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1 Introduction

The analysis of gene expression microarray data using clustering techniques plays
an important role, for instance, in the discovery, validation, and understanding of
various classes and subclasses of cancer. Three main types of statistical problems
arise in classification of cancer samples in a microarray experiment (Dudoit et al.,
2002): (a) identification of new classes using gene expression profiles (cluster anal-
ysis/unsupervised learning); (b) classification of samples into known classes (dis-
criminant analysis/supervised learning); (c) identification of “marker” genes which
characterize the difference among the classes (variable selection). For a recent review
of clustering techniques for gene expression data, see Kerr et al. (2008).

In this paper, we present a method to handle simultaneously problems (a) and (c)
previously mentioned. In particular, we discuss an application of pdfClust (Azzalini
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& Torelli, 2007) to microarray data. We compare it with the traditional algorithms,
such as k-means algorithm and its direct competitor, Mclust (Fraley & Raftery,
2002, 2006), a state-of-the-art mixture-model-based clustering tool. We follow the
strategy presented in McLachlan et al. (2002), which consists on a data dimensional
reduction in order to focus on most significant dimensions. We modify their method
by using a nonparametric approach, achieving improvements in clustering of samples
both in simulated and in real experiments.

The paper is organized as follows. In Section 2, we present the novel algorithm
to clustering of microarray data. In Section 3, we describe two simulation models,
while in Section 4 we present two real experiments. Section 5 contains the results
based on simulated and real data. Finally, some conclusions are given in Section 6.

2 A novel algorithm to clustering of expression data

In recent years, the improvement of computational resources has enabled to pursue
new clustering techniques, or to develop ideas putted aside due to computational
problems. In this context, Azzalini & Torelli (2007) propose a method, called pdf-

Clust, based on a nonparametric estimate of the underlying density function (the
method is briefly reviewed in Appendix A).

Unfortunately, pdfClust, in order to compute Delaunay triangulation, exploits
the Quickhull algorithm (Barber et al., 2006), which, computationally speaking,
represents a critical issue in problems characterized by high dimensionality.

In this work, we address the problem of clustering high-dimensional data in a
nonparametric fashion, following the stream of the algorithm by McLachlan et al.
(2002). McLachlan et al. (2002) propose a mixture model-based approach to cluster
microarray expression data. Their scheme accounts for gene selection, through mix-
tures of t distributions, and dimensionality reduction, through a mixture of factor
analyzers. More precisely, they select a gene on the basis of a likelihood ratio statis-
tic for testing one versus two components in the mixture model. In the second step
of their algorithm, they cluster the samples by fitting a two-component mixture of
factor analyzers.

Although McLachlan et al. (2002) approach sounds as a good possibility to clus-
ter samples in a high-dimensional space, there are two main limitations. Firstly,
the parametric assumptions about clusters distributions can be restrictive (Li et al.,
2007); for example, two Gaussian random variables can result in a single mode (one
cluster) or even a two component multivariate Gaussian mixture can lead to more
than two modes (Li et al., 2007). Moreover, it needs pre-specification of the number
of the mixture components. This, from an unsupervised perspective, which assumes
that the true number of clusters is unknown, represents a serious limitation.

To be consistent with microarray applications, we will use hereafter the typical
microarray terminology: we will denote with “genes” the p variables and with “sam-
ples” the n observations. Nonetheless, it should be clear that the approach proposed
here is not limited to microarray data, but, in principle, it could be applied to every
application with “large p, small n”.

Our approach can be summarized as follows: (i) cluster samples p times using the
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univariate distribution of each gene and select for the subsequent analyses the genes,
p′ say, that recognize two or more groups in the data; (ii) reduce dimensionality from
p′ to p′′ with some data reduction technique; (iii) apply pdfClust algorithm in the
p′′-dimensional space.

As for step (i), i.e., Gene selection, we consider a gene relevant if its values
in one category (healthy, say) are different from the ones in the other category
(unhealthy, say) or categories. From another point of view, this means that the
samples representing the healthy subjects are separated from the unhealthy ones, or,
more simply, the samples are in different clusters. In this way, it seems reasonable to
apply a cluster method to each gene, and retain as relevant those genes for which the
method recognizes different clusters. In a nonparametric framework, we can apply to
each gene pdfClust, taking advantage of the self-detection number of clusters feature.
We select only the genes for whose the method recognizes two or more clusters.

As for step (ii), i.e., Dimensionality reduction, considered if the selected genes
are still too many, we propose to keep the first principal components, as in Azza-
lini & Torelli (2007). The principal component analysis is a very simple procedure
which reduces the dimension of a data set of a large number of interrelated vari-
ables, preserving as much as possible of the data set variation. Since it has no
requirements about the data distribution, it is consistent with our non-parametric
strategy. Actually, there are no guarantees that principal components preserve the
cluster structure in the reduction of original dimension of data, as shown by Menardi
(2006). Alternative methods have been proposed, based upon the idea of reduction
pursuit (Friedman & Tukey, 1974). Menardi (2006) suggests to use the critical
window width (Silverman, 1981) as projection index.

3 Simulation models

In this Section, we evaluate our proposal by mean of simulated data. For simu-
lating data with structure similar to that of real microarray experiments, we use
two schemes, i.e., the Gamma-Gamma model (Kendziorski et al., 2003) and the
Normal-Uniform model (Garrett & Parmigiani, 2003). In Appendix B is reported a
complementary simulation experiment involving multivariate normal distributions,
to evaluate the behaviour of pdfClust in a multidimensional space, designed to eval-
uate how the increasing dimension and the different correlation structures influence
its performances.

3.1 Gamma-Gamma (GG) model

The samples are assumed to be independently generated from Gamma distributions
with a constant shape parameter α and gene-specific random scales λi, i = 1, . . . , p;
λi is assumed to have a Gamma distribution with shape hyperparameter α0 and scale
hyperparameter ν. The genes are generated to be either “equally expressed” (i.e.
one group) or “differentially expressed” (i.e. two groups) among the samples. We
generated n = 100 samples and p = 2, 000 genes, each with probability 0.05 of being
differentially expressed. We fixed parameter values as suggested by Chiogna et al.
(2009). We applied the algorithm stated in Section 2 to the data matrix obtained,
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selecting a number of relevant genes and using the first three principal components
as input for the pdfClust algorithm. We repeated this procedure B = 5, 000 times.

3.2 Normal-Uniform (NU) model

The model deals with k-class classification of samples, for general k. It is based on
a mixture of Normal and Uniform distributions. We exploit the model to simulate
gene expressions for a three-class problem, similar to that of the leukaemia data (see
Section 4.2).

Let us denote with xji the measured intensity of gene j in sample i, j = 1, . . . , p,
i = 1, . . . , n. We define three categories from which xji can arise and use eji to
represent them: (i) eji = −1, i.e., gene j has abnormally low expression in sample i
(down-regulation); (ii) eji = 0, i.e., gene j has normal expression in sample i; (iii)
eji = 1, i.e., gene j has abnormally high expression in sample i (up-regulation). For
each gene j,

xji|(eji = e) ∼ fe,j , e ∈ {−1, 0, 1}.

Following Garrett & Parmigiani (2003), we use a Uniform distribution for f−1,j and
f1,j and a Normal distribution for f0,j . More specifically,

f−1,j = U(−κj + αi + µj , αi + µj),

f0,j = N (αi + µj , σj),

f1,j = U(αi + µj , αi + µj + κj),

where µj represents the gene-effect and αi the sample-effect for the normal expression
level (see Garrett & Parmigiani, 2003, for details). The Authors justify the choice of
distributions arguing that, for normally expressed genes, the differences in observed
values are due mainly to noise introduced in the experimental stage, while the Uni-
form distribution may reflect the failure of a biological mechanism that controls the
expression level. We simulated data from the model in a hierarchical framework,
with the following initial parameter values:

µj ∼ N (7.5, 1.5),

σ−1
j ∼ G(2, 1),

αi ∼ N (0, 1),

κj ∼ E(1) + 7σj ,

where G denotes the Gamma and E the Exponential distribution. We simulated
B = 5, 000 datasets of n = 100 samples, p = 1, 000 genes and m = 3 classes
defined as follows: class 1 consists of 40 samples with 150 up-regulated and 50
down-regulated genes; class 2 consists of 40 samples with 50 down-regulated genes;
class 3 consists of 20 samples with neither up- nor down-regulated genes. Note that
classes 2 and 3 are “close” to each other with respect to class 1.

4 Real data

Along with simulations, we consider two benchmarking real datasets, studied before
by several Authors (Alon et al., 1999; Chow et al., 2001; Dudoit et al., 2002; Getz
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et al., 2000; Golub et al., 1999; McLachlan et al., 2002), to which we will refer as
the colon data and the leukaemia data.

4.1 Colon data

Alon et al. (1999) used Affymetrix oligonucleotide arrays to measure the expression of
6,500 human genes in 40 tumor and 22 normal colon tissue samples. They focused on
the subset of 2,000 genes with highest minimal intensity across the samples: the raw
expression values of these 2,000 genes comprise our dataset. Following McLachlan
et al. (2002) notation, we named 1-40 the tumor samples and 41-62 the normal
ones. Before clustering the tissues, we pre-processed the raw intensities taking the
logarithm and applying the quantile normalization (Bolstad et al., 2003), which is a
standard choice for single-channel microarray technology.

4.2 Leukaemia data

Golub et al. (1999) studied the gene expression of two types of acute leukaemias,
acute lymphoblastic leukaemia (ALL) and acute myeloid leukaemia (AML). Gene
expression levels were measured using Affymetrix oligonucleotide arrays containing
6,817 human genes. The dataset comprises 47 cases of ALL (38 B-cell and 9 T-cell)
and 25 cases of AML. The classification of samples is more difficult in this example
than in colon data because it is much harder to classify between subclasses of the
same plasticity than to distinguish between healthy and cancer tissues. Moreover,
we have a typical hierarchical structure, since B-cell and T-cell are subclasses of the
ALL class, harder to separate than AML from ALL. Following Dudoit et al. (2002),
three preprocessing steps are applied to the intensity matrix: (a) thresholding, floor
of 100 and ceiling of 16,000; (b) filtering, exclusion of genes with max/min≤ 5 or
(max − min) ≤ 500; (c) base 10 log transformation. This procedure left us with
3,892 genes.

5 Results and discussion

5.1 Evaluation criteria

Both in simulated and in real data, we evaluated the performances of the methods by
calculating the error rate (proportion of misclassified samples, ER), the sensitivity
(SE) and specificity (SP). Moreover, in the simulation studies, we recorded the
frequency of each method in finding the correct number of clusters (CC), and we
evaluated the performance of the methods to select discriminant genes, considering
the error rate in the classification of relevant genes, knowing a priori which genes
have been generated to have different values among the groups.

Since class 2 and 3 of the Normal-Uniform model have been simulated to be
close to each other, in this model we consider also the number of times in which
each method is able to recognize two clusters (class 1 versus class 2-3) or three
clusters.
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5.2 Simulated data

5.2.1 GG model

Table 1 shows that both pdfClust and Mclust provide results surprisingly good in
correct cluster recognition, low error rate and high sensitivity/specificity: this could
be explained by an extreme distance between the two groups in the original p-
dimensional space.

More interesting is the very different behaviour in the choice of the relevant
genes: pdfClust is very good in recognizing them, with a very low error rate (about
8%), while Mclust shows a very high error rate (about 78%).

5.2.2 NU model

As expected, Table 2 shows that in this model both pdfClust and Mclust lead to
higher classification errors than in GG model. Also in the gene selection step,
both methods have difficulties in finding the relevant genes. Nevertheless, pdfClust

outperforms Mclust according to the gene selection error rate (“RG” row in Table
2).

Mclust is able to recognize three clusters in the 39% and two clusters in the 34%
of the simulations; pdfClust recognizes three clusters in the 19% and two clusters
in the 47% of the simulations. On the other hand, the mean error rate of the final
classification is 0.135 for pdfClust while for Mclust is 0.227.

5.3 Real data

5.3.1 Colon data

As described in Section 2, we analyzed the dataset, following three steps: (i) gene
selection, (ii) dimensionality reduction, (iii) clustering of samples. Namely, the first
step of the procedure consists in applying the cluster algorithm to the univariate
distribution of each gene. The genes that show two or more clusters are considered
for the further steps.

In the first step, pdfClust algorithm was able to recognize 84 genes, which dis-
criminate data in two or more groups. We proceeded by considering the first three
principal components of this reduced data-matrix. The procedure found three clus-
ters, summarized in Table 3, which clearly correspond to biologically meaningful
groups. The first cluster consists of tumor tissues (with 3 misclassified), while clus-
ters 2 and 3 comprise normal tissues (with 5 misclassified). It is worth noting that
six out of the eight misallocated samples (tumor tissues 30, 33 and 36 and normal
tissues 48, 58 and 60) are found to be misclassified in several previous analyses,
including McLachlan et al. (2002); Chow et al. (2001). As stated for instance in
Chow et al. (2001), these six samples are likely to be wrongly labeled. Furthermore,
Getz et al. (2000) reported that there was a change in the protocol during the ex-
periments: tumor samples 1-11 and normal samples 41-51 were collected within the
first protocol, while tumor samples 12-40 and normal samples 52-62 were collected
within the second. Although for the tumor samples our approach did not recognize
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any difference between the protocols, cluster 2 and cluster 3 split normal tissues in
two groups according to the protocols.

In order to compare our approach to Mclust, we carried out a procedure analo-
gous to the one described in Section 2, but using the normal-mixture model both in
step (i) and (iii). In the first step, Mclust was able to find 369 discriminant genes.
We considered the first three principal components of this sub-space for clustering.
The procedure found two clusters, with a rather high missclassification error (see
Table 4). We also applied a k-means algorithm to the entire dataset. The results of
the three approaches are shown in Table 4. It can be seen that k-means, exploited
in the original p-dimensional space, does not perform well. Moreover, pdfClust out-
performs (in terms of error rate) Mclust, if one considers cluster 2 and 3 together as
the normal samples.

As stated before, McLachlan et al. (2002) studied the same microarray dataset.
They selected 446 relevant genes, achieving clusters that seem to recognize the
change of protocol in the data structure, but fail to recognize the normal/tumor
differences (McLachlan et al., 2002). Nevertheless, they achieved results slightly
better than ours (ER= 0.1) considering a particular subspace: they clustered genes
in 20 groups and considered only the second group (consisting of 24 genes) to cluster
data (McLachlan et al., 2002). Although this approach leads to good results in this
example, it seems difficult to reproduce the procedure in an unsupervised setting.

5.3.2 Leukaemia data

As stated in Dudoit et al. (2002), the Leukaemia dataset presents two different
problems: an easier one, consisting in separating ALL from AML (two-class problem,
hereafter) and an harder one, consisting in recognizing also the differences in B-cell
and T-cell subclasses (three-class problem).

Again, we considered the strategy described in Section 2. In the variable selection
step, pdfClust recognizes 313 discriminant genes. Note that the higher number of
genes selected with respect to Colon data is consistent with the higher difficulty of
the problem. We proceeded by considering the first three principal components of
this subspace. PdfClust found two clusters, which clearly represent ALL and AML
samples, with 4 AML samples classified as ALL and 5 ALL samples classified as
AML, leading to a missclassification error rate of 0.125 (Table 5): pdfClust is able
to solve the two-class problem, but it misses the three-class problem.

In the first step, Mclust failed to select relevant genes, recognizing as discriminant
among the groups 3,119 out of 3,892 genes. Based on the first three principal
components of the subspace spanned by these genes, Mclust clustered samples in
four groups. We could interpret the merged cluster 1-2 as the ALL B-cell class,
and cluster 4 as the AML class, while cluster 3 interpretation is less clear (Table
5). Although Mclust is able to find more than two clusters, it fails to distinguish
between B-cell and T-cell classes, leading to hardly interpretable clusters.

Leukaemia dataset has been studied by McLachlan et al. (2002) as well. The
Authors found 2,015 relevant genes after the variable selection step. For the two-
class problem, their results were very good (only one sample misallocated), but they
failed to solve the three-class problem.
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It should be noted that, unlike our algorithm, the procedure used in McLachlan
et al. (2002) needs the prior specification of the number of clusters, which is not de-
sirable in an unsupervised learning, especially in cancer tissues classification, where
one of the main goal is to find new subclasses of tumors.

6 Conclusions

Model-based approaches to clustering of data have received increasing attention in
the last few years, as they provide a sound mathematical-based method.

Here, we have discussed a nonparametric density estimation-based algorithm for
clustering microarray expression data. Our approach has shown promising results
both in simulated data and in two real applications, with surprisingly good compu-
tational performances.

In our simulation experiments, we have found that pdfClust has performances
comparable to those of Mclust even in a Gaussian setting. Moreover, the gene selec-
tion step is much more effective using pdfClust than using Mclust both in simulated
and in real datasets. Here, “effective” means good results in terms of both dimen-
sion reduction (e.g. in Leukaemia data pdfClust selected 313 genes versus 3,119 of
Mclust) and of correct selection (e.g. in GG model the gene selection error rate are
0.08 and 0.77, respectively).

Due to its nonparametric nature, pdfClust needs more observations (samples)
than Mclust to perform well: in our experience, however, n ≥ 50 is sufficient to
have good performances. Fortunately, cancer microarray experiments often contain
about 100 samples, and this number is expected to grow (Dudoit et al., 2002). Thus,
the sample size should not be considered as an issue.

Although we have used here principal components in order to reduce the space
dimension, future effort could be done in trying different approaches to this problem,
as the reduction pursuit by Friedman & Tukey (1974) or the principal curves by
Hastie & Stuetzle (1989). Nonetheless, in our case the principal component analysis
gives good results (comparable to that obtain after a projection pursuit, Hyvarinen &
Oja, 2000) and provides a low dimensional dataset on which directly apply pdfClust.

All the statistical analyses and simulations have been performed with R (R De-
velopment Core Team, 2009). Packages used: affy, deldir, fastICA, MASS, mclust,
sm, snow, spdep.

The datasets used are both freely available as Bioconductor (Gentleman et al.,
2004) packages (“colonCA” for Colon data and “golubEsets” for Leukaemia data).
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Table 1: Simulation results for pdfClust and Mclust in GG model: correct number
of cluster (CC), sensitivity (SE), specificity (SP), error rate (ER) and error rate in
the selection of relevant genes (RG).

PC MC

mean se mean se

SE 0.9877 0.0007 0.9991 0.0001
SP 0.9866 0.0008 0.9985 0.0004
ER 0.0128 0.0006 0.0012 0.0002
RG 0.0837 0.0061 0.7787 0.0093

CC 0.77 0.84

Table 2: Simulation results for pdfClust and Mclust in NU model: rate of two clusters
identification (CC2), rate of three clusters identification (CC3), error rate (ER) and
error rate in the selection of relevant genes (RG).

PC MC

mean se mean se

ER 0.135 0.004 0.227 0.005
RG 0.433 0.041 0.616 0.077

CC2 0.47 0.34

CC3 0.19 0.39

Table 3: Clusters found after pdfClust procedure in Colon data; tumor samples are
labeled 1-40, normal samples 41-62; misallocated samples are shown in bold.

Cluster 1 1-6,8-19,21-29,31,32,34,35,37-40,48,58,60

Cluster 2 7,41-47,49-52
Cluster 3 20,30,33,36,53-57,59,61,62

Table 4: Confusion matrices for pdfClust (PC), Mclust (MC) and k-means (KM)
with error rates (ER) for Colon data; in the first column “1” corresponds to tumor
samples and “2” to normal.

PC MC KM
Real 1 2-3 1 2 1 2

1 35 5 29 11 23 17
2 3 19 12 10 6 16

ER: 0.13 0.37 0.37
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Table 5: Confusion matrices for pdfClust (PC), Mclust (MC) and k-means (KM) for
Leukaemia data.

PC MC KM
Real 1 2 1 2 3 4 1 2 3

ALL B-cell 37 1 9 20 9 0 15 0 23
ALL T-cell 5 4 0 0 7 2 7 2 0

AML 4 21 0 2 1 22 1 23 1
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Appendix

A pdfClust: an overview

In the literature, nonparametric cluster analyses based on mode identification have
already been presented. See Li et al. (2007), Fraley & Raftery (2002), Banfield &
Raftery (1993), Li & Zha (2006) and Banerjee et al. (2005). pdfClust (Azzalini &
Torelli, 2007) starts from a quite simple idea, introduced by Hartigan (1975), who
stated:

Clusters may be thought of as regions of high density separated from
other such regions by regions of low density.

These regions are achieved by “cutting” the density function computed out of ob-
servations by a level c, that varies through the algorithm.

More formally, consider a p-dimensional space, X ⊆ Rp. Let x1, . . . , xn be
a vector of p-dimensional observations, xi ∈ X , for i = 1, . . . , n. Starting from
this vector, using a method of nonparametric density estimation, we can obtain
f̂(x), x ∈ X , i.e. the empirical version of the density f(x).

There is not a specific method for the nonparametric density estimation related
to pdfClust, since the only restriction is that f̂(xi) < +∞ for all i = 1, . . . , n.
This restriction is not discriminating, because almost all estimation techniques
satisfy it. Following Azzalini & Torelli (2007), we choose a kernel method with
Gaussian kernel and constant smoothing parameter h = (h1, . . . , hp)

⊤, with hj =
(

4
(p+2)n

)1/(p+4)
sj , j = 1, . . . , p, where sj is the estimated standard deviation of the

j-th variable. This choice is related to the minimization of the asymptotic inte-
grated mean square error (Azzalini & Torelli, 2007), but tuned investigations should
be done in order to achieve an optimal h for the specific problem. Empirically,
Azzalini & Torelli (2007) realize that it is often advantageous to slightly shrink h
toward zero, suggesting a shrinkage factor of 3/4.

Cutting the computed f̂(x) at a level c ∈ [0; max f̂ ], they obtain m subspaces
Mk, k = 1, . . . , m, of the sample space X . Dropping the observations not belonging
to ∪m

k=1Mk, they select only those observations xi such that f̂(xi) > c. The observa-
tions belonging to the same Mk are connected by the Delaunay triangulation (see,
e.g., de Berg et al., 2008) to form the “cluster cores”. Finally, the unallocated ob-
servations are allocated by a classification method, based on nonparametric density
estimation too: if x0 is the unallocated observation, the estimated density f̂k(x0)
based on the data already assigned to group k is computed, and x0 is assigned to
the group with highest ratio f̂k(x0)/ maxl 6=k f̂l(x0). Finally, it is important to notice
that pdfClust selects by itself the number of the clusters.

B Multivariate Normal Simulation

B.1 Settings

As we said, we want to check if the performance of pdfClust is comparable with
that of the parametric method (McLachlan et al., 2002) in a multidimensional space
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characterized by a complicated correlation structure. The simplest way to simulate
this kind of space is by mean of multivariate normal variables.

Setting 1. We simulate n1 = 50 samples from a multivariate normal distribution
Np(µ1, Σ) and n2 = 50 samples from a multivariate normal distribution Np(µ2, Σ),
where

µ1 ∼ Np(7, Ip), µ2 = µ1 + η, where η ∼ Np(2, Ip),

where Ip indicates the identity matrix of order p, and 7, 2 represents p-dimensional
vectors of 7 and 2, respectively. The covariance matrix Σ has diagonal elements
equal to 1 and the remaining elements randomly chosen uniformly between 0.6 and
0.9. The choice of the values of µ1 and µ2 are driven by real microarray datasets,
which often (in the log scale) are centered around these values. Moreover, the “log-
fold-change” (difference in logarithm) of 2 is a standard value in detecting relevant
genes.

We replicate this simulation B = 10, 000 times, applying on each replication
pdfClust, k-means and Mclust. For each algorithm, we consider the specificity (SP),
the sensitivity (SE), the error rate (ER) and the percentage of times in whose the
algorithms find the two clusters (CC). We performed the analyses for increasing
dimensions of the sample space, p, from 2 to 5.

Setting 2. Here, we are interested in seeing how the three methods work when
the differences between the two groups are in only one dimension. In particular, we
construct µ1 in the same way as before, while

µ2 = µ1 + η′, where η′ = (η1, 0, . . . , 0)⊤,

where η1 ∼ N(2, 1). In this way, although the space dimension p grows, the differ-
ences useful to cluster the groups belong only to one dimension.

Setting 3. As stated before, microarray data are characterized by a rather com-
plicated correlation structure. Indeed, the genes are often positively or negatively
correlated (co-regulated genes). Thus, we fixed p = 2 and explored the behavior
of the methods with different values of the correlation ρ, namely ρ ∈ {0.8,−0.8, 0},
considering three different scenarios: i) both genes are responsible for the differences
in the two groups; ii) one gene is responsible for the differences in the two groups;
iii) no differences between the two groups.

B.2 Results

The results of the first setting are summarized in Table 6 and in Figure 1. Panel
(a) of Figure 1 shows the error rates of the three methods in the first setting. As
we expected, the more p increases, the more the groups are well-separated, and
hence, the more the error rate decreases. The same pattern holds for sensitivity and
specificity (Figure 1 panels (b) and (c)). PdfClust seems to overperform Mclust in
recognizing the two clusters in the population for each considered p. Mclust provides
better sensitivity, specificity and error rate, but this could be a consequence of the
fact that pdfClust analyzes also the cases where the clusters are closer to each other
and it is more difficult to correctly allocate the samples. Surprisingly, with p = 2
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both algorithms fail to recognize the data structure, finding two clusters respectively
in about the 20% and the 1% of the simulations. We exploited with more details
the case of p = 2, with various correlations, in Setting 3.

As we move towards the second setting (Table 7 and Figure 2), we find a similar
situation, with pdfClust performing better in recognizing the corrected clusters, while
Mclust provides better sensitivity, specificity and error rate. As in the previous
setting, it is worth noting that the worse values of pdfClust are probably due to
the effort of the method in clustering groups very close to each other: the closeness
between the values of sensitivity, specificity and error rate of pdfClust and k-means,
that is constrained to build two groups, seems to support our consideration. As we
expected, all methods behave worse as the number of “noise” dimensions increases.

In setting 3, we try to investigate more carefully the influence of different cor-
relations in the performance of the methods. We focus on p = 2. Table 8 shows
the performance in finding the correct number of clusters of pdfClust and Mclust

algorithms (since the number of cluster is to be specified in k-means, this analysis
is pointless for this algorithm). The first part of Table 8 refers to a situation in
which the data are generated from a unique population; both algorithms, in general,
correctly recognize that there are no clusters in the data; nevertheless, Mclust out-
performs pdfClust with strong correlations. As in previous settings, we find again
the same behaviour, with pdfClust being more effective in finding different clusters
when they are close to each other (it performs better than Mclust when there is only
one significant dimension) while Mclust works better when facing strong differences:
notice that with negative correlation, when the distance between groups is more
evident (see Figure 3), it performs better than pdfClust.

Interestingly, in all settings pdfClust performances are fairly comparable with
those of Mclust (if not better), although the former does not assume normality of
data.
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Table 6: sensitivity (SE), specificity (SP), error rate (ER) and frequency in finding
correct number of clustering (CC) for pdfClust (PC), Mclust (MC), k-means (KM).
Setting 1.

PC KM MC

p=2 mean se mean se mean se

SE 0.7249 0.0028 0.7309 0.0009 0.6847 0.0212
SP 0.7237 0.0028 0.7331 0.0009 0.6583 0.0221
ER 0.2757 0.0011 0.2680 0.0004 0.3285 0.0084

CC 0.23 1 0.01

p=3 mean se mean se mean se

SE 0.7526 0.0020 0.7997 0.0008 0.9162 0.0015
SP 0.7546 0.0019 0.7992 0.0008 0.9173 0.0013
ER 0.2464 0.0009 0.2006 0.0005 0.0832 0.0009

CC 0.44 1 0.24

p=4 mean se mean se mean se

SE 0.8663 0.0012 0.8658 0.0008 0.9516 0.0006
SP 0.8685 0.0012 0.8658 0.0008 0.9531 0.0006
ER 0.1326 0.0008 0.1342 0.0006 0.0477 0.0004

CC 0.70 1 0.52

p=5 mean se mean se mean se

SE 0.8990 0.0008 0.9091 0.0005 0.9509 0.0006
SP 0.9017 0.0008 0.9100 0.0005 0.9517 0.0006
ER 0.0996 0.0004 0.0904 0.0003 0.0487 0.0004

CC 0.80 1 0.50
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Table 7: sensitivity (SE), specificity (SP), error rate (ER) and frequency in finding
correct number of clustering (CC) for pdfClust (PC), Mclust (MC), k-means (KM).
Setting 2.

PC KM MC

p=2 mean se mean se mean se

SE 0.6866 0.0026 0.7130 0.0009 0.9089 0.0016
SP 0.6915 0.0026 0.7128 0.0009 0.9112 0.0015
ER 0.3110 0.0013 0.2871 0.0005 0.0900 0.0011

CC 0.28 1 0.34

p=3 mean se mean se mean se

SE 0.5946 0.0032 0.6114 0.0009 0.6165 0.0132
SP 0.5870 0.0033 0.6119 0.0009 0.6298 0.0129
ER 0.4092 0.0013 0.3883 0.0005 0.3768 0.0059

CC 0.18 1 0.02

p=4 mean se mean se mean se

SE 0.5685 0.0028 0.5684 0.0009 0.7636 0.0203
SP 0.5524 0.0029 0.5666 0.0009 0.7749 0.0198
ER 0.4395 0.0010 0.4325 0.0004 0.2307 0.0146

CC 0.18 1 0.01

p=5 mean se mean se mean se

SE 0.5674 0.0023 0.5811 0.0010 0.6714 0.0900
SP 0.5651 0.0024 0.5768 0.0010 0.7886 0.0484
ER 0.4338 0.0014 0.4210 0.0007 0.2700 0.0053

CC 0.13 1 0.01

Table 8: Frequency of correct clusters (with standard errors in parenthesis) in differ-
ent settings for pdfClust (PC), Mclust (MC), k-means (KM). ’diff’ states the number
of components of the mean vector different between the groups and ρ the correlation
between the components.

diff ρ PC MC

0 0.8 0.815 (0.004) 0.985 (0.001)
0 -0.8 0.819 (0.004) 0.985 (0.001)
0 0 0.921 (0.003) 0.989 (0.001)

1 0.8 0.186 (0.004) 0.015 (0.001)
1 -0.8 0.589 (0.005) 0.720 (0.004)
1 0 0.222 (0.004) 0.188 (0.004)

2 0.8 0.612 (0.005) 0.161 (0.004)
2 -0.8 0.741 (0.004) 0.819 (0.004)
2 0 0.503 (0.005) 0.558 (0.005)
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(a) (b)

(c) (d)

Figure 1: Results of the simulation, Setting 1: 100 samples and growing values of
the dimension (p). Legend: circle pdfClust, triangles k-means, crosses Mclust. (a)
Error rates (ER); (b) Sensitivity (SE); (c) Specificity (SP); (d) frequencies of correct
number of clusters (CC) found.
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(a) (b)

(c) (d)

Figure 2: Results of the simulation, Setting 2: 100 samples and growing values of
the dimension (p) and groups defined only by the first dimension. Legend: circle
pdfClust, triangles k-means, crosses Mclust. (a) Error rates (ER); (b) Sensitivity
(SE); (c) Specificity (SP); (d) frequencies of correct number of clusters (CC) found.
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(a) (b)

(c) (d)

Figure 3: Some simulated data from Setting 3, varying the correlation (ρ) and the
number (k) of genes responsible for the clusters. Circles: first cluster, crosses: second
cluster. (a) ρ = 0.8 and k = 2; (b) ρ = −0.8 and k = 2; (c) ρ = 0 and k = 2; (d)
ρ = 0 and k = 1.
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