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Abstract: The structure of a Bayesian network encodes most of the information about
the probability distribution of the data, which is uniquely identified given some general
distributional assumptions. Therefore it’s important to study the variability of its network
structure, which can be used to compare the performance of different learning algorithms
and to measure the strength of any arbitrary subset of arcs.

In this paper we will introduce some descriptive statistics and the corresponding parametric

and Monte Carlo tests on the undirected graph underlying the structure of a Bayesian

network, modeled as a multivariate Bernoulli random variable.
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1 Introduction

In recent years Bayesian networks have been successfully applied in several different
disciplines, including medicine, biology and epidemiology (see for example Friedman
et al. (2000) and Holmes and Jain (2008)). This has been made possible by a rapid
evolution of structure learning algorithms, both constraint-based (from PC (Spirtes
et al. 2001) to Grow-Shrink (Margaritis 2003) to IAMB (Tsamardinos et al. 2003)
and its variants (Yaramakala and Margaritis 2005)) and score-based (from Greedy
Equivalent Search (Chickering 2002) to genetic algorithms (Larrañaga et al. 1997)).

The main goal in the development of these algorithms was the reduction of the num-
ber of either independence tests or score comparisons needed to learn the structure
of the Bayesian network. Their correctness was proved assuming either very large
sample sizes in relation to the number of variables (in the case of Greed Equivalent
Search) or the absence of both false positives and false negatives (in the case of
Grow-Shrink and IAMB). In most cases the characteristics of the learned networks
were studied using a small number of reference data sets (Elidan 2001) as bench-
marks, and differences from the true structure measured with descriptive measures
such as Hamming distance (Jungnickel 2008).

This approach to model evaluation is not possible for real world data sets, as the true
structure of their probability distribution is not known in advance. An alternative
is provided by the use of either parametric or nonparametric bootstrap (Efron and
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Tibshirani 1993). By applying the learning algorithm to a sufficiently large num-
ber of bootstrap samples it is possible to obtain confidence intervals and empirical
probabilities for any feature of the network structure (Friedman et al. 1999), such
as the presence or the composition of the Markov Blanket of a particular node. The
fundamental limit in the interpretation of the results is that the “reasonable” level
of confidence for thresholding depends on the data.

In this paper we propose a modified bootstrap-based approach for the inference on
the structure of a Bayesian network. The undirected graph underlying the network
structure is modeled as a multivariate Bernoulli random variable in which each
component is associated with an arc. This assumption allows the derivation of both
exact and asymptotic measures of the variability of the network structure or its
parts.

2 Bayesian networks and bootstrap

Bayesian networks are graphical models where nodes represent random variables (the
two terms are used interchangeably in this article) and arcs represent probabilistic
dependencies between them (Korb and Nicholson 2004).

The graphical structure G = (V, A) of a Bayesian network is a directed acyclic
graph (DAG) which defines a factorization of the joint probability distribution of
V = {X1, X2, . . . , Xv}, often called the global probability distribution, into a set of
local probability distributions, one for each variable. The form of the factorization is
given by the Markov property, which states that every random variable Xi directly
depends only on its parents ΠXi

:

P(X1, . . . , Xv) =

v
∏

i=1

P(Xi |ΠXi
) (for discrete variables) (1)

f(X1, . . . , Xv) =
v
∏

i=1

f(Xi |ΠXi
) (for continuous variables). (2)

Therefore it’s important to define confidence measures for specific features in the
network structure, such as the presence of specific configurations of arcs. A related
problem is the definition of a measure of variability for the network structure as a
whole, both as an indicator of goodness of fit for a particular Bayesian network and
as a criterion to evaluate the performance of a learning algorithm.

A possible solution for both these problems has been developed by Friedman et al.
(1999) using bootstrap simulation, and modified by Imoto et al. (2002) to estimate
the confidence in the presence of an arc (called edge intensity, and also known as
arc strength) and its direction. This approach can be summarized as follows:

1. For b = 1, 2, . . . , m

(a) re-sample a new data set D∗
b

from the original data D using either para-
metric or nonparametric bootstrap.

(b) learn a Bayesian network Gb from D∗
b
.
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2. Estimate the confidence in each feature f of interest as

P̂(f) =
1

m

m
∑

b=1

f(Gb). (3)

However, the empirical probabilities P̂(f) are difficult to evaluate, because the dis-
tribution of G is unknown and the confidence threshold value depends on the data.

3 The multivariate Bernoulli distribution

Let B1, B2, . . . , Bk, k ∈ N be Bernoulli random variables with marginal probability
of success p1, p2, . . . , pk, that is Bi ∼ Ber(pi), i = 1, . . . , k. Then the distribution
of the random vector B = [B1, B2, . . . , Bk]

T over the joint probability space of
B1, B2, . . . , Bk is a multivariate Bernoulli random variable (Krummenauer 1998b),
denoted as Berk(p). Its probability function is uniquely identified by the parameter
collection

p = {pI : I ⊆ {1, . . . , k}, I 6= ∅} , (4)

which represents the dependence structure among the marginal distributions in terms
of simultaneous successes for every non-empty subset I of elements of the random
vector.

However, several useful results depend only on the first and second order moments
of B

E(Bi) = pi (5)

VAR(Bi) = E(B2
i ) − E(Bi)

2 = pi − p2
i (6)

COV(Bi, Bj) = E(BiBj) − E(Bi)E(Bj) = pij − pipj (7)

and the reduced parameter collection

p̃ = {pij : i, j = 1, . . . , k} , (8)

which is in fact used as an approximation of p in the generation random multivariate
Bernoulli vectors in Krummenauer (1998a).

3.1 Uncorrelation and independence

Let’s first consider a simple result that links covariance (and therefore correlation)
and independence of two univariate Bernoulli variables.

Theorem 1. Let Bi and Bj be two Bernoulli random variables. Then Bi and Bj

are independent if and only if their covariance is zero:

Bi ⊥⊥ Bj ⇐⇒ COV(Bi, Bj) = 0 (9)
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Proof. If Bi and Bj are independent then by definition

COV(Bi, Bj) = pij − pipj = P(Bi = 1, Bj = 1) − P(Bi = 1)P(Bj = 1) = 0,

as P(Bi = 1, Bj = 1) = P(Bi = 1)P(Bj = 1).

If on the other hand we have that COV(Bi, Bj) = 0, then

pij − pipj = 0 ⇒ pij = pipj ⇒ Bi ⊥⊥ Bj

which completes the proof.

This theorem can be extended to multivariate Bernoulli random variables as follows.

Theorem 2. Let B = [B1, B2, . . . , Bk]
T and C = [C1, C2, . . . , Cl]

T , k, l ∈ N be two
multivariate Bernoulli random variables. Then B and C are independent if and only
if

B ⊥⊥ C ⇐⇒ COV(B,C) = O (10)

where O is the zero matrix.

Proof. If B is independent from C, then by definition every pair (Bi, Cj), i =
1, . . . , k, j = 1, . . . , l is independent. Therefore the covariance matrix of B and
C is

COV(Bi, Cj) = cij = 0 =⇒ COV(B,C) = [cij ] = O

If conversely the covariance matrix COV(B,C) is equal to the zero matrix, every
pair (Bi, Cj) is independent as

cij = pij − pipj = 0 =⇒ pij = pipj

This implies the independence of the random vectors B and C, as their sigma-
algebras

σ(B) = σ(B1) × . . . × σ(Bk) and σ(C) = σ(C1) × . . . × σ(Cl)

are functions of the sigma algebras induced by the two sets of independent random
variables B1, B2, . . . , Bk and C1, C2, . . . , Cl.

The correspondence between uncorrelation and independence is identical to the anal-
ogous property of the multivariate Gaussian distribution (Ash 2000), and is closely
related to the strong normality defined for orthogonal second order random variables
in Loève (1977). It can also be applied to disjoint subsets of components of a single
multivariate Bernoulli variable, as they are also distributed as multivariate Bernoulli
random variables.

Theorem 3. Let B = [B1, B2, . . . , Bk]
T be a multivariate Bernoulli random vari-

able; then every random vector B∗ = [Bi1 , Bi2 , . . . , Bil ]
T , {i1, i2, . . . , il} ⊆ {1, 2, . . . , k}

is a multivariate Bernoulli random variable.
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Proof. The marginal components of B∗ are Bernoulli random variables, because B

is multivariate Bernoulli. The new dependency structure is defined as

p∗ = {pI∗ : I∗ ⊆ {i1, . . . , il} ⊆ {1, . . . , k}, I∗ 6= ∅} ,

and uniquely identifies the probability distribution of B∗.

Example 1. Let’s consider the trivariate Bernoulli random variable

B =





B1

B2

B3



 = B1 + B2 where B1 =





0
B2

0



 and B2 =





B1

0
B3



 .

Then the covariance matrix

COV(B1,B2) = E









0
B2

0





[

B1 0 B3

]



− E









0
B2

0







E
([

B1 0 B3

])

= E









0 0 0
B1B2 0 B2B3

0 0 0







−





0
p2

0





[

p1 0 p3

]

=





0 0 0
p12 0 p23

0 0 0



−





0 0 0
p1p2 0 p2p3

0 0 0



 =

=





0 0 0
p12 − p1p2 0 p23 − p2p3

0 0 0





of the two components B1 and B2 is equal to the zero matrix if and only if
{

p12 = p1p2

p23 = p2p3
=⇒ {B1 ⊥⊥ B2, B2 ⊥⊥ B3}

which in turn implies and is implied by B1 ⊥⊥ B2.

3.2 Properties of the covariance matrix

The covariance matrix Σ = [σij ], i, j = 1, . . . , k associated with a multivariate
Bernoulli random vector has several interesting numerical properties. Due to the
form of the central second order moments defined in formulas 6 and 7, the diagonal
elements are bound in the interval

σii = pi − p2
i ∈

[

0,
1

4

]

. (11)

The maximum is attained for pi = 1
2 , and the minimum for both pi = 0 and pi = 1.

For the Cauchy-Schwartz theorem (Ash 2000) then

0 6 σ2
ij 6 σiiσjj 6

1

16
=⇒ |σij | ∈

[

0,
1

4

]

. (12)

The eigenvalues λ1, λ2, . . . , λk of Σ are similarly bounded, as shown in the following
theorem.
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Theorem 4. Let B = [B1, B2, . . . , Bk]
T be a multivariate Bernoulli random vari-

able, and let Σ = [σij ], i, j = 1, . . . , k be its covariance matrix. Let λi, i = 1, . . . , k

be the eigenvalues of Σ. Then

0 6

k
∑

i=1

λi 6
k

4
(13)

and

0 6 λi 6
k

4
. (14)

Proof. Since Σ is a real, symmetric, non-negative definite matrix, the eigenvalues
λi are non-negative real numbers (Salce 1993); this proves the lower bound in both
inequalities.

The upper bound in the first inequality holds because

k
∑

i=1

λi =
k
∑

i=1

σii 6 max
{σii}

k
∑

i=1

σii =
k
∑

i=1

max σii =
k

4
,

as the sum of the eigenvalues is equal to the trace of Σ (Seber 2008). This in turn
implies

λi 6

k
∑

i=1

λi 6
k

4
,

which completes the proof.

These bounds define a convex set in R
k, defined by the family

D =

{

∆k−1(c) : c ∈
[

0,
k

4

]}

(15)

where ∆k−1(c) is the non-standard k − 1 simplex

∆k−1(c) =

{

(λ1, . . . , λk) ∈ R
k :

k
∑

i=1

λi = c, λi > 0

}

. (16)

3.3 Sequences of multivariate Bernoulli variables

Let’s now consider a sequence of independent and identically distributed multivariate
Bernoulli variables B1,B2, . . . ,Bm ∼ Berk(p). The sum

Sm =
m
∑

i=1

Bi ∼ Bik(m,p) (17)

is distributed as a multivariate Binomial random variable (Krummenauer 1998b),
thus preserving one of the fundamental properties of the univariate Bernoulli dis-
tribution. A similar result holds for the law of small numbers, whose multivariate
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version states that a k-variate Binomial distribution Bik(m,p) converges to a mul-
tivariate Poisson distribution Pk(Λ):

Sm
d→ Pk(Λ) as mp → Λ. (18)

Both these distributions’ probability functions, while tractable, are not very useful
as a basis for explicit inference procedures. An alternative is given by the asymptotic
multivariate Gaussian distribution defined by the multivariate central limit theorem
(Ash 2000):

Sm − mE(B1)√
m

d→ Nk(0, Σ). (19)

The limiting distribution is guaranteed to exist for all possible values of p, as the
first two moments are bounded and therefore are always finite.

4 Inference on the network structure

Let U = (V, E) be the undirected graph underlying the DAG G = (V, A), defined
as its unique biorientation (Bang-Jensen and Gutin 2009). Each edge e ∈ E of U
corresponds to the directed arcs in A with the same incident nodes, and has only
two possible states (it’s either present in or absent from the graph).

Then ei, i = 1, . . . , |V × V| is naturally distributed as a Bernoulli random variable

Ei =

{

ei ∈ E with probability pi

ei 6∈ E with probability 1 − pi

(20)

and every set W ⊆ V × V (including E) is distributed as a multivariate Bernoulli
random variable W and identified by the parameter collection

pW = {pw : w ⊆ W, w 6= ∅} . (21)

The elements of pW can be estimated via parametric or nonparametric bootstrap as
in Friedman et al. (1999), because they are functions of the DAGs Gb, b = 1, . . . , m

through the underlying undirected graphs Ub = (V, Eb). The resulting empirical
probabilities

p̂w =
1

m

m
∑

b=1

I{w⊆Eb}(Ub), (22)

in particular

p̂i =
1

m

m
∑

b=1

I{ei∈Eb}(Ub) and p̂ij =
1

m

m
∑

b=1

I{ei∈Eb,ej∈Eb}(Ub), (23)

can be used to obtain several descriptive measures and test statistics for the vari-
ability of the network’s structure.
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4.1 Interpretation of bootstrapped networks

Considering the undirected graphs U1, . . . ,Um instead of the corresponding directed
graphs G1, . . . ,Gm greatly simplifies the interpretation of bootstrap’s results. In
particular the variability of the graphical structure can be summarized in three cases
according to the entropy (Cover and Thomas 2006) of the set of the bootstrapped
networks:

• minimum entropy : all the networks learned from the bootstrap samples have
the same structure, that is

E1 = E2 = . . . = Em = E. (24)

This is the best possible outcome of the simulation, because there is no vari-
ability in the estimated network. In this case the first two moments of the
multivariate Bernoulli distribution are equal to

pi =

{

1 if ei ∈ E

0 otherwise
and Σ = O. (25)

• intermediate entropy : several network structures are observed with different
frequencies mb,

∑

mb = m. The first two sample moments of the multivariate
Bernoulli distribution are equal to

p̂i =
1

m

∑

b : ei∈Eb

mb and p̂ij =
1

m

∑

b : ei∈Eb,ej∈Eb

mb. (26)

• maximum entropy : all 2|V| possible network structures appear with the same
frequency, that is

P̂(Ui) =
1

2|V|
i = 1, . . . , 2|V|. (27)

This is the worst possible outcome because edges vary independently of each
other and each one is present in only half of the networks (proof provided in
appendix B):

pi =
1

2
and Σ =

1

4
Ik. (28)

4.2 Descriptive statistics of network’s variability

Several functions have been proposed in literature as univariate measures of spread of
a multivariate distribution, usually under the assumption of multivariate normality
(see for example Muirhead (1982) and Bilodeau and Brenner (1999)). Three of
them in particular can be used as descriptive statistics for the multivariate Bernoulli
distribution:

• the generalized variance
VARG(Σ) = det(Σ). (29)
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• the total variance (called total variation in Mardia et al. (1979))

VART (Σ) = tr(Σ). (30)

• the squared Frobenius matrix norm

VARN (Σ) = |||Σ − k

4
Ik|||2F . (31)

Both the generalized variance and the total variance associate high values of the
statistic to unstable network structures, and are bounded due to the properties of
the covariance matrix Σ. For the total variance it’s easy to show that

0 6 VART (Σ) =
k
∑

i=1

σii 6
1

4
k (32)

due to the bounds on the variances σii in equation 11. The generalized variance is
similarly bounded due to Hadamard’s theorem on the determinant of a non-negative
definite matrix (Seber 2008):

0 6 VARG(Σ) 6

k
∏

i=1

σii 6

(

1

4

)k

. (33)

They reach the respective maxima in the maximum entropy case and are equal to
zero only in the minimum entropy case. The generalized variance is also strictly
convex (the maximum is reached only for Σ = 1

4Ik), but it is equal to zero if Σ is
rank deficient. For this reason it’s convenient to reduce Σ to a smaller, full rank
matrix (let’s say Σ∗) and compute VARG(Σ∗) instead of VARG(Σ).

The squared Frobenius norm on the other hand associates high values of the statis-
tic to stable network structures. It can be rewritten in terms of the eigenvalues
λ1, . . . , λk of Σ as

VARN (Σ) =

k
∑

i=1

(

λi −
k

4

)2

. (34)

It has a unique maximum (in the minimum entropy case), which can be computed
as the solution of the constrained minimization problem in λ = [λ1, . . . , λk]

T

min
D

f(λ) = −
k
∑

i=1

(

λi −
k

4

)2

subject to λi > 0,

k
∑

i=1

λi 6
k

4
(35)

using the extended Lagrange multipliers methods (Nocedal and Wright 1999). It
also has a single minimum in λ

∗ = [14 , . . . , 1
4 ], which is the projection of [k4 , . . . , k

4 ]
onto the set D and coincides with the maximum entropy case. The proof for these
boundaries and the rationale behind the use of k

4Ik instead of 1
4Ik are reported in

appendix A.
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Figure 1: The covariance matrices Σ1, Σ2 and Σ3 represented as functions of their
eigenvalues in D (green). The points (0, 0) and (1

4 , 1
4) correspond to the minimum

entropy and maximum entropy cases.

The corresponding normalized statistics are:

VART (Σ) =
VART (Σ)

maxΣ VART (Σ)
=

4VART (Σ)

k

VARG(Σ) =
VARG(Σ)

maxΣ VARG(Σ)
=

VARG(Σ)

4k

VARN (Σ) =
maxΣ VARN (Σ) − VARN (Σ)

maxΣ VARN (Σ) − minΣ VARN (Σ)
=

k3 − 16VARN (Σ)

k(2k − 1)
.

All of them vary in the [0, 1] interval and associate high values of the statistic to
networks whose structure display a high variability across the bootstrap samples.
Equivalently we can define

VART (Σ) = 1 − VART (Σ)

VARG(Σ) = 1 − VARG(Σ)

VARN (Σ) = 1 − VARN (Σ)

which associate high values of the statistic to networks with little variability, and
can be used as measures of distance from the maximum entropy case.

Example 2. Let’s consider three multivariate Bernoulli distributions W1, W2, W3

with second order moments

Σ1 =
1

25

[

6 1
1 6

]

, Σ2 =
1

625

[

66 −21
−21 126

]

, and Σ3 =
1

625

[

66 91
91 126

]

.

The eigenvalues of Σ1, Σ2 and Σ3 are

λ1 =

[

0.28
0.20

]

, λ2 =

[

0.2121
0.095

]

, λ3 =

[

0.3069
0.0003

]
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and the values of the generalized variance, total variance and squared Frobenius
matrix norm (both normalized and in the original scale) for the three covariance
matrices are reported below.

VART (Σ) VARG(Σ) VARN (Σ) VART (Σ) VARG(Σ) VARN (Σ)

Σ1 0.48 0.056 0.1384 0.96 0.896 0.9642
Σ2 0.3072 0.02016 0.2468 0.6144 0.32256 0.6752
Σ3 0.3072 8.96 × 10−5 0.2869 0.6144 0.00143 0.5682

4.3 Asymptotic inference

The limiting distribution of the descriptive statistics defined above can be derived by
replacing the covariance matrix Σ with its unbiased estimator Σ̂ and by considering
the multivariate Gaussian distribution from equation 19. The hypothesis we are
interested in is

H0 : Σ =
1

4
Ik H1 : Σ 6= 1

4
Ik, (36)

which relates the sample covariance matrix with the one from the maximum entropy
case.

For the total variance we have that (Muirhead 1982)

tT = 4m tr(Σ̂)
.∼ χ2

mk, (37)

and since the maximum value of tr(Σ) is achieved in the maximum entropy case,
the hypothesis in 36 assumes the form

H0 : tr(Σ) =
k

4
H1 : tr(Σ) <

k

4
. (38)

Then the observed significance value is

α̂T = P(tT 6 toss
T ), (39)

and can be improved with the finite sample correction

α̃T = P (tT 6 toss
T | tT ∈ [0, mk]) =

P(tT 6 toss
T )

P(tT 6 mk)
(40)

which accounts for the bounds on VART (Σ) from inequality 32.

For the generalized variance there are several possible asymptotic and approximate
distributions:

• the Gaussian distribution defined in Anderson (2003)

tG1
=

√
m

(

det(Σ̂)

det(1
4Ik)

− 1

)

.∼ N(0, 2k). (41)
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bootstrap sample size
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Figure 2: Asymptotic significance values of tT (green), tG2
(blue) and tN (violet) for

Σ1, Σ2 and Σ3 from table 1.

• the Gamma distribution defined in Steyn (1978)

tG2
=

mk

2
k

√

det(Σ̂)

det(1
4Ik)

.∼ Ga

(

k(m + 1 − k)

2
, 1

)

. (42)

• the saddlepoint approximation defined in Butler et al. (1992).

As before the hypothesis in 36 assumes the form

H0 : det(Σ) = det

(

1

4
Ik

)

H1 : det(Σ) < det

(

1

4
Ik

)

. (43)

The observed significance values for the Gaussian and Gamma distributions are

α̂G1
= P(tG1

6 toss
G1

) α̂G2
= P(tG2

6 toss
G2

) (44)

and the respective finite sample corrections for the bounds on det(Σ) are

α̃G1
= P

(

tG1
6 toss

G1
| tG1

∈
[

−
√

m, 0
])

=
P(tG1

6 toss
G1

) − P(tG1
6 −√

m)

P(tG1
6 0) − P(tG1

6 −√
m)

(45)

α̃G2
= P

(

tG2
6 toss

G2
| tG2

∈
[

0,
mk

2

])

=
P(tG2

6 toss
G2

)

P(tG2
6

mk
2 )

. (46)

The test statistic associated with the squared Frobenius norm is the test for the
equality of two covariance matrices defined in Nagao (1973),

tN =
m

2
tr





[

Σ̂

(

1

4
Ik

)−1

− Ik

]2


 =
m

2
tr

(

[

4Σ̂ − Ik

]2
)

.∼ χ2
1

2
k(k+1)

, (47)
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tT (Σ)

10 20 50 100 200

Σ1
0.4911379 0.4576109 0.4054044 0.3549436 0.2912432
0.906041 0.863836 0.7814146 0.691495 0.571734

Σ2
0.0941934 0.0263308 0.0008529 0.0000038 1.09 × 10−10

0.1737661 0.04970497 0.001644116 0.0000075 2.14 × 10−10

Σ3
0.0941934 0.0263308 0.0008529 0.0000038 1.09 × 10−10

0.1737661 0.04970497 0.001644116 0.0000075 2.14 × 10−10

tG2
(Σ)

Σ1
0.6039442 0.5242587 0.4231830 0.3411315 0.250054
0.9052188 0.8475223 0.7357998 0.6166961 0.4651292

Σ2
0.1214881 0.0235145 0.0002789 0.0000002 2.79 × 10−13

0.1820918 0.03801388 0.000484961 0.00000045 5 × 10−13

Σ3
3.13 × 10−10 2.03 × 10−20 9.82 × 10−51 4.42 × 10−101 1.26 × 10−201

4.7 × 10−10 3.28 × 10−20 1.7 × 10−50 7.99 × 10−101 2.35 × 10−201

tN (Σ)

Σ1
0.9652055 0.9091238 0.7149371 0.4368392 0.1422717
0.9645473 0.9091083 0.7149371 0.4368392 0.1422717

Σ2
0.5649382 0.2537627 0.0170906 0.0001428 7.48 × 10−9

0.556708 0.2536360 0.01709067 0.0001428399 7.48 × 10−9

Σ3
0.1545514 0.0147960 0.0000085 2.37 × 10−11 1.34 × 10−22

0.1385578 0.01462880 8.5 × 10−06 2.37 × 10−11 1.34 × 10−22

Table 1: Asymptotic significance values of tT , tG2
and tN for Σ1, Σ2 and Σ3; the

ones computed with the finite sample corrections are reported in bold.

because

tr

(

[

4Σ̂ − Ik

]2
)

= tr
([

4Σ̂ − Ik

] [

4Σ̂ − Ik

])

= 16 tr

([

Σ̂ − 1

4
Ik

] [

Σ̂ − 1

4
Ik

])

=

= 16 tr

([

UΛUH − 1

4
Ik

] [

UΛUH − 1

4
Ik

])

=

= 16 tr

(

U

[

Λ − 1

4
Ik

]

UHU

[

Λ − 1

4
Ik

]

UH

)

= 16 tr

(

[

Λ − 1

4
Ik

]2
)

=

= 16
k
∑

i=1

(

λi −
1

4

)2

= 16|||Σ̂ − 1

4
Ik|||2F (48)

where UΛUH is the spectral decomposition of Σ̂ (see appendix A for and explanation
of the use of 1

4Ik instead of k
4Ik). The significance value for tN is

α̂N = P(tN > toss
N ) (49)

as the hypothesis in 36 becomes

H0 : |||Σ − 1

4
Ik|||F = 0 H1 : |||Σ − 1

4
Ik|||F > 0. (50)
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Unlike the previous statistics, Nagao’s test displays a very good convergence speed,
to the point that the finite sample correction for the bounds on the squared Frobenius
matrix norm

α̃N = P (tN > toss
N | tG1

∈ [0, tmax
N ]) =

P(tN > toss
N ) − P(tN > tmax

N )

P(tN 6 tmax
N )

(51)

is not appreciably better than the raw significance value.

Example 3. Let’s consider again the multivariate Bernoulli distributions W1, W2,
W3 and their covariance matrices Σ1, Σ2, Σ3 from example 2. The respective asymp-
totic significance values for the statistics tT , tG1

and tN are reported in table 1.

4.4 Monte Carlo inference and parametric bootstrap

Another approach to compute the significance values of the statistics VART (Σ),
VARG(Σ) and VARN (Σ) is again parametric bootstrap.
The multivariate Bernoulli distribution W0 specified by the hypothesis in 36 has a
diagonal covariance matrix, so its components W0i

, i = 1, . . . , k are uncorrelated.
According to theorem 1 they are also independent, so the joint distribution of W0

is completely specified by the marginal distributions W0i
∼ Ber(1

2). Therefore it’s
possible (and indeed quite easy) to generate observations from the null distribution

and use them to estimate the significance value of the normalized statistics VART (Σ),

VARG(Σ) and VARN (Σ) defined in section 4.2:

1. compute the value of test statistic T on the original covariance matrix Σ.

2. For r = 1, 2, . . . , R.

(a) generate m sets of k random samples from a Ber(1
2) distribution.

(b) compute their covariance matrix Σ∗
r .

(c) compute T ∗
r from Σ∗

r

3. compute the Monte Carlo significance value as

α̂R =
1

R

R
∑

r=1

I{x>T}(T
∗
r ). (52)

This approach has two important advantages over the parametric tests defined in
section 4.3:

• the test statistic is evaluated against the null distribution instead of its asymp-
totic approximation, thus removing any distortion caused by lack of conver-
gence (which can be quite slow and problematic in high dimensions).

• each simulation r has a lower computational cost than the equivalent appli-
cation of the structure learning algorithm to a bootstrap sample b. Therefore
the Monte Carlo test can achieve a good precision with a smaller number of
bootstrapped networks, allowing its application to larger problems.
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VART (Σ)

10 20 50 100 200

Σ1 0.569655 0.457109 0.129242 0.017416 0.000334
Σ2 0.016834 0.000205 0 0 0
Σ3 0.016834 0.000205 0 0 0

VARG(Σ)

Σ1 0.784102 0.512839 0.14788 0.013678 0.000094
Σ2 0.063548 0.000761 0 0 0
Σ3 0.005909 0.000008 0 0 0

VARN (Σ)

Σ1 0.743797 0.568819 0.239397 0.096544 0.019633
Σ2 0.196996 0.037772 0.001018 0.000005 0
Σ3 0.018292 0.000355 0 0 0

Table 2: Bootstrap significance values from parametric bootstrap for Σ1, Σ2 and Σ3.

Example 4. Let’s consider the multivariate Bernoulli distributions W1, W2, W3

from examples 2 and 3 one last time. The corresponding significance values for

the three normalized statistics VART (Σ), VARG(Σ) and VARN (Σ) are reported in
table 2 for various sizes of the bootstrap samples (m = 10, 20, 50, 100, 200). Each
one have been computed from R = 106 covariance matrices generated from the null
distribution. The code used for the simulation is reported in appendix C.

5 Conclusions

In this paper we derived the properties of several measures of variability for the
structure of a Bayesian network through its underlying undirected graph, which is
assumed to have a multivariate Bernoulli distribution. Descriptive statistics, asymp-

bootstrap sample size
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Figure 3: Monte Carlo significance values for the total variance (green), the gener-
alized variance (blue) and the squared Frobenius matrix norm (violet) from table
2.
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totic and Monte Carlo tests were developed along with their fundamental properties.
They can be used to compare the performance of different learning algorithms and
to measure the strength of any arbitrary subset of arcs.

Appendix

A Bounds on the squared Frobenius matrix norm

The squared Frobenius matrix norm of the difference between the covariance matrix
Σ and the maximum entropy matrix 1

4Ik is

|||Σ − 1

4
Ik|||2F =

k
∑

i=1

(

λi −
1

4

)2

. (53)

Its unique global minimum is

|||Σ − 1

4
Ik|||2F = 0 (54)

for Σ = 1
4Ik due to the fundamental properties of the matrix norms (Salce 1993).

However, it has a varying number of global maxima depending on the dimension k

of Σ. They are the solutions of the constrained minimization problem

min
D

f(λ) = −
k
∑

i=1

(

λi −
k

4

)2

subject to λi > 0,

k
∑

i=1

λi 6
k

4
(55)

Figure 4: Squared Frobenius matrix norms from 1
4IK (on the left) and k

4Ik (on the
right) in D for k = 2. The green area is the set D of the possible eigenvalues of Σ
and the red lines are level curves.
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and can be computed from the Lagrangian equation and its derivatives

L(λ, s) = −
k
∑

i=1

(

λi −
1

4

)2

−
k
∑

i=1

siλi − sk+1

(

k

4
−

k
∑

i=1

λi

)

(56)

δ

δλi

L(λ, s) = −2λi +
1

2
− si + sk+1 (57)

δ2

δ2λi

L(λ, s) = −2,
δ2

δλiδλj

L(λ, s) = 0 (58)

where s = [s1. . . . , sk+1]
T are the Lagrangian multipliers. This configuration of

stationary points does not influence the results based on the asymptotic distribution
of the multivariate Bernoulli distribution, but prevents any direct interpretation of
quantities based on this difference in matrix norm as descriptive statistics.
On the other hand the difference in squared Frobenius norm

VARN (Σ) = |||Σ − k

4
Ik|||2F =

k
∑

i=1

(

λi −
k

4

)2

(59)

has both a unique global minimum (because it’s a convex function)

min
D

VARN (Σ) = VARN

(

1

4
Ik

)

=
k
∑

i=1

(

1

4
− k

4

)2

=
k(k − 1)2

16
(60)

and a unique global maximum

max
D

VARN (Σ) = VARN (O) =
k
∑

i=1

(

k

4

)2

=
k3

16
(61)

which correspond to the minimum entropy (λ = [0, . . . , 0]) and the maximum en-
tropy (λ = [14 , . . . , 1

4 ]) covariance matrices respectively (see figure 4). However

since k
4Ik is not a valid covariance matrix for a multivariate Bernoulli distribution,

VARN (Σ) cannot be used to derive any probabilistic result.

B Multivariate Bernoulli and the maximum entropy case

Let’s first state a simple theorem on the probability of one and two edges in the
maximum entropy case.

Theorem 5. Let U1, . . . ,Un, n = 2|V| be all possible undirected graphs with vertex
set V and let

P(Uk) =
1

n
k = 1, . . . , n. (62)

Let ei and ej, i 6= j be two edges in V × V. Then

P(ei) =
1

2
and P(ei, ej) =

1

4
. (63)
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Proof. The number of possible configurations of an undirected graph is given by the
Cartesian product of the possible states of its edges, resulting in

|{0, 1} × . . . × {0, 1}| =
∣

∣

∣
{0, 1}|V|

∣

∣

∣
= 2n (64)

possible undirected graphs. Then edge ei is present in

|{0, 1} × . . . × 1 × . . . × {0, 1}| =
∣

∣

∣1 × {0, 1}|V|−1
∣

∣

∣ = 2n−1 (65)

graphs and ei and ej are simultaneously present in

|{0, 1} × . . . × 1 × 1 × . . . × {0, 1}| =
∣

∣

∣12 × {0, 1}|V|−2
∣

∣

∣ = 2n−2 (66)

graphs. Therefore

P(ei) =
2n−1P(Uk)

2nP(Uk)
=

1

2
and P(ei, ej) =

2n−2P(Uk)

2nP(Uk)
=

1

4
. (67)

Then the values of pi and Σ = [σij ] in equation 28 are indeed:

E(ei) = pi =
1

2
(68)

VAR(ei) = σii = pi − p2
i =

1

2
− 1

4
=

1

4
(69)

COV(ei, ej) = σij = pij − pipj =
1

4
− 1

2
· 1

2
= 0. (70)

The fact that σij = 0 for every i 6= j also proves that the edges are independent
according to theorem 1.

C R code for the parametric bootstrap simulation

The following R function has been used to compute the significance values in example
4.

biv.ber.sim = function(sigma, B, R, test) {

if (test == "vart")

FUN = function(lambda) 1/2 - sum(lambda)

else if (test == "varg")

FUN = function(lambda) 1/16 - prod(lambda)

else if (test == "varn")

FUN = function(lambda) sum((lambda - 1/4)^2)

sim = matrix(0L, nrow = B, ncol = 2)

tstar = numeric(R)

s0 = eigen(sigma)$values

t0 = FUN(s0)

for (i in 1:R) {
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for (j in 1:B)

sim[j, ] = rbinom(2, 1, 1/2)

p = prop.table(table(factor(sim[, 1], levels = c(0,1)),

factor(sim[, 2], levels = c(0,1))))

sigmastar = matrix(

c(sum(p[2,]) * (1 - sum(p[2,])),

p[2,2] - sum(p[,2])*sum(p[2,]),

p[2,2] - sum(p[,2])*sum(p[2,]),

sum(p[,2]) * (1 - sum(p[,2]))),

nrow = 2, ncol = 2, byrow = TRUE)

sstar = eigen(sigmastar)$values

tstar[i] = FUN(sstar)

}

return(length(tstar[tstar >= t0])/R)

}

The three covariance matrices Σ1, Σ2 and Σ3 have been created in R with the
following commands.

sigma1 = matrix(c(6, 1, 1, 6)/25, ncol = 2)

sigma2 = matrix(c(66, -21, -21, 126)/625, ncol = 2)

sigma3 = matrix(c(66, 91, 91, 126)/625, ncol = 2)

All the simulations have been performed on a Core Duo 2 machine with 1GB of
RAM, with R 2.9.0 (R Development Core Team 2009) and an updated Debian
GNU/Linux distribution.

D R code for the asymptotic inference

total.variance = function(sigma, b, adjusted = FALSE) {

res = pchisq(4 * b * sum(diag(sigma)), 2 * b, lower.tail = TRUE)

if (adjusted)

res = res / pchisq(2 * b, 2 * b, lower.tail = TRUE)

return(res)

}

generalized.variance = function(sigma, b, adjusted = FALSE) {

res = pgamma(4 * b * sqrt(det(sigma)), b - 1, 1, lower.tail = TRUE)

if (adjusted)

res = res / pgamma(b, b - 1, 1, lower.tail = TRUE)

return(res)

}

frobenius.norm = function(sigma, b, adjusted = FALSE) {

res = pchisq(8 * b * sum((eigen(sigma)$values - 1/4 )^2), 3, lower.tail = FALSE)
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if (adjusted)

res = (res - pchisq(b, 3, lower.tail = FALSE)) / pchisq(b, 3, lower.tail = TRUE)

return(res)

}
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