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Setion 1 Introdution 1Aurate likelihood inferene on the area under the ROCurve for small samples
Giuliana CorteseDepartment of Statistial SienesUniversity of PaduaItalyLaura VenturaDepartment of Statistial SienesUniversity of PaduaItalyAbstrat: The auray of a diagnosti test with ontinuous-sale results is of high impor-tane in linial mediine. Reeiver operating harateristis (ROC) urves, and in partiularthe area under the urve (AUC), are widely used to examine the e�etiveness of diagnostimarkers. Classial likelihood-based inferene about the AUC has been widely studied undervarious parametri assumptions, but it is well-known that it an be inaurate when thesample size is small, in partiular in the presene of unknown parameters. The aim of thispaper is to propose and disuss modern higher-order likelihood based proedures to obtainaurate point estimators and on�dene intervals for the AUC. The auray of the pro-posed methodology is illustrated by simulation studies. Moreover, two real data examplesare used to illustrate the appliation of the proposed methods.Keywords: Area under the ROC urve, diagnosti markers, higher-order likelihood infer-ene, small sample size, on�dene intervals,reliability.1 IntrodutionThis paper deals with modern likelihood theory in order to better distinguish betweenhealthy and diseased populations.Reeiver operating harateristi (ROC) urves are one of the main tools formedial deision-making [1℄ and they are mostly used to assess the e�etiveness ofontinuous diagnosti markers in distinguishing between diseased and non-diseasedindividuals. A ROC urve an be obtained from the response values of a diagnostitest based on a ontinuous diagnosti marker, and thus it provides a global measureof the auray of the test [2℄.A diagnosti test based on a ontinuous diagnosti marker provides usually aresponse about the linial status of subjets, identifying them as diseased (testpositive) or non-diseased (test negative) patients. In order to provide suh a positiveor negative answer, the diagnosti test requires that a ertain ut-o� point is hosen.



2 Giuliana Cortese, Laura VenturaThe sensitivity and spei�ity assoiated with a given ut-o� are de�ned as theprobabilities of the test of orretly lassifying subjets as diseased and non-diseased,respetively. Sensitivity and spei�ity vary when di�erent hoies of ut-o� pointsare made over the ontinuous sale of the diagnosti harateristi. The ROC urveis obtained by plotting sensitivity versus 1-spei�ity for all possible values of theut-o� point.ROC urves an be obtained under the assumption that the measurements ofthe diagnosti marker on the diseased and non-diseased subjets are distributedas two random variables X1 and X2, respetively. The area under the ROC urve(AUC) is the most popular summary measure of diagnosti auray of a ontinuous-sale test, or equivalently, of the diagnosti e�etiveness of a ontinuous diagnostimarker. Its advantage onsists of providing a single index that summarizes the overallperformane of a diagnosti test or ontinuous marker, other than an entire urve.Values of the AUC lose to 1 indiate very high diagnosti auray, while very lowauray orresponds to values lose to 0.5. Bamber [3℄ showed that the AUC isequal to
A = P (X1 < X2) , (1)whih an be interpreted as the probability that, in a randomly seleted pair ofdiseased and non-diseased subjets, the diagnosti test value is higher for the diseasedpatient. In more general ontexts, the AUC is also used as a measure of di�erenebetween distributions [4℄.Quantity A appears in many statistial problems regardless the onnetion todiagnosti tests and markers. The area A was initially studied for eletroni signaldetetion [5℄, and later on it has been used in a broad range of applied ontexts suhas radiology, reliability and inspetion systems, earthquake resistane. In reliability,1 is alled the stress-strength model and measures the reliability of a omponent inan engineering system, that is the probability that the strength (X2) of a omponentexeeds a ertain applied stress (X1), and thus the omponent is working withouta failure. In mediine, a further example of appliation of A is given by treatmentomparisons, where (1) measures the treatment e�etiveness by de�ning X1 and X2as the responses for a ontrol group and a treatment group, respetively.ROC urves and the AUC have been studied under both parametri and non-parametri assumptions. There is a substantial literature on statistial inferene for

A under various parametri assumptions for X1 and X2; see [6℄ and [7℄ for a om-prehensive treatment of stress-strength models and ROC approahes. Parametriinferene has been broadly handled by likelihood based proedures [8, 9℄, theory ofunbiased estimation or under a Bayesian perspetive [6℄. Furthermore, some on-tributions addressing inferene about A have been also provided in semiparametrisettings [10℄. In the nonparametri setting, the literature ranges from the pioneeringworks of Mann and Whitney [11℄ to more reent papers suh as Qin and Zhou [12℄.Reently, a speial attention has been devoted to interval estimation of A [13℄ andthe papers by Qin and Hotilova [14℄ and by Obuhowski and Lieber [15℄ providean exhaustive omparison of nonparametri intervals for the AUC. Regardless ofthe parametri and nonparametri assumptions, on�dene interval estimation forthe AUC is usually based on the normal approximation to the distribution of the



Setion 2 First-order likelihood inferene 3estimators. Nevertheless, the existing asymptoti methods for the AUC do not havegood overage auray in all situations, e.g. for all values of the AUC and forboth small and large sample sizes. In the nonparametri ontext, the reent workby Newombe [16℄ developed asymptoti methods that have a good performaneirrespetive of sample size and the order of magnitude of the AUC, and Zhou [17℄proposed asymptoti expansions in order to improve the estimation auray andhave good �nite-sample overage.The urrent paper deals with a similar problem in the parametri ontext andit addresses the problem of inaurate parametri inferene in ase of small samplesize. Classial likelihood based proedures for inferene on A are available, but it iswell-known that they an be inaurate when the sample size is small, in partiular inpresene of many unknown parameters [?℄. To overome this drawbak, in this paperwe disuss and apply higher-order likelihood based proedures (see, e.g., [18℄ and [19℄,and referenes therein) to obtain aurate point estimators and on�dene intervalsfor A. In partiular, we fous on the modi�ed direted likelihood, also alled modi�edsigned log-likelihood ratio, whih is a higher-order pivotal quantity that an be easilyomputed in pratie when the parameter of interest is A. The auray of theproposed methodology is illustrated by numerial studies. Two appliations to real-life data with small sample sizes, about abdominal aorta Aneurysm measurementsand ALCL lymphoma, are illustrated in order to desribe the pratial use of theproposed methods.The paper is organized as follows. Setion 2 gives a short review on interval andpoint estimation based on �rst-order likelihood proedures, in partiular the Waldand signed log-likelihood ratio statistis. The higher-order tehnique used to obtainaurate on�dene intervals and point estimators in the ontext of the AUC modelis disussed in Setion 3. In Setion 4 the proposed method is presented for twoexamples (exponential and normal models) and simulations studies that omparelassial and higher-order likelihood-based proedures are illustrated. Setion 5 dis-usses two appliations to real-life data. Finally, some �nal remarks are pointed outin Setion 6.2 First-order likelihood infereneIt is well-known that the likelihood funtion plays a entral role in both statistialtheory and pratie. In this setion, we provide a brief overview of some basi well-known approximations for likelihood inferene, alled �rst�order asymptotis, withappliation to the AUC given in (1), whih represents the parameter of interest.Let us onsider a random sample y = (y1, . . . , yn) of size n drawn from a ran-dom variable Y whose probability density funtion p(y; θ) depends on an unknownparameter θ ∈ Θ ⊆ IRd, d > 1. Let ℓ(θ) = ℓ(θ; y) =
∑n

i=1 log p(yi; θ) denotethe log-likelihood funtion for θ, θ̂ the maximum likelihood estimator (MLE), and
j(θ) = −ℓθθ(θ) = −∂2ℓ(θ)/(∂θ∂θT ) the observed information. Under broad on-ditions, θ̂ may be found by solving the sore equation ℓθ(θ̂) = 0 and its asymp-toti variane is approximated using the inverse of the observed information matrix
j(θ). When we distinguish between quantities of primary interest and others not



4 Giuliana Cortese, Laura Venturaof diret onern, the d-dimensional parameter θ an be expressed as θ = (ψ, λ),where ψ = ψ(θ) is the salar parameter of interest and λ a (d − 1)-dimensionalnuisane parameter. This partitioning entails orresponding splits of the sore ve-tor ℓθ(ψ, λ) into ℓψ(ψ, λ) and ℓλ(ψ, λ), and of the observed information j(ψ, λ) intothe sub-matries jψψ(ψ, λ), jψλ(ψ, λ), jλψ(ψ, λ) and jλλ(ψ, λ). In this setting, it iswell-known that, by the invariane property, the MLE of ψ is ψ̂ = ψ(θ̂).General likelihood inferene for ψ is typially based on pro�le proedures, whihrequire to eliminate the nuisane parameter λ by replaing it by the onstrained MLE
λ̂ψ obtained by maximizing ℓ(ψ, λ) with respet to λ for �xed ψ. Then infereneabout ψ may be performed using the pro�le log-likelihood ℓp(ψ) = ℓ(ψ, λ̂ψ). Theorresponding observed information, jp(ψ) = −∂2ℓp(ψ)/∂ψ2, an be expressed interms of the full observed information through the identity

jp(ψ) = jψψ(θ̂ψ) − jψλ(θ̂ψ) j−1
λλ (θ̂ψ) jλψ(θ̂ψ) , (2)where θ̂ψ = (ψ, λ̂ψ).To a �rst order of approximation, inferene on the salar parameter of interest ψmay be based on the Wald statisti

wp = wp(ψ) = jp(ψ̂)1/2(ψ̂ − ψ) , (3)or on the signed log-likelihood ratio statisti (or direted likelihood)
rp = rp(ψ) = sign(ψ̂ − ψ)

(

2(ℓp(ψ̂) − ℓp(ψ))
)1/2

, (4)whih have standard normal distributions up to the order O(n−1/2). Hene, a 100(1−
α)% approximate on�dene interval for ψ based on the Wald statisti is in pratieomputed as

(ψ̂ − z1−α/2 jp(ψ̂)−1/2, ψ̂ + z1−α/2 jp(ψ̂)−1/2) ,where zα is the α−quantile of the standard normal distribution. Alternatively, a100(1 − α)% on�dene interval for ψ based on rp is {ψ : |rp(ψ)| ≤ z1−α/2}, andtypially a numerial solution is required. In pratie, the Wald statisti basedinterval is often preferred beause of the simpliity in alulations. However, itis well-known that in general Wald proedures have poor behaviour even for largesamples and are less aurate than those based on the direted likelihood [18℄.All the former results about standard likelihood proedures an be easily appliedwhen the fous of sienti� inquiry ψ is the parameter A of the area under the ROCurve. Let X1 and X2 be independent random variables with umulative distributionfuntions FX1
(x; θ1) and FX2

(x; θ2), respetively, with θ1 ∈ Θ1 ⊆ IRd1 and θ2 ∈ Θ2 ⊆
IRd2 , d = d1 + d2. The equality A = P (X1 < X2) relates the AUC to the probabilitythat the marker measurement X2 on a diseased subjet is stohastially larger thanthe marker measurement X1 on a non-diseased subjet. Therefore, the area A anbe evaluated as a funtion of the entire parameter θ = (θ1, θ2), through the relation

A = A(θ) =

∫

FX1
(t; θ1) dFX2

(t; θ2) . (5)



Setion 3 Higher-order likelihood asymptotis 5Theoretial expressions for A are available under several distributional assumptionsboth for X1 and X2 [6℄. For parametri inferene about A based on the ran-dom sample x1 = (x11, . . . , x1n1
) of size n1 from X1 and on the random sample

x2 = (x21, . . . , x2n2
) of size n2 from X2, the most popular inferential proedures arethose based on the pro�le likelihood funtion, due to their �exibility and general-ity. In partiular, if θ̂ = (θ̂1, θ̂2) is the MLE of θ = (θ1, θ2), then the MLE of A isgiven by Â = A(θ̂) due to the invariane property. Thus, if the statistial modelis reparameterized so that ψ = A(θ) = A(θ1, θ2) is the salar parameter of interestand λ = λ(θ) = λ(θ1, θ2) the (d − 1)-dimensional nuisane parameter, �rst�orderon�dene intervals for A may be based on (3) or (4). We refer the reader to Kotzet al. [6℄ for several examples on �rst�order inferene on A studied under di�erentassumptions on the distributions of X1 and X2.When the sample size is relatively small, the �rst�order approximations are ofteninaurate and an give poor results, espeially if the dimension of the nuisaneparameter λ is high with respet to n or, for the ROC model, when A is lose toone, that is A is nearly on the boundary of the parameter spae ([20℄). In thesesituations, it may be useful to resort to modern likelihood theory.3 Higher-order likelihood asymptotisThe theory of higher�order asymptoti analysis provides more preise inferenes thanthe standard theory (see, e.g., [21℄, [22℄, [18℄ and [19℄). There are two aspets of theimprovement on lassial likelihood-based inferene about the salar parameter ofinterest ψ based on the direted likelihood rp. A �rst adjustment redues the e�etsdue to the estimation of nuisane parameters, and a seond adjustment improvesapproximations when the sample size is small. In this setion, we disuss a modi�edversion of the direted likelihood (4) whih is more aurate in ases of small samplesize, having standard normal distribution up to O(n−3/2), ompared with O(n−1/2)for standard asymptotis. One intriguing feature of the higher-order methods dis-ussed here is that relatively simple and simple likelihood quantities play a entralrole.Assume that a is an anillary statisti, either exatly or at least to an approximateorder of approximation, suh that ℓ(θ) = ℓ(θ; y) = ℓ(θ; θ̂, a). The modi�ed diretedlikelihood for ψ (see, e.g.,[18℄, Chap. 7) is given by

r∗p = r∗p(ψ) = rp +
1

rp
log

q

rp
, (6)where

q = q(ψ) =
∣

∣

∣
ℓ;ψ̂(θ̂) − ℓ;ψ̂(θ̂ψ) − ℓλ;ψ̂(θ̂ψ)ℓλ;λ̂(θ̂ψ)−1

(

ℓ;λ̂(θ̂) − ℓ;λ̂(θ̂ψ)
)
∣

∣

∣

|ℓλ;λ̂(θ̂ψ)|
(|j(θ̂)||jλλ(θ̂ψ)|)1/2

.In the de�nition of q, the quantities appearing in the numerator are omputed usingthe sample derivatives ℓ;ψ̂ = ∂ℓ(θ)/∂ψ̂, ℓ;λ̂ = ∂ℓ(θ)/∂λ̂, ℓλ;ψ̂ = ∂2ℓ(θ)/(∂λ∂ψ̂) and
ℓλ;λ̂ = ∂2ℓ(θ)/(∂λ∂λ̂T ). The modi�ed direted likelihood r∗p is a higher-order pivotal



6 Giuliana Cortese, Laura Venturaquantity with null standard normal distribution to order O(n−3/2), onditionallyon an appropriate anillary a and hene also unonditionally at the same order.Moreover, it satis�es the requirement of parameterisation equivariane.A on�dene interval for ψ with approximate level (1 − α) based on r∗p is givenby (ψ∗

1 , ψ
∗

2), with ψ∗

1 and ψ∗

2 solutions in ψ of the equations r∗p(ψ) = z1−α/2 and
r∗p(ψ) = zα/2, respetively. Hene, a 100(1 − α)% on�dene interval for ψ based on
r∗p is {ψ : |r∗p(ψ)| ≤ z1−α/2

}.The modi�ed direted likelihood r∗p an also be used to derive a point estimatorfor ψ that improves the small sample properties of ψ̂, respeting the requirementof parameterisation equivariane. As the MLE ψ̂ an be seen as the solution of anestimating equation based on rp, also the modi�ed direted likelihood r∗p an be usedto de�ne an estimating equation, following Pae and Salvan [23℄ and Giummolé andVentura [24℄. More preisely, the modi�ed direted likelihood (6) gives rise to asimple estimating equation of the form
r∗p(ψ) = 0 . (7)A numerial proedure is usually required in order to solve (7). The existene anduniqueness of the solution, denoted by ψ̂∗, is asymptotially guaranteed, at least ina neighborhood of ψ̂. The estimator ψ̂∗ is a re�nement of ψ̂, with the estimatingequation (7) giving impliitly a higher-order orretion to the MLE. In view of theproperties of r∗p, the estimating equation (7) is mean unbiased as well as medianunbiased at the third-order of auray. The median unbiasedness property also holdsfor the orresponding estimator ψ̂∗, under the ondition that the estimating equationis a monotone funtion of the parameter of interest. Moreover, sine r∗p is invariantunder interest respeting reparameterisations, ψ̂∗ is an equivariant estimator of ψ.Several numerial investigations [23, 24℄ show that the estimators based on r∗p improveon the MLE.The proposed higher�order proedures for inferene about the AUC parameter

A an be summarized into the following steps:1. alulation of the AUC A = A(θ) as a funtion of θ, with θ = (θ1, θ2);2. alulation of the likelihood ℓ(ψ, λ) with ψ = A and λ nuisane parameter;3. omputation of r∗p(ψ) for a range of values around the MLE;4. interpolation of the points r∗p(ψ) by a smoothing method;5. invert the interpolating funtion and �nd the orresponding values in z1−α/2and zα/2 to obtain a 100(1 − α)% on�dene interval (ψ∗

1 , ψ
∗

2) as solution tothe equations r∗p(ψ) = z1−α/2 and r∗p(ψ) = zα/2, respetively, or6. invert the interpolating funtion and �nd the orresponding values in 0 toobtain a point estimate ψ̂∗ as solution to r∗p(ψ) = 0.It is important to note that the proposed proedures an be easily implementedin pratie for many ommonly used statistial models using modern statistial en-vironments, suh as R (http://www.r-projet.org/). An illustration of how steps4�6 an be implemented with R is given in Appendix B.



Setion 4 Examples and simulation studies 74 Examples and simulation studiesIn this setion the onstrution of on�dene intervals and point estimators for Abased on the modi�ed direted likelihood r∗p is illustrated for two examples. The �rstexample is about the simple situation where both the measurements of the markeron non-diseased and diseased patients, X1 and X2, are exponentially distributed,whereas in the seond example they are supposed to be independent gaussian vari-ables. Both these statistial models are members of the exponential family and inthis ase the r∗p statisti is simple to ompute sine ℓ(θ;x1, x2) = ℓ(θ; θ̂). This meansthat the MLE θ̂ is the su�ient statisti based on the sample and the likelihood anbe written as a funtion of θ̂ only.For both the examples numerial studies are onsidered to investigate the per-formane of r∗p for the onstrution of both on�dene intervals and point estimatorsfor A.The urrent setion is supplemented by Appendix A, where the main formulas arereported, and Appendix B, where a pakage of funtions written with the R softwareis illustrated. The R pakage is available online at the webpage http://homes.stat.unipd.it/gortese and an be used for the analyses of the AUC and ROC urvesunder a parametri setting. Continuous diagnosti markers an be assumed to beexponentially or normally distributed with either equal or di�erent varianes. Notethat in the following, for the sake of simpliity, the seond example onerns the asewhere Gaussian models have equal varianes. Analyses of more general exampleswith unequal varianes an also be performed by using the R funtions given inAppendix B.4.1 Exponential distributionAssume that X1 and X2 are independent and distributed as exponential randomvariables with parameters α and β, respetively, i.e. X1 ∼ Exp(α) and X2 ∼
Exp(β). Let x1 = (x11, . . . , x1n1

) be a random sample of size n1 from X1 and
x2 = (x21, . . . , x2n2

) a random sample of size n2 from X2. Moreover, it is assumedthat the ratio of the sample sizes n1/n2 onverges to some �nite positive onstantas n1 and n2 diverge. Under these assumptions, the probability A representing theAUC an be written as
A = A(θ) =

E(X1)

E(X1) + E(X2)
=

α

α+ β
, (8)with θ = (α, β).For �rst�order and higher�order likelihood inferene on A, it is onvenient toreparameterize the log�likelihood funtion ℓ(θ) so that θ = (ψ, λ), where ψ = α/(α+

β) = A is the salar parameter of interest and λ = α + β is the salar nuisaneparameter. In this situation, standard likelihood based inferene proedures for theparameter A are easy to perform [6℄. For example, for the invariane property, theMLEs for ψ and λ are ψ̂ = α̂/(β̂ + α̂) and λ̂ = α̂ + β̂, respetively, with the MLEsof α and β given by α̂ = n1/
∑

x1i and β̂ = n2/
∑

x2i, respetively.



8 Giuliana Cortese, Laura VenturaFirst�order inferene about the parameter of interest ψ may be based on theWald statisti
wp = (ψ̂ − ψ)

√

n1n2/
(

nψ̂2(1 − ψ̂)2
)

,or on the direted likelihood rp given in (4) with
ℓp(ψ) = n log λ̂ψ + n1 logψ + n2 log(1 − ψ) , (9)where n = n1 + n2 and λ̂ψ = nλ̂/

(

n1ψ

ψ̂
+ n2(1−ψ)

(1−ψ̂)

).For higher�order inferene, the modi�ed direted likelihood r∗p an be omputed.Under the exponential model, omputation of r∗p an follow the formula given in (6)whih requires omputation of the adjustment term q. Straightforward alulationslead to
q =

(

n1(1 − ψ̂) − n2ψ̂ + n
n2ψ̂

2(1 − ψ) − n1ψ(1 − ψ̂)2

n1ψ(1 − ψ̂) + n2ψ̂(1 − ψ)

)

√

n

n1n2
. (10)The statistial auray of the modi�ed direted likelihood r∗p under the expo-nential model is illustrated through a simulation study, based on 5000 Monte Carlotrials. The performane of r∗p is ompared with the lassial proedures, i.e. the di-reted likelihood rp and the Wald statisti wp. The numerial study was arried outby �xing the parameter α and determining β so that A = ψ = α/(α + β) = 0.5, fordi�erent ombinations of sample sizes (n1, n2). The simulation study was repeatedfor ψ = 0.8 and ψ = 0.95. Table 1 reports empirial overages for the equitailedon�dene intervals for A with nominal levels 90% and 95%. These intervals wereobtained, for wp and rp, on the basis of the normal approximation to their distribu-tion as mentioned in Setion 2, and for r∗p, by using the step proedure desribed inSetion 3.For the example of independently exponentially distributed X1 and X2, resultsin Table 1 show that on�dene intervals based on r∗p and rp have a onsiderableimprovement in the two-sided overage auray as ompared to on�dene intervalsbased on the Wald statisti wp. Moreover, in all ases there is evidene of a strongasymmetry in the on�dene intervals for ψ based on the Wald statisti, due todi�erent non-overage probabilities for the left and right tails, in ontrast to theequitailed results based on r∗p. Furthermore, the results in Table 1 tell that, in thisexample, on�dene intervals derived from rp and r∗p have mean overage very loseto the nominal value, but r∗p is more aurate than rp in partiular when the samplesizes n1 and n2 are small and in the overage probabilities for the left and right tails.4.2 Gaussian distributionLet us assume that X1 and X2 are independent Gaussian random variables, withequal varianes, that is X1 ∼ N(µ1, σ

2) and X2 ∼ N(µ2, σ
2). This is a typialsetting ommonly used in the literature on ROC urves, two samples omparisonsand stress-strength models.



Setion 4 Examples and simulation studies 9
ψ = 0.5 ψ = 0.8 ψ = 0.95

(α = β = 1) (α = 1, β = 0.25) (α = 1, β = 0.05)

(n1, n2) statisti 90% 95% 90% 95% 90% 95%(3,3) wp 0.792 0.842 0.807 0.857 0.839 0.865(0.099,0.109) (0.077,0.081) (0.150,0.043) (0.116,0.026) (0.156,0.005) (0.133,0.003)
rp 0.885 0.937 0.886 0.936 0.881 0.939(0.063,0.053) (0.031,0.032) (0.056,0.057) (0.031,0.033) (0.056,0.062) (0.030,0.031)
r∗
p

0.901 0.951 0.901 0.947 0.897 0.949(0.054,0.045) (0.022,0.027) (0.050,0.049) (0.025,0.028) (0.049,0.054) (0.025,0.026)(5,5) wp 0.829 0.874 0.848 0.893 0.864 0.896(0.082,0.089) (0.064,0.062) (0.116,0.035) (0.089,0.018) (0.132,0.003) (0.104,0.001)
rp 0.890 0.937 0.890 0.945 0.890 0.942(0.056,0.054) (0.031,0.032) (0.058,0.052) (0.030,0.025) (0.056,0.053) (0.030,0.028)
r∗
p

0.898 0.944 0.899 0.952 0.900 0.948(0.052,0.050) (0.027,0.029) (0.054,0.047) (0.027,0.021) (0.051,0.049) (0.026,0.025)(10,10) wp 0.864 0.917 0.863 0.916 0.879 0.919(0.064,0.071) (0.042,0.040) (0.105,0.031) (0.070,0.013) (0.113,0.008) (0.081,0.001)
rp 0.894 0.946 0.893 0.945 0.893 0.947(0.056,0.050) (0.026,0.027) (0.053,0.054) (0.026,0.029) (0.052,0.054) (0.026,0.027)
r∗ 0.899 0.950 0.898 0.949 0.901 0.951(0.053,0.048) (0.025,0.025) (0.051,0.051) (0.024,0.027) (0.050,0.049) (0.024,0.025)(30,30) wp 0.882 0.933 0.893 0.935 0.898 0.938(0.059,0.059) (0.033,0.034) (0.068,0.039) (0.049,0.016) (0.083,0.020) (0.056,0.006)
rp 0.891 0.947 0.892 0.946 0.896 0.948(0.054,0.055) (0.026,0.027) (0.063,0.045) (0.029,0.024) (0.051,0.052) (0.028,0.024)
r∗
p

0.892 0.949 0.894 0.949 0.898 0.950(0.053,0.055) (0.025,0.027) (0.062,0.044) (0.029,0.023) (0.050,0.051) (0.027,0.024)Table 1: Two-sided empirial overage of equitailed on�dene intervals with 90%and 95% nominal levels for A, under the exponential assumption. The values inbrakets are the non-overage probabilities on the left and right tail, expressing thelower and upper errors, respetively.In this situation, the entire parameter θ is given by θ = (µ1, µ2, σ
2) and the AUCan be written as [6℄

A = A(θ) = Φ

(

µ2 − µ1√
2σ2

)

, (11)where Φ(·) is the standard normal umulative distribution funtion. Let x1 =
(x11, . . . , x1n1

) be a random sample of size n1 from X1 and x2 = (x21, . . . , x2n2
)a random sample of size n2 from X2. By the invariane property, the MLE of A is

Â = A(θ̂) = Φ

(

µ̂2 − µ̂1√
2σ̂2

)

, (12)where µ̂1 =
∑

x1i/n1, µ̂2 =
∑

x2i/n2 and σ̂2 = (1/n)(
∑

(x1i− µ̂1)
2 +
∑

(x2i− µ̂2)
2)are the MLEs of µ1, µ2 and σ2, respetively.Standard �rst�order inferene on A an be based on the standard normal approx-imation to wp and rp, with log�likelihood funtion ℓ(θ) reparametrized to θ = (ψ, λ).



10 Giuliana Cortese, Laura VenturaThe parameter of interest is ψ = A given in (11) and the nuisane parameter is setto be λ = (λ1, λ2) = (µ1/
√

2σ2,
√

2σ2). Note that other hoies for λ are possibleand they would lead to the same results. Computation of the Wald statisti in (3)requires that the pro�le observed information is obtained from the identity in (2)(an expliit expression is given in Appendix A). The direted likelihood rp is givenby (4) with
ℓp(ψ) = −n

(

log λ̃2 +
λ̂2

2

2λ̃2
2

)

− 1

λ̃2
2

[

n2

(

D(θ̂ψ) −D(θ̂)
)2

+ n1

(

λ̃1λ̃2 − λ̂1λ̂2

)2
]

,(13)where D(θ) = (Φ−1(ψ)λ2 + λ1λ2) and λ̂ψ = (λ̃1, λ̃2) is obtained by numerial proe-dures.For higher�order inferene, omputation of the modi�ed direted likelihood r∗pis straightforward, although more laborious expressions are obtained for omputingthe orretion term q (see Appendix A). For this reason, in order to help the readerin applying the r∗p for the AUC, diret implementation of the formulas by using theR software is provided in Appendix B.As in the previous example (see Subsetion 4.1), the auray of r∗p is illustratedthrough a simulation study, based on 5000 Monte Carlo trials. Table 2 reports empir-ial overages for the equitailed on�dene intervals for A for di�erent ombinationsof sample sizes (n1, n2) and di�erent values of ψ. Results in Table 2 show that r∗pis more aurate than rp when the sample sizes n1 and n2 are small, in terms ofboth entral overage probability and the symmetry of error rates. It is also to notethat on�dene intervals based on r∗p and rp have a onsiderable improvement in thetwo-sided overage auray as ompared to on�dene intervals based on the Waldstatisti wp.We used also simulation studies to evaluate the properties of the r∗p-based esti-mator of A, ψ̂∗, in omparison with the MLE ψ̂. The two estimators are omparedin terms of median bias and results are shown in Table 3. Estimated standard errorsof median bias are given in parentheses. It an be noted that the estimator ψ̂∗ ispreferable to the MLE in terms of the onsidered riteria, sine it is less median-biased than the MLE, in partiular for high values of ψ and small sample sizes. Inpartiular, from the table we observe that the estimator ψ̂∗ performs better for valuesof ψ equal to or higher than 0.8, espeially when the sample sizes are lower or equalto 20. The hoie of the median-bias as a omparison riteria is due to the fat thatthe median unbiasedness property holds for the r∗p-based estimator, whih is morerobust under model misspei�ations. For the previous example about exponentialmodel assumptions, simulation studies for point estimates were not reported in thepaper, sine onlusions were very similar to those given for the Gaussian model,and ψ̂∗ and ψ̂ di�er only slightly in the median biases.5 Data examplesTwo real-life data examples are illustrated in the following. Both the datasets onsistof samples with small sizes. For the �rst example an exponential model is assumed,
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ψ = 0.5 ψ = 0.8 ψ = 0.95

(µ1 = µ2 = 5, σ = 1) (µ1 = 5, µ2 = 6.55, σ = 1.3) (µ1 = 5, µ2 = 8.5, σ = 1.5)

(n1, n2) statisti 90% 95% 90% 95% 90% 95%(5,5) wp 0.781 0.833 0.735 0.790 0.663 0.685(0.101,0.118) (0.082,0.085) (0.030,0.235) (0.016,0.194) (0.003,0.334) (0.001,0.314)
rp 0.843 0.911 0.841 0.911 0.835 0.899(0.071,0.085) (0.045,0.044) (0.041,0.118) (0.025,0.064) (0.031,0.134) (0.018,0.083)
r∗
p

0.898 0.945 0.898 0.950 0.897 0.950(0.047,0.056) (0.028,0.027) (0.043,0.059) (0.024,0.027) (0.050,0.053) (0.025,0.026)(10,10) wp 0.845 0.895 0.819 0.862 0.764 0.802(0.076,0.079) (0.056,0.049) (0.026,0.155) (0.013,0.125) (0.004,0.232) (0.001,0.197)
rp 0.877 0.933 0.880 0.930 0.870 0.932(0.061,0.061) (0.035,0.032) (0.043,0.076) (0.024,0.047) (0.040,0.090) (0.015,0.053)
r∗
p

0.900 0.951 0.900 0.944 0.888 0.951(0.051,0.048) (0.027,0.023) (0.053,0.047) (0.027,0.029) (0.062,0.050) (0.024,0.026)(20,20) wp 0.863 0.922 0.859 0.909 0.812 0.922(0.065,0.071) (0.040,0.038) (0.028,0.113) (0.011,0.080) (0.009,0.180) (0.040,0.038)
rp 0.882 0.940 0.890 0.945 0.886 0.940(0.056,0.062) (0.030,0.030) (0.042,0.068) (0.020,0.035) (0.034,0.080) (0.030,0.030)
r∗
p

0.895 0.950 0.903 0.951 0.901 0.948(0.050,0.056) (0.027,0.025) (0.048,0.048) (0.024,0.025) (0.049,0.050) (0.027,0.025)(30,30) wp 0.886 0.930 0.867 0.926 0.844 0.892(0.063,0.051) (0.035,0.035) (0.025,0.108) (0.013,0.061) (0.011,0.145) (0.003,0.105)
rp 0.893 0.941 0.892 0.944 0.886 0.945(0.059,0.047) (0.029,0.030) (0.038,0.070) (0.022,0.034) (0.042,0.071) (0.020,0.034)
r∗
p

0.900 0.947 0.899 0.951 0.89 0.950(0.055,0.044) (0.025,0.027) (0.044,0.057) (0.024,0.024) (0.055,0.055) (0.025,0.026)Table 2: Two-sided empirial overage of equitailed on�dene intervals with 90%and 95% nominal levels for A, under the normal assumption. The values in braketsare the non-overage probabilities on the left and right tail, expressing the lower andupper errors, respetively.
(n1, n2) estimator ψ = 0.5 ψ = 0.8 ψ = 0.95BI BI BI(5,5) ψ̂ 0.0003 (0.194) 0.035 (0.138) 0.022 (0.042)

ψ̂∗ -0.0003 (0.186) 0.003 (0.134) 0.001 (0.046)(10,10) ψ̂ -0.005 (0.134) 0.015 (0.100) 0.012 (0.042)
ψ̂∗ -0.005 (0.131) -0.001 (0.098) 0.002 (0.046)(20,20) ψ̂ 0.007 (0.096) 0.013 (0.066) 0.005 (0.029)
ψ̂∗ 0.006 (0.094) 0.005 (0.065) 0.0001 (0.031)(30,30) ψ̂ 0.005 (0.072) 0.006 (0.055) 0.003 (0.024)
ψ̂∗ 0.005 (0.071) 0.001 (0.055) 0.0001 (0.025)Table 3: Empirial median biases (BI) and estimated standard errors (in parentheses)of the r∗p-based estimator, ψ̂∗, and the MLE ψ̂ for the AUC parameter A, under theGaussian model.



12 Giuliana Cortese, Laura Venturawhile the seond example is studied under the assumption of normally distributedvariables.5.1 ALCL lymphomaThe dataset about ALCL lymphoma is part of a retrospetive study on the anaplastilarge ell lymphoma arried out by the Clini of Pediatri Hematology Onology,University of Padova, Italy. The anaplasti large ell lymphoma is a rare anerdisease whih a�ets both hildren and adults. The aim of the study was to assess therole of the Hsp70 protein in assoiation with the ALCL lymphoma. Diseased patientsseem to have higher Hsp70 levels than healthy subjets. It is known that Hsp70 anindue the development of pathologial states suh as onogenesis ([25℄). Moreover,exessive Hsp70 protein levels in diseased patients seem to limit the e�ay of thehemotherapy treatment. Thus, Hsp70 protein levels an be studied as a biomarkerfor deteting early ALCL lymphoma and therefore, its e�etiveness in diagnosingthe disease was evaluated by the AUC approah. The interest was also to interpretthe AUC as the probability that the Hsp70 protein level is higher in ALCL anerpatients than in healthy individuals.The data onsist of a small sample: 10 patients with ALCL lymphoma in thegroup of 'ases' and 4 healthy subjets in the group of 'ontrols'. Hsp70 protein levelwas reorded on a ontinuous sale for eah individual. Two independent exponentialrandom variables, X1 ∼ exp(α) and X2 ∼ exp(α), were assumed for the proteinlevel in aner patients and in non-diseased subjets, respetively. Results froma Kolmogorov-Smirnov nonparametri test supported the hoie of an exponentialmodel assumption for these data (p = 0.865 and p = 0.846), although this onlusionmay be instable due to the onsidered small sample sizes.The two protein level samples result to have both di�erent means (equal to 0.23and 1.44 in the ontrols and ases, respetively) and varianes, as observed in Figure1 (a). Therefore, under the exponential model, the MLE for the exponential parame-ters, α̂ = 4.25 and β̂ = 0.70, are substantially di�erent in the two samples, suggestingthus a high value of the AUC. Con�dene intervals (CI) for the AUC based on theWald, rp and r∗p statistis are reported in Table 4 together with the MLE and the r∗p-based point estimate for the AUC. These values have been obtained by applying thetheory desribed in Subsetion 4.1, and thus by inverting the interpolating funtions
rp and r∗p shown in Figure 1 (b). Horizontal and vertial lines in the plot identifythe interpolation points on the urves and the orresponding ψ values for the CIsand point estimates, as explained in the step proedure in Setion 3. Table 4 reportsthat the estimated probability that a aner patient has higher Hsp70 protein levelthan a healthy patient is about 0.85. This value may also suggest a su�iently highe�etiveness of the protein level in early deteting ALCL patients. Results aboutCIs in Table 4 do not di�er substantially, as point estimates neither. Nevertheless,it is possible to note that the upper bound of the Wald CI (0.89) is lower than the
rp- and r∗p-based CIs (0.95). Moreover r∗p-based CI seems to be more protetive inestimating the auray of the protein level biomarker, sine its lower bound (0.60)is further below the lower bound of the rp-based CI (0.62) (see Table 4).
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Figure 1: Panel (a): Boxplot of Hsp70 protein levels in ases and ontrols subjets.Panel (b): Plot of rp (thik solid line) and r∗p (thik dashed line) statistis for arange of values of the parameter ψ. The upper and lower horizontal lines are drawnto show the di�erene in on�dene intervals based on the two statistis, while theentral horizontal line identi�es point estimates of the AUC.ALCL lymphoma Abdominal aorti aneurysmCon�dene intervalsWald (0.719, 0.999) (0.897, 0.994)
rp (0.626, 0.948) (0.794, 0.992)
r∗
p

(0.605, 0.947) (0.764, 0.989)Point estimatesMLE 0.859 0.950
r∗
p

0.853 0.933Table 4: Point estimates and 95% on�dene intervals for the AUC in the real dataexamples on ALCL lymphoma and abdominal aorti aneurysm.5.2 Abdominal aorti aneurysmThe abdominal aorti aneurysm is a loalized blood-�lled dilation of the abdominalaorta. Aurate measurements of the diameter of the aneurysm are essential forsreening and in assessing the seriousness of the disease. Surgial intervention isplanned when the aneurysm diameter exeeds a ertain threshold, often �xed at 5m, sine it is known that the risk of aneurysm rupture inreases as the size beomeslarger, ausing death. For deision making about interventions, it is thus importantthat the available measurements instruments are very aurate and provide the atualdiameter values.



14 Giuliana Cortese, Laura VenturaThe aneurysm study onsidered two groups of patients who have been lassi�edwith low (L) and high (H) rupture risk, that is with small and large aneurysm di-ameter, by using a gold standard measurement instrument (omputed tomography).The dataset onsists of measurements of the diameter aneurysm on the two groupsof patients obtained by a newer instrument based on ultrasounds (US). The aimof the study was to evaluate the diagnosti auray of this latter instrument indisriminating between patients with low and high rupture risk.Two samples of US measurements with small sizes n1 = n2 = 10 were obtainedfrom the L and H groups. It was assumed that US measurements were distributed inthe two groups as normal variables with di�erent means and equal varianes. Thislast hypothesis was supported by the boxplots in Figure 2 (a) showing a similarvariability for the two samples, and veri�ed by the F-test (p = 0.641).In this example, on�dene intervals (CI) and point estimates for the AUC basedon the Wald, rp and r∗p statistis were found by applying the theory in Subsetion4.2, and omputed from the step proedure desribed in Setion 3. Estimates arerepresented graphially in Figure 2 (b), where the interpolating funtions rp and r∗pare inverted analogously to the previous example about ALCL data.The MLEs of the parameters of the Gaussian distributions were µ̂1 = 4, µ̂2 = 6and σ̂2 = 0.78. The MLE of A (ψ̂ = 0.95) was higher than the r∗p-based estimate(ψ̂∗ = 0.93). The Wald CI was also found to di�er from the rp- and r∗p-based CIssubstantially, espeially in the lower bounds. The rp- and r∗p-based CIs were foundto be similar, although the r∗p-based CI is slightly shifted to the left. In summary, inthis example the use of the r∗p statisti seems to yield more protetive results aboutthe auray of US measurements with respets to the other lassial proedures.
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Figure 2: Panel (a): Boxplot of the sample distributions of L and H groups. Panel(b): Plot of rp (thik solid line) and r∗p (thik dashed line) for a range of values of theparameter ψ. Horizontal lines are drawn to identify on�dene intervals and pointestimates of the AUC based on the two statistis.
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Figure 3: Area under the estimated ROC urves orresponding to the MLEs (solidline) and to the r∗p-based estimates (dashed line).
Given the MLEs for the parameters of the two Gaussian distribution of X1 and

X2, it is possible to draw the orresponding estimated ROC urve. This is possiblesine spei�ity and sensitivity are evaluated as P (X1 < t) and P (X2 > t), respe-tively, and thus they an be estimated as FX1
(t; µ̂1, σ̂

2) and (1 − FX2
(t; µ̂2, σ̂

2)),respetively, for eah ut-o� point t. The resulting urve, represented in Figure 3with a solid line, suggests values of sensitivity nearly equal to 1 in orrespondeneof desired high values of spei�ity, although presene of high variability is to be a-ounted. In our example, this fat means that the US instrument is highly aurateand has very low error rates.The ROC urve an also be estimated by means of the r∗p statisti. Estimatesof the original parameters (µ1, µ2, σ
2) were obtained from the onstrained estimate

λ̂ψ̂∗
, given in (13), omputed for ψ = ψ̂∗. The resulting estimates θ̂∗ = (µ̂∗1, µ̂

∗

2, (σ̂
2)∗)were then used to evaluate sensitivity and spei�ity via the umulative distributionfuntions as done before with the MLEs. The resulting ROC urve is shown in Figure3 with a dashed line. By omparing the r∗p-based ROC urve with the ROC urveestimated from the MLEs, a non-negligible disrepany is noted. From the upperurve based on MLEs a slight overestimation of sensitivity values is observed for�xed spei�ities, when ompared with the more aurate ROC estimate based on

r∗p.



16 Giuliana Cortese, Laura Ventura6 DisussionThe proposal disussed in this paper is entered on general distributional assumptionson both X1 and X2. Two examples have been presented in the ontext of exponentialand gaussian model assumptions, and we pointed out, in ase of small sample sizes,the improved auray of on�dene intervals for the AUC when they are based onthe modi�ed direted likelihood r∗p. The simple statisti rp, as ompared with thelassial Wald statisti, yields also to more aurate inferential results both for smalland large sample sizes. Our onlusions are in agreement with the simulation resultsgiven by Jiang and Wong [26℄.The method we propose in this paper an be extended to more omplex models.In partiular, expression (6) requires determination of the sample spae derivatives
ℓ;θ̂, whih may be di�ult sine it is neessary to write expliitly the anillary statisti
a of the model. [GIVE SOME EXAMPLES℄. In ases where a is not expliitlyavailable (see examples disussed in [24℄), there exist alternative versions of themodi�ed direted likelihood whih to some extent share several properties of (6). Inpartiular, an approximation to r∗p may be derived by replaing the various samplespae derivatives with suitable approximations based on ovarianes of the sorefuntion and the log�likelihood and by their derivatives [27, 18℄.The problem presented in the urrent paper might be extended to inlude linearregression models by assuming that the mean of X1 and X2 depend on some ovari-ates [28, 29℄. When the interest is only on the AUC, this situation would lead toaounting for more nuisane parameters, and appliation of higher-order likelihoodproedures, whih adjust for that, might signi�antly improve inferene in terms ofpreision.Higher�order proedures have been presented for omplete data. However, itwould be of interest to extend our proposal to trunated or ensored data, in orderto investigate the gain given by these inferential proedures in presene of suhinomplete information.A �nal point may onern the extension of the problem to the partial area underthe ROC urve, when only a restrited range of spei�ity values are of relevantinterest.Appendix AIn the example about the Gaussian distribution desribed in Subsetion 4.2, in or-der to ompute the Wald and the r∗p statistis, the pro�le observed information isobtained from (2). Its expression is

jp(ψ̂) =
Â

(n λ̂2)2 + n1 n2 (λ̂1λ̂2 − D(θ̂))2
, (14)where Â = 2nn1n2λ̂

2
2d̂

2, with d̂ = ∂Φ−1(ψ̂)/∂ψ̂ = 1/φ(Φ−1(ψ̂)) and φ(·) standardnormal probability density funtion.In the same example, for omputing the adjustment term q of the r∗p statisti,



Setion 6 Disussion 17given in (6), we have
|ℓλ;λ̂(θ̂ψ)|

(|j(θ̂)||jλλ(θ̂ψ)|)1/2
=

2λ̂2
2

(

2n1n2B̂
2 + (nλ̂2)

2 + n1n2B̂(λ̃1λ̃2 −D(θ̂ψ))
)

λ̃2
2

(

Â (12n1n2B̂2 + 8Ĉ2 − 2n2(λ̃2
2 − 3λ̂2

2) − 8nĈ)
)1/2

,with B̂ = λ̂1λ̂2−D(θ̂), Ĉ = n1λ̂1λ̂2+n2D(θ̂) and F̂ = n1λ̃1λ̃2λ̂1λ̂2+n2D(θ̂)D(θ̂ψ).The remaining terms in q are diretly omputed in the R software, as shown inAppendix B.Appendix BWe present the R ode for the AUC and ROC urves analyses under a parametrisetting. Continuous markers an be assumed as exponential variables or Gausssianvariables with either equal or di�erent varianes. The R pakage AROC an be down-loaded at http://homes.stat.unipd.it/gortese.The two data sets from the healthy and diseased populations, respetively, arealled xdata and ydata. MLEs for φ and λ, the nuisane parameter, an be obtainedfrom the following odeMLEs(xdata,ydata,distr),where distr an be set equal to either "exp", "norm_EV" or "norm_DV", aordingas the distributions assumed for the ontinuous markers are exponential or Gaussianwith equal or unequal varianes, respetively. The loglikelihood an be omputed fora given set of values of ψ and λ by means of the funtionloglik(xdata,ydata,lambda,psi,distr),where lambda and psi are, respetively, the nuisane parameter λ and the param-eter of interest ψ meaning the area under the ROC urve. For the ase of Gaussiandistributions with di�erent varianes the following simpler reparameterisation hasbeen used:
ψ = A(θ)) = Φ

(

µ2 − µ1
√

σ2
1 + σ2

2

)

, λ = (λ1, λ2, λ3) = (µ1, σ
2
1 , σ

2
2) ,with σ2

1, σ2
2 varianes of the Gaussian variables X1 and X2, respetively.Point estimates and on�dene intervals for the AUC are obtained by using theR funtion aro as follows:aro(xdata,ydata,distr,method,level),where the argument method, set to be equal to either "Wald", "RP" or "RPstar",allows to hoose on�dene intervals based on the Wald, rp or r∗p statisti, respetively(eq. (3) and (4) and Setion 3). When the methods "Wald" or "RP" are seleted,point estimate for ψ orresponds to the MLE, while the method "RPstar" yields the

r∗p-based point estimate for ψ as presented in Setion 3. The on�dene level (1−α)an be deided by setting level = α.



18 REFERENCESThe Wald, rp and r∗p statistis an also be omputed for a given value of ψ byapplying, respetively, the R funtionsw=wald(xdat,ydat,psi,distr),r=rp(xdat,ydat,psi,distr),r_star=rpstar(xdat,ydat,psi,distr).The steps 4�6, given at the end of Setion 3, for appliation of the higher-orderproedures based on the signed log-likelihood ratio statisti r∗p, an be implementedby means of the following R ommands:smoother = smooth.spline(V.r_star,r_star.range)psi1 = predit(smoother,z1)$ypsi2 = predit(smoother,z2)$yhatpsi = predit(smoother,0)$ywhere V.r_star is the vetor of values of r∗p alulated by applying the R funtionrpstar ripetutivaly on an appropriate range r_star.range of values of ψ, psi1and psi2 are the limits ψ∗

1 and ψ∗

2 of the on�dene interval orresponding to theperentiles z1= z1−α/2 and z2= zα/2, and hatpsi is the point estimate ψ̂∗.Referenes[1℄ Zweig MH, Campbell G. Reeiver-operating harateristi (ROC) plots: a funda-mental evaluation tool in linial mediine. Clinial Chemistry 1993; 39:561�577.[2℄ Zhou XH, Obuhowski NA, MClish DK. Statistial Methods in DiagnostiMediine. Wiley & Sons: New York, , 2002.[3℄ Bamber D. The area above the ordinal dominane graph and the area belowthe reeiver operating harateristi graph. J. Mathematial Psyology 1975; 12:387�415.[4℄ Wolfe DA, Hogg RV. On onstruting statistis and reporting data. The AmerianStatistiian 1971; 25:27�30.[5℄ Hanley JA. Reeiver operating harateristi (ROC) methodology: the state ofthe art. Critial Reviews in Diagnosti Imaging 1989; 29: 307�335.[6℄ Kotz S, Lumelskii Y, Pensky M. The Stress-Strength Model and its Generaliza-tions. Theory and Appliations. World Sienti�: Singapore, 2003.[7℄ Pepe MS. The statistial evaluation of medial tests for lassi�ation and predi-tion. Oxford University Press: Oxford, 2003.[8℄ Tong H. On the estimation of Pr{Y < X} for exponential families. IEEE Trans-ations on Reliability 1977; 26:54�56.[9℄ Metz CE, Herman BA, Shen J-H. Maximum-likelihood estimation of ROC urvesfrom ontinuously-distributed data. Statistis in Mediine 1998; 17: 1033�1053.



REFERENCES 19[10℄ Adimari G, Chiogna M. Partially parametri interval estimation of Pr(Y > X).Computational Statistis and Data Analysis 2006; 51: 1875�1891.[11℄ Mann HB, Whitney DR. On a test whether one of two random variables isstohastially larger than the other. Annals of Mathematial Statistis 1947; 18:50�60.[12℄ Qin GS, Zhou XH. Empirial likelihood inferene for the area under the ROCurve. Biometris 2006; 62: 613�622.[13℄ Reiser B, Faraggi D. Con�dene intervals for the generalized ROC riterion.Biometris 1997; 53: 644-652.[14℄ Qin G, Hotilova L. Comparison of non-parametri on�dene intervals for thearea under the ROC urve of a ontinuous-sale diagnosti test. Statistial Meth-ods in Medial Researh 2008; 17: 207�221.[15℄ Obuhoski NA, Lieber ML. Con�dene intervals for the reeiver operating har-ateristi area in studies with small samples. Aademi Radiology 1998; 5: 561�71.[16℄ Newombe RG. Con�dene intervals for an e�et size measure based on theMann-Whitney statisti. Part 2: Asymptoti methods and evaluation. Statistisin Mediine 2006; 25: 559�573.[17℄ Zhou W. Statistial inferene for P (X < Y ). Statistis in Mediine 2008;27:257�279.[18℄ Severini TA. Likelihood Methods in Statistis. Oxford University Press: NewYork, 2000.[19℄ Brazzale AR, Davison AC, Reid N. Applied Asymptotis. Case-Studies in SmallSample Statistis. Cambridge University Press: Cambridge, 2007.[20℄ Newombe RG. Two-sided on�dene intervals for the single proportion: om-parison of seven methods. Statistis in Mediine 1998; 17: 857�872.[21℄ Barndor�-Nielsen OE, Cox DR. Inferene and Asymptotis. Chapman and Hall:London, 1994.[22℄ Pae L, Salvan A. Priniples of Statistial Inferene. World Sienti�: Singapore,1997.[23℄ Pae L, Salvan A. Point estimation based on on�dene intervals. Journal ofStatistial Computation and Simulation 1999; 64: 1�21.[24℄ Giummolé F, Ventura L. Pratial point estimation from higher-order pivots.Journal of Statistial Computation and Simulation 2002; 72: 419�430.[25℄ Mayer MP,Bukau B. Hsp70 haperones: ellular funtions and moleular meh-anism. Cellular and Moleular Life Sienes 2005; 62: 670�84.



20 REFERENCES[26℄ Jiang L, Wong ACM. A note on inferene for P (X < Y ) for right trunatedexponentially distributed data. Statistial Papers 2008; 49: 637�651.[27℄ Severini TA. An empirial adjustment to the likelihood ratio statisti.Biometrika 1999; 86:235�247.[28℄ Guttman I, Johnson RA, Bhattaharyya GK, Reiser B. Con�dene limits forstress-strength models with explanatory variables. Tehnometris 1988; 30: 161�168.[29℄ Shisterman EF, Faraggi D, Reiser B. Adjusting the generalized ROC urve forovariates. Statistis in Mediine 2004; 23: 3319�3331.



Working Paper SeriesDepartment of Statistial Sienes, University of PaduaYou may order paper opies of the working papers by emailing wp�stat.unipd.itMost of the working papers an also be found at the following url: http://wp.stat.unipd.it


