x, t)ξkξl

+
1

3!

∂3uj
∂xk∂xl∂xm

(x, t)ξkξlξm +
1

4!

∂4uj
∂xk∂xl∂xm∂xn

(x, t)ξkξlξmξn + . . .

)

dξ

+ bi(x, t). (2.25)

We observe that terms with an odd number of components of ξ vanish due to their

antisymmetry and the symmetry of the integration domain. Then, we have

ρ(x)üi(x, t) =

[

1

2

∫

H

λ(‖ξ‖)ξiξjξkξldξ

]

∂2uj
∂xk∂xl

(x, t)

+

[

1

4!

∫

H

λ(‖ξ‖)ξiξjξkξlξmξndξ

]

∂4uj
∂xk∂xl∂xm∂xn

(x, t)

+ . . .+ bi(x, t). (2.26)

Assuming fourth-order and higher derivatives of displacements are negligible, we

obtain

ρ(x)üi(x, t) =

[

1

2

∫

H

λ(‖ξ‖)ξiξjξkξldξ

]

∂2uj
∂xk∂xl

(x, t) + bi(x, t). (2.27)

Employing polar coordinates, ξ1 = r cos(θ) and ξ2 = r sin(θ), we can compute the

following integrals (see [9]):

1

2

∫

H

λ(‖ξ‖)ξ41dξ =

(

1

2

∫ δ

0
λ(r)r5dr

)
∫ 2π

0
cos4(θ)dθ = Λ, (2.28a)

1

2

∫

H

λ(‖ξ‖)ξ21ξ
2
2dξ =

(

1

2

∫ δ

0
λ(r)r5dr

)
∫ 2π

0
cos2(θ) sin2(θ)dθ =

Λ

3
, (2.28b)

1

2

∫

H

λ(‖ξ‖)ξ42dξ =

(

1

2

∫ δ

0
λ(r)r5dr

)
∫ 2π

0
sin4(θ)dθ = Λ, (2.28c)

1

2

∫

H

λ(‖ξ‖)ξ31ξ2dξ =
1

2

∫

H

λ(‖ξ‖)ξ1ξ
3
2dξ = 0, (2.28d)

where

Λ :=
3π

4

(

1

2

∫ δ

0
λ(r)r5dr

)

. (2.29)

Substituting (2.28) in (2.27), we get (see [9])

ρ(x)ü1(x, t) = Λ

[

∂2u1
∂x2

(x, t) +
2

3

∂2u2
∂x∂y

(x, t) +
1

3

∂2u1
∂y2

(x, t)

]

+ b1(x, t), (2.30a)

ρ(x)ü2(x, t) = Λ

[

∂2u2
∂y2

(x, t) +
2

3

∂2u1
∂x∂y

(x, t) +
1

3

∂2u2
∂x2

(x, t)

]

+ b2(x, t). (2.30b)



90
2. Overall equilibrium in the coupling of peridynamics and classical

continuum mechanics

Equating (2.30a) and (2.23a) or (2.30b) and (2.23b), we obtain

Λ =
9E

8
. (2.31)

As in the one-dimensional case in Section 2.3.1, we conclude that for a smooth

displacement field, if fourth-order and higher derivatives of displacements can be

neglected, the two-dimensional linear bond-based PD equation (2.19) reduces to the

CCM equation (2.23), assuming relation (2.31) holds (cf. (2.29)). In particular, this

implies that given the same body force density field and consistent boundary condi-

tions, the PD and CCM models possess the same static solution for problems with

constant, linear, quadratic, or cubic solutions. To characterize the model discrep-

ancy between the PD and CCM models, we now assume a particular form for the

micromodulus function.

Model discrepancy between PD and CCM models in two dimensions

Assume a micromodulus function of the following form:

λ(‖ξ‖) =
c

‖ξ‖α
(2.32)

with c a constant and α < 6 (see below). Then, we can compute Λ in (2.29):

Λ =
3π

4

(

1

2

∫ δ

0
cr5−αdr

)

= c
3π

8

δ6−α

6− α
. (2.33)

By equating (2.33) and (2.31), we get

c =
3(6− α)E

πδ6−α
. (2.34)

Note that the case α = 3 recovers the micromodulus definition reported in [173] for a

plane stress structure with unit thickness (cf. (1.40)). Employing polar coordinates

as in (2.28), we can express the coefficients of the fourth-order derivatives in (2.26)

as (see [9])

1

4!

∫

H

λ(‖ξ‖)ξiξjξkξlξmξndξ =
1

4!

(
∫ δ

0
λ(r)r7dr

)
∫ 2π

0
(cos(θ))a(sin(θ))6−adθ,

(2.35)

where a is the number of 1s in {i, j, k, l,m, n}. We now have (cf. (2.32) and (2.34)),

∫ δ

0
λ(r)r7dr =

∫ δ

0
cr7−αdr = c

δ8−α

8− α
=

3

π

6− α

8− α
Eδ2. (2.36)



2.4 Numerical assessment of the consistency between linear bond-based PD
and CCM models 91

In the limit as δ → 0, (2.26) gives (cf. (2.30) and (2.31))

ρ(x)ü1(x, t) =
9E

8

[

∂2u1
∂x2

(x, t) +
2

3

∂2u2
∂x∂y

(x, t) +
1

3

∂2u1
∂y2

(x, t)

]

+O(δ2) + b1(x, t),

(2.37a)

ρ(x)ü2(x, t) =
9E

8

[

∂2u2
∂y2

(x, t) +
2

3

∂2u1
∂x∂y

(x, t) +
1

3

∂2u2
∂x2

(x, t)

]

+O(δ2) + b2(x, t),

(2.37b)

so that the PD model (2.19) converges to the CCM model (2.23) at a rate of O(δ2).

The leading term in the model discrepancy is of order O(δ2), similar to the result

obtained in Section 2.3.1.

2.4 Numerical assessment of the consistency between lin-

ear bond-based PD and CCM models

The present section aims at numerically confirming the theoretical analysis of the

consistency between CCM and PD models discussed in Section 2.3 with examples

involving one-dimensional models in Section 2.4.1 and two-dimensional models in

Section 2.4.2. All numerical examples are linear in terms of material response and

deformation [7].

2.4.1 One-dimensional case

In this section, an equilibrium check is carried out on one-dimensional cases

adopting the CCM-PD coupling strategy described in Section 2.1. We consider a bar

discretized with N = 31 nodes uniformly distributed with ∆x = 1 as shown in Fig-

ure 2.4. The PD portion of the domain is composed of nodes with coordinates in the

interval [10 . . 20], while the remaining part of the domain is modelled with a CCM

model discretized using two-node bar FEM elements with linear shape functions.

The values of the main problem parameters are L = 30 (bar length), E = 1 (Young’s

modulus), and A = 1 (bar cross-sectional area) in consistent units. We assume a

CCM model given by (2.6) and a PD model given by (2.5) with a micromodulus

function c(|ξ|) = c/|ξ|. The PD horizon is taken as δ = 3 (i.e., m = δ/∆x = 3) and

the micromodulus constant c has been evaluated through (1.42). The PD portion of

the domain employs a meshfree discretization with a partial-volume correction [191].
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Figure 2.4: CCM-PD coupled model for the one-dimensional case. Blue diamonds

are FEM nodes, green circles are PD nodes, and blue solid lines represent FEM

elements.

Figure 2.5: Imposed displacement field along the bar length.

In the CCM-PD coupled model, a displacement is imposed on all the nodes and

the reaction forces are computed using a system of the type of (2.1). The imposed

displacement field is a piecewise polynomial function composed of three curves: two

linear functions connected by a quartic function as shown in Figure 2.5. The quartic

function has been selected to ensure C1 continuity of the displacement field (i.e.,

continuity of the displacement field and its first derivative) along the bar length.

The three curves used for the imposed displacement field are described in Table 2.2;

the value of the coefficient a is set to a = 0.0001.

The following part of this section presents five different cases of displacement distri-

butions imposed on the bar. For all the cases, we keep fixed the location of the PD

portion of the domain and all the problem parameters, while only changing the po-

sition of the quartic displacement curve along the bar length. The resulting relative
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Displacement type Displacement field equation Domain

Curve 1: linear u(x) = ax x ∈ (0, X1)

Curve 2: quartic u(x) = a
4X3

1

x4 + 3a
4 X1 x ∈ (X1, X2)

Curve 3: linear u(x) = a
(

X2

X1

)3
(x−X2) +

a
4X3

1

(

X4
2 + 3X4

1

)

x ∈ (X2, L)

Table 2.2: Piecewise displacement field for the one-dimensional case.

out-of-balance error is evaluated through the following quantity:

er :=

∣

∣

∣

∑N
i=1 Fi

∣

∣

∣

∑N
i=1 |Fi|

, (2.38)

where Fi is the reaction force generated at node i after the imposition of the dis-

placement field. In the case of overall equilibrium of the whole structure, the sum

of the reaction forces is equal to zero (see Section 2.1.1).

Table 2.3 lists the results in terms of relative out-of-balance error for the five dif-

ferent cases investigated (see Figure 2.6). In the first three cases, i.e., configurations

(a), (b), and (c) in Figure 2.6, the quartic displacement curve is located away from

the two coupling zones. In the configurations (a) and (c) the quartic displacement

curve is placed within the CCM portion of the domain, whereas in the configura-

tion (b) the quartic displacement curve is located in the PD region. As shown in

Table 2.3, none of these cases exhibit out-of-balance, since the magnitude of the

resulting relative out-of-balance errors is on the order of machine precision. In the

last two cases, i.e., configurations (d) and (e) in Figure 2.6, the quartic displacement

curve is located over the left and right coupling zones, respectively. As it is clearly

reported in Table 2.3, in these cases the resulting relative out-of-balance errors are

about twelve orders of magnitude larger than the ones computed for the first three

cases. These results demonstrate that the resulting relative out-of-balance error

changes significantly when varying the position of the quartic displacement curve

with respect to the location of the coupling zone in the CCM-PD coupled model.

This is consistent with the theoretical background presented in Section 2.3.1.

In the last part of this section, the outputs obtained by performing both an m-

and a δ-convergence study (see Section 1.3.3) are presented in order to examine
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(a) X1 = 2, X2 = 6 (b) X1 = 13, X2 = 17

(c) X1 = 25, X2 = 29 (d) X1 = 6, X2 = 13

(e) X1 = 17, X2 = 24

Figure 2.6: Imposed displacement fields on the CCM-PD coupled model with a

quartic displacement curve placed in different locations along the bar. The quartic

displacement curve, represented by cyan lines, is located in (a) the left CCM region,

(b) the central PD part, (c) the right CCM region, (d) the left coupling zone, and

(e) the right coupling zone. Long dashed gray vertical lines indicate the interfaces

between the PD and CCM portions of the domain, while short dashed-dotted red

vertical lines define the coupling zones of the model. The values of the parameters

X1 and X2 defining the curves in Table 2.2 are indicated for each case. For clarity

reasons, the vertical axis scale changes from plot to plot.
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Coupled model er

Case (a) 1.93× 10−15

Case (b) 4.24× 10−16

Case (c) 2.60× 10−16

Case (d) 4.34× 10−03

Case (e) 1.48× 10−03

Table 2.3: Relative out-of-balance errors for the configurations described in Fig-

ure 2.6.

the effects of these two parameters on the magnitude of the relative out-of-balance

error. Both studies considered the configuration (e) in Figure 2.6, where the quartic

displacement curve is located over the right coupling zone. The resulting relative

out-of-balance errors are listed in Table 2.4, where it is evident that the increase

in m has no clear effect on the out-of-balance level of the CCM-PD coupled model

(see cases (f) and (g)). On the contrary, when a δ-convergence study is performed,

the out-of-balance level decreases with the horizon value (see cases (h) and (i)). To

verify the δ-dependence of the model discrepancy between PD and CCM models,

Table 2.4 also lists the sum of the reaction forces,
∑N

i=1 Fi, scaled by δ2. The results

confirm the analysis presented in Section 2.3.1, where the leading term in the model

discrepancy depends on δ2 (see (2.17)). The reason why the results in Table 2.4 give

only an approximated quadratic dependence of the model discrepancy on δ, i.e., the

values of the scaled sum of the reaction forces in cases (h) and (i) are not exactly

the same as the one in case (e), might be that the value of m is not large enough

to provide the required numerical accuracy. For this reason, Table 2.5 reports the

results obtained by performing a δ-convergence study using a larger value of m,

chosen as m= 8, and keeping it fixed during the analysis. As in the previous cases

reported in Table 2.4, this study considered the configuration (e) in Figure 2.6,

where the quartic displacement curve is located over the right coupling zone. Using

a larger value of m, the results give an exact quadratic dependence of the model

discrepancy on δ.
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Coupled model er

(

∑N
i=1 Fi

)

/δ2

Case (e), δ = 3, m = 3 1.48× 10−03 −9.27× 10−08

Case (f), δ = 3, m = 6 1.60× 10−03 −1.00× 10−07

Case (g), δ = 3, m = 12 1.62× 10−03 −1.02× 10−07

Case (h), δ = 1.5, m = 3 3.66× 10−04 −9.16× 10−08

Case (i), δ = 0.5, m = 3 4.04× 10−05 −9.08× 10−08

Table 2.4: Relative out-of-balance errors and scaled sums of reaction forces for the

m- and δ-convergence studies.

Coupled model er

(

∑N
i=1 Fi

)

/δ2

Case (l), δ = 3, m = 8 1.60× 10−03 −1.00× 10−07

Case (m), δ = 1.5, m = 8 4.00× 10−04 −1.00× 10−07

Case (n), δ = 0.5, m = 8 4.46× 10−05 −1.00× 10−07

Table 2.5: Relative out-of-balance errors and scaled sums of reaction forces for the

δ-convergence study.
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2.4.2 Two-dimensional case

In this section, equilibrium checks are carried out on two-dimensional plane

stress cases adopting the CCM-PD coupling strategy described in Section 2.1. We

consider a two-dimensional rectangular plate with an internal PD region as shown

in Figure 2.7. The PD portion of the domain is a square of edge length LPDx =

LPDy = 10, and the remaining part of the domain, the CCM region, is discretized

using four-node square plane stress FEM elements for which the element stiffness

matrix has been evaluated with exact integration [194]. The discretization of the

domain employs a uniform grid with ∆x = ∆y = 0.125. The values of the main

problem parameters are Lx = 24 and Ly = 34 (plate dimensions), E = 1 (Young’s

modulus), ν = 1
3 (Poisson’s ratio), and h = 1 (plate thickness) in consistent units.

We assume a CCM model given by the classical linear elasticity plane stress isotropic

model (cf. (2.23)) and a PD model given by a linear bond-based isotropic model

(cf. (2.19)) with a micromodulus function λ(‖ξ‖) = c
‖ξ‖3

. The PD horizon is taken

as δ = 0.375 (i.e., m = δ/∆x = 3) and the micromodulus constant c has been

evaluated through the following relation (cf. (1.40)):

c =
9E

πδ3
γ, (2.39)

which corresponds to a plane stress condition, where γ is a correction factor (see

Remark A.2 in Appendix A.2). The PD portion of the domain employs a meshfree

discretization with a partial-volume correction [190].

In this CCM-PD coupled problem a displacement is imposed on all nodes. Sim-

ilarly to the one-dimensional numerical examples in Section 2.4.1, a piecewise poly-

nomial displacement field is imposed. However, since in this case the problem is

two-dimensional, the imposed displacement field is composed of six curves, three

along the x-direction and three along the y-direction. A displacement field given by

two linear functions connected by a quartic function is imposed on both directions

as shown in Figure 2.8, where u1 and u2 are the x- and y-components, respectively,

of the displacement field u = (u1, u2). The quartic function has been selected to

ensure C1 continuity of the displacement field along both the x- and y-directions.

The imposed displacement field is described by the set of equations defined in Ta-

ble 2.6, where the value of the coefficient k is set to k = 0.1. The portion of the
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Figure 2.7: CCM-PD coupled model for the two-dimensional case. Green circles

are PD nodes and blue (empty) squares are FEM elements. The dashed gray lines

represent the interface between the PD and CCM regions, while the portion of the

domain bounded by the dashed-dotted red lines is the coupling zone. For clarity

reasons, in the figure, ∆x = ∆y = 1 and m = δ/∆x = 3.

domain x ∈ (X1, X2) ∧ y ∈ (0, Ly) represents the quartic displacement region of

the u1 component of the displacement field and is referred to as the quartic vertical

band, whereas the portion of the domain x ∈ (0, Lx) ∧ y ∈ (Y1, Y2) represents the

quartic displacement region of the u2 component of the displacement field and is

referred to as the quartic horizontal band.

Four different cases are considered. For all the cases, we impose the same dis-

placement field (i.e., we keep fixed the values assigned to the parameters X1, X2, Y1,

and Y2) while changing the position of the PD region within the plate. Figure 2.9

shows the four cases and Table 2.7 provides the information about the location of

the PD region and the position of the quartic horizontal and vertical bands for each

of the four cases.

The resulting relative out-of-balance error is evaluated in the x- and y-directions
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Figure 2.8: Imposed displacement field on the plate showing the quartic horizontal

and vertical bands.

Displacement type Displacement field equation Domain

Linear u1(x, y) = kx x ∈ (0, X1)

Quartic u1(x, y) =
k

4X3
1

x4 + 3k
4 X1 x ∈ (X1, X2)

Linear u1(x, y) = k
(

X2

X1

)3
(x−X2) +

k
4X3

1

(

X4
2 + 3X4

1

)

x ∈ (X2, Lx)

(a)

Displacement type Displacement field equation Domain

Linear u2(x, y) = ky y ∈ (0, Y1)

Quartic u2(x, y) =
k

4Y 3
1

y4 + 3k
4 Y1 y ∈ (Y1, Y2)

Linear u2(x, y) = k
(

Y2

Y1

)3
(y − Y2) +

k
4Y 3

1

(

Y 4
2 + 3Y 4

1

)

y ∈ (Y2, Ly)

(b)

Table 2.6: Equations representing the displacement field imposed on the plate: (a)

u1 component of the displacement, (b) u2 component of the displacement.
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CCM-PD coupled model

(δ = 0.375, m = 3) PDCentre X1 X2 Y1 Y2

Case I (16, 24) 4 10 10 16

Case II (11.875, 18.875) 4 10 10 16

Case III (16, 18.875) 4 10 10 16

Case IV (11.875, 24) 4 10 10 16

Table 2.7: Location of the centre of the PD region and position of the quartic

horizontal and vertical bands for each of the four cases presented in Figure 2.9.

through the following quantities:

erx :=

∣

∣

∣

∑N
i=1 F1 i

∣

∣

∣

∑N
i=1 |F1 i|

, (2.40a)

ery :=

∣

∣

∣

∑N
i=1 F2 i

∣

∣

∣

∑N
i=1 |F2 i|

, (2.40b)

where N is the total number of nodes and F1 i and F2 i are the x- and y-components,

respectively, of the reaction force generated at node i after the imposition of the

displacement field. In the case of overall equilibrium of the whole structure, the

sum of the reaction forces for each component is equal to zero (see Section 2.1.1).

Table 2.8 lists the results obtained in terms of relative out-of-balance error along

the x- and y-directions for the four cases presented in Figure 2.9.

In Case I in Figure 2.9, the coupling zone is located outside both the quartic

horizontal and vertical bands. As it is clearly shown in Table 2.8, in this case the

force equilibrium is verified along both the x- and y-directions. In contrast, in Case

II shown in Figure 2.9, both erx and ery are not negligible, as reported in Table 2.8.

In this case, the coupling zone is partially located inside both the quartic horizontal

and vertical bands, and a ‘small’ portion of it is placed in the overlapping area of the

two bands. In Case III shown in Figure 2.9, the force equilibrium turns out to be

verified only along the x-direction, since the coupling zone is partially located inside

the quartic horizontal band. Similarly, in Case IV shown in Figure 2.9, the force

equilibrium turns out to be verified only along the y-direction, since the coupling
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(a) Case I (b) Case II

(c) Case III (d) Case IV

Figure 2.9: CCM-PD coupled model configurations on a two-dimensional plate. The

green area represents the PD region, whereas the blue area is the CCM region. The

portion of the domain bounded by red lines is the coupling zone, while the thick

straight white lines represent the bounds of the quartic horizontal and vertical bands.

The only difference between the four cases is the position of the PD region within

the plate, which leads to a variation in the location of the coupling zone with respect

to the quartic horizontal and vertical bands. (a) the coupling zone is outside the two

bands; (b) a portion of the coupling zone is inside both the horizontal and vertical

bands; (c) a portion of the coupling zone is inside the horizontal band; and (d) a

portion of the coupling zone is inside the vertical band.
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CCM-PD coupled model

(δ = 0.375, m = 3) erx ery

Case I 3.20× 10−14 1.26× 10−14

Case II 2.96× 10−05 9.61× 10−06

Case III 4.19× 10−14 9.61× 10−06

Case IV 2.96× 10−05 1.93× 10−14

Table 2.8: Resulting relative out-of-balance errors along the x- and y-directions for

the four cases presented in Figure 2.9.

zone is partially located inside the quartic vertical band. These results demonstrate

that the resulting relative out-of-balance error changes significantly when varying

the position of the coupling zone in the CCM-PD coupled model with respect to the

locations of the quartic horizontal and vertical bands. This is consistent with the

theoretical background presented in Section 2.3.2.

The theoretical analysis presented in Section 2.3 and the supporting numerical

simulations reported in Section 2.4 demonstrate that high gradients of displace-

ments are responsible for the discrepancy between the PD and CCM models. In the

following section, the overall static equilibrium issue is investigated more deeply by

performing a comprehensive analysis directly of the force balance in one-dimensional

and two-dimensional CCM-PD coupled systems.

2.5 Theoretical background: out-of-balance analysis in

CCM-PD coupled models

Traditionally, the consistency between CCM and PD models is studied through

the analysis of the corresponding governing equations, as reported in Section 2.3.

However, this analysis does not reveal the culprit responsible for the existence of

out-of-balance forces in CCM–PD coupled systems. For this reason, a detailed

analysis of the balance between local and nonlocal tractions at coupling interfaces

in one-dimensional and two-dimensional CCM–PD coupled models is presented in
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Sections 2.5.1 and 2.5.2, respectively.

The theoretical analysis presented in the following sections has been mainly

derived by Doctor Pablo Seleson, Research Scientist at the Oak Ridge National

Laboratory (ORNL), Oak Ridge, United States [9].

2.5.1 One-dimensional case

CCM model

B ✲✛

0 L

Figure 2.10: One-dimensional domain B = (0, L).

Assume a one-dimensional domain B = (0, L) as in Figure 2.10 and consider the

CCM static equation

− E
d2u

dx2
(x) = b(x) x ∈ (0, L), (2.41)

where E is Young’s modulus. Integrating the equation over the domain B, we obtain

−

∫ L

0
E
d2u

dx2
(x)dx =

∫ L

0
b(x)dx. (2.42)

Performing the integration on the left-hand side, we have

− E
du

dx
(L) + E

du

dx
(0) =

∫ L

0
b(x)dx. (2.43)

In this case, the stress at x0 is given by:

σ(x0) = E
du

dx
(x0) (2.44)

and the corresponding local traction is defined by:

t(x0, n) := σ(x0)n, (2.45)

where n = ±1 represents a normal in one dimension. Note that

t(x0,−n) = −t(x0, n). (2.46)

We then obtain from (2.43) the force balance equation

t(L,+1) + t(0,−1) +

∫ L

0
b(x)dx = 0, (2.47)

where t(L,+1) and t(0,−1) are boundary local tractions. The boundary local trac-

tions balance the external forces.
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PD model

B ✲✛

0 L−δ L+ δ

Figure 2.11: One-dimensional domain B = (0, L) with nonlocal boundary [−δ, 0] ∪

[L,L+ δ].

Assume a one-dimensional domain B = (0, L) as in Figure 2.11, where L > δ > 0,

with nonlocal boundary [−δ, 0] ∪ [L,L + δ] and consider the bond-based PD static

equation

−

∫

Hx

c(|x′ − x|)(u(x′)− u(x))dx′ = b(x) x ∈ (0, L), (2.48)

where c(|ξ|) is a micromodulus function and Hx = [x − δ, x + δ]. Note the rela-

tion c(|ξ|) = λ(|ξ|)|ξ|2 in one dimension with λ(|ξ|) from (1.20). Introducing the

characteristic function

χδ(|ξ|) :=







1 |ξ| 6 δ,

0 else,
(2.49)

we can extend the domain of integration in (2.48) to the union of the domain B and

its nonlocal boundary (see Figure 2.11):

−

∫ L+δ

−δ
χδ(|x

′ − x|)c(|x′ − x|)(u(x′)− u(x))dx′ = b(x) x ∈ (0, L). (2.50)

We now integrate the equation over the domain B:

−

∫ L

0

∫ L+δ

−δ
χδ(|x

′ − x|)c(|x′ − x|)(u(x′)− u(x))dx′dx =

∫ L

0
b(x)dx. (2.51)

Due to the antisymmetry of the integrand on the left-hand side of (2.51),

−

∫ L

0

∫ L

0
χδ(|x

′ − x|)c(|x′ − x|)(u(x′)− u(x))dx′dx = 0, (2.52)

meaning that internal forces are balanced in a bounded PD body. Consequently, we

obtain

−

∫ L

0

∫ 0

−δ
χδ(|x

′ − x|)c(|x′ − x|)(u(x′)− u(x))dx′dx

−

∫ L

0

∫ L+δ

L
χδ(|x

′ − x|)c(|x′ − x|)(u(x′)− u(x))dx′dx =

∫ L

0
b(x)dx, (2.53)
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which can now be written without the characteristic function (recall L > δ) as

−

∫ δ

0

∫ 0

x−δ
c(|x′ − x|)(u(x′)− u(x))dx′dx

−

∫ L

L−δ

∫ x+δ

L
c(|x′ − x|)(u(x′)− u(x))dx′dx =

∫ L

0
b(x)dx. (2.54)

Following the concept of areal force density presented in [7] and briefly introduced

in Section 1.1.3, we define the nonlocal traction at x0 with normal n = ±1 in one

dimension by:

τ(x0, n) :=



















∫ x0

x0−δ

∫ x+δ

x0

c(|x′ − x|)(u(x′)− u(x))dx′dx n = +1,

∫ x0+δ

x0

∫ x0

x−δ
c(|x′ − x|)(u(x′)− u(x))dx′dx n = −1.

(2.55)

Note that (see Remark A.1 in Appendix A.1)

τ(x0,−n) = −τ(x0, n). (2.56)

We then obtain from (2.54) the force balance equation

τ(L,+1) + τ(0,−1) +

∫ L

0
b(x)dx = 0, (2.57)

where τ(L,+1) and τ(0,−1) are boundary nonlocal tractions. The boundary non-

local tractions balance the external forces.

CCM-PD coupled model

BPD BR
CCMBL

CCM

0 LxIL xIR

Figure 2.12: Decomposition of a one-dimensional domain B = (0, L) into a PD

subdomain BPD = (xIL, xIR) embedded into a CCM subdomain BCCM = BL
CCM ∪

BR
CCM = (0, xIL) ∪ (xIR, L). The transition between the PD and CCM subdomains

occurs at the interfaces xIL and xIR.

Assume a one-dimensional domain B = (0, L) and consider a CCM-PD coupled

configuration where a PD subdomain is embedded into a CCM subdomain, as illus-

trated in Figure 2.12. This configuration enables the use of classical local boundary

conditions. Consider two interfaces, xIL and xIR, such that 0 < xIL < xIR < L.
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Assume points x ∈ (xIL, xIR) are described by the PD model (2.48), whereas points

x ∈ (0, xIL) ∪ (xIR, L) are described by the CCM model (2.41). We assume the

length of the PD subdomain is at least δ, so that xIR−xIL > δ. We further assume

the CCM subdomain is large enough, so that xIL − δ > 0 and xIR + δ 6 L . The

corresponding coupled system of equations can be written as:

−E
d2u

dx2
(x) = b(x) x ∈ (0, xIL), (2.58a)

−

∫

Hx

c(|x′ − x|)(u(x′)− u(x))dx′ = b(x) x ∈ (xIL, xIR), (2.58b)

−E
d2u

dx2
(x) = b(x) x ∈ (xIR, L). (2.58c)

Integrating the equations over their respective subdomains, we obtain

−

∫ xIL

0
E
d2u

dx2
(x)dx =

∫ xIL

0
b(x)dx, (2.59a)

−

∫ xIR

xIL

∫

Hx

c(|x′ − x|)(u(x′)− u(x))dx′dx =

∫ xIR

xIL

b(x)dx, (2.59b)

−

∫ L

xIR

E
d2u

dx2
(x)dx =

∫ L

xIR

b(x)dx. (2.59c)

Adding the equations in (2.59), we get

−

∫ xIL

0
E
d2u

dx2
(x)dx−

∫ xIR

xIL

∫

Hx

c(|x′ − x|)(u(x′)− u(x))dx′dx

−

∫ L

xIR

E
d2u

dx2
(x)dx =

∫ L

0
b(x)dx. (2.60)

Performing the integration in the first and third terms on the left-hand side and

using the characteristic function (2.49) for the second term on the left-hand side, we

have

−E
du

dx
(xIL) + E

du

dx
(0)−

∫ xIR

xIL

∫ xIR+δ

xIL−δ
χδ(|x

′ − x|)c(|x′ − x|)(u(x′)− u(x))dx′dx

− E
du

dx
(L) + E

du

dx
(xIR) =

∫ L

0
b(x)dx. (2.61)

Similar to (2.52),

−

∫ xIR

xIL

∫ xIR

xIL

χδ(|x
′ − x|)c(|x′ − x|)(u(x′)− u(x))dx′dx = 0. (2.62)
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Therefore, we obtain

−E
du

dx
(xIL) + E

du

dx
(0)−

∫ xIR

xIL

∫ xIL

xIL−δ
χδ(|x

′ − x|)c(|x′ − x|)(u(x′)− u(x))dx′dx

−

∫ xIR

xIL

∫ xIR+δ

xIR

χδ(|x
′ − x|)c(|x′ − x|)(u(x′)− u(x))dx′dx

− E
du

dx
(L) + E

du

dx
(xIR) =

∫ L

0
b(x)dx. (2.63)

Removing the characteristic function (recall xIR−xIL > δ) and using the definitions

for the local and nonlocal tractions in (2.45) and (2.55), respectively, we can express

this equation as follows (see [9]):

t(L,+1) + t(0,−1) +

∫ L

0
b(x)dx = −

{[

t(xIL,+1) + τ(xIL,−1)
]

+
[

τ(xIR,+1) + t(xIR,−1)
]}

. (2.64)

The net force, F, applied on the domain B is given by (cf. (2.47)):

F = t(L,+1) + t(0,−1) +

∫ L

0
b(x)dx. (2.65)

We then conclude that overall equilibrium, i.e., F = 0, requires the balance between

the local and nonlocal tractions at the interfaces (see (2.64)):

τ(xIL,−1) = −t(xIL,+1), (2.66a)

τ(xIR,+1) = −t(xIR,−1). (2.66b)

In the following section, the convergence of the nonlocal traction to the local traction

is discussed, providing conditions under which (2.66) is satisfied.

Convergence of the nonlocal traction to the local traction in one dimen-

sion

This section presents for brevity only the main results derived from the analysis

of the convergence of the nonlocal traction to the local traction in one-dimensional

CCM-PD coupled models. For a comprehensive derivation, please refer to Ap-

pendix A.1.

Consider the nonlocal traction at x0 ∈ B in the bulk of the body with normal

n = +1, i.e., τ(x0,+1) in (2.55) and assume a micromodulus function of the form
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c(|ξ|) = c/|ξ|α with c a constant and α < 2. Assuming a smooth deformation and

performing some Taylor expansions, we obtain

τ(x0,+1) = t(x0,+1) +
1

12

3− α

5− α
Eδ2

d3u

dx3
(x0) + . . . , (2.67)

where the relation c = 3−α
δ3−αE has been employed (cf. (2.15)), t(x0,+1) is the local

traction at x0 with normal n = +1 (cf. (2.45)), and the dots indicate higher-order

derivative terms. In the limit as δ → 0, we get

τ(x0,+1) = t(x0,+1) + O(δ2), (2.68)

i.e., the nonlocal traction converges to the local traction at a rate of O(δ2). Fur-

thermore, this result reveals that, even though the discrepancy between the PD and

CCM models depends upon fourth-order and higher derivatives of displacements

(see Section 2.3.1), the discrepancy between the nonlocal and local tractions de-

pends upon third-order and higher derivatives of displacements. Nevertheless, the

leading terms in both the model and traction discrepancies are both of order O(δ2)

(see Section 2.3.1).

The result in (2.67) implies that, if the deformation around the interfaces xIL and

xIR in Figure 2.12 is smooth and third-order and higher derivatives of displacements

are negligible, we have (recall (2.46) and (2.56))

τ(xIL,−1) = −τ(xIL,+1) = −t(xIL,+1), (2.69a)

τ(xIR,+1) = t(xIR,+1) = −t(xIR,−1), (2.69b)

so that (2.66) is satisfied and overall equilibrium is attained. However, whenever

third-order or higher derivatives of displacements are not negligible around either

of the interfaces, lack of overall equilibrium is in general expected. In this case, the

net out-of-balance force is given by (cf. (2.65) and (2.64)):

F = −{[t(xIL,+1) + τ(xIL,−1)] + [τ(xIR,+1) + t(xIR,−1)]}

=
1

12

3− α

5− α
Eδ2

(

d3u

dx3
(xIL)−

d3u

dx3
(xIR)

)

+ . . . , (2.70)

where we employed (2.67) in combination with (2.46) and (2.56) in the last equality.

In the limit as δ → 0, the net out-of-balance force vanishes at a rate of O(δ2).
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2.5.2 Two-dimensional case

CCM model

∂B

B

Figure 2.13: Two-dimensional domain B with boundary ∂B.

Assume a two-dimensional domain B with boundary ∂B as in Figure 2.13 and

consider the CCM static equation

−∇ · σ(x) = b(x) x ∈ B, (2.71)

where σ is a Piola-Kirchhoff stress tensor field. Integrating the equation over the

domain B and using Gauss’s theorem for the left-hand side, we have (see [9])

−

∫

∂B
σ(x) · n(x)dl =

∫

B

b(x)dx, (2.72)

where n(x) is the outward unit normal to the boundary ∂B at x ∈ ∂B and the

integral over ∂B is a line integral. The local traction is defined by:

t(x,n) := σ(x) · n(x). (2.73)

Note that

t(x,−n) = −t(x,n). (2.74)

We then obtain from (2.72) the force balance equation

∫

∂B
t(x,n)dl +

∫

B

b(x)dx = 0, (2.75)

where the boundary local tractions balance the external forces.
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B \B

B

Figure 2.14: Two-dimensional domain B with nonlocal boundary layer (in gray).

PD model

Assume a two-dimensional domain B with a nonlocal boundary layer as in Fig-

ure 2.14 and consider the PD static equation

−

∫

Hx

f(x′,x)dx′ = b(x) x ∈ B, (2.76)

where (cf. (1.52))

f(x′,x) := T [x, t] 〈x′ − x〉 −T[x′, t]〈x− x′〉 (2.77)

and Hx is the neighbourhood of x. Note that the following antisymmetric property

holds:

f(x,x′) = −f(x′,x). (2.78)

Introducing the characteristic function

χδ(‖ξ‖) :=







1 ‖ξ‖ 6 δ,

0 else,
(2.79)

we can extend the domain of integration in (2.76) to the union of the domain B and

its nonlocal boundary, which we denote together by B:

−

∫

B

χδ(‖x
′ − x‖)f(x′,x)dx′ = b(x) x ∈ B. (2.80)

We now integrate the equation over the domain B:

−

∫

B

∫

B

χδ(‖x
′ − x‖)f(x′,x)dx′dx =

∫

B

b(x)dx. (2.81)
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Due to the antisymmetric property (2.78), we have

−

∫

B

∫

B

χδ(‖x
′ − x‖)f(x′,x)dx′dx = 0, (2.82)

meaning that internal forces are balanced in a bounded PD body. Consequently, we

obtain

−

∫

B

∫

B\B
χδ(‖x

′ − x‖)f(x′,x)dx′dx =

∫

B

b(x)dx. (2.83)

We now have the force balance equation

∫

B

∫

B\B
χδ(‖x

′ − x‖)f(x′,x)dx′dx+

∫

B

b(x)dx = 0. (2.84)

Assume there exists a function τ (x,n) satisfying

∫

∂B
τ (x,n)dl =

∫

B

∫

B\B
χδ(‖x

′ − x‖)f(x′,x)dx′dx, (2.85)

where n = n(x) is the outward unit normal to the boundary ∂B at x ∈ ∂B. In this

case, we refer to τ (x,n) as the nonlocal traction at x with normal n(x), and we can

express (2.84) as
∫

∂B
τ (x,n)dl +

∫

B

b(x)dx = 0, (2.86)

where the boundary nonlocal tractions balance the external forces.

CCM-PD coupled model

∂B

BCCM

BPD Γ

Figure 2.15: Decomposition of a two-dimensional domain B with boundary ∂B into

a PD subdomain BPD embedded into a CCM subdomain BCCM. The interface

between the PD and CCM subdomains is denoted by Γ.

Assume a two-dimensional domain B with boundary ∂B and consider a CCM-

PD coupled configuration where a PD subdomain, BPD, is embedded into a CCM
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subdomain, BCCM, as illustrated in Figure 2.15, such that B = BPD∪BCCM, BPD∩

BCCM = ∅, and BPD ∩ BCCM = ∂BPD =: Γ. This configuration enables the use of

classical local boundary conditions. We assume the CCM subdomain is large enough,

so that BPD \ BPD ⊂ BCCM. The corresponding coupled system of equations can

be written as:

−∇ · σ(x) = b(x) x ∈ BCCM, (2.87a)

−

∫

Hx

f(x′,x)dx′ = b(x) x ∈ BPD. (2.87b)

Integrating the equations over their respective subdomains and adding them, we get

(see [9])

−

∫

BCCM

∇ · σ(x)dx−

∫

BPD

∫

Hx

f(x′,x)dx′dx =

∫

B

b(x)dx. (2.88)

Using Gauss’s theorem for the first term on the left-hand side and the characteristic

function (2.79) for the second term on the left-hand side, we have

−

∫

∂BCCM

σ(x) ·n(x)dl−

∫

BPD

∫

BPD

χδ(‖x
′−x‖)f(x′,x)dx′dx =

∫

B

b(x)dx. (2.89)

Note that ∂BCCM = ∂B ∪ Γ (see Figure 2.15). In addition, similar to (2.82),

−

∫

BPD

∫

BPD

χδ(‖x
′ − x‖)f(x′,x)dx′dx = 0. (2.90)

Using the definition for the local traction in (2.73), we obtain (see [9])

∫

∂B
t(x,n)dl+

∫

B

b(x)dx = −

[
∫

Γ
t(x,n)dl +

∫

BPD

∫

BCCM

χδ(‖x
′ − x‖)f(x′,x)dx′dx

]

,

(2.91)

where we used the assumption BPD \ BPD ⊂ BCCM to rewrite the inner domain of

integration of the second term inside the square brackets on the right-hand side (for

further details please refer to [9]). We recall that the normal n on Γ in the first term

inside the square brackets on the right-hand side points outwards relative to BCCM.

The net force, F, applied on the domain B is given by (cf. (2.75)):

F =

∫

∂B
t(x,n)dl +

∫

B

b(x)dx. (2.92)

We then conclude that overall equilibrium, i.e., F = 0, requires (see (2.91))

∫

BPD

∫

BCCM

χδ(‖x
′ − x‖)f(x′,x)dx′dx = −

∫

Γ
t(x,n)dl. (2.93)
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Similar to (2.85), assume there exists a nonlocal traction τ (x,−n) satisfying

∫

Γ
τ (x,−n)dl =

∫

BPD

∫

BCCM

χδ(‖x
′ − x‖)f(x′,x)dx′dx, (2.94)

where, in this case, −n on Γ points outwards relative to BPD. Then, we can ex-

press (2.93) as

∫

Γ
τ (x,−n)dl = −

∫

Γ
t(x,n)dl, (2.95)

i.e., overall equilibrium requires the balance between the local and nonlocal tractions

at the interface Γ. In particular, overall equilibrium is attained if the following

(stronger) condition is satisfied:

τ (x,−n) = −t(x,n) x ∈ Γ. (2.96)

In the following section, the convergence of the nonlocal traction to the local

traction is discussed, providing conditions under which (2.96) is satisfied.

Convergence of the nonlocal traction to the local traction in two dimen-

sions

This section presents for brevity only the main results derived from the analysis

of the convergence of the nonlocal traction to the local traction in two-dimensional

CCM-PD coupled models. For a comprehensive derivation, please refer to Ap-

pendix A.2.

We consider the simplified case of two non-overlapping subdomains ΩA and ΩB

with a straight interface Γ connecting them, i.e., ΩA∩ΩB = ∅ and ΩA∩ΩB = Γ. We

assume the normal n to the interface Γ points outwards relative to ΩA. In this case,

following the concept of areal force density presented in [7] and briefly introduced

in Section 1.1.3, we define the nonlocal traction at x0 ∈ Γ with normal n by:

τ (x0,n) :=

∫

L

∫

ΩB

χδ(‖x
′ − x‖)f(x′,x)dx′dℓ, (2.97)

where

L := {x ∈ ΩA : x = x0 − sn, 0 6 s 6 δ} . (2.98)
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Given the linear isotropic bond-based PD model (1.22), we can express (2.97) as

(recall (2.77) and (1.76)):

τ (x0,n) =

∫

L

∫

ΩB

χδ(‖x
′ − x‖)λ(‖x′ − x‖)(x′ − x)⊗ (x′ − x)(u(x′)− u(x))dx′dℓ

(2.99)

or, in component form,

τi(x0,n) =

∫

L

∫

ΩB

χδ(‖ξ‖)λ(‖ξ‖)ξiξj(uj(x+ξ)−uj(x))dx
′dℓ, i = 1, 2, (2.100)

where we used the notation ξ = x′ − x for brevity and repeated indices imply a

summation by 1 and 2. We consider below two cases, the first one given by a

horizontal interface Γ with normal n = e2 (see Figure A.3a) and the second one

given by a vertical interface Γ with normal n = e1 (see Figure A.3b); the normals

{e1, e2} correspond to the standard Cartesian orthonormal basis. In both cases, the

normal points outwards relative to ΩA. We assume the point x0 is in the bulk of

the body. We further assume a micromodulus function of the form λ(‖ξ‖) = c/‖ξ‖α

with c a constant and α < 6.

Horizontal Interface. Assuming a smooth deformation and performing some

Taylor expansions, we obtain (see (A.26))

τ1(x0, e2) = t1(x0, e2) +
2E

5π

6− α

7− α
δ

(

3

2

∂2u1
∂x2

(x0) +
∂2u2
∂x∂y

(x0)

)

+ . . . , (2.101a)

τ2(x0, e2) = t2(x0, e2) +
2E

5π

6− α

7− α
δ

(

∂2u1
∂x∂y

(x0) +
∂2u2
∂x2

(x0)

)

+ . . . , (2.101b)

where the relation c = 3(6−α)E
πδ6−α has been employed (cf. (2.34)), t1(x0, e2) and

t2(x0, e2) are the x- and y-components, respectively, of the local traction (cf. (2.73))

evaluated at x0 ∈ Γ in classical plane stress (cf. (2.21)) for ν = 1/3, and the dots

indicate higher-order derivative terms. In the limit as δ → 0, we get

τ (x0, e2) = t(x0, e2) + O(δ), (2.102)

i.e., the nonlocal traction converges to the local traction at a rate of O(δ). Equa-

tion (2.101) implies that, if the deformation around the interface Γ is smooth and

second-order and higher derivatives of displacements are negligible, (2.96) is satisfied
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(note t(x0, e2) = −t(x0,−e2) by (2.74)) and overall equilibrium is attained. How-

ever, whenever second-order or higher derivatives of displacements are not negligible

around the interface Γ, lack of overall equilibrium is in general expected. In this

case, the components of the net out-of-balance force are given by (see (2.91), (2.92),

and (2.94)):

F1 ≈ −

∫

Γ

2E

5π

6− α

7− α
δ

(

3

2

∂2u1
∂x2

(x, y0) +
∂2u2
∂x∂y

(x, y0)

)

dx+ . . . , (2.103a)

F2 ≈ −

∫

Γ

2E

5π

6− α

7− α
δ

(

∂2u1
∂x∂y

(x, y0) +
∂2u2
∂x2

(x, y0)

)

dx+ . . . , (2.103b)

where all points along Γ have y-coordinate y0. Note that approximations and not

equalities appear in (2.103). The reason for that is the fact that (2.101) holds for a

point x0 in the bulk of the body; this assumption may not hold for all the points in

Γ, which may then introduce a surface effect [83]. Nevertheless, this effect, if present,

would normally vanish in the limit as δ → 0; in this limit, the net out-of-balance

force thus vanishes at a rate of O(δ).

Vertical Interface. The treatment of the case with a vertical interface is

identical to that of the horizontal interface, except that the limits of integration

change. Assuming a smooth deformation and performing some Taylor expansions,

we obtain (see (A.30))

τ1(x0, e1) = t1(x0, e1) +
2E

5π

6− α

7− α
δ

(

∂2u1
∂y2

(x0) +
∂2u2
∂x∂y

(x0)

)

+ . . . , (2.104a)

τ2(x0, e1) = t2(x0, e1) +
2E

5π

6− α

7− α
δ

(

∂2u1
∂x∂y

(x0) +
3

2

∂2u2
∂y2

(x0)

)

+ . . . , (2.104b)

where the relation c = 3(6−α)E
πδ6−α has been employed (cf. (2.34)), t1(x0, e1) and

t2(x0, e1) are the x- and y-components, respectively, of the local traction (cf. (2.73))

evaluated at x0 ∈ Γ in classical plane stress (cf. (2.21)) for ν = 1/3, and the dots

indicate higher-order derivative terms. In the limit as δ → 0, we get

τ (x0, e1) = t(x0, e1) + O(δ), (2.105)

i.e., the nonlocal traction converges to the local traction at a rate of O(δ). Equa-

tion (2.104) implies that, if the deformation around the interface Γ is smooth and

second-order and higher derivatives of displacements are negligible, (2.96) is satisfied
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(note t(x0, e1) = −t(x0,−e1) by (2.74)) and overall equilibrium is attained. How-

ever, whenever second-order or higher derivatives of displacements are not negligible

around the interface Γ, lack of overall equilibrium is in general expected. In this

case, the components of the net out-of-balance force are given by (see (2.91), (2.92),

and (2.94)):

F1 ≈ −

∫

Γ

2E

5π

6− α

7− α
δ

(

∂2u1
∂y2

(x0, y) +
∂2u2
∂x∂y

(x0, y)

)

dy + . . . , (2.106a)

F2 ≈ −

∫

Γ

2E

5π

6− α

7− α
δ

(

∂2u1
∂x∂y

(x0, y) +
3

2

∂2u2
∂y2

(x0, y)

)

dy + . . . , (2.106b)

where all points along Γ have x-coordinate x0. Note that, similar to (2.103), ap-

proximations and not equalities appear in (2.106). In the limit as δ → 0, the net

out-of-balance force vanishes at a rate of O(δ).

We showed that, for a straight (horizontal or vertical) interface and a smooth

deformation, the nonlocal traction converges to the local traction in the limit as

δ → 0 at a rate of O(δ). The above derivations also reveal that, even though

the discrepancy between the PD and CCM models depends upon fourth-order and

higher derivatives of displacements (see Section 2.3.2), the discrepancy between the

nonlocal and local tractions depends upon second-order and higher derivatives of

displacements. Furthermore, the leading term in the traction discrepancy turns out

to be of order O(δ), while the one in the model discrepancy is of order O(δ2) (see

Section 2.3.2).

2.6 Numerical assessment of the out-of-balance forces in

CCM-PD coupled models

The present section aims at numerically confirming the theoretical analysis of the

force balance in CCM-PD coupled systems outlined in Section 2.5 with examples

involving one-dimensional models in Section 2.6.1 and two-dimensional models in

Section 2.6.2. All numerical examples are linear in terms of material response and

deformation [7].
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2.6.1 One-dimensional case

In this section, an equilibrium check is carried out on one-dimensional cases

adopting the CCM-PD coupling strategy described in Section 2.1. We consider the

same one-dimensional system studied in Section 2.4.1 and showed in Figure 2.4. As

in Section 2.4.1, the bar is discretized with N = 31 nodes uniformly distributed with

∆x = 1. The PD portion of the domain is composed of nodes with coordinates in the

interval [10 . . 20], while the remaining part of the domain is modelled with a CCM

model discretized using two-node bar FEM elements with linear shape functions.

The values of the main problem parameters are, here too, L = 30 (bar length),

E = 1 (Young’s modulus), and A = 1 (bar cross-sectional area) in consistent units.

We assume a CCM model given by (2.6) and a PD model given by (2.5) with a

micromodulus function c(|ξ|) = c/|ξ|. The PD horizon is taken as δ = 3 (i.e.,

m = δ/∆x = 3) and the micromodulus constant c has been evaluated through (1.42).

The PD portion of the domain employs a meshfree discretization with a partial-

volume correction [191].

As in Section 2.4.1, a displacement is imposed on all the nodes of the CCM-PD

coupled model and the reaction forces are computed using a system of the type

of (2.1). The imposed displacement field is a piecewise polynomial function com-

posed of three curves: two linear functions connected by a cubic function, in contrast

to the example in Section 2.4.1, where the two linear functions were connected by

a quartic function. The cubic function has been selected to ensure C1 continuity of

the displacement field along the bar length. The three curves used for the imposed

displacement field are described in Table 2.9; the value of the coefficient g is set

to g = 0.0001.

This section presents five different cases of displacement distributions imposed

on the one-dimensional system. As in Section 2.4.1, for all the cases, we keep fixed

the location of the PD portion of the domain and all the problem parameters, while

only changing the position of the cubic displacement curve along the bar length.

The resulting relative out-of-balance error is evaluated through (2.38).

Table 2.10 lists the results in terms of relative out-of-balance error for the five dif-

ferent cases investigated (see Figure 2.16). In the first three cases, i.e., configurations
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Displacement type Displacement field equation Domain

Curve 1: linear u(x) = gx x ∈ (0, X1)

Curve 2: cubic u(x) = g
3X2

1

x3 + 2g
3 X1 x ∈ (X1, X2)

Curve 3: linear u(x) = g
(

X2

X1

)2
(x−X2) +

g
3X2

1

(

X3
2 + 2X3

1

)

x ∈ (X2, L)

Table 2.9: Piecewise displacement field for the one-dimensional case.

Coupled model er

Case (a) 9.04× 10−16

Case (b) 1.59× 10−16

Case (c) 3.02× 10−16

Case (d) 1.98× 10−03

Case (e) 5.78× 10−04

Table 2.10: Relative out-of-balance errors for the configurations described in Fig-

ure 2.16.

(a), (b), and (c) in Figure 2.16, the cubic displacement curve is located away from the

two coupling zones. In the configurations (a) and (c) the cubic displacement curve is

placed within the CCM portion of the domain, whereas in the configuration (b) the

cubic displacement curve is located in the PD region. As shown in Table 2.10, none

of these cases exhibit out-of-balance, since the magnitude of the resulting relative

out-of-balance errors is on the order of machine precision. In the last two cases, i.e.,

configurations (d) and (e) in Figure 2.16, the cubic displacement curve is located

over the left and right coupling zones, respectively. In these cases, the resulting

relative out-of-balance errors are about twelve orders of magnitude larger than the

ones computed for the first three cases (see Table 2.10). These results confirm what

was found in Section 2.5.1: if displacements across either of the interfaces between

the PD and CCM portions of the domain are characterized by cubic or higher-order

polynomial distributions, lack of overall equilibrium is experienced (cf. (2.70)).

We now present the outputs obtained by performing an m- and a δ-convergence
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(a) X1 = 2, X2 = 6 (b) X1 = 13, X2 = 17

(c) X1 = 25, X2 = 29 (d) X1 = 6, X2 = 13

(e) X1 = 17, X2 = 24

Figure 2.16: Imposed displacement fields on the CCM-PD coupled model with a

cubic displacement curve placed in different locations along the bar. The cubic

displacement curve, represented by magenta lines, is located in (a) the left CCM

region, (b) the central PD part, (c) the right CCM region, (d) the left coupling

zone, and (e) the right coupling zone. Long dashed gray vertical lines indicate the

interfaces between the PD and CCM portions of the domain, while short dashed-

dotted red vertical lines define the coupling zones of the model. The values of the

parameters X1 and X2 defining the curves in Table 2.9 are indicated for each case.

For clarity reasons, the vertical axis scale changes from plot to plot.
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Coupled model er

(

∑N
i=1 Fi

)

/δ2

Case (e), δ = 3, m = 3 5.78× 10−04 −2.56× 10−08

Case (f), δ = 3, m = 6 6.33× 10−04 −2.80× 10−08

Case (g), δ = 3, m = 12 6.46× 10−04 −2.86× 10−08

Case (h), δ = 1.5, m = 3 1.45× 10−04 −2.56× 10−08

Case (i), δ = 0.5, m = 3 1.61× 10−05 −2.56× 10−08

Table 2.11: Relative out-of-balance errors and scaled sums of reaction forces for the

m- and δ-convergence studies.

study (see Section 1.3.3). Both studies consider the configuration (e) in Figure 2.16,

where the cubic displacement curve is located over the right coupling zone. The

resulting relative out-of-balance errors are listed in Table 2.11, where it is evident

that the increase in m has no clear effect on the out-of-balance level of the CCM-PD

coupled model (see cases (f) and (g)). On the contrary, when a δ-convergence study

is performed, the out-of-balance level decreases with the horizon value (see cases (h)

and (i)). To verify the δ-dependence of the out-of-balance, Table 2.11 also lists the

sum of the reaction forces,
∑N

i=1 Fi, scaled by δ2. The results confirm the analysis

presented in Section 2.5.1, where the leading term of the net out-of-balance force,

F, depends on δ2 (see (2.70)).

In the last part of this section, we present a quantitative comparison between

the numerically computed sum of the reaction forces,
∑N

i=1 Fi, and the analytically

calculated net out-of-balance force, F, using (2.70). We consider the cases (e), (f),

and (g) listed in Table 2.11. Additionally, we numerically compute the nonlocal and

local tractions at the corresponding interface, xIR = 20+ ∆x
2 , and report their sum.

The nonlocal traction is computed by τnum(xIR,+1) in (A.15) and the local traction

is computed by (cf. (2.1))

tnum(xIR,−1) := −
E

∆x

(

uFEMxIR
− uPDxIR

)

, (2.107)

where uFEMxIR
and uPDxIR

are the displacements of the FEM node and PD node, respec-

tively, closest to the interface xIR. The results are presented in Table 2.12. Various

observations are drawn from these results. First, the sum of the reaction forces
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has the same magnitude as, but opposite sign to the sum of the nonlocal and local

tractions:
N
∑

i=1

Fi = − [τnum(xIR,+1) + tnum(xIR,−1)] , (2.108)

which confirms the force balance equation (2.64); note that, in this case, the cor-

responding nonlocal and local tractions at xIL are equal in magnitude because the

displacement field around that interface is linear (cf. (2.67)). Second, the sum of the

reaction forces provides a suitable approximation to the net out-of-balance force:

F ≈
N
∑

i=1

Fi, (2.109)

and the numerical values approach the analytical ones as m increases. Third, as

shown in Appendix A.1, the numerical nonlocal traction, τnum(xIR,+1), accurately

reproduces the analytical nonlocal traction, τ(xIR,+1), for linear, quadratic, and

cubic displacement fields (see Table A.2). Consequently, the discrepancy between the

sum of the reaction forces and the net out-of-balance force in Table 2.12 originates

from a numerical error in the approximation of the local traction. To show this,

consider the numerical local traction in (2.107), and note that uFEMxIR
= u(xIR + ∆x

2 )

and uPDxIR
= u(xIR − ∆x

2 ). Performing Taylor expansions (recall the displacement

field is cubic around xIR), we obtain

tnum(xIR,−1) = −
E

∆x

(

u
(

xIR + ∆x
2

)

− u
(

xIR − ∆x
2

))

= −E

(

du

dx
(xIR) +

1

4!

d3u

dx3
(xIR)(∆x)2

)

= −E
du

dx
(xIR) + O

(

(∆x)2
)

= t(xIR,−1) + O
(

(∆x)2
)

. (2.110)

The numerical local traction, tnum(xIR,−1), is thus an accurate estimator of the an-

alytical local traction, t(xIR,−1), for constant, linear, and quadratic displacement

fields, while it is an order O((∆x)2) approximation of the analytical local traction

for cubic or higher-order polynomial displacement fields. The error in this approxi-

mation vanishes in the limit as ∆x → 0, which coincides with the limit of m → ∞ in

the m-convergence study, explaining why the sum of the reaction forces approaches

the net out-of-balance force in this limit (see Table 2.12).
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Remark 1 The observation concerning the numerical error in the approximation

of the local traction provides an explanation of why the scaled sums of the reaction

forces in Table 2.11 possess a fixed value for m = 3, regardless of the value of

δ, while varying when changing m. To explain this, consider a scaled sum of the

numerical nonlocal and local tractions. Using the fact that, for the cases considered

in Table 2.11, the numerical nonlocal traction accurately estimates the analytical

nonlocal traction, and employing (2.67), (2.110), and (2.46), we have (recall the

displacement field is cubic around xIR, α = 1, and δ = m∆x)

1

δ2
(τnum(xIR,+1) + tnum(xIR,−1)) =

1

δ2
(τ(xIR,+1) + tnum(xIR,−1))

=
1

δ2

(

t(xIR,+1) +
1

4!
Eδ2

d3u

dx3
(xIR)

+t(xIR,−1)−
1

4!
E(∆x)2

d3u

dx3
(xIR)

)

=
1

4!

(

1−
1

m2

)

E
d3u

dx3
(xIR). (2.111)

This expression is independent of δ for a fixed value of m, and it increases in magni-

tude with increasing m. Using (2.111) for the cases in Table 2.11 gives values with

the same magnitude as, but opposite sign to the ones reported for the scaled sums

of the reaction forces in that table.

Coupled model
∑N

i=1 Fi F τnum(xIR,+1) + tnum(xIR,−1)

Case (e), δ = 3, m = 3 −2.31× 10−07 −2.60× 10−07 2.31× 10−07

Case (f), δ = 3, m = 6 −2.52× 10−07 −2.60× 10−07 2.52× 10−07

Case (g), δ = 3, m = 12 −2.58× 10−07 −2.60× 10−07 2.58× 10−07

Table 2.12: Comparison between sums of reaction forces, net out-of-balance forces,

and sums of numerical nonlocal and local tractions.

Remark 2 The analytical expression for the net out-of-balance force in (2.70)

implies that imposing a cubic displacement field along the whole bar results in F = 0,

because the contributions of the nonlocal tractions at the interfaces cancel each other

(note that the third derivative of the displacement, in this case, is constant). For

this reason, the numerical results in this section were based on cases where a cubic
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displacement field occurs at most at one of the two interfaces. A similar reasoning

is employed in Section 2.6.2 below in the choice of the imposed displacement fields

for the two-dimensional case.

2.6.2 Two-dimensional case

Figure 2.17: CCM-PD coupled model for the two-dimensional case. Green circles

are PD nodes and blue (empty) squares are FEM elements. The dashed gray lines

represent the interface between the PD and CCM regions, while the portion of the

domain bounded by the dashed-dotted red lines is the coupling zone. For clarity

reasons, in the figure, ∆x = ∆y = 1 and m = δ/∆x = 3.

In this section, equilibrium checks are carried out on two-dimensional plane stress

cases adopting the CCM-PD coupling strategy described in Section 2.1. We consider

a two-dimensional rectangular plate with an internal PD region as shown in Fig-

ure 2.17. The PD portion of the domain is a square of edge length LPDx = LPDy =

10, and its centre has coordinates (13, 19). The remaining part of the domain, the

CCM region, is discretized using four-node square plane stress FEM elements for

which the element stiffness matrix has been evaluated with exact integration [194].

The discretization of the domain employs a uniform grid with ∆x = ∆y = 0.25.

As in Section 2.4.2, the values of the main problem parameters are Lx = 24 and

Ly = 34 (plate dimensions), E = 1 (Young’s modulus), ν = 1
3 (Poisson’s ratio), and

h = 1 (plate thickness) in consistent units. We assume a CCM model given by the
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Displacement type Displacement field equation Domain

Constant u1(x, y) = 0 (x, y) ∈ B

Bilinear

u2(x, y) = d
y − Y1
YB − Y1

u2(x, y) = d

(

1−
y − YB
Y2 − YB

)

(x, y) ∈ B1

(x, y) ∈ B2

Constant u2(x, y) = 0 (x, y) ∈ B \ (B1 ∪B2)

Table 2.13: Piecewise displacement field for the two-dimensional Case I.

classical linear elasticity plane stress isotropic model (cf. (2.23)) and a PD model

given by a linear bond-based isotropic model (cf. (2.19)) with a micromodulus func-

tion λ(‖ξ‖) = c
‖ξ‖3

. The PD horizon is taken as δ = 0.75 (i.e., m = δ/∆x = 3) and

the micromodulus constant c has been evaluated through (2.39). The PD portion of

the domain employs a meshfree discretization with a partial-volume correction [190].

In all the cases considered in this section, a displacement is imposed on all the

nodes of the plate in such a way as to examine either a single straight interface

between the PD and CCM portions of the domain (Case I and Case II in the sec-

tions presented below) or a single interface corner (Case III in the section presented

below). For all the cases, we keep fixed the location of the PD portion of the domain

and all the problem parameters, while only changing the characteristics of the dis-

placement distributions within the plate. The resulting relative out-of-balance error

is evaluated both in the x- and y-directions through (2.40a) and (2.40b), respectively.

Case I: bilinear displacement over a straight interface

In this section, an equilibrium check is carried out by imposing a piecewise

displacement field composed of a bilinear function connected to a constant function.

The imposed displacement field is described by the set of equations in Table 2.13,

where u1 and u2 are the x- and y-components, respectively, of the displacement

field u = (u1, u2), and the value of the coefficient d is set to d = 0.5. The bilinear

portion of the displacement component u2 is shown in Figure 2.18, where the two
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Coupled model erx ery

Case I 3.28× 10−16 5.64× 10−17

Table 2.14: Relative out-of-balance error along the x- and y-directions for Case I in

Figure 2.18.

subdomains B1 and B2 are defined as follows:

B1 := {(x, y) ∈ B : x ∈ (X1, X2) ∧ y ∈ (Y1, YB)} , (2.112a)

B2 := {(x, y) ∈ B : x ∈ (X1, X2) ∧ y ∈ (YB, Y2)} , (2.112b)

where X1, X2, Y1, Y2, and YB are the bounds of the two subdomains, as shown in

Figure 2.18c. The bilinear displacement portion is located over the lower horizon-

tal interface (see Figure 2.18a and Figure 2.18b). The values of the bounds of the

subdomains B1 and B2 are set to X1 = 9.25, X2 = 13.75, Y1 = 12.75, Y2 = 17.25,

and YB = (Y1 + Y2)/2 = 15. Table 2.14 lists the results in terms of relative out-

of-balance error along the x- and y-directions. In this case, the force equilibrium is

verified along both the x- and y-directions. We performed a similar study by im-

posing instead the bilinear distribution described in Table 2.13 on the displacement

component u1 over a vertical interface. Also, in this case, no appreciable out-of-

balance error was found. These results confirm what was found in Section 2.5.2:

if displacements across a straight (horizontal or vertical) interface are character-

ized by linear or constant distributions, overall equilibrium is attained (cf. (2.103)

and (2.106)).

Case II: quadratic displacement over a straight interface

In this section, an equilibrium check is carried out by imposing a piecewise dis-

placement field composed of a quadratic function connected to a constant function.

The imposed displacement field is described by the set of equations in Table 2.15,

where the value of the coefficient q is set to q = 15. The quadratic portion of the

displacement component u2 is shown in Figure 2.19, and it is applied to a circular

subdomain, Q, defined as follows:

Q :=
{

(x, y) ∈ B : (x−XQ)
2 + (y − YQ)

2
6 R2

}

, (2.113)
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(a) Top view (b) 3D view

(c) Characteristic parameters

Figure 2.18: Imposed displacement field on the plate for Case I: (a) top view, (b) 3D

view, and (c) characteristic parameters of the bilinear displacement portion. The

square part of the domain bounded by thick straight white lines represents the PD

region, while the remaining part of the domain is the CCM region.

Displacement type Displacement field equation Domain

Constant u1(x, y) = 0 (x, y) ∈ B

Quadratic u2(x, y) =
− (x−XQ)

2 − (y − YQ)
2 +R2

q2
(x, y) ∈ Q

Constant u2(x, y) = 0 (x, y) ∈ B \Q

Table 2.15: Piecewise displacement field for the two-dimensional Case II.
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Coupled model erx ery

Case II 1.40× 10−16 5.00× 10−04

Table 2.16: Relative out-of-balance error along the x- and y-directions for Case II

in Figure 2.19.

where XQ and YQ are the x- and y-coordinates, respectively, of the centre of the

subdomain and R indicates its radius (see Figure 2.19c). The quadratic displace-

ment portion is located over the lower horizontal interface (see Figure 2.19a and

Figure 2.19b). The centre of Q has coordinates XQ = 11.5 and YQ = 15, and its

radius is set to R = 2.25. Table 2.16 lists the results obtained in terms of relative

out-of-balance error along the x- and y-directions. In this case, the force equilib-

rium is verified only along the x-direction. This result is consistent with the net

out-of-balance force in (2.103); specifically, in this case, F1 is expected to vanish,

while F2 is expected to be non-zero due to the contribution of the second deriva-

tive of the displacement component u2 with respect to x. We performed a similar

study by imposing instead the quadratic distribution described in Table 2.15 on the

displacement component u1 over a vertical interface. In this case, the force equi-

librium is verified only along the y-direction. This result is consistent with the net

out-of-balance force in (2.106); specifically, in this case, F2 is expected to vanish,

while F1 is expected to be non-zero due to the contribution of the second derivative

of the displacement component u1 with respect to y. These results confirm what

was found in Section 2.5.2: if displacements across a straight (horizontal or vertical)

interface are characterized by quadratic or higher-order polynomial distributions,

lack of overall equilibrium is experienced (cf. (2.103) and (2.106)).

In the remaining part of this section, the outputs obtained by performing a

δ-convergence study are presented. We consider the case where the quadratic dis-

placement distribution described in Table 2.15, which is applied to the displacement

component u2, is located over the lower horizontal interface (see Figure 2.19). As

demonstrated in Appendix A.2, large values of m are required to obtain accurate

computations of nonlocal tractions (see Table A.4). For this reason, we perform the

δ-convergence study using a larger value of m, chosen as m = 8; this value has been



128
2. Overall equilibrium in the coupling of peridynamics and classical

continuum mechanics

(a) Top view (b) 3D view

(c) Characteristic parameters

Figure 2.19: Imposed displacement field on the plate for Case II: (a) top view, (b)

3D view, and (c) characteristic parameters of the quadratic displacement portion.

The square part of the domain bounded by thick straight white lines represents the

PD region, while the remaining part of the domain is the CCM region.
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Coupled model erx ery

(

∑N
i=1 F2 i

)

/δ

Case II, δ = 0.75, m = 8 1.03× 10−16 1.86× 10−03 −8.08× 10−04

Case II, δ = 0.375, m = 8 5.23× 10−17 7.23× 10−04 −7.05× 10−04

Case II, δ = 0.1875, m = 8 1.05× 10−15 1.60× 10−04 −3.33× 10−04

Table 2.17: Relative out-of-balance errors and scaled sums of reaction forces for the

δ-convergence study.

selected as a compromise between computational cost and numerical accuracy in

two-dimensional simulations. The resulting relative out-of-balance errors are listed

in Table 2.17, where, as expected, the force equilibrium is verified only along the

x-direction. The results for ery demonstrate that the out-of-balance level decreases

with the horizon. To verify the δ-dependence of the out-of-balance, Table 2.17 also

lists the sum of the y-component of the reaction forces,
∑N

i=1 F2 i, scaled by δ. The

results do not exactly give a linear dependence on δ, which is the theoretically pre-

dicted behavior in (2.103). The potential reasons for this discrepancy are twofold.

First, it is possible that the value of m is not large enough to provide the required

numerical accuracy (cf. Table A.4). Second, the configuration presented in Fig-

ure 2.19 cannot satisfy one of the hypotheses on which the analytical derivations

leading to (2.103) rely, i.e., the assumption that, for each PD node, the entire neigh-

bourhood on the CCM side is subjected to a uniform, non-piecewise displacement

field.

The reason for the choice of the piecewise displacement fields in Figure 2.18

and Figure 2.19 was to consider a displacement variation around a single straight

(horizontal or vertical) interface, for consistency with the analysis presented in Sec-

tion 2.6.1. In particular, that choice was aimed at isolating the effect of corners, i.e.,

non-straight interfaces; this effect is investigated in the following section.

Case III: bilinear displacement over an interface corner

The theoretical results for the net out-of-balance forces presented in Section 2.5.2

hold for a straight (horizontal or vertical) interface and may not hold for an inter-

face of arbitrary shape (e.g., a corner). In this section, we consider a non-straight
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Coupled model erx ery

Case III 4.31× 10−03 3.09× 10−16

Table 2.18: Relative out-of-balance error along the x- and y-directions for Case III

in Figure 2.20.

interface. An equilibrium check is carried out by imposing the displacement field de-

scribed in Table 2.13, with the bilinear displacement portion located over the lower

right interface corner of the CCM-PD coupled model. In this case, the values of the

bounds of the subdomains B1 and B2 are set to X1 = 14.75, X2 = 19.25, Y1 = 12.75,

Y2 = 17.25, and YB = 15. Figure 2.20 shows the configuration under investigation.

Table 2.18 lists the results obtained in terms of relative out-of-balance error along

the x- and y-directions. In this case, the resulting relative out-of-balance error erx

is not negligible. This result demonstrates that, in contrast to the results reported

in Table 2.14, if displacements across a non-straight interface are characterized by

linear distributions, lack of overall equilibrium may be experienced.

For the sake of completeness, it is possible to observe that, unlike the results

obtained in the current section, in Case I in Figure 2.9, the force equilibrium is

verified along both the x- and y-directions, even if the coupling zone is entire located

within the linear portion of the displacement field, i.e., even if the displacements

across the interface corners are characterized by linear distributions. In this case, the

absence of relative out-of-balance errors is a result of error compensation phenomena

occurring in correspondence of the interface corners of the CCM-PD coupled model.

To conclude, the results of this section suggest that, for a two-dimensional CCM-

PD coupled model, the overall static equilibrium is affected not only by the location

of the coupling interface but also by its shape. Consequently, a future extension of

the out-of-balance analysis in CCM-PD coupled models could be focused on con-

trolling the relative out-of-balance error by optimizing the shape of the interface

between the PD and CCM portions of the domain. In Section 2.7, we study the

effect of the location of the coupling interface in the context of crack propagation

problems.
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Figure 2.20: Imposed displacement field on the plate for Case III (top view). The

square part of the domain bounded by thick straight white lines represents the PD

region, while the remaining part of the domain is the CCM region.

2.7 Simulation of crack propagation using the CCM-PD

coupled model

In this section, quasi-static crack propagation problems are presented. Initially,

the entire domain with an initial crack is discretized with the FEM; then, a PD region

is introduced, which adaptively follows an advancing crack [84, 113]. We show that

the position of the coupling interface of the CCM-PD coupled model affects the

values of the out-of-balance forces. The main idea is that, in crack propagation

problems, high spatial strains normally appear in the region near the crack tip.

Therefore, the coupling interface of the CCM-PD coupled model should not be too

close to the crack tip. The CCM region is linear in terms of material response and

deformation, and it is described by a classical linear elasticity model given by the

plane stress isotropic model (cf. (2.23)) in two dimensions and the Navier equation

in three dimensions. The PD region is described by the linearized state-based PD

model from [178, 196]. The values given to the parameters of the problems are

associated to the usual units.
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2.7.1 Two-dimensional case: three-point bending test

In Figure 2.21, we present the geometric parameters and boundary conditions

of a three-point bending test carried out in this section. The domain is discretized

using a uniform grid with ∆x = ∆y = 0.05 [m], resulting in a total of 64,561 nodes.

The material parameters are: E = 2.4 [GPa] (Young’s modulus), ν = 0.25 (Poisson’s

ratio), and G0 = 500 [J/m2] (fracture energy) [197]. The CCM region is discretized

using four-node FEM elements with bilinear shape functions and four integration

points. For the PD portion of the domain, we employ the same PD discretization

used in Sections 2.2, 2.4.2 and 2.6.2. The horizon is taken as δ = 0.15 [m] (i.e.,

m = δ/∆x = 3), and the micromodulus function and influence function described

in [113] are used. A downward vertical displacement of uy = 0.001 [m] is imposed

on the central point of the top edge of the plate. The imposed displacement is

divided into 1000 steps. A crack at the bottom, the initial length of which is 1 [m],

propagates in the vertical direction as the imposed vertical displacement increases.

Using the algorithm in [197], we solve the structural problem and compute the

three vertical reaction forces of the system: FyA , FyB , and FyC , the first two at

the supports A and B, and the third one at C where the vertical displacement is

imposed (see Figure 2.21). The relative out-of-balance error is given by:

er :=
|FyA + FyB + FyC |

|FyA |+ |FyB |+ |FyC |
. (2.114)

The second-order derivatives of the displacement field,
∂2u1
∂x2

,
∂2u1
∂y2

,
∂2u1
∂x∂y

,
∂2u2
∂x2

,

∂2u2
∂y2

, and
∂2u2
∂x∂y

, are calculated using the PD differential operators [198, 199]. An

indicator for the distribution of the overall second-order derivatives is defined as:
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Given the configuration in Figure 2.21, the distribution of D2(u) for the CCM model

with a displacement of uy = 1 × 10−06 [m] is shown in Figure 2.22. It is obvious

that the values of D2(u) around the crack tip as well as around the point C where

the displacement is imposed and around the supports A and B are greater than in

other zones, and this feature is preserved during the crack propagation. When the

crack propagates, we adopt two switching schemes to convert FEM nodes to PD
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Figure 2.21: Geometric parameters and boundary conditions of the three-point bend-

ing test.

Figure 2.22: Distribution of D2(u) based on the CCM model for the three-point

bending test in Figure 2.21 with an applied vertical displacement of uy = 1 ×

10−06 [m]. The colour plot is displayed in logarithmic scale.
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(a) Switching scheme 1 (b) Switching scheme 2

Figure 2.23: Schemes for switching nodes around the crack tip. Blue diamonds are

FEM nodes and green circles are PD nodes. The black line represents the crack.

nodes [84,113]:

Switching scheme 1: FEM nodes within one horizon radius from PD nodes with bro-

ken bonds are transformed into PD nodes, as shown in Figure 2.23a.

Switching scheme 2: FEM nodes within a distance of twice the horizon radius from

PD nodes with broken bonds are transformed into PD nodes, as shown in Fig-

ure 2.23b.

In order to ensure that the solutions of the two switching schemes are compara-

ble, we perform the simulation using the switching scheme 1, and then post-process

the solution using both switching schemes to study the behaviour of the relative

out-of-balance error.

Figure 2.24 shows the distribution of D2(u) around the crack tip for different

load step numbers (step = 200, 400, 600, 800, 1000). The relative out-of-balance

error computed with (2.114) is plotted in Figure 2.25. We observe that the relative

out-of-balance error is larger when the interface between the CCM and PD regions

falls into an area with larger values of D2(u) (switching scheme 1) compared to the

case where that interface falls into an area with smaller values of D2(u) (switching

scheme 2).
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(a) step = 200 (b) step = 400

(c) step = 600 (d) step = 800

(e) step = 1000

Figure 2.24: Distribution of D2(u) around the crack tip for different load step

numbers, based on the CCM-PD coupled model with the switching scheme 1, for the

three-point bending test in Figure 2.21. The colour plot is displayed in logarithmic

scale. The black solid line is the crack. The inner dotted piecewise linear red

curve represents the interface between the CCM and PD regions generated by the

switching scheme 1. The outer dashed-dotted piecewise linear red curve represents

the corresponding interface generated by the switching scheme 2, which is used only

for post-processing purposes.
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Figure 2.25: Relative out-of-balance error in the CCM-PD coupled model for differ-

ent load step numbers for the three-point bending test in Figure 2.21 with the two

switching schemes.

2.7.2 Three-dimensional case: Brokenshire torsion experiment

In this section, a crack propagation problem given by the Brokenshire torsion

experiment, which is comprehensively described in [200], is considered. The geomet-

ric parameters of the prismatic specimen and the boundary conditions are presented

in Figure 2.26. The CCM region is discretized using eight-node FEM elements with

trilinear shape functions and eight integration points. The initial FEM mesh used

in the simulation is shown in Figure 2.27. In the central part of the specimen a

uniform hexahedral mesh with mesh size ∆x = ∆y = ∆z = 0.0025 [m] is adopted,

whereas the remaining parts of the domain are discretized using non-uniform hexa-

hedral meshes to reduce the computational cost of the simulation. The FEM mesh

has a total of 173,082 nodes and 161,824 elements. The material parameters are:

E = 35 [GPa] (Young’s modulus), ν = 0.2 (Poisson’s ratio), and G0 = 80 [J/m2]

(fracture energy) [113]. For the PD portion of the domain, the standard meshfree PD

discretization presented in [51] is employed. The horizon is taken as δ = 0.0075 [m]

(i.e., m = δ/∆x = 3), and the micromodulus function and influence function de-

scribed in [113] are used. A downward vertical displacement of uz = 0.001 [m] is
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Figure 2.26: Geometric parameters and boundary conditions of the Brokenshire

torsion experiment. Adapted from [113].

divided into 7000 steps and applied as shown in Figure 2.26. As the imposed verti-

cal displacement increases, a non-planar crack propagates in the notched prismatic

specimen. Using the algorithm in [197], we solve the fracture problem and compute

the four vertical reaction forces of the system: FzA , FzB , FzC , and FzD , the first

one at A where the vertical displacement uz is imposed, and the other three at the

supports B, C, and D (see Figure 2.26). The relative out-of-balance error is given by:

er :=
|FzA + FzB + FzC + FzD |

|FzA |+ |FzB |+ |FzC |+ |FzD |
. (2.116)

Similar to Section 2.7.1, when the non-planar crack propagates, we employ a

switching scheme to convert FEM nodes to PD nodes and adaptively follow the

advancing crack [84, 113]. Following the same procedure adopted in Section 2.7.1,

we perform the simulation using the switching scheme 1, and then post-process the

solution using both switching schemes, i.e., the switching scheme 1 and the switching

scheme 2, to study the behaviour of the relative out-of-balance error.

Figure 2.28 shows the shape of the propagating crack for different load step num-

bers (step = 1000, 2000, 3000, 4000, 5000, 6000, 7000). The corresponding relative

out-of-balance error computed with (2.116) is plotted in Figure 2.29. This latter
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Figure 2.27: Initial FEM mesh used for the Brokenshire torsion experiment.

result is consistent with the output of the study carried out in Section 2.7.1 and

plotted in Figure 2.25, since the switching scheme 2 again demonstrates to gener-

ally perform better than the switching scheme 1 in terms of relative out-of-balance

error. As in the two-dimensional case in Section 2.7.1, we observe that the rela-

tive out-of-balance error is affected by the location of the coupling interface of the

CCM-PD coupled model, since its magnitude is generally smaller when the interface

between the CCM and PD regions is further from the crack tip (switching scheme

2), i.e., further from the area with larger values of high-order derivatives of displace-

ments, compared to the case where the interface is closer to the crack tip (switching

scheme 1).
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(a) step = 1000 (b) step = 2000

(c) step = 3000 (d) step = 4000

(e) step = 5000 (f) step = 6000

(g) step = 7000

Figure 2.28: Shapes of the non-planar crack for different load step numbers, based

on the CCM-PD coupled model with the switching scheme 1, for the Brokenshire

torsion experiment in Figure 2.26. The colours indicate damage [51].
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Figure 2.29: Relative out-of-balance error in the CCM-PD coupled model for the

different load step numbers shown in Figure 2.28 for the Brokenshire torsion exper-

iment in Figure 2.26 with the two switching schemes.



Chapter 3

Numerical modelling of the

mechanical properties of

heterogeneous materials

3.1 Polymer/clay nanocomposites

In the last years, the need of the aeronautical and aerospace industries to employ

lighter and more efficient components for aircraft, satellite and launcher structures

has led to an ever-increasing development of high specific stiffness materials like

composites and nanocomposites. Among them, the interest of the academic and

industrial communities has recently been attracted by polymer-based composites

reinforced with nanoscale reinforcements, since they exhibit enhanced mechanical

and barrier properties [144], superior performance in terms of thermal stability and

flame retardancy [165], and excellent corrosion and fatigue resistances [201]. The

application of these high performance materials is in fact expanding rapidly in a

wide range of fields, such as aerospace, automotive, construction, transportation,

packaging and waterlines [139, 202]. For example, as for the aerospace field, about

50% of the Boeing 787 aircraft structures are made of composite materials, whereas,

in satellites, composites are employed for the construction of primary structures,

payload supports and solar cells. The main advantages of such applications are the

possibility to remarkably reduce the total mass of the structure and the consequent

decrease in fuel consumption, carbon emissions and costs.

Nanocomposites are multicomponent materials comprising different phase do-

141
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mains in which at least one of the phases has at least one characteristic dimension

on the order of nanometers, typically ranging from 1 to 100 [nm] [203–205]. This

new class of composite materials is in fact characterized by a matrix which is rein-

forced by organic or inorganic nanofillers [206]. The most commonly used matrix

materials are polymers (e.g., epoxy, nylon, polyepoxide, polyetherimide), ceramics

(e.g., alumina, glass, porcelain), and metals (e.g., iron, titanium, magnesium). The

class of nanomaterials considered in this study is the polymer-based one, which

has recently been the subject of extensive research due to its high commercial in-

terest. The substantial difference between conventional composite materials and

nano-reinforced composites lies in the much higher surface area per unit volume of

nanofillers with respect to conventional microfillers or microfibres, and in the num-

ber of particles embedded in the matrix material for a given filler content. Different

classifications of nanocomposite materials can be found in literature. The most com-

mon is the one based on the number of characteristic dimensions of the dispersed

filler which are in the nanometer range [207, 208]. In this case, nanocomposite ma-

terials can be distinguished in three different classes: particulate materials, fibrous

materials, and layered materials. The first type is characterized by nanofillers with

three dimensions on the order of nanometers, which are referred to as isodimensional

nanoparticles (e.g., spherical silica nanoparticles). The second type is characterized

by the presence of nanofillers with two dimensions in the nanometer scale, which are

commonly referred to as nanotubes or whiskers (e.g., carbon nanotubes or cellulose

whiskers). The last class includes materials reinforced with nanofillers characterized

by only one characteristic dimension in the nanometer range, which are referred to

as platelets (e.g., clay nanoplatelets).

The nanocomposite materials considered in the present study are characterized

by a polymer matrix reinforced with clay nanoplatelets. Nanoclays of layered min-

eral silicates are characterized by a very large surface area and are employed to

modify polymer materials, due to their unusual mechanical, electrical, optical, and

magnetic properties, their high aspect ratio and cation exchange capacity, their ease

of modification and low-cost of production [144,202]. Nanoclays can be classified into

several categories based on their chemical composition and morphology. The most
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Figure 3.1: Classification of the different nanoclay morphologies in polymer-based

nanocomposites. Source: [120].

common types are kaolinite, bentonite, halloysite, hectorite and montmorillonite,

which is the one considered in the present study [209].

3.1.1 Structure and morphology of polymer/clay nanocomposites

Montmorillonite (MMT) is widely used in material applications because of its

high aspect ratio and high swelling property in polar spaces. Montmorillonite lay-

ered crystals are characterized by aspect ratio values ranging from 100 to 1000 and

by a thickness on the order of nanometers. The nanoplatelets are bonded parallel

together by weak van der Waals (vdW) and electrostatic interactions, and the gaps

between the different layers of mineral silicates are referred to as galleries [120]. The

silicate layers tend in fact to organize themselves to form stacks characterized by

regularly spaced galleries, whose dimension is a function of the crystal structure of

the silicate [210]. In the case of dehydrated Na–Montmorillonite, this dimension is

approximately 1 [nm] [211]. Analyses of layered silicates reported in literature show

that clay minerals can organize themselves in several levels. The smallest particles

have dimensions on the order of 10 [nm], and are composed of stacks of parallel

lamellae. Microaggregates arise, instead, from the lateral joining of several small

particles, whereas aggregates are composed of several small particles and microag-
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gregates [210, 212]. Further analyses demonstrate that the large internal surface,

typical of small reinforcing elements, induces the particles to agglomerate rather

than to disperse homogeneously within the matrix material [213]. A way to im-

prove the dispersion characteristics of reinforcing particles is to render the nanoclay

organophilic through ion-exchange reactions induced by the application of cationic-

organic surfactants. The surface modification of layered silicates is in fact effective

in increasing the interlayer (or gallery) space between clay layers and, consequently,

in facilitating the penetration and diffusion of organic species (i.e., polymers or pre-

polymers) between them [214]. The capability to exchange ions acquired by layered

silicates through surface modification can be quantified by a property referred to as

cation exchange capacity (CEC), which is conventionally measured in [cmolc/kg], or

in the older, equivalent units [me/100g] and [meq/100g] [207,215].

In general, it is possible to identify three types of nanoclay morphologies, depend-

ing on the dispersion state of silicate layers and on the extent of polymer penetration

between the interlayer spaces. These three different morphologies are referred to as

aggregated, intercalated and exfoliated (see Figure 3.1). The presence of one or more

of these nanoclay structures within the matrix material is mainly related to the type

of clay, the surface modification, the clay content, the type of polymer, the com-

patibility and degree of interaction between polymer and clay, and the processing

technique and conditions [120]. The aggregated morphology is typical of immiscible

systems, where the physical attraction and compatibility between the organic poly-

mer and the inorganic silicate are so low that the two materials do not effectively

mix and form a nanocomposite, but they separate into discrete phases. In this case,

the nanoclay platelets incorporated into the polymer matrix are available in their

original stacked status, since polymer chains are unable to penetrate between them.

The resulting material is described as a phase-separated composite whose properties

are in the same range as those of conventional microparticulate composites. The

presence of particle agglomerations leads to severely limited improvements in the

overall mechanical properties, inducing instead a reduction in strength and a weak-

ening of the material. On the other hand, when at least a single extended polymer

chain penetrates into the gallery space between parallel silicate layers, an interca-
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lated morphology is obtained. In this case, the nanocomposite is characterized by

a well ordered multilayer structure, where polymer chains alternate with silicate

layers, keeping a regular repeat distance between them. The penetration and poly-

merization of monomers into the gallery space thus improve the dispersion of silicate

layers into the polymer matrix [120,210]. The interactions between the two phases at

molecular level lead to a modification of the portion of polymer matrix intercalated

into the gallery space. Therefore, the properties of the polymer material located

in this region are different from those of the bulk matrix, and the same applies to

the portion of polymer matrix surrounding the nanoclay layers. In this latter case,

the region where these molecular interactions take place is referred to as interphase,

and is usually characterized by a thickness of few nanometers and by properties

which are different from those of the bulk matrix. The nanoclay morphology which

leads to the most significant improvements in terms of mechanical performance is

the exfoliated or delaminated one. This particular configuration is found when a

full separation of the clay nanoplatelets and their subsequent individual dispersion

within the matrix material are obtained. This is the ideal morphology when the best

improvements in mechanical properties are to be achieved, since the complete sep-

aration and homogeneous dispersion of the nanoplatelets allow the entire surface of

the silicate layers to be exposed to the polymer. As a consequence, the interactions

between the two constituents are maximized and the number of available reinforcing

particles is increased, thus enabling a significant portion of the applied load to be

carried by the fillers, thanks to the so called stress transfer mechanism, and facili-

tating the deflection of cracks [210,216]. Experimental studies reported in literature

generally indicate that exfoliated structures mainly induce improvements in terms

of tensile modulus (i.e., they act as material stiffeners), whereas intercalated struc-

tures are effective in improving the toughness of the material [217]. Due to the high

anisotropy of nanoclays, which are characterized by lateral dimensions ranging from

100 to 1000 [nm], and to the consequent difficulty in randomly and homogeneously

dispersing them within the polymer matrix, it is not easy to achieve a perfectly ex-

foliated configuration. Most of the time, in fact, polymer/clay nanocomposites are

characterized by a coexistence between intercalated and exfoliated morphologies.
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In summary, the description of the main characteristics of the different nanoclay

morphologies suggests that the nanocomposite mechanical properties are strongly

influenced by the structure of the reinforcing particles and by the quality of their

dispersion and distribution within the matrix. In fact, the inhomogeneous dispersion

of silicate layers leads to the formation of local aggregates, which negatively affect

the mechanical performance of the composite [120]. A key role in the achievement

of improved overall mechanical properties is played by the utilized processing tech-

nique and conditions. The choice of the method to be employed for nanocomposite

production has a strong impact on the performance of the final material, since it

influences the miscibility of the blend, the distribution and degree of exfoliation of

clay nanoplatelets, and, consequently, the degree of interaction between polymer

chains and clay reinforcements [207,210,218–220].

3.1.2 Overview of the mechanical properties of polymer/clay

nanocomposites

The analysis of the relevant literature generally indicates that the addition of

rigid nanoclay fillers, which are naturally resistant to straining due to their high

moduli, induces the mechanical restraining of the softer polymer matrix. More-

over, thanks to the stress transfer mechanism, a significant portion of the applied

load can be carried by the reinforcing elements, thus resulting in an improvement

of the overall mechanical properties of the material. The experimental character-

ization of polymer/clay nanocomposites reveals that, due to the higher aspect ra-

tio of nanoclay fillers compared to that of regular fillers (e.g., glass fibers), the

addition of low concentrations of nanoclays in a polymer matrix results in sig-

nificant enhancements of the tensile properties of the material in well dispersed

conditions [114, 127, 151, 210, 216]. Although most experimental observations con-

firm the increase of the material stiffness with the incorporation of layered sili-

cates [221–223], contradictory findings have been reported with regard to the overall

tensile strength, since the property has proved to be either increased [122, 224] or

decreased [122, 168, 225] by the nanomodification, depending on the employed pro-

cessing method and on the material morphology. The stress and elongation at break

depend, in fact, on various factors, such as the interfacial interactions between poly-
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mer matrix and clay layers, and the dispersion and exfoliation degree of the rein-

forcing elements [216]. The experimental studies available in literature demonstrate

that the understanding of the effects of the nanomodification on the fracture tough-

ness, ductility and micro-deformation characteristics of polymer matrices is still

quite vague, since test results are inconsistent and show different trends of these

properties depending on the system under investigation. For example, in [217], it

is shown that the intercalation of nanoclay platelets is the main responsible for the

enhancement of the fracture toughness, whereas [214] indicates that the toughness

is mainly improved by the formation of additional surface areas due to the propa-

gation of cracks. In [226], it is instead demonstrated that the addition of nanoclays

affects various fracture mechanisms like crack deflection, crack pinning and plastic

deformation, whereas [227] shows that the nanomodification induces a strong en-

hancement of the fracture toughness of the material, while causing the reduction of

its failure strength and strain.

An aspect which is highlighted by various studies is the weakening of the overall

mechanical properties of polymer/clay nanocomposites that occurs when the opti-

mum clay content, usually identified to be around 5% wt, where wt refers to the filler

weight fraction, is exceeded, due to the formation of various localized agglomerations

of nanoclay stacks. Once the saturation point of the nanofiller content is reached,

the addition of higher amounts of reinforcing elements causes the deterioration of the

overall mechanical properties of the material. The formation of nanoclay agglomer-

ates at high clay contents induces, in fact, the reduction of the tensile modulus and

tensile strength, a drop in the elongation at break and fracture toughness values, and

the ineffectiveness of the stress transfer at the interface between clay platelets and

polymer matrix [202, 225, 228–235]. The filler content value after which the overall

mechanical properties of the nanocomposite suddenly drop is strongly related to the

features of each individual system, and cannot be represented by a fixed value.
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3.2 Experimental characterization of polymer/clay

nanocomposites

The aim of this section is to describe the materials employed in the experimental

activity, their preparation procedure, and the techniques used for the characteriza-

tion of their morphological and mechanical properties.

3.2.1 Materials

In the present work, a diglycidyl ether of bisphenol A epoxide (DGEBA, Elan-

Tech EC157) and the mixture of cycloapliphatic amines (Elan-Tech W152LR), both

supplied by Elantas, were used as polymer matrix. Cloisite R©15A, a natural mont-

morillonite modified with dimethyl dihydrogenated tallow quaternary ammonium

salt having a cation exchange capacity (CEC) of 125 [meq/100 g], was purchased

by Southern Clay Products and employed for nanomodification. Nanofiller weight

fractions of 0%, 1%, 3%, and 5% wt were used to investigate the morphological and

mechanical properties of the material as a function of the clay content.

3.2.2 Preparation of epoxy/clay nanocomposites

Dog-bone (DB) specimens were prepared through mechanical dispersion by mix-

ing the epoxy resin with the organically-modified clays. The dispersion process was

performed at room temperature under constant mechanical stirring for about 45

minutes. Then, the curing agent (the amine mixture) was added to the blend under

mechanical stirring according to the stoichiometric ratio indicated on the supplier’s

datasheet (3 : 1 = epoxide/amine wt/wt). The mixing was performed for about

40 minutes under mechanical stirring and vacuum. The degassing process was per-

formed by making use of a high vacuum pump in order to reduce the amount of

trapped air and, consequently, to avoid the presence of voids in the resin. During

the entire mixing process, the reacting blend was cooled to room temperature by

an external bath suitable to avoid a possible resin overheating and an increase of

blend viscosity (see Figure 3.2). A final degassing phase was carried out for about

10 minutes prior to pouring the blend inside open silicon moulds (see Figure 3.3).

The demoulding of the specimens was performed after complete curing at room tem-
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Figure 3.2: Mechanical stirring system used for the preparation of the epoxy/clay

nanocomposites. The flask containing the reacting mixture was connected to a high

vacuum pump system and was cooled by an external bath of cold water.

perature for about 48 hours, and was followed by a post-curing phase during which

the specimens were placed in a oven at 60[◦C] for 7 hours. Once completely cured,

the specimens were polished up to the final thickness.

3.2.3 Characterization techniques

Hydrostatic Weighing

The volumetric mass densities of the different clay-loaded resins were measured

by means of a hydrostatic balance. For each material configuration, at least three

specimens were tested to obtain statistically representative results.
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Figure 3.3: Dog-bone (DB) shaped silicon rubber moulds used for the production of

the epoxy/clay nanocomposite samples.

Environmental Scanning Electron Microscopy

The microanalyses of the samples were performed by ESEM (Quanta 200 FEI-

XRF embedded). The samples were observed directly on cross sections obtained by

brittle fracture at the temperature of liquid nitrogen.

Transmission Electron Microscopy

To study the morphology of the nanomodified polymers, ultrathin sections (90−

100 [nm]) were obtained by cutting the samples with a Leica Ultracut EM UC7

ultramicrotome, and viewed with a Tecnai G12 (FEI-Thermofisher) transmission

electron microscope (TEM) operating at 100 [kV]. Images of the samples morphology

were captured with a Veleta (Olympus Soft Imaging System) digital camera.

Tensile Testing

Tensile tests on dog-bone (DB) specimens were carried out taking advantage of

a Galdabini SUN2500 universal mechanical testing machine equipped with a 25 [kN]

load cell using a crosshead rate equal to 2 [mm/min] (see Figure 3.4). The specimen

geometry was chosen according to ISO 527–2 (see Figure 3.5) [236]. For each clay

content, at least seven specimens were tested to obtain statistically representative
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Figure 3.4: Galdabini SUN2500 universal mechanical testing machine employed in

the present study to perform the tensile tests.

results. Figure 3.6 shows some of the dog-bone specimens produced in the present

study. The different clay-loaded resins are clearly discernible from their character-

istic color, since the polymer matrix took on a more and more brownish hue with

increasing clay content. Figure 3.7 shows, instead, some of the 1% wt clay-loaded

specimens after the performance of the tensile tests. As it is clearly visible from

the figure, in almost all of the cases, failure took place in the gauge length of the

specimens. The experimental results were rearranged according to ISO 527–2 [236].

Figure 3.5: Geometry of the dog-bone specimens employed in the tensile tests [236].

All dimensions are expressed in [mm].
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Figure 3.6: Examples of dog-bone specimens with different clay contents manufac-

tured during the present study. From top to bottom: neat epoxy resin, 1%, 3%, and

5% wt clay-loaded resins.

Figure 3.7: Examples of dog-bone specimens composed of 1% wt clay-loaded resin

after tensile tests.
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3.2.4 Results and discussion

Hydrostatic Weighing

The results of the hydrostatic balance measurements reported in Figure 3.8

clearly show that the addition of clay nanofillers did not remarkably affect the vol-

umetric mass density of the epoxy resin.

Figure 3.8: Volumetric mass density of the different material configurations tested.

Electron Microscopy

ESEM analyses along brittle fractures of neat epoxy and nanocomposite dog-

bone samples containing 1%, 3%, and 5% wt of montmorillonite Cloisite R©15A are

reported in Figure 3.9. The neat epoxy resin presented a relatively smooth fracture

surface indicating brittleness of the fracture behaviour. Even though the roughness

of the fracture surfaces of the epoxy/Cloisite R©15A nanocomposites increased with

higher nanofiller content, they were characterized by the coexistence between regions

with a predominantly granular morphology and regions with a prevailingly flake

structure, which is an indication of a brittle fracture behaviour. In the case of

1% wt of clay content, an inhomogeneous distribution of nanofillers and the presence

of several large agglomerates and microsized clusters were detected. Although the

distribution of aggregated structures and agglomerations of nanoclay stacks along

the brittle fracture surfaces was observed for all the filler weight fractions considered
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in the study, in the nanocomposites with higher clay contents (3% and 5% wt of

Cloisite R©15A), the distribution of nanoclays was more uniform than that observed in

the 1% wt case. The micrographs also showed that the dimensions of the nanoclay

agglomerates in the 1% wt-loaded resins were almost comparable to, or, in some

cases, even larger than those observed in the 5% wt case, in which the large size of

the clusters was a direct consequence of the higher filler weight fraction.

TEM micrographs of the dog-bone samples showed the coexistence between

nanofiller-rich regions and resin-rich areas for all the nanoclay contents considered

in the study, denoting an inhomogeneous distribution and poor dispersion of the

nanofillers within the matrix (see Figure 3.10), as already suggested by the ESEM

images reported in Figure 3.9. As for the samples with 1% wt of clay content, TEM

analyses showed large clusters of nanoclay aggregates together with some partially

intercalated structures (see Figures 3.10a and 3.10b). The presence of both interca-

lated and phase separated morphologies was identified also in the nanocomposites

with higher clay contents, where, however, the dimensions of the microsized clusters

were slightly reduced with respect to those observed for the 1% wt case (see Fig-

ures 3.10c and 3.10e). Figures 3.10c - 3.10f also showed the presence of some partially

exfoliated tactoids containing only a few clay layers and of intercalated structures

characterized by a larger interlayer space with respect to that of the aggregate in

Figure 3.10b, thus denoting a better dispersion and distribution of nanofillers in the

3% wt and 5% wt cases compared to those of the 1% wt-loaded resins.

All TEM images at high magnification (see Figures 3.10b, 3.10d, and 3.10f) con-

firmed that nanoclay platelets did not preserve their straight shape when dispersed

in the host matrix, as suggested by previous experimental studies conducted on this

class of materials [168, 171, 172, 232, 237]. Most of the time, in fact, electron mi-

croscopy analyses reveal that the silicate layers dispersed within a polymer blend

are characterized by curved or wavy shapes as a result of their inherently high aspect

ratio [120].

Tensile Testing

The effect of the clay content on the stiffness of the resulting nanocomposite

is depicted in Figure 3.11 in terms of average values and corresponding standard
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(a) (b)

(c) (d)

Figure 3.9: ESEM micrographs of (a) the neat epoxy resin and the

epoxy/Cloisite R©15A nanocomposites with (b) 1%, (c) 3%, and (d) 5% wt of clay

content at 300 x magnification.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: TEM images of epoxy/Cloisite R©15A nanocomposite samples with

1% wt (a and b), 3% wt (c and d), and 5% wt (e and f) of clay content.
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Figure 3.11: Tensile modulus of the neat epoxy resin and the epoxy/Cloisite R©15A

nanocomposites with 1%, 3%, and 5% wt of clay content obtained from tensile tests.

Error bars: ±1 standard deviation.

deviations. The experimental data reported in Figure 3.11 clearly show that the

nanomodification of the polymer matrix resulted in a slight decrease in the tensile

modulus of the material. In particular, a tensile modulus of 3.50 [GPa] was mea-

sured for the unmodified epoxy resin, while a maximum modulus of 3.47 [GPa] was

recorded for the nanocomposite samples with 3% wt of clay content, denoting an

almost negligible reduction of the overall stiffness with respect to that of the neat

epoxy resin. The lowest tensile moduli were measured for clay contents of 1% wt and

5% wt. In the former case, the reason for this kind of behaviour lay in the inhomo-

geneous distribution of nanoclays and in the presence of large nanoclay aggregates

(see Figures 3.9b and 3.10a). As for the latter case, the reduction of the tensile

modulus was a consequence of the increase of the nanofiller weight fraction, which

caused the formation of various localized agglomerations of nanoclay stacks. Despite

the fact that the results reported in Figure 3.11 are quite inconclusive due to the

high standard deviations of the collected data, overall they are in agreement with

previous experimental studies conducted on this class of materials [232,234,238].
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3.3 Development of a peridynamics-based computational

tool for nanocomposite mechanical properties mod-

elling

In the following, the proposed peridynamics-based RVE approach is presented in

detail by discussing the RVE generation process and the procedure adopted to com-

pute the elastic constants to obtain the effective tensile properties of nanocomposite

materials. The numerical modelling procedure is focused on the computation of the

effective tensile modulus of this class of materials, since this mechanical property

represents the fundamental basis for a future numerical analysis of nanocomposite

fracture toughness and its dependence on the nanofiller weight content (see Ap-

pendix B). In the last part of the section, the newly developed method is validated by

comparing the computed results with experimental data reported in literature [168],

and its effectiveness and versatility are proved by a further comparison with the

experimental data provided in Section 3.2.4.

3.3.1 Peridynamics-based representative volume element approach

In the present study, an RVE homogenization is implemented in a bond-based

PD framework to derive the effective tensile modulus of nanocomposite materials.

The modelling procedure can be subdivided in different phases as follows:

1. Characterization of the properties of the constituents;

2. Selection and numerical modelling of a suitable RVE;

3. Static analysis implementation;

4. Process of the evaluated reaction forces and computation of the elastic con-

stants to obtain the effective material properties.

In the following, the different steps of the modelling procedure are presented in

detail.

Characterization of nanofiller and matrix properties

The first phase of the modelling procedure consists in the characterization of

the properties of both nanofiller and matrix materials. Mechanical and geometrical
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Figure 3.12: Example of a geometrically periodic RVE. The matrix is represented

by green nodes, whereas the curved nanoclays are represented by magenta nodes.

properties of the constituents need to be extrapolated from available experimental

studies. In the present work, the required data have been partially obtained from

an experimental campaign carried out by the authors (see Section 3.2.4) and from

experimental investigations reported in literature [168]. However, the determination

of nanocomposite properties is rather complex due to the difficulty in measuring ma-

terial and geometrical properties at the nanoscale and to several processing-induced

uncertainties such as inhomogeneous dispersion, non-straight shape, random orien-

tation and formation of various morphologies. In order to take into account the

inherently stochastic nature of nanocomposites, in the present work, the nanofillers

aspect ratio, curvature and location within the matrix are supposed to be affected

by uncertainties and therefore modelled by selecting the most suitable probability

distribution functions. Following the suggestions reported in dedicated literature

studies [145,164], the aspect ratio of the nanofillers is modelled by using the Gaus-

sian distribution function, whereas, for the curvature and location of the nanofillers,

discrete uniform distributions are used to model the value of each nanofiller arclength

and to determine the central node of each nanoplatelet, respectively.

RVE selection and modelling

The properties obtained during the first phase of the modelling procedure are

then used as input for the mesoscale analysis, which is performed on an RVE, a
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sample which is structurally typical of the whole blend on average [239]. The sta-

tistical properties of the nanocomposite are computed by constructing many RVEs,

each of them considered as a single realization of the material, and by averaging

their results. In order to determine the number of RVEs required to obtain suitable

results in terms of effective tensile modulus, it is necessary to analyse its trend as

a function of the number of realizations. An example of this procedure is reported

in Section 3.3.2. The RVE should contain a sufficient number of inclusions for the

overall moduli to be independent of the surface values of traction and displacement,

provided that these values are macroscopically uniform [239]. In order to assess

whether this requirement is meet or not, a set of numerical simulations is performed

by keeping fixed the value of the filler weight fraction and the mechanical and geo-

metrical properties of the constituents while increasing the side length of the RVE.

An example of this procedure is presented in Section 3.3.2.

After the selection of the most suitable size, the square RVE domain is discretized

into a grid of PD nodes to which different sets of material properties are assigned

to simulate the presence of randomly distributed nanofillers within the matrix. A

newly developed algorithm allows to model nanofiller curvature. A random aspect

ratio and orientation are automatically assigned to each nanofiller during the cur-

vature modelling procedure. The domain is modelled as geometrically periodic: the

nanofillers that are cut by any of the edges of the RVE are continued from the oppo-

site edges with the same orientation and curvature. An example of a geometrically

periodic RVE obtained through the proposed approach is shown in Figure 3.12. The

nanofillers are allowed to overlap to simulate the agglomeration phenomenon and to

mimic a three-dimensional environment.

After the allocation of the different node properties, the PD bonds are cre-

ated. The properties assigned to each bond depend on the nature of the nodes at

its ends. Four different types of bonds are defined, i.e., matrix-matrix, nanofiller-

nanofiller, matrix-nanofiller (or interphase), and agglomeration bonds. The stiffness

of the matrix and the one of the nanofiller, i.e., Em and Enf , are assigned to the

matrix-matrix and nanofiller-nanofiller bonds, respectively, whereas the tensile mod-

ulus of the interphase bonds is modelled as a function of the matrix stiffness, i.e.,
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Eintph = κintphEm, where κintph is an interphase factor which must be calibrated

through available experimental data. The stiffness value assigned to the agglomer-

ation bonds, i.e., the bonds connecting nanofiller-type nodes belonging to different

nanoplatelets, is chosen to be equal to the lower between the matrix and interphase

tensile moduli, depending on each case study, such as:

Eagglm =











Em if Eintph ≥ Em,

Eintph if Eintph < Em.
(3.1)

The number of bonds belonging to each of the aforementioned classes is a function

of the filler volume fraction, which is referred to as vol. In the experimental activity

presented in Section 3.2 and, in general, in experimental studies reported in liter-

ature, it is preferred to express the nanoclay content in terms of weight fraction.

Considering that the numerical method requires in input the filler content in terms

of volume fraction, it is possible to convert it exploiting the following relation [144]:

vol =

wt
ρnf

wt
ρnf

+ (1−wt)
ρm

, (3.2)

where ρnf and ρm are the nanofiller and matrix volumetric mass densities, respec-

tively.

Static analysis implementation

After the allocation of the node properties and the creation of the PD bonds, the

static analysis implementation is performed. The procedure requires the assembly

of the global RVE stiffness matrix and the subsequent application of the boundary

conditions. As shown in Figure 3.13, the boundary conditions are imposed on a

volume of boundary layers surrounding the RVE domain with a depth equalling the

horizon radius. In this way, the surface effect can be eliminated, since all the nodes

inside the RVE domain possess a complete horizon. Uniform strain conditions are

applied to the RVE by imposing on all the nodes in the external boundary layers

displacements which are linear approximations of the boundary displacements. Two

sets of uniform displacement boundary conditions are enforced on the RVE in order

to compute the required elastic constants of the material, i.e., uniaxial tensile strain
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Figure 3.13: Schematic representation of the RVE domain and the external boundary

layer considered in the present study.

along x-direction, such that:






















ε11 6= 0,

ε22 = 0,

ε12 = 0,

(3.3)

and uniaxial tensile strain along y-direction, such that:






















ε11 = 0,

ε22 6= 0,

ε12 = 0,

(3.4)

where εij are the components of the average strain tensor. The shear strain condition

is not considered in the present study, since the previous two sets of uniform dis-

placement boundary conditions are sufficient to obtain the effective tensile modulus

and Poisson’s ratio of the material. After the imposition of the boundary conditions,

the linear system of equations can be solved to obtain the nodal displacement vector,

which is then exploited to compute the external nodal forces, i.e., the ‘reactions’,

since the displacements are imposed.

Estimation of the effective material properties

The computed reaction forces are then processed to evaluate the material elas-

tic constants by exploiting the stress-strain relation for macroscopically isotropic
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materials under plane stress conditions (cf. (2.21)), such that:











σ11

σ22

σ12











=
E

1− ν2











1 ν 0

ν 1 0

0 0 1− ν





















ε11

ε22

ε12











=











a11 a12 0

a21 a22 0

0 0 a33





















ε11

ε22

ε12











, (3.5)

where σij are the components of the average stress tensor obtained by dividing

the sum of the reaction forces at the locations of the applied displacements by

the cross-sectional area of the model, E and ν are the effective tensile modulus

and Poisson’s ratio of the material, respectively, and aij are the material elastic

constants. Substituting (3.3) in (3.5) and exploiting the corresponding computed

reaction forces, the elastic constants a11 and a21 can be obtained by solving the

following system of equations:











σ11 = a11ε11,

σ22 = a21ε11,
(3.6)

whereas, substituting (3.4) in (3.5) and exploiting the corresponding computed reac-

tion forces, the elastic constants a12 and a22 can be obtained by solving the following

system of equations:










σ11 = a12ε22,

σ22 = a22ε22.
(3.7)

After the calculation of the required elastic constants, the tensile modulus and Pois-

son’s ratio, for each of the two load cases considered in the study, can be computed

as follows:










ν21 = a21/a11,

E11 = a11
(

1− ν21
2
)

,
(3.8)

where E11 and ν21 are the tensile modulus and Poisson’s ratio obtained by imposing

a uniaxial tensile strain along x-direction (cf. (3.3)), and











ν12 = a12/a22,

E22 = a22
(

1− ν12
2
)

,
(3.9)

where E22 and ν12 are the tensile modulus and Poisson’s ratio obtained by imposing a

uniaxial tensile strain along y-direction (cf. (3.4)). In the case of a macroscopically
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homogeneous and isotropic material, the numerically computed elastic constants

should satisfy the following conditions:

a11 ≈ a22, (3.10)

and

a21 ≈ a12, (3.11)

which therefore imply that the numerically computed tensile moduli and Poisson’s

ratios satisfy the following conditions:

ν21 ≈ ν12 ≈ ν, (3.12)

and, consequently,

E11 ≈ E22 ≈ E, (3.13)

where, as stated before, ν and E represent the effective Poisson’s ratio and tensile

modulus of the material.

3.3.2 Validation of the PD-based representative volume element

approach

Considering that the experimental data reported in Section 3.2.4 are quite in-

conclusive in terms of overall trend of material tensile modulus with increasing clay

content, the first set of experimental data exploited to validate the PD-based ap-

proach is the one from [168], where epoxy/Na+Mt nanocomposites with high degree

of exfoliation and uniform distribution were obtained through slurry compounding.

For the sake of completeness, the experimental data presented in Section 3.2.4, where

epoxy/Cloisite R©15A samples with inhomogeneous distribution and poor dispersion

of clays were obtained, are then employed to further validate the numerical approach

and to assess its versatility. The PD-based model implements an interphase factor

κintph which must be calibrated for each case study to ensure that the properties of

the material are properly estimated.

Determination of the suitable RVE size and of the required number of

RVE realizations

Before going into the details of the model validation, it is first necessary to briefly

illustrate an example of the procedure adopted to define the suitable RVE size and
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an example of the strategy exploited to determine the required number of RVE

realizations. As for the RVE size, the purpose of the procedure is to identify the

minimum RVE side length in correspondence of which the tensile modulus obtained

by imposing a uniaxial tensile strain along x-direction, E11, and the one obtained

by imposing the same condition along y-direction, E22, are approximately equal

(cf. (3.13)), i.e., the minimum side length at which the overall moduli turns out to

be independent of the surface values of traction and displacement. The fulfilment of

this condition implies that the number of inclusions contained in the RVE and their

distribution within the model domain are such as to represent a macroscopically

uniform and isotropic material. The determination of the RVE size is pursued by

performing a set of numerical simulations in which the value of the filler weight

fraction and the mechanical and geometrical properties of the constituents are kept

fixed while the side length of the square RVE is increased. The model and material

input data used to perform the set of simulations are reported in Table 3.1. As for

the material input data, the values of ρm and Em are reported in Section 3.2 (see

Figures 3.8 and 3.11), the values of νm and νnf are fixed, since plane stress conditions

are considered (see Section 1.1.4), while the values of ARmean, ARstd, Enf and ρnf

are reported in literature [145,240], and on the supplier’s datasheet. A test value of

κintph = 0.1 is used in the simulations. As previously introduced in Section 3.3.1, the

condition of uniaxial tensile strain along x-direction is imposed by assigning a value

of ε11 = 0.01 to the 11-component of the average strain tensor (cf. (3.3)), whereas

the condition of uniaxial tensile strain along y-direction is imposed by assigning a

value of ε22 = 0.01 to the 22-component of the average strain tensor (cf. (3.4)). The

results of the study, which are reported in Table 3.2, demonstrate that the square

RVE should be characterized by a side length of at least 0.6 [µm]. The RVEs with

side lengths smaller than this value do not contain a sufficient number of inclusions.

In fact, for side lengths smaller than 0.3 [µm], E11 = E22 = Em, which means that

the number of inclusions inside the RVE domain is so low that their presence has

no effect on the matrix properties, whereas, for a side length of 0.3 [µm], E11 and

E22 are quite different from each other. In order for the RVEs to contain enough

inclusions and to properly simulate the agglomeration phenomena, a side length of
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Input data Value

∆x = ∆y 10 [nm]

m 8

Em 3.5 [GPa]

Enf 178 [GPa]

ρm 1156.5 [kg/m3]

ρnf 1660 [kg/m3]

νm = νnf 1/3

ARmean 300

ARstd 60

wt 5 [%]

κintph 0.1

Table 3.1: Input data used in the set of simulations performed to determine the

suitable RVE size.

Lx = Ly = 1.5 [µm] is considered in all numerical studies presented in the following

sections.

As for the required number of RVE realizations, the purpose of the convergence

study is to determine the number of RVEs required to obtain suitable results in

terms of effective tensile modulus. This is therefore pursued by analysing the trend

of the average tensile modulus as a function of the number of realizations. The

model and material input data used to perform the convergence study are reported

in Table 3.1. An RVE side length of 0.6 [µm] and a test value of κintph = 0.1

are considered in the simulations. The condition of uniaxial tensile strain along

x-direction is imposed by assigning a value of ε11 = 0.01 to the 11-component

of the average strain tensor (cf. (3.3)), whereas the condition of uniaxial tensile

strain along y-direction is imposed by assigning a value of ε22 = 0.01 to the 22-

component of the average strain tensor (cf. (3.4)). The results of the study, which
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Lx = Ly [µm] totnodes E11 [GPa] E22 [GPa]

0.1 100 3.50± 0.001 3.50± 0.001

0.15 225 3.50± 0.050 3.50± 0.050

0.3 900 3.33± 0.073 3.39± 0.155

0.6 3600 3.33± 0.048 3.33± 0.025

1 10000 3.33± 0.015 3.29± 0.016

1.5 22500 3.32± 0.011 3.30± 0.010

Table 3.2: Results of the study performed to determine the suitable RVE size.

are reported in Figure 3.14, demonstrate that the convergence would be guaranteed

for approximately 200 realisations with a convergence error of less than 0.08%. In all

numerical studies presented in the following sections, each case is therefore averaged

over 200 runs.

Epoxy/Na+Mt nanocomposites prepared through slurry compounding

process: High degree of exfoliation and uniform distribution

The selection of this case study is the result of an extensive analysis of the rele-

vant literature aimed at finding experimental data relative to nanocomposites with

morphologies, interface properties, dispersion and distribution characteristics differ-

ent from the ones of the samples produced and characterized during the experimental

activity presented in Section 3.2. Differently from what presented in Section 3.2,

in [168], the authors carried out an experimental characterization of the mechanical

properties of specimens composed by D.E.R.
TM

332, a DGEBA-based epoxy resin

from Dow Plastics, nanomodified through the addition of different weight fractions

of sodium montmorillonite (PGW) from Nanocor Inc. The processing technique em-

ployed by the authors to prepare the nanocomposite samples is the so called slurry

compounding technique, which induces a very high degree of exfoliation of the nan-

oclay platelets and uniform distribution characteristics, as stated in [168] and other

literature studies [237,241].

As previously stated, a side length of Lx = Ly = 1.5 [µm] is considered in the
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Figure 3.14: Average tensile modulus as a function of RVE realization number.

present study. Moreover, as a result of the convergence study performed in the

previous section, in all simulations, each case is averaged over 200 runs, i.e., over

200 RVE realizations. The model and material input data used in the validation

procedure are reported in Table 3.3. As for the material input data, the values

of Em, Enf , ρm, ρnf , ARmean and ARstd are reported in literature studies [122,

145, 168, 237, 240], and on the supplier’s datasheets, while the values of νm and

νnf are fixed, since plane stress conditions are considered (see Section 1.1.4). The

condition of uniaxial tensile strain along x-direction is imposed by assigning a value

of ε11 = 0.01 to the 11-component of the average strain tensor (cf. (3.3)), whereas

the condition of uniaxial tensile strain along y-direction is imposed by assigning a

value of ε22 = 0.01 to the 22-component of the average strain tensor (cf. (3.4)). The

nanofiller weight fractions considered in the validation procedure are those which

were employed in the experimental activity carried out by the authors in [168], i.e.,

0%, 1%, 2.5%, 3.5%, and 5% wt of clay content. The model is calibrated to match

the experimentally obtained average value of the tensile modulus of the 5% wt clay-

loaded samples (see Figure 6 in [168]). The results of the calibration procedure,

which are reported in Figure 3.15, show that, for κintph = 15, i.e., in the case of a

stiff interphase region, the model accurately predicts the tensile modulus value not
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Input data Value

Lx = Ly 1.5 [µm]

∆x = ∆y 10 [nm]

m 8

Em 1.96 [GPa]

Enf 178 [GPa]

ρm 1160 [kg/m3]

ρnf 1980 [kg/m3]

νm = νnf 1/3

ARmean 400

ARstd 70

Table 3.3: Input data used in the first validation procedure.

only for the 5% wt case, but for all the clay contents considered in the study, with

a maximum error of about 4%.

As expected, the slurry compounding technique employed to prepare the samples

induces a significant enhancement of the effective tensile modulus with increasing

filler weight fraction. This overall effect is probably a consequence of the high degree

of exfoliation and uniform distribution of nanoclay platelets obtained by using this

high-performing processing technique.

Epoxy/Cloisite R©15A nanocomposites prepared through mechanical stir-

ring: Poor dispersion and distribution

In order to further validate the capabilities of the PD-based model and to

demonstrate its versatility in modelling the effective tensile modulus of polymer/clay

nanocomposites characterized by various features, a second validation procedure is

performed by exploiting the results of the experimental investigation carried out in

Section 3.2. As previously stated, a side length of Lx = Ly = 1.5 [µm] is considered

in the present study. Moreover, as a result of the aforementioned convergence study,
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Figure 3.15: Calibration of the model to reproduce the experimental data from [168].

in all simulations, each case is averaged over 200 runs, i.e., over 200 RVE realizations.

The model and material input data used in the validation procedure are reported

in Table 3.4. As for the material input data, the values of ρm and Em are obtained

from the experimental analysis presented in Section 3.2 (see Figures 3.8 and 3.11),

the values of νm and νnf are fixed, since plane stress conditions are considered (see

Section 1.1.4), while the values of ARmean, ARstd, Enf and ρnf are reported in lit-

erature [145,240], and on the supplier’s datasheet. The condition of uniaxial tensile

strain along x-direction is imposed by assigning a value of ε11 = 0.01 to the 11-

component of the average strain tensor (cf. (3.3)), whereas the condition of uniaxial

tensile strain along y-direction is imposed by assigning a value of ε22 = 0.01 to the

22-component of the average strain tensor (cf. (3.4)). The nanofiller weight fractions

considered in the validation procedure are those which were employed in the experi-

mental activity presented in Section 3.2, i.e., 0%, 1%, 3%, and 5% wt of clay content.

The model is calibrated to match the experimentally obtained average value of the

tensile modulus of the 5% wt clay-loaded samples (see Figure 3.11). The results of

the calibration procedure, reported in Figure 3.16, show that, for κintph = 0.05, i.e.,

in the case of a soft interphase region, the model accurately predicts the average

tensile modulus value for the 5% wt case. Furthermore, noting that the experimen-

tal value of the tensile modulus for the 1% wt case is lower than expected because of
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Input data Value

Lx = Ly 1.5 [µm]

∆x = ∆y 10 [nm]

m 8

Em 3.5 [GPa]

Enf 178 [GPa]

ρm 1156.5 [kg/m3]

ρnf 1660 [kg/m3]

νm = νnf 1/3

ARmean 300

ARstd 60

Table 3.4: Input data used in the second validation procedure.

weak interfacial adhesion due to the presence of large agglomerated clay stacks, the

model properly captures the trend of the average tensile modulus as a function of the

clay content (the maximum error is around 3%). As previously stated in Section 3.2,

the slightly decreasing trend of the effective tensile modulus of the nanocomposite

with increasing clay content is a consequence of the poor dispersion and distribution

characteristics of the material, which are themselves caused by the processing tech-

nique and conditions employed for the production of the nanocomposite samples.

The use of mechanical stirring for the preparation of polymer-based nanocomposites

does not lead, in fact, to a complete exfoliation of nanoclay platelets, inducing in-

stead the formation of large aggregated clay structures and agglomerated clay stacks

within the polymer matrix.

The results of the two validation procedures are a further confirmation of the fact

that the quality of nanofiller dispersion and distribution has a strong influence on the

interphase properties and tensile performance of nanocomposites, since the stiffness

of materials with poor dispersion and distribution levels and, therefore, characterized
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Figure 3.16: Calibration of the model to reproduce the experimental data from

Section 3.2.4.

by a soft interphase region, is only slightly affected by nanomodification, whereas

in the case of high degree of exfoliation and good distribution characteristics, the

materials present a stiff interphase region and an upward trend of the stiffness with

increasing clay content.

The results presented in this section allow for the conclusion that the proposed

numerical method has the capability to model randomly distributed nanofillers with

different sizes, shapes, and orientations, and that it is capable of easily simulating

interphase regions characterized by different properties, including both strong and

weak interfacial adhesion, and nanofiller agglomeration phenomena. Thanks to these

features, the tensile modulus of nanocomposites with various characteristics, result-

ing from the employment of different processing techniques and conditions, can be

accurately reproduced.



Chapter 4

Conclusions and future

developments

Analysis of the overall equilibrium in the coupling of peri-

dynamics and classical continuum mechanics

As reported in [9], the work presented in Chapter 2 concerned the coupling of

peridynamics and classical continuum mechanics, focusing on an error given by the

lack of overall equilibrium in static problems. This coupling error has been over-

looked in the literature. Theoretical analyses describing the reason for the appear-

ance of this spurious effect have been provided together with supporting numerical

simulations. While this investigation considered a particular strategy to couple peri-

dynamics and classical continuum mechanics, proposed in [84, 112], this issue most

probably affects other coupling approaches. It is observed that a lack of overall equi-

librium may occur even if the coupling method satisfies the usual numerical tests

for static problems, given by rigid body motions as well as uniform and linear strain

distributions. The theoretical analyses and the supporting numerical simulations

allow for the conclusion that:

• The out-of-balance forces are related to the order of the derivatives of displace-

ments in the coupling zone;

• It is easy to evaluate the magnitude of the out-of-balance error by computing

the reaction forces;

173
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• In the numerical examples presented in Chapter 2, the relative out-of-balance

error is a fraction of a percent and reduces as δ → 0;

• It is usually possible to reduce the out-of-balance error by moving the coupling

interface away from regions of high gradients of displacements;

• The two-dimensional numerical examples presented in Section 2.6.2 suggest

that the shape of the coupling interface may have a significant impact on the

overall out-of-balance error: corners in the coupling interface can introduce

additional out-of-balance contributions.

The impacts of these findings on coupled simulations are twofold. First, the tol-

erance used in an implicit solution of a coupled computational problem should be

carefully chosen: if the tolerance is smaller than the out-of-balance forces, then

the computation will not converge. Second, the proper location and shape of the

coupling interface in a computational problem can be defined by using an adaptive

approach to convert FEM nodes into PD nodes. The use of adaptivity, focused on

controlling the out-of-balance error, can reduce the computational effort consider-

ably with respect to that required by a fully peridynamic simulation, and will pave

the way to future applications of the coupling of peridynamics and classical contin-

uum mechanics to the solution of many practical problems [9]. Some of the possible

future works which can then be carried out on the basis of the outcomes of the

aforementioned studies are summarised as follows:

• Extension of the theoretical and numerical analyses of the consistency between

linear bond-based PD and CCM models to three-dimensional cases;

• Extension of the theoretical analysis of the balance between local and nonlocal

tractions at coupling interfaces to two-dimensional CCM-PD coupled systems

characterized by non-straight coupling interfaces and to three-dimensional

CCM-PD coupled models;

• Further extension of the out-of-balance analysis focused on controlling the

relative out-of-balance error by optimizing the shape of the coupling interfaces

in two-dimensional and three-dimensional CCM-PD coupled systems.



175

Numerical modelling of nanocomposite mechanical prop-

erties

In the work presented in Chapter 3, peridynamics has been exploited to model

the tensile modulus of nanocomposite materials. The investigation has been par-

ticularly focused on polymer-based matrices nanomodified through the addition of

nanoclay platelets, a class of materials which has recently attracted the interest

of the academic and industrial communities due to its enhanced mechanical, ther-

mal, and barrier properties, and to its wide range of applications, especially in the

aerospace, automotive, and construction fields. The mesoscale representative vol-

ume element approach developed in Chapter 3 has proved to be well suited for the

study of nanocomposite materials, due to the intrinsic capability of peridynamics to

handle material discontinuities, thus allowing for the incorporation of different ma-

terials and for the modelling of interphase regions without the need of any special

treatments. The newly developed strategy has shown to be capable of simulat-

ing randomly distributed nanofillers with different sizes and orientations, and of

modelling interphase regions characterized by different properties, and nanofiller ag-

glomeration phenomena. The proposed computational tool has been validated by

exploiting experimental data available in literature, and by performing an experi-

mental characterization of clay-loaded epoxy resins. The numerical simulations and

the supporting experimental activities allow for the conclusion that:

• The effective tensile modulus of polymer-based nanocomposites is significantly

affected by the characteristics of the interphase region. The tensile modulus

of nanocomposites with various features, resulting from the employment of

different preparation techniques and processing conditions, can be accurately

reproduced by the proposed numerical method by implementing an interphase

factor which must be calibrated to simulate weak, soft, or stiff interphase

regions;

• Interphase regions and agglomeration phenomena can be easily simulated by

tuning the properties of the peridynamic bonds;

• The non-straight shape of clay nanofillers is clearly discernible from electron
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microscopy images, and can be numerically reproduced by assigning a random

arclength and radius of curvature to each nanoplatelet during the modelling

procedure.

Some of the possible future activities which can then be carried out on the basis of

the outcomes of the work presented in Chapter 3 are summarised as follows:

• Extension of the PD-based RVE approach to the shear strain condition and

to three-dimensional problems;

• Application of the effective tensile moduli obtained through the mesoscale RVE

analysis as input parameters for a numerical method focused on the modelling

of crack nucleation and propagation in nanocomposites. This could be pursued

by developing a CCM-PD coupling-based strategy, in order to increase the

computational efficiency of the method, and to facilitate the imposition of

boundary conditions, avoiding the need for external boundary layers;

• Use of the results obtained in the present study as a starting point for the

numerical investigation of the effect of the nanomodification on the fracture

toughness of nanocomposite materials, and subsequent exploitation of the ex-

perimental data reported in Appendix B to validate the computed results;

• Extension of the study to multiphysics problems involving diffusion phenom-

ena, i.e., permeability and corrosion, to pave the way to the application of

polymer/clay nanocomposites as gas barrier materials;

• Implementation of peridynamics-based multiscale simulations and performance

of further experimental activities to investigate the effects of ageing on the ten-

sile and fracture properties of polymer-based nanocomposites.
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Appendix A

Convergence of the nonlocal

traction to the local traction

The theoretical analysis presented in the following appendix has been mainly

derived by Doctor Pablo Seleson, Research Scientist at the Oak Ridge National

Laboratory (ORNL), Oak Ridge, United States [9].

A.1 One-dimensional case

Assume a domain B ⊂ R and consider the nonlocal traction at x0 ∈ B in the

bulk of the body with normal n = +1 (cf. (2.55)):

τ(x0,+1) =

∫ x0

x0−δ

∫ x+δ

x0

c(|x′ − x|)(u(x′)− u(x))dx′dx. (A.1)

Assuming a smooth deformation, we begin by employing a first Taylor expansion of

u(x′) about x (cf. (2.7)):

τ(x0,+1) =

∫ x0

x0−δ

∫ x+δ

x0

c(|x′ − x|)

(

du

dx
(x)(x′ − x) +

1

2

d2u

dx2
(x)(x′ − x)2

+
1

3!

d3u

dx3
(x)(x′ − x)3 + . . .

)

dx′dx

=

∫ x0

x0−δ

∫ δ

x0−x
c(|ξ|)

(

du

dx
(x)ξ +

1

2

d2u

dx2
(x)ξ2 +

1

3!

d3u

dx3
(x)ξ3 + . . .

)

dξdx,

(A.2)

where we used the change of variable ξ = x′ − x in the last equality. Note that

due to the limits of integration, x′ > x and thus ξ > 0. Assume the micromodulus

203
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function (2.12) with α < 2 (see below). Then,

τ(x0,+1) =

∫ x0

x0−δ

∫ δ

x0−x

c

|ξ|α

(

du

dx
(x)ξ +

1

2

d2u

dx2
(x)ξ2 +

1

3!

d3u

dx3
(x)ξ3 + . . .

)

dξdx

= c

∫ x0

x0−δ

∫ δ

x0−x

(

du

dx
(x)ξ1−α +

1

2

d2u

dx2
(x)ξ2−α +

1

3!

d3u

dx3
(x)ξ3−α + . . .

)

dξdx

= c

∫ x0

x0−δ

(

du

dx
(x)

1

2− α

[

δ2−α − (x0 − x)2−α
]

+
1

2

d2u

dx2
(x)

1

3− α

[

δ3−α − (x0 − x)3−α
]

+
1

3!

d3u

dx3
(x)

1

4− α

[

δ4−α − (x0 − x)4−α
]

+ . . .

)

dx. (A.3)

We now perform a second Taylor expansion, this time for the derivatives evaluated

at x about x0. Explicitly writing terms up to third derivatives, we have

τ(x0,+1) = c

∫ x0

x0−δ

(

1

2− α

{

du

dx
(x0) +

d2u

dx2
(x0)(x− x0)

+
1

2

d3u

dx3
(x0)(x− x0)

2 + . . .

}[

δ2−α − (x0 − x)2−α

]

+
1

2

1

3− α

{

d2u

dx2
(x0) +

d3u

dx3
(x0)(x− x0) + . . .

}[

δ3−α − (x0 − x)3−α

]

+
1

3!

1

4− α

{

d3u

dx3
(x0) + . . .

}[

δ4−α − (x0 − x)4−α

])

dx. (A.4)

Collecting the contributions to each derivative, we have

τ(x0,+1) = c

({
∫ x0

x0−δ

1

2− α

[

δ2−α − (x0 − x)2−α

]

dx

}

du

dx
(x0)

+

{
∫ x0

x0−δ

1

2− α
(x− x0)

[

δ2−α − (x0 − x)2−α

]

+
1

2

1

3− α

[

δ3−α − (x0 − x)3−α

]

dx

}

d2u

dx2
(x0)

+

{
∫ x0

x0−δ

1

2− α

(x− x0)
2

2

[

δ2−α − (x0 − x)2−α

]

+
1

2

1

3− α
(x− x0)

[

δ3−α − (x0 − x)3−α

]

+
1

3!

1

4− α

[

δ4−α − (x0 − x)4−α

]

dx

}

d3u

dx3
(x0) + . . .

)

.

(A.5)
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We compute the following integral (for n > 0 and m > 1):

∫ x0

x0−δ

1

(m− 1)!

1

m− α

(x− x0)
n

n!

[

δm−α − (x0 − x)m−α

]

dx

=
1

(m− 1)!

1

m− α

1

n!
(−1)n

[

−δm−α 1

n+ 1
(x0 − x)n+1

+
1

n+m+ 1− α
(x0 − x)n+m+1−α

]∣

∣

∣

∣

x0

x0−δ

=
1

(m− 1)!

(−1)n

(n+ 1)!

δn+m+1−α

n+m+ 1− α
. (A.6)

Using (A.6) to compute the integrals in (A.5), we obtain

τ(x0,+1) = c

(

δ3−α

3− α

du

dx
(x0) +

1

12

δ5−α

5− α

d3u

dx3
(x0) + . . .

)

. (A.7)

Employing the relation in (2.15), we finally obtain

τ(x0,+1) = E
du

dx
(x0) +

1

12

3− α

5− α
Eδ2

d3u

dx3
(x0) + . . .

= t(x0,+1) +
1

12

3− α

5− α
Eδ2

d3u

dx3
(x0) + . . . , (A.8)

where t(x0,+1) is the local traction at x0 with normal n = +1 (cf. (2.45) and (2.44)).

In the limit as δ → 0, we have

τ(x0,+1) = t(x0,+1) + O(δ2), (A.9)

i.e., the nonlocal traction converges to the local traction at a rate of O(δ2).

x′ = x− δ

x

x′

•

•

•x0
x0

x0 − δ

x0 + δ

Figure A.1: Domain of integration (shaded region) for the one-dimensional nonlocal

traction in (A.10).
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Remark A.1 Consider the nonlocal traction at x0 with normal n = −1 (cf. (2.55)):

τ(x0,−1) =

∫ x0+δ

x0

∫ x0

x−δ
c(|x′ − x|)(u(x′)− u(x))dx′dx. (A.10)

The two-dimensional region of integration is illustrated in Figure A.1. Changing the

order of integration, we have

τ(x0,−1) =

∫ x0

x0−δ

∫ x′+δ

x0

c(|x′ − x|)(u(x′)− u(x))dxdx′

= −

∫ x0

x0−δ

∫ x′+δ

x0

c(|x− x′|)(u(x)− u(x′))dxdx′

= −

∫ x0

x0−δ

∫ x̂+δ

x0

c(|x̂′ − x̂|)(u(x̂′)− u(x̂))dx̂′dx̂ = −τ(x0,+1), (A.11)

where we used the change of variables x̂ = x′ and x̂′ = x as well as (2.55) in the

second to last and last equalities, respectively. Using (A.8) and (2.46), we have

τ(x0,−1) = −τ(x0,+1) = −t(x0,+1)−
1

12

3− α

5− α
Eδ2

d3u

dx3
(x0) + . . .

= t(x0,−1)−
1

12

3− α

5− α
Eδ2

d3u

dx3
(x0) + . . . , (A.12)

where t(x0,−1) is the local traction at x0 with normal n = −1 (cf. (2.45) and (2.44)).

Numerical examples for the nonlocal traction in one dimension

Figure A.2: Interface between the PD and CCM regions for the nonlocal traction

computation in a one-dimensional CCM-PD coupled model. Blue diamonds are

FEM nodes and green circles are PD nodes. The dashed gray vertical line indicates

the interface at x0. A uniform discretization with grid spacing ∆x = 1 is employed,

and the PD horizon is taken as δ = 3.

We present some numerical examples to confirm the result in (A.8). To put

these examples within the context of a CCM-PD coupled model, we consider a one-

dimensional system with an interface at x0 in the bulk of the body between a PD
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region and a CCM region. We assume points x < x0 belong to the PD region,

whereas points x > x0 correspond to the CCM region. To numerically compute the

nonlocal traction in (A.1), we employ a uniform discretization with grid spacing ∆x

and define a set of NPD PD nodes with positions given by

SPD =
{

x0 − δ + ∆x
2 , . . . , x0 −

∆x
2

}

(A.13)

and a set of NFEM FEM nodes with positions given by

SFEM =
{

x0 +
∆x
2 , . . . , x0 + δ − ∆x

2

}

. (A.14)

To relate the examples in this section to the numerical results in Section 2.6.1, we

choose δ = 3 and ∆x = 1 (i.e., m = δ/∆x = 3), and we consider the case of an

interface at x0 = 20.5 (i.e., x0 = 20+∆x
2 ), which corresponds to the configuration (e)

in Figure 2.6; an illustration is presented in Figure A.2. We denote by xPDi ∈ SPD,

i = 1, . . . , NPD, and xFEMj ∈ SFEM, j = 1, . . . , NFEM, the reference positions of the

PD and FEM nodes, respectively. Define the displacements of the PD and FEM

nodes, respectively, by uPDi := u(xPDi ), i = 1, . . . , NPD, and uFEMj := u(xFEMj ),

j = 1, . . . , NFEM. Then, we can compute the nonlocal traction in (A.1) by

τnum(x0,+1) :=

NPD
∑

i=1

NFEM
∑

j=1

χδ

(∣

∣xFEMj − xPDi
∣

∣

)

c
(∣

∣xFEMj − xPDi
∣

∣

) (

uFEMj − uPDi
)

∆x
(i)
j ∆x,

(A.15)

where χδ is the characteristic function in (2.49) and a partial-volume correction [191]

is used for mth neighbors, so that ∆x
(i)
j = 1

2∆x if |xFEMj −xPDi | = δ and ∆x
(i)
j = ∆x

otherwise. We consider the micromodulus function (2.12) with α = 1.

We compare the numerical computation of the nonlocal traction given by (A.15)

with the analytical calculation using (A.8) for the case of linear, quadratic, and

cubic displacement fields, described in Table A.1; the values of the coefficients are

g = 0.0001 and X1 = 17. As a comparison, we analytically calculate the local

traction using (2.45) with (2.44). The results are reported in Table A.2. In addition

to reporting the values for the nonlocal and local tractions, we present the error

of the nonlocal traction computation given by the absolute value of the difference

between the numerical and analytical values. We observe that the values of the

numerical nonlocal traction obtained by (A.15), which is a discretization of (A.1),
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Displacement type Displacement field equation

Linear u(x) = gx

Quadratic u(x) =
g

2X1
x2

Cubic u(x) =
g

3X2
1

x3

Table A.1: Displacement fields for the nonlocal traction computation in one dimen-

sion.

Displacement type Nonlocal traction Local traction

τnum(x0,+1) τ(x0,+1) |τnum(x0,+1)− τ(x0,+1)| t(x0,+1)

Linear 1.00× 10−04 1.00× 10−04 9.49× 10−20 1.00× 10−04

Quadratic 1.21× 10−04 1.21× 10−04 4.07× 10−20 1.21× 10−04

Cubic 1.46× 10−04 1.46× 10−04 2.71× 10−20 1.45× 10−04

Table A.2: Comparison between numerical and analytical tractions in one dimension.

accurately match the values given by the analytical nonlocal traction in (A.8) for all

the cases, linear, quadratic, and cubic displacements. Moreover, for the linear and

quadratic displacements, the values of the nonlocal and local tractions coincide, as

predicted by (A.8). These two observations confirm the result in (A.8).

A.2 Two-dimensional case

Assume a domain B ⊂ R
2 and consider two non-overlapping subdomains ΩA

and ΩB with a straight interface Γ connecting them (see, e.g., Figure A.3), i.e.,

ΩA ∩ΩB = ∅ and ΩA ∩ΩB = Γ. We assume the normal n to the interface Γ points

outwards relative to ΩA. Given the linear isotropic bond-based PD model (1.22),

consider the nonlocal traction at x0 = (x0, y0) ∈ Γ in the bulk of the body with

normal n (cf. (2.99)):

τ (x0,n) =

∫

L

∫

ΩB

χδ(‖x
′ − x‖)λ(‖x′ − x‖)(x′ − x)⊗ (x′ − x)(u(x′)− u(x))dx′dℓ,

(A.16)

where L is defined in (2.98). In component form, we have

τi(x0,n) =

∫

L

∫

ΩB

χδ(‖ξ‖)λ(‖ξ‖)ξiξj(uj(x+ξ)−uj(x))dx
′dℓ, i = 1, 2, (A.17)
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x

y

e2

•

•

ΩB

ΩA

Γ

r
θ

y0 − δ

y 0
−
y

y0

y

(a) Horizontal interface

x

y

e1
••

ΩBΩA

Γ

r

θx0 − δ

x0 − x

x0x

(b) Vertical interface

Figure A.3: Illustration of two adjacent subdomains ΩA and ΩB separated by a

straight interface Γ for the calculation of the nonlocal traction.

where the notation ξ = x′ − x is used for brevity and repeated indices imply a

summation by 1 and 2. Assuming a smooth deformation, we begin by employing

a first Taylor expansion of uj(x + ξ) about x (cf. (2.24)) for the ith component

of (A.17):

τi(x0,n) =

∫

L

∫

ΩB

χδ(‖ξ‖)λ(‖ξ‖)ξiξj

(

∂uj
∂xk

(x)ξk +
1

2

∂2uj
∂xk∂xl

(x)ξkξl + . . .

)

dx′dℓ.

(A.18)

We consider below two cases, the first one given by a horizontal interface Γ with nor-

mal n = e2 (see Figure A.3a) and the second one given by a vertical interface Γ with
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s

r

0 δ

δ

0 < s < δ

s < r < δ

0 < r < δ

0 < s < r

Figure A.4: Domain of integration (shaded region) in the variables s and r in (A.20)

and corresponding limits for the change in the order of integration.

normal n = e1 (see Figure A.3b); the normals {e1, e2} correspond to the standard

Cartesian orthonormal basis. We assume the micromodulus function (2.32).

Horizontal Interface. For the case of a horizontal interface with normal n =

e2, we can compute (A.18) using polar coordinates, ξ1 = r sin(θ) and ξ2 = r cos(θ),

as follows (see Figure A.3a for the limits of integration):

τi(x0, e2) =

∫ y0

y0−δ





∫ δ

y0−y

∫ cos−1
(y0−y

r

)

− cos−1

(y0−y
r

)

λ(r)(r cos(θ))a1(r sin(θ))3−a1rdθdr





∂uj
∂xk

(x0, y)dy

+
1

2

∫ y0

y0−δ





∫ δ

y0−y

∫ cos−1
(y0−y

r

)

− cos−1

(y0−y
r

)

λ(r)(r cos(θ))a2(r sin(θ))4−a2rdθdr





∂2uj
∂xk∂xl

(x0, y)dy

+ . . . , (A.19)

where a1 is the number of 2s in {i, j, k} in the coefficients of the first-order deriva-

tives and a2 is the number of 2s in {i, j, k, l} in the coefficients of the second-order

derivatives. Employing the change of variable s = y0 − y, we obtain

τi(x0, e2) =

∫ δ

0

[

∫ δ

s
λ(r)r4

∫ cos−1( sr )

− cos−1( sr )
(cos(θ))a1(sin(θ))3−a1dθdr

]

∂uj
∂xk

(x0, y0 − s)ds

+
1

2

∫ δ

0

[

∫ δ

s
λ(r)r5

∫ cos−1( sr )

− cos−1( sr )
(cos(θ))a2(sin(θ))4−a2dθdr

]

∂2uj
∂xk∂xl

(x0, y0 − s)ds

+ . . . . (A.20)

Changing the order of integration between r and s according to Figure A.4, and
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then using the change of variable κ = s/r, we obtain

τi(x0, e2) =

∫ δ

0

∫ 1

0
λ(r)r4

∫ cos−1(κ)

− cos−1(κ)
(cos(θ))a1(sin(θ))3−a1dθ

∂uj
∂xk

(x0, y0 − rκ)rdκdr

+
1

2

∫ δ

0

∫ 1

0
λ(r)r5

∫ cos−1(κ)

− cos−1(κ)
(cos(θ))a2(sin(θ))4−a2dθ

∂2uj
∂xk∂xl

(x0, y0 − rκ)rdκdr

+ . . . . (A.21)

Using a second Taylor expansion for each term we obtain (see [9])

τi(x0, e2) =

(
∫ δ

0
λ(r)r5dr

)

[

∫ 1

0

∫ cos−1(κ)

− cos−1(κ)
(cos(θ))a1(sin(θ))3−a1dθdκ

]

∂uj
∂xk

(x0, y0)

−

(
∫ δ

0
λ(r)r6dr

)

[

∫ 1

0
κ

∫ cos−1(κ)

− cos−1(κ)
(cos(θ))a1(sin(θ))3−a1dθdκ

]

∂2uj
∂y∂xk

(x0, y0)

+
1

2

(
∫ δ

0
λ(r)r6dr

)

[

∫ 1

0

∫ cos−1(κ)

− cos−1(κ)
(cos(θ))a2(sin(θ))4−a2dθdκ

]

∂2uj
∂xk∂xl

(x0, y0)

+ . . . . (A.22)

Recalling (2.32) and (2.34), we can write (A.22) as (recall x0 = (x0, y0))

τi(x0, e2) =
3E

π

[

∫ 1

0

∫ cos−1(κ)

− cos−1(κ)
(cos(θ))a1(sin(θ))3−a1dθdκ

]

∂uj
∂xk

(x0)

−
3E

π

6− α

7− α
δ

[

∫ 1

0
κ

∫ cos−1(κ)

− cos−1(κ)
(cos(θ))a1(sin(θ))3−a1dθdκ

]

∂2uj
∂y∂xk

(x0)

+
1

2

3E

π

6− α

7− α
δ

[

∫ 1

0

∫ cos−1(κ)

− cos−1(κ)
(cos(θ))a2(sin(θ))4−a2dθdκ

]

∂2uj
∂xk∂xl

(x0)

+ . . . . (A.23)

Computing the coefficients in (A.23) with Mathematica [242] and collecting the

contributions from each derivative term, we finally obtain (please refer to [9] for

further details)

τ1(x0, e2) =
9E

8

[

1

3

(

∂u1
∂y

(x0) +
∂u2
∂x

(x0)

)

+
16

45π

6− α

7− α
δ

(

3

2

∂2u1
∂x2

(x0) +
∂2u2
∂x∂y

(x0)

)

+ . . .

]

, (A.24a)

τ2(x0, e2) =
9E

8

[

1

3

∂u1
∂x

(x0) +
∂u2
∂y

(x0)

+
16

45π

6− α

7− α
δ

(

∂2u1
∂x∂y

(x0) +
∂2u2
∂x2

(x0)

)

+ . . .

]

, (A.24b)
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where the dots indicate higher-order derivative terms.

Consider a classical linear elasticity plane stress isotropic model (see (2.21)).

Given a Young’s modulus E and a Poisson’s ratio ν = 1/3 [173,195], the components

of the stress tensor are given by:

σ11 =
E

1− ν2
[ε11 + νε22] =

9E

8

[

∂u1
∂x

+
1

3

∂u2
∂y

]

, (A.25a)

σ22 =
E

1− ν2
[νε11 + ε22] =

9E

8

[

1

3

∂u1
∂x

+
∂u2
∂y

]

, (A.25b)

σ12 =
E

1− ν2
(1− ν)ε12 =

9E

8

[

1

3

(

∂u1
∂y

+
∂u2
∂x

)]

. (A.25c)

We can then express (A.24a) and (A.24b), respectively, as (recall (2.73))

τ1(x0, e2) = σ12(x0) +
2E

5π

6− α

7− α
δ

(

3

2

∂2u1
∂x2

(x0) +
∂2u2
∂x∂y

(x0)

)

+ . . .

= t1(x0, e2) +
2E

5π

6− α

7− α
δ

(

3

2

∂2u1
∂x2

(x0) +
∂2u2
∂x∂y

(x0)

)

+ . . . , (A.26a)

τ2(x0, e2) = σ22(x0) +
2E

5π

6− α

7− α
δ

(

∂2u1
∂x∂y

(x0) +
∂2u2
∂x2

(x0)

)

+ . . .

= t2(x0, e2) +
2E

5π

6− α

7− α
δ

(

∂2u1
∂x∂y

(x0) +
∂2u2
∂x2

(x0)

)

+ . . . . (A.26b)

In the limit as δ → 0, we have

τ (x0, e2) = t(x0, e2) + O(δ), (A.27)

i.e., the nonlocal traction converges to the local traction at a rate of O(δ).

Vertical Interface. The treatment of the case with a vertical interface is iden-

tical to that of the horizontal interface, except that the limits of integration change.

For the case of a vertical interface with normal n = e1, we can compute (A.18) using

polar coordinates, ξ1 = r cos(θ) and ξ2 = r sin(θ), as follows (see Figure A.3b for

the limits of integration):

τi(x0, e1) =

∫ x0

x0−δ





∫ δ

x0−x

∫ cos−1
(

x0−x
r

)

− cos−1

(

x0−x
r

)

λ(r)(r cos(θ))a1(r sin(θ))3−a1rdθdr





∂uj
∂xk

(x, y0)dx

+
1

2

∫ x0

x0−δ





∫ δ

x0−x

∫ cos−1
(

x0−x
r

)

− cos−1

(

x0−x
r

)

λ(r)(r cos(θ))a2(r sin(θ))4−a2rdθdr





∂2uj
∂xk∂xl

(x, y0)dx

+ . . . , (A.28)
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where, in this case, a1 is the number of 1s in {i, j, k} in the coefficients of the first-

order derivatives and a2 is the number of 1s in {i, j, k, l} in the coefficients of the

second-order derivatives. Employing a similar procedure to the one used from (A.19)

to (A.24), we obtain

τ1(x0, e1) =
9E

8

[

∂u1
∂x

(x0) +
1

3

∂u2
∂y

(x0)

+
16

45π

6− α

7− α
δ

(

∂2u1
∂y2

(x0) +
∂2u2
∂x∂y

(x0)

)

+ . . .

]

, (A.29a)

τ2(x0, e1) =
9E

8

[

1

3

(

∂u1
∂y

(x0) +
∂u2
∂x

(x0)

)

+
16

45π

6− α

7− α
δ

(

∂2u1
∂x∂y

(x0) +
3

2

∂2u2
∂y2

(x0)

)

+ . . .

]

, (A.29b)

where the dots indicate higher-order derivative terms. Employing (A.25), we can

express (A.29a) and (A.29b), respectively, as (recall (2.73))

τ1(x0, e1) = σ11(x0) +
2E

5π

6− α

7− α
δ

(

∂2u1
∂y2

(x0) +
∂2u2
∂x∂y

(x0)

)

+ . . .

= t1(x0, e1) +
2E

5π

6− α

7− α
δ

(

∂2u1
∂y2

(x0) +
∂2u2
∂x∂y

(x0)

)

+ . . . , (A.30a)

τ2(x0, e1) = σ12(x0) +
2E

5π

6− α

7− α
δ

(

∂2u1
∂x∂y

(x0) +
3

2

∂2u2
∂y2

(x0)

)

+ . . .

= t2(x0, e1) +
2E

5π

6− α

7− α
δ

(

∂2u1
∂x∂y

(x0) +
3

2

∂2u2
∂y2

(x0)

)

+ . . . . (A.30b)

In the limit as δ → 0, we have

τ (x0, e1) = t(x0, e1) + O(δ), (A.31)

i.e., the nonlocal traction converges to the local traction at a rate of O(δ).

Numerical examples for the nonlocal traction in two dimensions

We present some numerical examples to confirm the results in (A.26) and (A.30).

To put these examples within the context of a CCM-PD coupled model, we consider

a two-dimensional system with an interface Γ between a PD region, given by ΩA, and

a CCM region, given by ΩB (see Figure A.3). We consider the case of a horizontal

interface Γ with normal n = e2 (see Figure A.3a) and the nonlocal traction at

x0 = (x0, y0) ∈ Γ in the bulk of the body. To numerically compute the nonlocal
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(a) Horizontal interface (b) Vertical interface

Figure A.5: Interface Γ between the PD and CCM regions for the nonlocal traction

computation in a two-dimensional CCM-PD coupled model. Blue diamonds are

FEM nodes and green circles are PD nodes; only PD nodes located along the line

L (cf. (2.98)) are indicated. The dashed gray line indicates the interface Γ. The

point x0 where L intersects Γ is the point where the nonlocal traction is computed.

A uniform discretization with grid spacing ∆x = ∆y = 0.25 is employed, and the

PD horizon is taken as δ = 0.75. For illustration, the red dotted curve represents

the part of the boundary of the neigborhood of the PD node closest to Γ located

in the CCM region; for clarity, the dotted black lines represent the radius of that

neighborhood.
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traction in (A.16), we employ a uniform discretization with grid spacing ∆x = ∆y

and define a set of NPD PD nodes with positions given by

SPD =
{(

x0, y0 − δ + ∆y
2

)

, . . . ,
(

x0, y0 −
∆y
2

)}

(A.32)

and a set of NFEM FEM nodes with positions given by

SFEM = {x0 − δ, . . . , x0 + δ} ×
{

y0 +
∆y
2 , . . . , y0 + δ − ∆y

2

}

, (A.33)

which is built as a Cartesian product. To relate the examples in this section to

the numerical results in Section 2.6.2, we choose δ = 0.75 and ∆x = 0.25 (i.e.,

m = δ/∆x = 3), and we consider the case of an interface vertically located at

y0 = 24.125 (i.e., y0 = 24 + ∆y
2 ); an illustration is presented in Figure A.5a. We

compute the nonlocal traction at x0 = (x0, y0) with x0 = 11.5. We denote by

xPD
i ∈ SPD, i = 1, . . . , NPD, and xFEM

j ∈ SFEM, j = 1, . . . , NFEM, the reference

positions of the PD and FEM nodes, respectively. Define the displacements of

the PD and FEM nodes, respectively, by uPD
i := u(xPD

i ), i = 1, . . . , NPD, and

uFEM
j := u(xFEM

j ), j = 1, . . . , NFEM. Then, we can compute the nonlocal traction

in (A.16) by

τ num(x0, e2) :=

NPD
∑

i=1

NFEM
∑

j=1

χδ(‖ξji‖)λ(‖ξji‖)ξji ⊗ ξji
(

uFEM
j − uPD

i

)

A
(i)
j ∆x, (A.34)

where ξji := xFEM
j − xPD

i and A
(i)
j is a partial area (“partial volume” in three

dimensions) given by the area of the intersection between the neighborhood of PD

node i and the cell of FEM node j, which is calculated analytically [190]; the cell of

FEM node j is a square of edge length ∆x centered at that node. We consider the

micromodulus function (2.32) with α = 3.

We compare the numerical computation of the nonlocal traction given by (A.34)

with the analytical calculation using (A.26) for the case of linear and quadratic

displacement fields, imposed on the displacement component u2, described in Ta-

ble A.3. For the linear displacement field, the values of the coefficients are d = 0.5,

Y1 = 12.75, and YB = 15. For the quadratic displacement field, the values of the

coefficients are q = 15, XQ = 11.5, YQ = 23, and R = 2.25. As a comparison, we

analytically calculate the local traction using (2.73) with (A.25). The results are re-

ported in Table A.4. In addition to reporting the values for the x- and y-components
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of the nonlocal and local tractions, we present the error of the nonlocal traction com-

putation, for each component, given by the absolute value of the difference between

the numerical and analytical values. To study the improvement in accuracy gained

by using an increased value of m, we also report the calculations for m = 8 and

the same δ. Both values of m reported in Table A.4 are used in Section 2.6.2. We

observe that the values of the numerical nonlocal traction obtained by (A.34), which

is a discretization of (A.16), approximately recover the values given by the analyt-

ical nonlocal traction in (A.26) for both cases, linear and quadratic displacements.

For the linear displacement, the values of the analytical nonlocal and local tractions

coincide, as expected from (A.26). We note that the x-component of the tractions

is zero, while the y-component of the tractions is non-zero. We performed a similar

study by imposing instead the linear and quadratic distributions described in Ta-

ble A.3 on the displacement component u1 over a vertical interface (see Figure A.5b).

In this case, similar results were obtained, where instead the x-component of the

tractions is non-zero, while the y-component of the tractions is zero. These findings

confirm the results in (A.26) and (A.30).

Remark A.2 In the numerical studies in Section 2.6.2, we investigate the overall

equilibrium in two-dimensional CCM-PD coupled systems, which requires the bal-

ance between the local and nonlocal tractions at the coupling interface. The results

in (A.26) and (A.30) imply that, for linear deformations, the nonlocal and local trac-

tions should be balanced at the coupling interface. However, the results in Table A.4

show that the numerical computation of the nonlocal traction only approximately

recovers the analytical nonlocal traction. To allow a numerical verification of the

force equilibrium for linear deformations in Section 2.6.2, we introduce a correction

factor given by

γ :=
τ2(x0, e2)

τnum2 (x0, e2)
, (A.35)

which is computed with the values reported in Table A.4 for the linear displacement

case. For m = 3, γ = 0.9784710341, whereas for m = 8, γ = 0.9974762599.
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Displacement type Displacement field equation

Linear
u1(x, y) = 0

u2(x, y) = d
y − Y1
YB − Y1

Quadratic
u1(x, y) = 0

u2(x, y) =
− (x−XQ)

2 − (y − YQ)
2 +R2

q2

Table A.3: Displacement fields for the nonlocal traction computation in two dimen-

sions.

Displacement type Nonlocal traction Local traction
(x-component) (x-component)

τnum1 (x0, e2) τ1(x0, e2) |τnum1 (x0, e2)− τ1(x0, e2)| t1(x0, e2)

Linear, δ = 0.75, m = 3 −5.83× 10−19 0.00 5.83× 10−19 0.00

Linear, δ = 0.75, m = 8 −4.86× 10−18 0.00 4.86× 10−18 0.00

Quadratic, δ = 0.75, m = 3 2.62× 10−19 0.00 2.62× 10−19 0.00

Quadratic, δ = 0.75, m = 8 −4.40× 10−17 0.00 4.40× 10−17 0.00

Displacement type Nonlocal traction Local traction
(y-component) (y-component)

τnum2 (x0, e2) τ2(x0, e2) |τnum2 (x0, e2)− τ2(x0, e2)| t2(x0, e2)

Linear, δ = 0.75, m = 3 2.56× 10−01 2.50× 10−01 5.50× 10−03 2.50× 10−01

Linear, δ = 0.75, m = 8 2.51× 10−01 2.50× 10−01 6.33× 10−04 2.50× 10−01

Quadratic, δ = 0.75, m = 3 −1.22× 10−02 −1.19× 10−02 2.69× 10−04 −1.12× 10−02

Quadratic, δ = 0.75, m = 8 −1.19× 10−02 −1.19× 10−02 3.18× 10−05 −1.12× 10−02

Table A.4: Comparison between numerical and analytical tractions in two dimen-

sions.





Appendix B

Experimental characterization of

polymer/clay nanocomposite

fracture properties

B.1 Materials

A diglycidyl ether of bisphenol A epoxide (DGEBA, Elan-Tech EC157) and the

mixture of cycloapliphatic amines (Elan-Tech W152LR), both supplied by Elantas,

were used as polymer matrix, whereas montmorillonite Cloisite R©15A was employed

for the nanomodification (see Section 3.2.1). Nanofiller weight fractions of 0%, 1%,

3%, and 5% wt were used to investigate the fracture properties of the material as a

function of the clay content.

B.2 Preparation of compact tension specimens

Compact tension (CT) specimens were prepared through mechanical dispersion

by mixing the epoxy resin with the organically-modified clays. The dispersion pro-

cess was performed at room temperature under constant mechanical stirring for

about 45 minutes. Then, the curing agent (the amine mixture) was added to the

blend under mechanical stirring according to the stoichiometric ratio indicated on

the supplier’s datasheet (3 : 1 = epoxide/amine wt/wt). The mixing was performed

for about 40 minutes under mechanical stirring and vacuum. The degassing process

was performed by making use of a high vacuum pump in order to reduce the amount

of trapped air and, consequently, to avoid the presence of voids in the resin. During

219
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B. Experimental characterization of polymer/clay nanocomposite fracture

properties

Figure B.1: Compact tension (CT) shaped silicon rubber moulds used for the pro-

duction of the epoxy/clay nanocomposite samples.

the entire mixing process, the reacting blend was cooled to room temperature by

an external bath suitable to avoid a possible resin overheating and an increase of

blend viscosity. A final degassing phase was carried out for about 10 minutes prior

to pouring the blend inside open silicon moulds (see Figure B.1). The demoulding of

the specimens was performed after complete curing at room temperature for about

48 hours, and was followed by a post-curing phase during which the specimens were

placed in a oven at 60[◦C] for 7 hours. Once completely cured, the specimens were

polished up to the final thickness. The final step of the procedure consisted in the

pre-cracking of the samples by manual tapping to obtain artificial short cracks.

B.3 Mode I fracture testing

In agreement with the ASTM D5045-14 guidelines [243], mode I fracture tests

were carried out on compact tension specimens, whose geometrical parameters are

shown in Figure B.2, by taking advantage of an electro-mechanical testing machine

(STEP Lab) equipped with a 10 [kN] load cell using a crosshead rate of 10 [mm/min]

(see Figure B.3). For each material configuration, four specimens were tested to

obtain statistically representative data. Figure B.4 shows the various pre-cracked

CT specimens manufactured during the present study. The experimental results

were rearranged according to ASTM D5045-14 guidelines [243].

The mode I fracture toughness KIc was computed from the following expression,
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Figure B.2: Geometry of the compact tension specimens employed in the mode I

fracture tests [243]. All dimensions are expressed in [mm].

Figure B.3: STEP Lab electro-mechanical testing machine employed in the present

study to perform the mode I fracture tests.
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properties

(a)

(b)

(c)

(d)

Figure B.4: Pre-cracked compact tension specimens with (a) 0%, (b) 1%, (c) 3%,

and (d) 5% wt of clay content before mode I fracture tests.
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as suggested by the guidelines reported in ASTM D5045-14 [243]:

KIc =
Pcr

BW0.5
f(x), (B.1)

where Pcr is the peak or fracture load measured in [kN], B is the specimen thickness

measured in [cm], W is the specimen ligament measured in [cm], x = a
W is the ratio

between the crack length a, measured in [cm], and the ligament (see Figure B.2),

and the suggested expression for f(x), valid for 0.2 < x < 0.8, is:

f(x) =
(2 + x)

(

0.886 + 4.64x− 13.32x2 + 14.72x3 − 5.6x4
)

(1− x)1.5
. (B.2)

Four values of KIc were obtained for each clay content. The results in terms of

average values and corresponding standard deviations are reported in Figure B.5.

It is worth mentioning that, as opposed to the tensile modulus (see Figure 3.11),

the mode I fracture toughness of the epoxy resin was remarkably enhanced by the

nanomodification: the KIc of about 1.01 [MPa m0.5] of the neat epoxy was increased

to 1.20 [MPa m0.5] with a nanoclay content of 1% wt, to 1.63 [MPa m0.5] for a filler

content of 3% wt, and to about 1.65 [MPa m0.5] in the case of the 5% wt clay-loaded

resins. As shown in Figure B.5, KIc had an initial monotonic trend with increasing

filler weight fraction, with improvements of about +18.5% and +60.2% as compared

with the neat epoxy case for 1% wt and 3% wt of clay contents, respectively. The

fracture toughness then reached a plateau for 5% wt of nanofiller content, with an

increase of about +62.1% with respect to the neat epoxy case.

For each clay content considered in the present study, the value of the critical

energy release rate G0 was computed through the following relation (cf. (1.49)):

G0 =
K2

Ic

E

(

1− ν2
)

, (B.3)

where KIc represents the average value of the fracture toughness obtained from the

fracture tests (see Figure B.5), E is the average value of the tensile modulus obtained

from the tensile tests (see Figure 3.11), and ν is the Poisson’s ratio of the material.

This relation is valid under plane strain conditions, as suggested in ASTM D5045-

14 [243]. Figure B.6 shows the effect of the nanomodification on G0. As expected,

the trend of G0 as a function of the filler weight fraction is similar to that of KIc,
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properties

Figure B.5: Fracture toughness of the neat epoxy resin and the epoxy/Cloisite R©15A

nanocomposites with 1%, 3%, and 5% wt of clay content evaluated from mode I

fracture tests. Error bars: ±1 standard deviation.

Figure B.6: Critical energy release rate of the neat epoxy resin and the

epoxy/Cloisite R©15A nanocomposites with 1%, 3%, and 5% wt of clay content com-

puted from (B.3).
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with an initial strong increase from 0% to 3% wt of clay content, followed by a less

pronounced increment from 3% to 5% wt of clay content.

The different trends observed for tensile modulus and fracture toughness with

increasing filler content are consistent with previous experimental studies reported in

literature [217,232,234,235,244], and are related to the morphology of the samples,

which are mostly characterized by intercalated and aggregated clay structures (see

Figures 3.9 and 3.10). Intercalated platelets promote, in fact, the increase of the

material toughness, whereas the enhancement of the tensile modulus is usually linked

to the presence of exfoliated nanoplatelets. It is noteworthy that the slight decrease

in the tensile modulus of the material due to the nanomodification of the polymer

matrix is usually considered as non-significant, since the enhancement of the polymer

fracture toughness is much more important and interesting for practical uses.

Figure B.7 shows some fractured CT specimens with different clay contents. As

expected, the specimens fractured along the initial crack plane (i.e., the pre-crack

line). No clear influence of nanomodification was noted on the crack initiation angle.

(a) (b)

(c) (d)

Figure B.7: Crack paths along fractured CT specimens with (a) 0%, (b) 1%, (c) 3%,

and (d) 5% wt of clay content.
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