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Abstract. Nerlove-Arrow’s model is a starting point for some practical
and theoretical studies in marketing. Here we want to give our point of
view on this growing and exciting field of research. First of all we present
the Nerlove-Arrow’s linear model of goodwill evolution under advertising
investment. Then we provide a sketch of a variety of problems which are
based on it, recalling the different mathematical tools which are needed
to discuss, and possibly solve them. We present some key problems in
the panorama of the optimal control and differential games applications
to advertising and mention some relevant literature, dating after 1994.
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“What about focusing your research on optimal control applications to
Economics and Management Science, which is a rather promising field?”
Giovanni Castellani, 1982, to the third author.

1 Introduction

We want to present the linear model of goodwill evolution under advertising
investment, which is due to Nerlove and Arrow, and provide a sketch of a variety
of problems which are based on it, recalling the different mathematical tools
which are needed to discuss, and possibly solve them.

Two main models are at the basis of the literature on optimal control ap-
plications to avertising and they have been proposed in about the same period.
The first model, dated 1957, is due to Vidale and Wolfe [58]: the authors aim
at modelling the sales response to advertising and try to represent some char-
acteristic behaviors as observed in real data. The second model, dated 1962, is
due to Nerlove and Arrow [47]: here the authors assume that the demand of a
product (hence its sale intensity) depends on a state variable, called goodwill,
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that represents the effects of a firm investment in advertising. The two review
articles [52] and [23] present the general context of the optimal control models
in advertising until 1994: there we see how the Nerlove-Arrow’s one has become
an important reference for the advertising and marketing research.

Little [42] provides a first critical analysis of the two models, in view of
a practical use of them on real data. He pays a special attention to the dis-
crete time setting and presents his Brandaid model as a generalization of both
Vidale-Wolfe’s and Nerlove-Arrow’s ones. Today, those two models are corner-
stone references for many discrete time models used by marketing practitioners.

We will present some key dynamical optimization problems, which are based
on the Nerlove-Arrow’s dynamics, in the panorama of the optimal control and
differential games applications to advertising. We will mention some seminal pa-
pers on the subject, together with some relevant literature, dating after 1994. In
fact, the last decade has provided some contributions in new research directions,
which are worth exploring more deeply.

The paper is organized as follows. In Section 2, we introduce Nerlove-Arrow’s
model and discuss its fundamental modelling features. In Section 3, we consider
some typical optimal control problems, either in infinite or finite horizon, where
an advertising intensity is looked for to optimize a suitable firm objective. In
Section 4, we focus on differential games. In Section 5, we address the practically
important issue of market segmentation. Finally, in Section 6, we look at the
problems and opportunities posed by a multiplicity of advertising tools.

2 Advertising, goodwill, and demand

2.1 A direct relation between advertising and demand

In their model, Vidale and Wolfe [58] observe two main facts concerning the
relation between sales and advertising. Sales intensity decreases with time if no
advertising is done and, if an adequate advertising effort is done over a time
period, then sales intensity increases, but a saturation effect may emerge. Hence
they suggest that the sale intensity s(t) satisfies the differential equation

ṡ(t) = ρu(t)[1− s(t)/m]− δs(t) , (1)

where u(t) is the advertising intensity, and ρ,m, δ > 0 are parameters. This is
a linear differential equation in the state variable s(t), where the term −δs(t)
represents the spontaneous decay of the state. The parameter m is the saturation
threshold, an upper bound to the sales intensity: when m − s(t) is small and
positive, the advertising intensity u(t) must be large to sustain the sale level.

2.2 A mediated relation between advertising and demand

Nerlove and Arrow [47] propose a model in which the effect of advertising on
sales is mediated by the goodwill variable. The goodwill state variable represents
the effects of the firm investment in advertising and it affects the demand of the
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product together with price and other external factors. Goodwill is therefore seen
as a stock of productive capital: it is subject to depreciation, i.e. spontaneous
decay proportional to its value, and, on the other hand, it is sustained by the
investment flow controlled by the firm. Nerlove and Arrow focus on the most
elementary differential equation which describes an investment phenomenon in
a capital stock subject to depreciation, i.e. the linear equation{

ẋ(t) = u(t)− δx(t) ,
x(0) = α ,

(2)

where x(t) and u(t) are the capital stock and the investment intensity at time t,
δ > 0 is a decay parameter, which represents the capital depreciation over time,
and α is the known value of the capital at the initial time 0. In fact equation (2)
represents the capital dynamics of the neoclassical aggregate growth model [55,
p. 432].

The model (2) is an approximation of Vidale-Wolfe’s model (1) for large
values of the saturation threshold m. In fact, if we let m → +∞, then (1) is
equivalent to {

s(t) = ρx(t) ,
ẋ(t) = u(t)− δx(t) ,

(3)

which represents a demand (sale) intensity s(t) directly proportional to goodwill
x(t), which is driven by the advertising intensity u(t) according to the differential
equation (2).

The equation (2) is simpler to discuss than equation (1). Moreover, the good-
will variable may assume different meanings, depending on the particular con-
text: a first example is sales intensity (see [14]), which is the most natural in-
terpretation in view of the observed connection between Nerlove-Arrow’s and
Vidale-Wolfe’s models. A second one, provided by [40], is reservation price. A
third one, used by [60] in the discrete time version of the model, is awareness.

In the following we consider a variety of problems which are based on the
equation (2) and on the Nerlove-Arrow’s goodwill concept, possibly with different
interpretations.

Let [0, T ] be the programming interval (with T ∈ (0,+∞]), and let α > 0 be
the known value of the goodwill at the initial time. We assume that a firm aims
at controlling the goodwill evolution in order to maximize its profit (discounted
at rate ρ ≥ 0)

J [u(t)] =
∫ T

0

[R (x(t))− C (u(t))] e−ρtdt + S (x(T )) e−ρT . (4)

The function R, increasing and concave, represents the firm profit intensity, gross
of the advertising costs. The function C, increasing and convex, represents the
firm advertising costs intensity. Finally, the function S summarizes the effects
of the final goodwill x(T ) on the profit to be obtained at time T or later on.
It is consistent to assume that the scrap value vanishes, S (x(T )) e−ρT = 0, in
problems with T = +∞.
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By choosing different specifications of the time horizon T and of the functions
R, C and S, we can deal with a variety of advertising problems. We will present
and solve some of them, in order to provide a general view, although certainly
biased by our preferences and knowledge.

The consideration of nonlinear and convex advertising costs is sometimes
translated into the assumption that the goodwill productivity term is nonlin-
ear and concave in the advertising intensity [26], instead of being linear as in
the original Nerlove-Arrow’s equation (2). For instance, we may find a goodwill
motion equation as (see e.g. [8], [40])

ẋ(t) = b
√

u(t)− δx(t) , (5)

where b is a positive parameter, or as (see e.g. [51], [31])

ẋ(t) = b lnu(t)− δx(t) , (u(t) ≥ 1) . (6)

2.3 Discrete time models

The discrete time analogue of Nerlove-Arrow’s dynamics is represented by the
linear difference equation

xt = ut + (1− δ)xt−1 . (7)

It has a special practical importance, as empirical data are usually obtained as
discrete time observations. It has been used recently, for instance, in a duopoly
model [44] to investigate an automobile industry case. Little [42], concerned
with the consistence of advertising models with empirical data, presented in
1975 Brandaid, a discrete time model which is a generalization of (7). In the
same line, Zielske and Henry [60] in 1980 proposed the equation

xt = βut + (1− δ)xt−1 , (8)

where β > 0, to account for the effect of TV advertising on the awareness of
a product. Zielske and Henry call β the memorization rate and measure the
advertising intensity ut in gross rating points (GRP), a widely used indicator of
population exposure to an advertising message [41, p.309].

3 Optimal advertising policies

In this Section we consider some typical optimal control problems, where an
advertising intensity is looked for to optimize a suitable firm objective. Here a
natural distinction arises between infinite and finite horizon problems. In the
finite horizon class, a further distinction concerns the effect of goodwill on the
objective functional: in some cases only the final goodwill value matters, whereas
in other cases the goodwill path at all times is relevant. We will mention also
some stochastic versions of the same optimal control problems.



Linear models and advertising 5

3.1 Infinite horizon

Let T = +∞, R (x) = (q − ε1)xγ/γ − ε2x
2γ/2γ2, and C (u) = κu2/2, where γ ∈

[1/2, 1), q, ε1, ε2, κ > 0 and ε1 < q. We think of q as the sale price and xγ/γ as the
demand rate, so that qxγ/γ is the revenue intensity. Furthermore, ε1y + ε2y

2/2
is the production cost intensity associated with the production intensity y. We
obtain an instance of the classical Nerlove-Arrow’s model which is particularly
easy to study. The Pontryagin Maximum Principle necessary conditions [50, p.
234] lead us to study the saddle path of a system of ODEs.

The Hamiltonian function is

H (x, u, p, t) = (q − ε1)xγ/γ − ε2x
2γ/2γ2 − κu2/2 + p (u− δx) , (9)

so that Huu < 0 and an optimal control is unique and must satisfy the condition

κu(t) = p(t) , (10)

provided that it exists. The optimality condition (10) represents the classical
relation: marginal advertising cost equals marginal goodwill value, i.e. marginal
profit of goodwill. It is worth recalling that p is the maximum price the firm
is willing to pay to increase the goodwill by one unit. After substituting this
information into the motion and adjoint equations we obtain the differential
system {

ẋ(t) = p(t)/κ− δx(t) ,
ṗ(t) = −(q − ε1)xγ−1(t) + ε2x

2γ−1(t)/γ + (δ + ρ) p(t) .
(11)

There exists a unique equilibrium point with coordinates (x∗, p∗) such that

p∗ = κδx∗ (12)

and x∗ is the solution of the equation

γ(q − ε1)xγ−1 = ε2x
2γ−1 + γ (δ + ρ)κδx . (13)

At the equilibrium, the optimal advertising policy u∗ = p∗/κ = δx∗ is chosen
precisely to compensate the goodwill decay.

3.2 Finite horizon - Advertising an event

Let T < +∞, R (x) = 0, C (u) = κu2/2 and S (x) = −χ (x− x̄)2 /2 (where
κ, χ > 0 and x̄ > α). We obtain an instance of a model which differs from the
classical Nerlove-Arrow’s one because it does not account for sales before the final
time T . The aim of this model is to program the advertising campaign for an
event (or the launch of a product). Let us further assume that the discount rate
is ρ = 0, as the advertising interval before the event takes place is short. In the
particular case we present here we assume quadratic advertising costs C (u) and
a quadratic final penalty S (x). The function S (x) describes the payoff obtained
by the organizers of an event like a concert or a theatre performance. For such
events the number of available seats is a crucial parameter. We may think of a
goodwill threshold x̄ such that
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– if the final goodwill exceeds it, x(T ) > x̄, then the demand is greater than
the available seats, and there are some unsatisfied consumers;

– if the final goodwill is less than it, x(T ) < x̄, then the demand is less than
the available seats, and some tickets remain unsold.

In the first case the organization suffers a loss of reputation, whereas in the
latter a loss of revenue. The quadratic penalty function S (x) is a symmetric
representation of both these kinds of loss: it is a compromise between the an-
alytical tractability of the problem and a precise description of the economic
consequences of observing a demand level above or below the available seats.
This problem has been studied in [7], [8], [27], [28], [43], in the context of the
new product introduction. Moreover, a different model (with nonlinear deter-
ministic dynamics) for the same problem has been recently analyzed in [32].

Under the previous assumptions, we have a linear quadratic deterministic
optimal control problem and we can study it using the standard method of
the completions of the squares [59]. After defining z(t) = x(t) − x̄ the problem
becomes

min
∫ T

0

κu(t)2/2 dt + χz(T )2/2 ,

ż(t) = u(t)− δz(t)− δx̄ .

(14)

We introduce the associated Riccati equations
q̇(t) = 2δq(t) + q2(t)/κ ,
ṡ(t) = (δ + q(t)/κ) s(t) + δx̄q(t) ,
q(T ) = χ ,
s(T ) = 0 .

(15)

If there exists a solution of the ODEs system (15), then there exists a unique
feedback optimal control that can be written as

u∗(t) = −{q(t) (x∗(t)− x̄) + s(t)} /κ . (16)

The interpretation of the result is immediate in the special case that δ = 0, which
is a reasonable assumption as far as the advertising campaign is short. In this
case the ODEs system (15) has the solution s(t) ≡ 0, q(t) = χκ/ (κ + χ (T − t)),
and the optimal control is u∗(t) = −χ (x∗(t)− x̄) / (κ + χ (T − t)). The function
q(t) is strictly increasing: the weight of the reaction to the deviation of the
goodwill from the target, x∗(t)− x̄, is higher and higher as time approaches T .

This same problem has been studied in [4], where the goodwill is assumed
to satisfy a linear stochastic differential equation. There the control (advertising
intensity) enters directly the diffusion term of the motion SDE. Therefore, some
uncertainty is introduced in the advertising effectiveness and this fact modifies
the structure of the optimal solution. It is interesting to compare the optimal
use of a deterministic advertising channel (as the one analyzed in this example)
with the one of an advertising channel which has also a stochastic effect on the
goodwill evolution.
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3.3 Finite horizon - Sale of a seasonal product

An interesting variant of the finite horizon problem concerns the sale of a seasonal
product. Here we introduce a second state variable y(t) to represent the product
sales and assume that the demand is a linear function of the goodwill

ẏ(t) = x(t) , y(0) = 0 . (17)

Let C (u) = κu2/2, κ > 0, as for the above problem, and let us consider ex-
plicitly the constraint u ≥ 0 on the advertising intensity. Let R (x) = qx and
S (x, y) = −w(y), where q > 0 is the price of the product and w(y) is a positive,
increasing and convex function, representing the production cost of the quantity
y of product. Let us further assume that the discount rate is ρ = 0, as the sale
interval is short for a seasonal product.

For the present problem we can use the Pontryagin Maximum Principle [50,
p. 85 and p. 182] in order to characterize an open loop optimal control. The
Hamiltonian function is

H (x, y, u, p1, p2, t) = qx− κu2/2 + p1 (u− δx) + p2x , (18)

so that Huu < 0 and the unique optimal control must be

u(t) = max{0, p1(t)/κ} , (19)

provided that it exists. As in the infinite horizon case we find that, at the opti-
mum, marginal advertising cost equals marginal goodwill value, κu(t) = p1(t),
provided that advertising is effective, u(t) > 0. From the adjoint equations and
the trasversality conditions, we obtain that

p1(t) =
q + p2

δ

(
1− eδ(t−T )

)
, (20)

p2(t) = p2 = −w′(y(T )) < 0 . (21)

Therefore, after defining
y0 =

α

δ

(
1− e−δT

)
, (22)

as the free sale level, which is attainable without any advertising effort, we have
that

– either q ≤ w′(y0), and then u∗(t) ≡ 0, y∗(T ) ≡ y0;
– or there exists y∗ > y0 such that −p2 = w′(y∗) < q, and then u∗(t) > 0 for

all t < T , y∗(T ) = y∗ (u∗(t) is strictly decreasing and u∗(T ) = 0).

Problems of this kind, but with linear advertising costs and, on the other
hand, with further constraints on the advertising intensity (control) u(t), have
been studied in [16], [17], [18], [19], [20], [9], [21]: because of the special problem
structure the optimal policies are bang-bang controls. In this research stream
are also the papers [10], [11], where word-of-mouth effects, saturation aversion
and different behaviors of consumers and retailers are taken into account.
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4 Several agents in the distribution channel

The models considered in the previous sections assumed that the demand de-
pended on the goodwill only, i.e. essentially on the firm marketing strategies.
In practice, the demand depends also on the competitors actions. Hence a good
model should account for the competition among the different agents acting in
the market. One firm profit problem is part of a dynamic game, where firms are
the players, each one with its own objective and available strategies.

Each player wants to maximize his payoff (total discounted profit/utility),
which depends on his own strategy as well as on the strategies of all other players.
Let N be the number of firms and let ui(t), i ∈ {1, . . . , N}, be the advertising
intensity of the i-th firm (i.e. the i-th firm strategy). Typically, two kinds of
game formulations can be based on the linear model for the goodwill evolution.

I) There is one goodwill variable for each player/firm and it is affected by the
advertising strategy of the same firm.
Let xi(t), i ∈ {1, . . . , N}, be the goodwill stock of the i-th firm, with dy-
namics described by the differential equation{

ẋi (t) = ui (t)− δxi (t) ,
xi (0) = αi .

(23)

The payoff of the i− th player has the form

Ji [u(t)] =
∫ T

0

[Ri (x(t))− Ci (u(t))] e−ρtdt + Si (x(T )) e−ρT , (24)

where x(t) and u(t) are the n-dimensional goodwill, and advertising strategy
variables.

II) There is a unique goodwill variable, which is affected by the advertising
efforts (controls) of the different firms{

ẋ (t) =
∑N

i=1 ui (t)− δx (t) ,
x (0) = α .

(25)

The payoff of the i − th player has still the form (24), where x(t) is now a
1-dimensional goodwill variable.

The optimal control problems arising from the two formulations can be solved
using either the Pontryagin Maximum Principle or the Hamilton Jacobi Bellman
Equation approach. The first one leads to open-loop strategies/controls which
only depend on time, while the second one leads to closed-loop strategies which
depend also on the state variables. Unlike the one-player optimal control prob-
lems where the two approaches lead to the same optimal solutions, in a differen-
tial game different representations of the feasible control paths lead to different
optimization problems for the players.
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The use of the Hamilton Jacobi Bellman equation approach leads one to find
the so-called Markov Nash equilibrium of a differential game, i.e. the strategy
which is also an equilibrium of any subgame that starts out on the equilibrium
trajectory.

The “advertising goodwill models” [37] have been tackled using either formu-
lation. As far as the type I formulation is concerned, the first examples of use of
the Nerlove-Arrow’s model are given by [56] and [25], within different oligopoly
contexts. In the former the demand of each one of two firms depends on the
goodwill of both firms. In the latter the market share of each one of N firms is
assumed to be a function of the goodwill of all firms. Other examples of a type I
game are given by [13] and [12]: in the latter a model of advertising competition
is discussed in a dynamic duopoly with diminishing returns to advertising effort.
More recently we find [45] and [46].

Examples of type II games are given by [34], [33], [35] and [36], which consider
a distribution channel, where a retailer promotes the manufacturer product and
the latter may possibly spend in advertising to sustain the retailer campaign.
These are instances of the so-called leader-follower model: a two-player game
where one of the players (the manufacturer - leader) makes his decision before
the other player (the retailer - follower) makes hers. The solution of such games
is sought in the form of a Stackelberg equilibrium [15, p.111].

We have a linear state differential game [15, p.187] when both the system
dynamics and the utility functions are linear in the state variables and there is
no multiplicative interaction between the state and the control variables. The
control paths of a linear state game are uniquely determined by the costate
trajectories and the adjoint equations, together with the transversality condition,
do not involve the state variables. In particular the open-loop strategies are
independent of the initial state value and the open-loop Nash equilibria are
Markov equilibria too. These same qualitative characteristics are possessed by
some other games. An example is a game with Nerlove-Arrow’s dynamics which
is provided by [15, p.191]. Here the two players’ goodwill motion equations are

ẋi (t) = ui (t)− δi(uj(t)) xi (t) , i, j ∈ {1, 2} , i 6= j , (26)

where δi(uj), the decay parameter of the i-th firm goodwill, depends on the other
firm advertising strategy. The i-th firm payoff, i ∈ {1, 2}, is

Ji [u(t)] =
∫ T

0

[πixi(t)− Ci(ui(t))] e−ρtdt + σixi(T )e−ρT , (27)

where πi > 0 measures the profitability of the i-th goodwill stock and σi > 0
is the marginal revenue of the final goodwill. The game possesses the linear
state games property that its open-loop Nash equilibria are Markov perfect.
In fact, after denoting by Vi(x1, x2, t) the i-th firm value function, the Markov
Nash equilibria of the game are characterized by the Hamilton-Jacobi-Bellman
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equations

ρVi(x1, x2, t)−
∂Vi(x1, x2, t)

∂t
=

= max
{

πixi − Ci(ui) +
∂Vi(x1, x2, t)

∂xi
[ui − δi(uj(t))xi]

+
∂Vi(x1, x2, t)

∂xj
[uj − δj(ui(t))xj ] | ui ∈ <

}
,

(28)

with terminal conditions

Vi(x1, x2, T ) = σixi(T ) , i ∈ {1, 2} . (29)

Eventually a solution (u1(t), u2(t)) is characterized, which depends on time t,
but is independent of the state (x1(t), x2(t)), i.e. the Markov Nash equilibrium
just obtained is an open-loop solution.

Early applications of linear state differential games to advertising can be
found in [31] and [22].

5 Market segmentation

Quite often a consumer population cannot be considered homogeneous by a firm
which wants to advertise and sell a product. In fact, the firm has to determine the
suitable target market [39, p.379], i.e. the part of the consumers which may have
an interest in buying the product. To this goal, the firm divides the market into
distinct segments, consumer groups which exhibit special needs and behaviors
[39, p.379] and which require specific products and marketing mix. Then the firm
has to decide to which consumer groups the product should be proposed and how
to reach each segment using the available marketing tools, while considering that
different advertising channels entail specific costs and different segments offer
different marginal revenues.

So far, only few papers on optimal control applications to advertising have
focused on segmented markets (see e.g. [49], [57], [28]), as they exhibit a higher
complexity than the homogeneous ones. Of course, the simplicity of Nerlove-
Arrow’s model makes it a first candidate to that goal.

Let the consumer population Ω be partitioned into segments Ωa, a ∈ A,
where A is the finite set of segment labels. Let x (t, a) represent the stock of
goodwill of the product at time t ∈ [0, T ], for the (consumers in the) a segment.
Here we assume that the goodwill evolution satisfies the set of independent
ordinary differential equations

ẋ (t, a) = u (t, a)− δ (a) x (t, a) , a ∈ A , (30)

where δ (a) > 0 represents the goodwill depreciation rate for the members of
the consumer group a and u (t, a) is the effective advertising intensity at time t
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directed to that same group. Moreover, we assume we know the goodwill level
at the initial time for all segments,

x (0, a) = α (a) ≥ 0 . (31)

Under such assumptions a new product introduction problem has been studied
in [5], with objective functional

J = −
∑
a∈A

∫ T

0

c(a, u(t, a)) dt +
∑
a∈A

π (a) x (T, a) , (32)

whose first term represents advertising costs, whereas the second one represents
revenue (it replaces S(x(T )) in (4), π (a) ≥ 0 is the marginal revenue of goodwill
for segment a). The further question of selecting a special advertising channel
for a segmented market has been considered in [6]. This is a practical issue,
whose importance in real life situations is particularly evident when marketing
budgets cuts are imposed by general economic conditions (e.g. fears of economic
slowdown [30]). The generalized linear (Nerlove-Arrow’s) framework allows to
provide an answer to it in terms of a channel preference index.

A special kind of segmentation is considered in [11], where the goodwill has
a component for the consumers and one for the retailers.

A further step in the analysis of different behaviors of a population is ad-
dressed by the age-segmentation, which has been profitably considered in con-
texts different from that of advertising, e.g. social analysis and drug addiction
(see [1], [29]). In this case, we are led to consider an age-distributed goodwill
variable which evolves according to a linear partial differential equation

∂ty (t, a) + ∂ay (t, a) = u (t, a)− δ (a) y (t, a) ,
y (0, a) = α (a) ,
y (t, 0) = β (t) ,

(33)

where δ (a) ≥ 0 represents the depreciation rate for the members of age a and
u (t, a) ≥ 0 is the effective advertising intensity at time t directed to the members
of age a, α (a) ≥ 0 is the known goodwill level at the initial time for the age a
class of the population and β (t) is the goodwill level at all times for the age 0
class. This is the natural extension of the Nerlove-Arrow’s model.

The optimal control tools developed recently for the treatment of those ap-
plication models [24], have made it possible to study an extension of the new
product introduction problem [28], where an age-sensitive product is considered.
Such a problem has the simplest kind of objective functional. In the same di-
rection, other and more complex advertising problems may be addressed, using
the Feichtinger-Tragler-Veliov’s optimality conditions, as far as the generalized
Nerlove-Arrow’s model is adopted.

6 Several communication tools

The simultaneous use of different communication tools, known as integrated mar-
keting communication, amplifies the effects that each one could have if used
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alone (see [48], [54]). Furthermore, over the last years the market has deeply
changed; we observe the multiplication of the TV channels, technical magazines
and journals. This fact has contributed to the increased need of integration
among the communication tools, such as sales promotion, public relations, spon-
sorship, . . . [38]. Therefore it becomes important to adopt an integrated strategy
with different communication tools.

In order to account for the effects of different communication tools, in par-
ticular advertising channels, we may introduce one control function (channel
activation intensity) ui (t) for each tool and substitute the advertising invest-
ment term u(t) in (2) with a function of all controls f(u1(t), u2(t), . . . , un(t)).
The simple assumption that f(u1, u2, . . . , un) is linear, leads to the equation

ẋ (t) =
n∑

i=1

βiui (t)− δx (t) , (34)

where βi are positive parameters. In the framework of game theory, the equation
(34) has been used to model the manufacturer-retailer interaction (see [34], [36]).
In the framework of optimal control, it has been used to model the use of different
communication instruments by a single firm (see [2], [3]).
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