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exploit the analytic gradient and Hessian of the GRP objective function, making full use of

all the derivative information at disposal. We apply the proposed GRP procedures to two

large systems of economic series, and compare the results with those of other reconciliation

procedures based on the Proportional First Differences (PFD) principle, a linear approx-

imation of the GRP principle widely used by data-producing agencies. Our experiments

show that (i) an optimal solution to the nonlinear GRP problem can be efficiently achieved

through the proposed Newton’s optimization algorithms, and (ii) GRP-based procedures

preserve better the growth rates in the system than linear PFD solutions, especially for

series with high temporal discrepancy and high volatility.
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1 Introduction

The benchmarking problem arises when time series data for the same target variable
are measured at different frequencies with different level of accuracy, and there is the
need to remove discrepancies between the annual benchmarks and the corresponding
aggregates (either sums or averages) of the sub-annual values. For example, the op-
timal combination of annual levels and quarterly movements requires an adjustment
that preserves as much as possible the short-term movements in the preliminary
infra-annual figures subject to the restrictions provided by the annual constraints.

The reconciliation problem is commonly known as the adjustment process of a
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system of time series where both temporal aggregation constraints, for each individ-
ual series across the temporal dimension, and contemporaneous constraints, for each
individual period across the variables of the system, must be satisfied. As for the
benchmarking problem, this adjustment should be done according to some move-
ment preservation principle such that the temporal profiles of the original series are
preserved to the highest possible degree.

Benchmarking and reconciliation problems are typically faced by statistical agen-
cies in the production of official statistics. Typical examples are the compilation of
quarterly supply and use tables (SUT) in national accounts, where the quarterly
flows are required to satisfy more comprehensive level estimates from annual SUT
and to be in line with the many row and column equalities of the tables; or the
production of seasonally adjusted (SA) estimates following a direct approach, when
SA series are required to be consistent with their annual unadjusted levels and SA
aggregates need to be in line with SA components in any observed period.

Both benchmarking and reconciliation can be performed setting up constrained
minimization problems of some mathematical criterion aimed at preserving at the
best the movements in the sub-annual values. It is commonly understood by many
authors and practitioners that an ideal movement preservation principle should be
formulated as an explicit preservation of the period-to-period rates of change of the
preliminary series (Helfand et al., 1977; Bloem et al., 2001), according to which the
sum of the squared differences between the growth rates of the target series and the
growth rates of the preliminary series is minimized. The Growth Rates Preservation

(GRP) criterion, however, gives rise to a nonlinear problem (NLP), whose solution
can only be achieved by recurring to numerical optimization algorithms.

Denton (1971) proposed alternative movement preservation principles (i.e. ob-
jective criteria) for benchmarking, that give rise to quadratic-linear optimization
problems in the target values. The benchmarked values can thus be found using an
explicit formula involving simple matrix operations. In particular, the Proportionate
First Differences (PFD) criterion, one of the variant proposed by Denton, has been
very successful in practical benchmarking applications. The PFD criterion looks
for benchmarked estimates aimed at minimizing the sum of squared proportional
differences between the target values and the unbenchmarked values.

Di Fonzo and Marini (2011a) extended the PFD criterion to the reconciliation of
a system of time series subject to both temporal and contemporaneous constraints.
A simultaneous solution to the problem was proposed, which exploits the sparsity of
the linear system to be solved. Furthermore, a two-step reconciliation strategy was
recommended to reduce the complexity of the problem in the case of large systems:
a benchmarking procedure is applied for each series at the first step, and then,
the benchmarked series are reconciled year-by-year using a least squares balancing
procedure. The work demonstrated empirically that a two-step procedure with a
least squares adjustment proportional to the squared level of the benchmarked series
at the second step results in a close approximation of the Denton PFD simultaneous
solution.

At the individual series level (i.e. for univariate benchmarking), the PFD cri-
terion, with the modification for the starting condition due to Cholette (1984), has
often been claimed to be a close approximation of the GRP principle. Thanks to
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the satisfactory results obtained from the modified Denton’s PFD technique and
from other related linear solutions (e.g. Dagum and Cholette, 2006), few significant
progress has been achieved towards the development of an efficient and robust opti-
mization algorithm to minimize the nonlinear GRP function for benchmarking and
reconcilation problems. A benchmarking procedure based on the GRP criterion was
first implemented by Causey and Trager (1981; see also Trager, 1982, and Bozik and
Otto, 1988). To solve the NLP defined by the GRP criterion, Causey and Trager
developed a steepest descent (SD) algorithm based on first-derivative information
(i.e. the gradient). However, using only first-derivative information may result in
poorly efficient procedures, characterized by slow convergence and possible troubles
in finding actual minima of the objective function. More recently, Brown (2010,
2012) proposed a gradient-based procedure that uses a Conjugate Gradient (CG)
algorithm, but the results were broadly in line with the Causey and Trager’s SD
procedure in terms of efficiency and robustness of the solutions.

Our interest in developing GRP-based benchmarking and reconcilation proce-
dures has been motivated by two reasons. First, we think that recent advances in
optimization algorithms along with the huge increase in computational power of
computers make it possible to solve the nonlinear GRP problem nowadays more
accurately and more rapidly than in the past. Second, once a more efficient op-
timization algorithm is available, we aim at assessing empirically how true is the
supposed approximation of the optimal, nonlinear GRP objective function by the
linear PFD solution in both benchmarking and reconciliation problems.

In our recent works we have found that massive improvements in both efficiency
and robustness of the benchmarking results can be obtained exploiting both the
analytical gradient vector and Hessian matrix of the GRP function. First, Di Fonzo
and Marini (2010) found that an interior-point method (Nocedal and Wright, 2006),
which uses second-order derivative information, provides more accurate and faster
solutions compared to other gradient-based optimization procedures. Second, Di
Fonzo and Marini (2011b) proposed a Newton’s method with Hessian modifica-
tion that can be applied after the original constrained benchmarking problem is
transformed into an unconstrained problem. This Newton’s method is particularly
appealing for practitioners because it is easy to implement, computationally robust
and time-efficient.

With these effective implementations of the GRP benchmarking procedure we
have been able to clarify the nature of the PFD approximation. Using a simulation
exercise, we showed the conditions under which the PFD solution provides a close
approximation to GRP (Di Fonzo and Marini, 2010). We also found that the ap-
proximation works particularly well when the movements in the preliminary series
are smooth (low variance in the growth rates) and the relationship with the (annual)
target series is relatively stable (no changes in the ratio between their levels), but
deteriorates as soon as the preliminary series is lumpy (or affected by strong seasonal
effects) or presents sudden level shifts compared to the target series.

In this paper we continue our research on the GRP by extending our proposed
Newton’s method to solve reconciliation problems subject to both temporal and con-
temporaneous constraints. Similarly to the benchmarking problem, we transform
the original constrained nonlinear reconciliation problem into an equivalent uncon-
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strained nonlinear problem in order to apply the Newton’s method. We show that
the extension is straightforward, but there are complications in the derivation of the
unconstrained system due to the presence of constraints having different nature and
the larger dimensions of the system. On the contrary, the interior-point method ap-
plied to the constrained system is shown to be a fast and feasible procedure even for
very large systems. We apply the Newton’s method and the interior-point method to
reconciling two real-life systems of time series, using both a simultaneous approach
and a two-step strategy. We compare the results with the PFD-based reconciliation
procedures presented in Di Fonzo and Marini (2011a) in order to demonstrate the
effectiveness of the GRP adjustment in terms of both computational efforts and
quality of the results.

The paper is organized as follows. In section 2 the optimization problem in
terms of GRP is discussed and compared to the classical benchmarking procedure
by Denton (1971), modified by Cholette (1984). The extension to reconciliation
with both temporal and contemporaneous constraints is then presented. In section
3 we illustrate the two algorithms used to minimize the GRP function: an interior-
point method and a Newton’s method with Hessian modification. Both algorithms
exploit first and second-order derivatives, whose analytic expressions are derived
in Appendix B. In section 4 we discuss two-step reconciliation procedures based
on the GRP criterion. In order to analyze the distinctive features of the proposed
procedures, section 5 presents applications of the Newton’s method and the interior-
point method for benchmarking and reconciling real-life systems of series, namely
175 quarterly series from the EU Quarterly Sector Accounts (EUQSA), and 236
monthly series from the Canadian Monthly Retail Trade Survey (MRTS). Section 6
presents some final remarks and conclusions, and draws future research lines.

2 Growth Rates Preservation for Benchmarking and Recon-

ciliation

Benchmarking and reconciliation problems are solved through the minimization of
an objective function of the unobserved values of one or more target series, which
must satisfy given temporal and contemporaneous aggregation constraints. Let us
denote the target series by yj,t, where the two sub-indices indicate the cross-sectional
dimension and the temporal dimension, respectively: j = 1, . . . ,m and t = 1, . . . , n,
with m the number of series considered (if m = 1, we have a univariate benchmark-
ing problem) and n the number of high–frequency periods. Each series is denoted
in vector form as yj = [yj,1, yj,2, . . . , yj,n]

′. The whole system of series can be conve-
niently stacked in a single vector as y = [y′

1, . . . ,y
′
m]′ . In the following, we assume

that for benchmarking and reconciliation problems the system constraints assume
the general form

Ay = b (1)

where A is a (r ×mn) matrix of any given real numbers defining the relationships
between the mn observations and b is the r-dimensional vector with the known
quantities (benchmarks) of the system. Appendix A shows some examples of A and
b for the most common benchmarking and reconciliation cases.
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The objective function is usually set as a distance metric between the unobserved
target series yj,t and some preliminary series pj,t observed at the same frequency.
For economic series, especially those observed at the infra-annual level, it is sensible
to define this metric in terms of movements of the series: the user of such statistics
is generally much more interested in the dynamic of a monthly or quarterly series
(e.g. how much it has grown since the last month or quarter) rather than in its level
(e.g. how much is the level in the month or the quarter). For this reason, objective
functions for benchmarking and reconciliation problems are most commonly known
as movement preservation principles.

Causey and Trager (1981; see also Monsour and Trager, 1979, and Trager, 1982)
consider a minimization problem for benchmarking, in which the criterion to be
minimized is explicitly related to the growth rate, which is a natural measure of the
movement of a time series:

min
yt

n
∑

t=2

(

yt
yt−1

−
pt
pt−1

)2

. (2)

The benchmarked values y∗t , t = 1, . . . , n, minimize the criterion (2) subject to

the aggregation constraints
∑

t∈T

yt = YT , T = 1, . . . , N , where index T denotes the

low–frequency period (e.g., the year). In other words, the benchmarked series is
estimated in such a way that its temporal dynamics, as expressed by the growth

rates

(

y∗t − y∗t−1

y∗t−1

)

, t = 2, . . . , n, be ‘as close as possible’ to the temporal dynamics

of the preliminary series, where the ‘distance’ from the preliminary growth rates
(

pt − pt−1

pt−1

)

is given by the sum of the squared differences.

Two observations in order. Looking at the criterion to be minimized in (2), it
clearly appears that it is grounded on an “ideal” movement preservation principle,
“formulated as an explicit preservation of the period-to-period rate of change” of the
preliminary series (Bloem et al., 2001, p. 100). Second, the constrained minimiza-
tion of the objective function (2) is nonlinear in the target values yt, has not linear
first–order conditions for a stationary point, and thus an explicit, analytic expres-
sion for the solution cannot be found. A solution can only be found using nonlinear
optimization algorithms. We think that this complication has made the GRP bench-
marking approach less appealing for data-producing agencies, and limited its use in
practical applications.

Denton (1971) proposed a benchmarking procedure grounded on the Proportion-
ate First Differences (PFD) between the target and the preliminary series1:

min
yt

n
∑

t=2

(

yt
pt

−
yt−1

pt−1

)2

. (3)

Since the PFD criterion (3) is a quadratic function of the target values, the bench-
marked series y∗ can be expressed in closed form and its values found with simple
matrix operations (Dagum and Cholette, 2006; Di Fonzo and Marini, 2010).

1Criterion (3) is expressed according to Cholette (1984), who modified the PFD criterion pro-
posed by Denton, in order to correctly deal with the starting conditions of the problem.
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In the literature (Cholette, 1984, Bloem et al., 2001, Dagum and Cholette, 2006)
it is often claimed that the PFD procedure produces results very close to the GRP
benchmarking. Indeed, the GRP criterion (2) and the PFD criterion (3) are very
close to each other. After a bit of algebra, we can write (U.S. Bureau of the Census,
2009, p. 96):

n
∑

t=2

(

yt
pt

−
yt−1

pt−1

)2

=

n
∑

t=2

[

yt−1

pt

(

yt
yt−1

−
pt
pt−1

)]2

. (4)

The term in parentheses on the right-hand side is the difference between the growth
rates of the target series and those of the preliminary series, namely the addendum
of (2). In the PFD criterion these terms are weighted by the ratio between the
target series at t−1 and the preliminary series at t. When these ratios are relatively

stable over time, which is the case when the ‘benchmark-to-indicator ratio’ YT∑
t∈T pt

,

T = 1, . . . , N (Bloem et al., 2001), is a smooth series, PFD and GRP are very close
to each other. On the contrary, when the ratios

yt−1
pt

behave differently, each term

in the summation is over-(under-)weighted according to the specific relationship
between target and preliminary series in that period. For example, sudden breaks
in the movements of yt−1/pt might arise in case of large differences between the
annual benchmarks and the annually aggregated preliminary series. Di Fonzo and
Marini (2010) verified empirically this relationship, showing that PFD and GRP
benchmarked estimates are close when the variability of the preliminary series and/or
its bias are low with respect to the target variable. When this is not the case (e.g.
preliminary series with large growth rates and/or bias), the GRP and PFD results
diverge.

Di Fonzo and Marini (2010, 2011b) showed that a GRP-benchmarking problem
can be solved very efficiently by using Newton’s optimization methods, which exploit
the analytical expressions of the gradient and the Hessian of the objective function.
First, the class of methods known as interior-point (IP) methods (also referred to
as barrier methods, Nocedal and Wright, 2006), which has proved to be fast and
accurate for many nonlinear constrained optimization problems, has been consid-
ered. Second, a Newton’s method with Hessian modification applied to a suitably
reduced-unconstrained problem has been developed.

For reconciliation problems, both (2) and (3) can be extended to consider all the
m series in the system. The global GRP criterion is defined as

min
yj,t

m
∑

j=1

n
∑

t=2

(

yj,t
yj,t−1

−
pj,t
pj,t−1

)2

, (5)

whereas the global PFD function is

min
yj,t

m
∑

j=1

n
∑

t=2

(

yj,t
pj,t

−
yj,t−1

pj,t−1

)2

. (6)

Since there is no cross-sectional interaction between different series in (5) and
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(6), the relationship between the global criteria follows straightforward from (4):

m
∑

j=1

n
∑

t=2

(

yj,t
pj,t

−
yj,t−1

pj,t−1

)2

=
m
∑

j=1

n
∑

t=2

[

yj,t−1

pj,t

(

yj,t
yj,t−1

−
pj,t
pj,t−1

)]2

. (7)

A reconciliation procedure based on the global PFD criterion (6) was presented
by Di Fonzo and Marini (2011a). Likewise the benchmarked estimates, the reconciled
estimates can be derived as (part of) the solution of a linear system. Compared to
the benchmarking case, however, there are two major complications: (i) the size
of the system matrix tends to be large, increasing exponentially with the number
of variables and the number of periods, and (ii) the presence of constraints having
different nature causes rank deficiency of the system matrix. Using very efficient
sparse algorithms available in MATLAB c©, Di Fonzo and Marini (2011a) showed that
a simultaneous adjustment of all the variables in the system is still feasible even when
the system is very large. Two-step reconciliation procedures were also considered,
because they are computationally less demanding if sparse matrices facilities are not
available (we will consider them again in Section 4).

To our knowledge, a reconciliation procedure minimizing the global GRP crite-
rion (5) has never been attempted. The two complications mentioned before – large
size and rank deficiency of the system matrix, are likely to make even more difficult,
if not impossible, the application of nonlinear optimization algorithms. However,
the Newton’s algorithms considered for the GRP benchmarking case have proved to
be very efficient and robust for a single series and look promising for dealing with
many variables and many constraints at the same time. Similarly to our previous
works on benchmarking, our main interests in this paper are:

• to verify if reconciliation problems (possibly large and complex) based on the
minimization of the global GRP criterion (5) can effectively be solved using
Newton’s methods exploiting second-order information;

• once an effective GRP reconciliation procedure is developed, to determine how
close is the presumed approximation of the PFD reconciled estimates using
practical applications.

3 Optimization algorithms for the GRP problem

The GRP criterion considered in the minimization problem (2) is a nonlinear func-
tion of the target values. More precisely, it can be shown that it is a non-convex
function (Di Fonzo and Marini, 2011b). Differently from the PFD case, the con-
strained minimization problem based on the GRP function does not have linear
first-order conditions for a stationary point, and therefore it is not possible to find
an explicit, analytic expression for the solution. On the other hand, provided that
both pt and yt, t = 1, . . . , n− 1, be different from zero, the GRP criterion is a twice
continuously differentiable function, making it possible the use of several iterative
minimization algorithms (Nocedal and Wright, 2006).
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The first implementation of an algorithm for the GRP benchmarking problem
was given by Causey and Trager (1981), who used a constrained steepest descent al-
gorithm based on first-derivates information (i.e. the gradient) of the GRP function.
The minimization problem is solved in the original variables yt by using a feasible

direction method, according to which at each iteration the unconstrained search di-
rection is projected onto the feasible set of solutions defined by the constraints of the
problem. The Causey and Trager’s procedure is implemented in the DOS-executable
programme BMK1, which has been used extensively by the US Census Bureau. Brown
(2010, 2012) has recently proposed a similar feasible direction method based on the
conjugate gradient algorithm and implemented in SAS. However, according to the
results this implementation offers little improvements over the original procedure by
Causey and Trager.

As a matter of fact, gradient-based algorithms may result in poorly efficient pro-
cedures, characterized by slow convergence and possible troubles in finding actual
minima of the objective function. Improvements in both efficiency and robustness
may be obtained by considering second-order information from the objective func-
tion, i.e. the Hessian matrix.

Di Fonzo and Marini (2011b) developed an efficient Newton’s method with Hes-
sian modification to solve the GRP benchmarking problem. The algorithm con-
sists of the following steps. First, the analytical expression of the Hessian of the
GRP function is derived; second, the original constrained (benchmarking) problem
is transformed into an equivalent unconstrained problem; third, a Newton’s method
that allows a modification of the Hessian in order to preserve positive definiteness
is applied. The Newton’s method was compared with different gradient-based pro-
cedures (including the feasible steepest descent algorithm implemented in BMK1)
through a benchmarking exercise of hundreds of series. In all the cases considered,
the Newton’s method significantly outperformed gradient-based methods in terms
of both accuracy of the solution and convergence rates.

To our knowledge, the simultaneous reconciliation of time series subject to both
temporal and contemporaneous constraints according to the global GRP criterion
has never been considered in the literature. Due to the large and sparse nature
of the constrained optimization problem (5), we only consider Newton’s methods
exploiting second-order derivative information, which are by far the most powerful
algorithms for these problems.

Let us denote the global GRP function in (5) with f(y). The gradient is the
(mn× 1) vector2

∇f (y) = g (y) = {gi}
mn
i=1 ,

while the Hessian matrix is defined as

∇2f (y) = H(y),

with elements

hrs =
∂2f (y)

∂yr∂ys
=

∂gr
∂ys

, r, s = 1, . . . ,mn.

2To simplify, we use here a single-index notation for the temporal and cross-sectional dimensions.
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The derivation of g(y) and H(y) (see Appendix B) is a straightforward exten-
sion of the results for the univariate GRP criterion shown by Di Fonzo and Marini
(2011b). It is worth noting here that the Hessian is a sparse symmetric matrix with
a tri-diagonal structure. We will note in the application section that the sparsity
pattern of the Hessian is a key requirement for solving the global GRP problem (5).

We consider the two following optimization algorithms:

• an interior-point method, which is a powerful algorithm for solving large-scale
nonlinear constrained problems (Nocedal and Wright, 2006);

• a Newton’s method with Hessian modification applied to a suitably reduced
unconstrained transformation of the original constrained reconciliation prob-
lem, similar to the procedure developed for the benchmarking problem by Di
Fonzo and Marini (2011b).

Both the interior-point method and the Newton’s method used in this work are
line-search algorithms. They minimize transformations of the original GRP function

min
y

f̃ (y) , (8)

which incorporate the constraints, following the same line-search approach:

1. Specify some initial guess of the solution: y0;

2. Perform an optimality test on y0. If optimal, then stop. Otherwise, for k =
1, 2, . . .

(a) determine a search direction dk;

(b) determine a step length αk that leads to an improved estimate of the
solution

yk+1 = yk + αkdk. (9)

It is typically required that the search direction dk be a descent direction for the
function f̃ at the point yk. This means that for “small” steps taken along dk, the
function value (or the merit function value, in the case of constrained minimization)
is guaranteed to decrease:

f̃ (yk + αdk) < f̃ (yk) for 0 < α ≤ ǫ

for some ǫ > 0. Line-search algorithms differ by three major steps - the optimality
test, computation of dk, and computation of αk. The two methods, briefly described
below, differ also in that they minimize different transformations of the original GRP
function.

3.1 An interior-point method for the constrained GRP problem

Interior-point (IP) methods (also referred to as barrier methods) are a powerful class
of algorithms to solve linear and nonlinear optimization problems. Early IP methods
were originally developed in the 1960’s to solve nonlinear programming problems.
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However, these methods were soon abandoned due to computational difficulties.
IP methods were rediscovered after the appearance of Karmarkar’s seminal paper
(1984). Karmarkar proposed a new polynomial algorithm for linear programming,
based on the idea that iterates should be calculated not on the boundary, but in
the interior of the feasible region. Its application to linear programming programs
showed huge increase of performance compared to the Dantzig’s simplex method,
which was the standard algorithm for linear programming at the time. Karmarkar’s
work started an explosion in research activity on IP methods in both linear and
nonlinear programming applications (for more details on the development of interior-
point methods, see Lesaja, 2009).

IP methods are nowadays considered the most powerful algorithms for large-
scale nonlinear programming. At each step of IP methods, it is necessary to solve
linear systems that are usually sparse to some extent. Recent progress in sparse
matrix algorithms makes it possible to perform this step efficiently and accurately, as
shown by Di Fonzo and Marini (2011a) for the simultaneous reconciliation according
to the global PFD criterion. In a sense, IP methods represent the most advanced
methods for solving large and sparse reconciliation problems based on the global
GRP nonlinear function.

In this work we use the IP method available in the fmincon function of the
Matlab R© Optimization Toolbox3. This implementation is based on the algorithm
proposed by Byrd et al. (1999, 2000). A description of the IP algorithm in fmincon

is given by Waltz et al. (2006)4.

The IP approach to constrained minimization is to solve a sequence of approx-
imate minimization problems that are easier to solve than the original constrained
problem (which may also contain inequalities). These approximate problems are
called barrier models. To solve each barrier problem, the algorithm uses one of two
main types of steps at each iteration:

• a Newton step, attempting to solve the linear system defined by the Karush-
Kuhn-Tucker (KKT) conditions5 for the approximate problem using direct
linear algebra. In particular, the algorithm makes an LDL factorization of the
system matrix;

• a conjugate gradient step, minimizing a quadratic approximation to the barrier
problem using a trust region.

By default, the algorithm first attempts to take a direct step. One result from the
LDL factorization is a determination of whether the projected Hessian is positive
definite or not. If not, the algorithm attempts the conjugate gradient step. This
mechanism of switching between a line search step and a trust region step guarantees
to make progress toward feasibility and optimality. We note, however, that the

3The IP method is included as an option of fmincon from version 4.0 (R2008a) Optimization
Toolbox.

4This work actually describes the implementation of the interior-point method in the KNITRO
software (Ziena Optimization, 2011), which is similar to the one available in fmincon in every aspect.

5The KKT conditions are the first-order necessary conditions for a local optimum in constrained
problems (Nocedal and Wright, 2006).
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algorithm never switches to the conjugate gradient step in our applications. For this
reason, the IP method applied here is a pure line-search algorithm.

One appealing feature of IP methods is that they are “infeasible” algorithms;
that is, it is not required that the method start from a point in the feasible region.
This feature is quite relevant in solving reconciliation problems, because it allows
the user to start the algorithm by using the preliminary series pj,t. In constrast,
feasible methods, like the Newton’s method presented below, need to start from a
feasible point and then require a set of reconciled series as input. Given that deriv-
ing (preliminary) reconciled estimates to start the algorithm may be an additional
complication for practitioners, we view this feature as a clear advantage of the IP
method.

3.2 A Newton’s method for the unconstrained GRP problem

In this section we describe the main steps of the Newton’s method with Hessian
modification proposed in Di Fonzo and Marini (2011b) and how we have extended
it to solve reconciliation problems. As shown in our applications, we note that the
presence of both temporal and contemporaneous constraints – especially when the
number of variables to be reconciled is very large, may make the procedure less
accurate, considerably slower, or even unfeasible.

The main steps of the Newton’s method for benchmarking proposed by Di Fonzo
and Marini (2011b) are outlined below:

1. the linear constraints of the system (to preserve temporal aggregation) are
eliminated using a procedure based on standard linear algebra operations; the
original constrained problem is transformed into an unconstrained one. The
transformation is based on the null-space of the (N ×n) temporal aggregation
matrix C (see Appendix A), which permits to eliminate N variables. The
problem is then expressed on the basis of n−N ‘free’ variables yZ . It is shown
that a null-space matrix Z can be found by a QR factorization of matrix CT .
However, the pattern of the constraint matrixC for the benchmarking problem
permits to compute the QR factorization in compact form and once for all.
No computational effort is therefore required to perform the QR factorization.

2. the optimization problem with equality constraints is transformed into an
equivalent unconstrained problem by incorporating the constraints into the
objective function. The reduced problem (variables, gradient, Hessian) is de-
rived by transforming the original problem by means of the null-basis matrix
Z. The reduced problem is a function of the unrestricted variables yZ only.

3. a Newton’s method is applied to calculate the search direction dk, using a
modified Cholesky factorization of the Hessian in order to have a positive
definite matrix in the Newton equations. Positive definiteness of the Hessian
is required to obtain a descent direction. Then, a step length αk satisfying the
Wolfe conditions6 is calculated. Iterations stop if ‖∇f̃ (yZ,k) ‖1 < ǫ.

6The Wolfe conditions define a set of sufficient conditions for αk in order to have adequate
reduction in the objective function at a minimal cost (Nocedal and Wright, 2006).
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4. the solution of the original constrained problem y∗ can be derived by trans-
forming back the solution of the reduced problem y∗

Z through Z.

Reconciliation problems are minimization problems with equality constraints,
then the same procedure potentially applies. Yet, they are generally large, involving
hundreds of variables at a time, and include contemporaneous constraints of different
nature in addition to those preserving temporal annual consistency. Due to this
additional complexity, we have introduced two changes in the method in order to
make the algorithm computable. As explained in section 5, despite these changes we
have not been able to apply this procedure to one of the two reconciliation problems
faced in this work.

The first change introduced concerns the calculation of the null-space matrix Z.
Due to the addition of contemporaneous constraints, we have not been able to find
an ad-hoc expression for Z as we did for the benchmarking problem. For we have
to recur to a QR factorization of AT , as suggested by Nocedal and Wright (2006, p.
433) and discussed in Di Fonzo and Marini (2011b). We use the multifrontal sparse
QR factorization method implemented in the spqr function of the SuiteSparseQR
toolbox for Matlab (Davis, 2011). This function has proved to be efficient and
reliable in the calculation of a null-space matrix Z, exploiting the sparsity structure
of AT . Matrix Z, however, is no longer sparse as it was in the benchmarking
case; it has instead a full lower-triangular form. This complicates matters a lot
because Z is used to pre- and post-multiply the original Hessian for the constrained
problem, which is a large and sparse tri-diagonal matrix, to derive the Hessian for the
unrestricted problem, which becomes a full matrix with no structure to be exploited
through sparse algorithms7.

The second change is related to the Hessian modification in the calculation of the
step direction. For this step we use the Matlab function minFunc (Schmidt, 2006),
which is a free analogous of the function fminunc of the Optimization Toolbox of
Matlab (The MathWorks, 2009). Different options are available for the Hessian
modification. For benchmarking problems, a modified Cholesky factorization was
found to work very well. Evidently, the reduced (sparse) Hessian (or its transfor-
mation) is always positive definite through the iterations. On the other hand, it
was not possible to apply the Cholesky factorization to the reduced Hessian of a
reconciliation problem. We needed to switch to another minFunc option available
for symmetric indefinite matrices, based on an LDL factorization. We noted that,
given that the reduced Hessian is no longer sparse, the LDL factorization takes much
more time when the system is large, or even causes out of memory error.

Differently from the IP method, the Newton’s method is a feasible algorithm.
Therefore, it requires a feasible point to begin the iterations. For the benchmarking
problem, we use the Denton PFD benchmarked series as this should be close to the
GRP optimum in most cases. Consistently, we use the simultaneous Denton PFD
reconciled series as the starting point for reconciliation problems. This procedure,
however, may itself take a while and necessitate of advanced sparse algorithms to be

7Boyd and Vandenberghe (2004, p. 143) note that when the system is large eliminating the
equality constraints may destroy sparsity of some other useful structure of the problem. This seems
to be quite the case for the problem in hand.
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solved, as discussed by Di Fonzo and Marini (2011a). An approximation of the si-
multaneous PFD solution could be derived using two-step reconciliation procedures,
which divide and solve the problem in smaller pieces and require less computational
time and resources than a simultaneous solution. Two-step procedures are described
in the following section.

4 GRP in Two-Step Reconciliation Procedures

When the system of time series is very large, a simultaneous solution can be oper-
ationally difficult to apply, mostly if the practitioner either does not intend to or
cannot use sparse matrices computation facilities. Simplified solutions are however
possible, based on a generalization of the two-step approach proposed by Quenneville
and Rancourt (2005) for restoring the additivity of a system of SA time series such
that their sum is in line with directly-derived SA totals: firstly, a univariate bench-
marking procedure (e.g., the modified Denton PFD benchmarking procedure or the
more general regression based benchmarking procedure by Cholette and Dagum,
1994) is used to restore the temporal additivity of every SA series; in the second
step, the SA component series are reconciled one year at a time using a least squares
balancing procedure.

Di Fonzo and Marini (2011a) discussed and applied to real-life systems of time
series two-step procedures based on the PFD criterion, and compared them with the
simultaneous PFD reconcilation solution based on (6). In the first step, the modified
Denton PFD benchmarking technique is used. In the second step, instead, two
alternative least-squares adjustments of the benchmarked estimates are employed
to reconcile them with the contemporaneous constraints of the system one year at
a time. Denoting with yj,t the reconciled series and with xPFD

j,t the benchmarked
series obtained with the modified Denton PFD method, the two adjustments are
based on the following objective criteria:

FPFD−BB
T =

m
∑

j=1

Ts
∑

t=(T−1)s+1

(

yj,t − xPFD
j,t

)2

|xPFD
j,t |

(10)

FPFD−ST
T =

m
∑

j=1

Ts
∑

t=(T−1)s+1

(

yj,t − xPFD
j,t

xPFD
j,t

)2

(11)

where suffix T , T = 1, . . . , N , denotes that the optimization is performed for each
low-frequency period separately. Criterion FPFD−BB

T is an adaptation of the original
Quenneville and Rancourt’s procedure, presenting the absolute value of xPDF

j,t at the
denominator to allow for the adjustment of possibly negative numbers (Beaulieu and
Bartelsman 2004); criterion FPFD−ST

T assumes the squared temporal benchmarked
series as normalizing factor, as proposed by Round (2003) and Stuckey et al. (2004).

The comparison showed that a two-step procedure with the modified Denton
PFD at the first step and a least–squares adjustment based on criterion (11) at
the second step is a close approximation of the simultaneous PFD solution. In-
stead, when criterion (10) is used in lieu of (11) the two-step procedure tends to
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over-adjust the dynamic profile of smaller series and under-adjust the movements of
larger series. Di Fonzo and Marini (2011a) explain this different behavior in terms
of the reliability coefficients implied by the two criteria FPFD−BB

T and FPFD−ST
T .

Assuming the coefficient of variability (CV , the ratio between standard deviation
and mean) as a reliability indicator8, the choice of |xPFD

j,t | as denominator in expres-

sion (10) implicitly involves CVj,t = 1/
√

|xPFD
j,t |, that is: (i) different reliabilities

for all variables are considered in the least-squares adjustment, and (ii) large vari-
ables are considered relatively more reliable, and thus they are touched relatively
less by the reconciliation procedure than small variables. Conversely, the coefficient
of variations (i.e. relative reliabilities) are equal for all variables and all times with
criterion FPFD−ST

T .

As shown by Di Fonzo and Marini (2011a), the choice of the criterion on which
the second step is grounded may have a clear impact on the temporal dynamics
of the reconciled series, the adjustments to the preliminary growth rates due to
criterion (10) being generally larger than those produced by criterion (11).

However, in our previous work we considered only the modified Denton PFD
technique at the first step. We did not investigate other options because our main
concern was to compare two-step procedures with the simultaneous PFD reconcili-
ation procedure. Now we are instead interested in two-step procedures having the
GRP benchmarking technique at the first step, and a least-squares adjustment at
the second step alternatively based on the following two criteria:

FGRP−BB
T =

m
∑

j=1

Ts
∑

t=(T−1)s+1

(

yj,t − xGRP
j,t

)2

|xGRP
j,t |

(12)

FGRP−ST
T =

m
∑

j=1

Ts
∑

t=(T−1)s+1

(

yj,t − xGRP
j,t

xGRP
j,t

)2

. (13)

As for the PFD case, we wish (i) to assess how much alternative choices of the
criterion adopted in the second step do affect the temporal dynamics of the reconciled
series as compared to the preliminary ones, and (ii) to have empirical confirmation
to the expectation that the two-step procedure based on the GRP benchmarking
method at the first step and a least-squares adjustment based on (13) at the second
step is a close approximation to the simultaneous GRP reconciliation procedure.

5 Applications

In this section we consider the reconciliation of two systems of time series: (i) the
EUQSA system, 175 quarterly variables of the European Union’s quarterly national
accounts (28 quarters) to be reconciled with known annual totals and 30 accounting
constraints, and (ii) the MRTS system, 236 monthly series of Canadian seasonally

8Higher CVs commonly signal variables of comparatively worse quality: see, for example, Chen
(2006), Danilov and Magnus (2008).
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adjusted retail trade by provinces (156 months) to be reconciled with annual unad-
justed totals and 32 contemporaneous constraints for geographical aggregations (for
more details on the two datasets, see Di Fonzo and Marini, 2011a).

Aggregate statistics on the discrepancy in the two systems are presented in ta-
ble 1. The table presents averages of (in order) mean, absolute mean, standard
deviation, minimum, maximum, and range of the discrepancy for both temporal
and contemporaneous constraints. The average discrepancy is expressed in % of the
benchmark values9. It can be noted that EUQSA presents much higher discrep-
ancies than MRTS in both temporal and contemporaneous constraints. Discrepan-
cies in EUQSA are mostly generated by the fact that quarterly preliminary figures
are available for just a few member states and not all the countries of the Euro-
pean Union (data-driven discrepancy); on the contrary, MRTS discrepancies come
from the direct application of seasonal adjustment to each component in the system
(procedure-driven discrepancy).

Table 1: Average statistics on discrepancy (in % of benchmark values) in the EUQSA
and MRTS systems

n. of series/ abs. st.
constraints mean mean dev. min max range

EUQSA

Temporal 65∗ 0.6 2.6 2.6 -2.8 4.9 7.7
Contemporaneous 30 -25.3 38.0 68.5 -304.2 57.0 361.2
MRTS

Temporal 236 -0.1 0.5 0.6 -1.2 1.1 2.3
Contemporaneous 32 -0.1 0.7 0.9 -2.7 2.8 5.5
∗ Only 65 out of 175 of EUQSA variables present temporal discrepancies.

We extend the comparison in Di Fonzo and Marini (2011a) by including rec-
onciliation procedures based on the GRP criterion. We apply two simultaneous
procedures

• Sim GRP, through the application of the Hessian-based procedures presented
in section 3 to minimize the global criterion (5);

• Sim PFD, through the direct solution of the linear system coming from the
constrained minimization of the global criterion (6);

and four two-step procedures

• PFD-BB: the modified Denton PFD benchmarking is applied at the first step,
and a least-squares adjustment based on (10) at the second step;

• PFD-ST: the modified Denton PFD benchmarking is applied at the first step,
and a least-squares adjustment based on (11) at the second step;

• GRP-BB: the Newton’s GRP benchmarking is applied at the first step, and a
least-squares adjustment based on (12) at the second step;

9When the preliminary data presents a non-zero mean difference with the annual series, it is
standardized to the overall level of the annual series according to the bias correction procedure
described in Quenneville et al. (2009).
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• GRP-ST: the Newton’s GRP benchmarking is applied at the first step, and a
least-squares adjustment based on (13) at the second step.

In order to assess the performance of the procedures, for each series we calculate
the Mean Absolute Adjustment (MAA) to the percentage growth rates, that is

MAAj = 100 ×
1

n− 1

n
∑

t=2

∣

∣

∣
ryj,t − rpj,t

∣

∣

∣
, j = 1, . . . ,m

where ryj,t = (yj,t − yj,t−1) /yj,t−1 and rpj,t = (pj,t − pj,t−1) /pj,t−1 are the growth rates
of the reconciled and preliminary series, respectively. Overall indices for the whole
system of time series are calculated accordingly. In our previous works, we used
the Root Mean Squared Adjustment (RMSA) statistic to assess the adjustment.
RMSA is, however, the square root of the GRP criterion, which is minimized by
construction by GRP-based procedures. For this reason, in this paper we prefer the
use of a more neutral statistic of movement preservation to evaluate and compare
the performance of the procedures.

Table 2 shows summary statistics on the MAA values for the two systems.
Sim GRP outperforms the other procedures in both systems, with the lowest mean,
median and standard deviation. Sim GRP is also the procedure with the highest
number of series with minimum MAA value (41.1% and 29.2%).

As expected, we note that Sim PFD is a good approximation of Sim GRP. The
median MAA for EUQSA is 0.421% for Sim PFD and 0.378% for Sim GRP; on
MRTS we find 0.487% for Sim PFD vs. 0.456% for Sim GRP. Nevertheless, using
Sim PFD we notice a higher standard deviation of MAA (2.367% vs. 1.464%) and
a maximum equal to 24.455%, much larger than 6.366% of Sim GRP (we come back
on this difference below).

Concerning the two-step procedures, we note that using a GRP benchmarking
at the first step slightly improves the results upon using the modified Denton PFD
benchmarking procedure. However, the choice of the type of adjustment at the
second step is much more important: whatever the first step is, using ST instead of
BB guarantees an overall smaller adjustment in terms of MAA.

Looking at the two-step procedures using ST at the second step (PFD-ST and
GRP-ST), we note a similar difference in the maximum MAA value identified when
comparing Sim PFD and Sim GRP (24.396% for PFD-ST and 6.915% for GRP-ST).
It appears that using GRP makes the adjustment process more balanced across the
variables in the system, either when GRP is applied at the first step (provided ST is
used) or when GRP is applied as a simultaneous procedure. Similarly to the already
known relationship between PFD-ST and Sim PFD, the GRP-ST reconciliation
procedure turns out to be a close approximation of Sim GRP.

Our next step is to relate the MAA values to the size of the variables in the
system. We restrict our attention to Sim GRP, Sim PFD, and the two-step procedure
PFD-BB10. In Di Fonzo and Marini (2011a) it is shown that PFD-BB preserves more
the movements in larger variables than in smaller ones (in terms of RMSA statistic),

10For each two-step procedure using ST at the second step, the obtained results are very close to
those of the relevant simultaneous procedure.
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Table 2: Summary statistics of MAA for the EUQSA and MRTS systems

Two-step Simultaneous

PFD-BB GRP-BB PFD-ST GRP-ST Sim PFD Sim GRP

EUQSA

Mean 3.0949 2.9787 1.2717 1.1097 1.2799 1.0883
Median 2.1178 2.1635 0.3874 0.3884 0.4212 0.3780
St. dev. 3.2645 2.9854 2.3604 1.4987 2.3671 1.4641
Max 27.2699 29.1887 24.3963 6.9151 24.4550 6.3662
% Min 8.6 10.9 5.7 20.6 13.1 41.1

MRTS

Mean 1.5312 1.5315 0.7064 0.7030 0.7054 0.6997
Median 1.4222 1.4214 0.4708 0.4601 0.4874 0.4555
St. dev. 0.7417 0.7484 0.6988 0.7021 0.6957 0.6928
Max 5.2620 5.3978 4.3494 4.3495 4.3538 4.3065
% Min 10.2 9.3 5.9 20.8 24.6 29.2
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Figure 1: EUQSA system. MAA by share (%) of variables for Sim GRP, Sim PFD
and PFD-BB

while Sim PFD distributes the adjustment more uniformly across the variables. We
are interested to see if there is a similar picture using the MAA statistic and, more
importantly, how is the distribution of adjustment resulting from Sim GRP. Figure
1 shows a scatter plot for EUQSA between the size of the variables (x-axis), each
expressed in percentage of their total sum, and the MAA values (y-axis) for the
three procedures. The presence of ’×’ along the y-axis, and those associated with
smaller MAA values along the x-axis, confirm that PFD-BB tends to over-adjust
smaller variables in favour of the larger ones. The isolated green dot for Sim PFD
on the y-axis signals that the maximum adjustment from this procedure (24.455%)
is made to a very small-size variable. It can be noticed that the adjustments from
Sim GRP are more evenly distributed than Sim PFD.

In previous GRP-PFD comparisons on univariate benchmarking (Di Fonzo and
Marini, 2010), GRP was found to outperform PFD when large discrepancies and/or
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high variability in the preliminary series were present. It is thus interesting to
look at the scatter plots of MAA vs. (i) the average temporal discrepancy (in
% and absolute values, figure 2), and (ii) the coefficient of variation (in absolute
value, figure 3), taken as a standardized measure of variability of the series. Moving
along the x-axis we find the variables with higher temporal discrepancy and larger
variability, respectively. In figure 2 we notice that the maximum adjustment from
Sim PFD moves to the right-end side of the plot, which identifies that variable
as the one presenting the highest (percentage) temporal discrepancy in the system.
Furthermore, from figure 3 we note that the highest values of MAA for PFD-BB (i.e.
the highest ’×’s in the scatter plot) are achieved for variables presenting medium-
high variability in the system. These distributional aspects of the adjustment in the
two systems confirm that, even in a reconcilation process of a system of time series,
PFD deviates from GRP when discrepancies are large and the preliminary series is
volatile.
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Figure 2: EUQSA system. MAA by average temporal discrepancy (in absolute
value) for Sim GRP, Sim PFD and PFD-BB

Finally, table 3 presents an indication on the computational time needed to com-
plete the reconciliation process for each procedure. Times are expressed in seconds
and are derived as average from five sequential executions of the same reconcilia-
tion process. The simultaneous GRP solution (with the interior-point algorithm)
takes less than one second to reconcile EUQSA and about 18 seconds for MRTS.
The Newton’s method for the unconstrained problem solves the EUQSA problem in
about 50 seconds (reaching the same optimal point of the interior-point method),
but it fails to converge for MRTS due to an out of memory error generated by the
lack of sparsity of the reduced Hessian matrix (see section 3). The interior-point
method has proved to be much faster and reliable than the Newton’s method for rec-
onciliation problems. Nevertheless, noting the difference in the computational times
between EUQSA and MRTS we may expect that even the interior-point method
could become an unfeasible procedure when the system dimension is very large. In
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Figure 3: EUQSA system. MAA by coefficient of variation (in absolute value) of
variables for Sim GRP, Sim PFD and PFD-BB

that case, the two-step procedure GRP-ST would represent a valuable alternative
to Sim GRP.

Table 3: Average computational times (in seconds) to perform the reconciliation
process∗

Method EUQSA MRTS
Sim GRP∗∗ 0.8 18.0
Sim PFD 0.1 2.0
GRP-BB/ST 1.3 3.5
PFD-BB/ST 0.1 1.5

∗ Using processor Intel Core i5-2430M @2.40 GHz, Ram 6.0GB, Windows 7

OS, Matlab R2008b. ∗∗ Using IP algorithm. Sim GRP with the Newton’s

method with Hessian modification takes about 50 seconds to solve EUQSA,

while it does not achieve a solution for MRTS.

6 Conclusions

In this paper we have proposed simultaneous and two-step reconciliation procedures
based on the GRP movement principle, which is widely recognized as the most
natural choice for preserving the movements in an economic series. To solve the
nonlinear GRP problem we have made recourse to Newton’s optimization methods
that exploit the full derivative information of the problem, namely the gradient and
the Hessian. Using two systems of economic series with both temporal and cross-
sectional constraints, we have shown that these procedures are accurate, feasible,
and time-efficient in finding an optimal solution of the GRP problem.

This work has largely benefited from our previous findings on benchmarking and
reconciliation. First, we had already solved efficiently the nonlinear GRP problem



20 Tommaso Di Fonzo - Marco Marini

for benchmarking (i.e. one variable at a time) using the same Newton’s optimiza-
tion methods proposed in this paper. Second, we knew that only by preserving and
exploiting the sparsity structure of the matrices involved would allow us to solve a
reconciliation problem with many variables and many observations simultaneously,
namely with all constraints in the system (temporal and contemporaneous) consid-
ered at the same time. Finally, we were aware that a satisfactory approximation of
the optimal simultaneous solution could be obtained through a more convenient and
simplified two-step procedure.

The purpose of this paper was twofold. First and foremost, we wanted to prove
that the nonlinear GRP reconciliation problem could be solved accurately and effi-
ciently using Newton’s optimization algorithms. Then, we wanted to compare the
GRP solution with the Denton PFD solution to verify, as often claimed, that PFD
is a close approximation of GRP. We believe that both objectives have been success-
fully achieved.

On the implementation aspects, we derived the analytical expressions of the
gradient and Hessian of the global GRP function. These expressions are necessary
to feed any Newton’s optimization methods, and to our knowledge they have never
been derived before. Next, we used two different (but related) algorithms to solve
the GRP reconciliation problem: an interior-point algorithm applied to the original
constrained problem, and a Newton’s method with Hessian modification applied to
a suitably reduced unconstrained problem. The interior-point algorithm turned out
to be very fast, accurate and robust, solving both the problems faced in this paper.
The only drawback of the interior-point algorithm used is that it is available through
a commercial software, i.e. Matlab, which is not affordable for many potential
“customers” of reconciliation procedures (in general public data-producing agencies).
Being the interior-point an algorithm very difficult to replicate, we decided to develop
an alternative Newton’s method for the unconstrained system, whose steps are fully
described in our paper. With the Newton’s method with Hessian modification,
however, we were able to solve accurately only one of the two systems considered.
For the largest system, the procedure stopped due to an out of memory error caused
by multiplication of dense matrices generated by the transformation of the system
into the unconstrained form (a problem on which we are actively working).

To assess the GRP and PFD results we compared the two simultaneous solutions
along with four two-step procedures. The latter are derived from using alternatively
the PFD and GRP benchmarking techniques at the first step, and from using the
level or the squared level of the temporal benchmarked series as normalizing factor
at the second step. The comparison, based on a metric different from both the
GRP and PFD criteria, showed that the simultaneous GRP solution is always the
best method at preserving the movements in the preliminary series. We found, in
particular, that using the simultaneous GRP guarantees a more balanced adjustment
process across the variables. In general, the simultaneous PFD solution was shown
to be very close to the GRP; but for a few series in the system, the most volatile
ones with large temporal discrepancies to be distributed, PFD resulted in markedly
higher adjustments than GRP.

As regards the two-step procedures, the same issue of robustness noted above was
noted from using the GRP or the PFD benchmarking techniques at the first step. In
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general, choosing GRP at the first step guarantees a more balanced adjustment than
PFD. However, the choice made at the second step counts much more in terms of
quality of the adjustment, as already highlighted by Di Fonzo and Marini (2011a) for
the PFD case. The simultaneous GRP solution is best approximated when the GRP
is used at the first step, and the squared temporal benchmarked series is considered
as a normalizing factor at the second step (i.e. the GRP-ST procedure). The use of
the (absolute) level, instead, was found to penalize too much the smaller series in
the system in favour of the larger ones.

Practitioners may want to know which are the implications of our findings on
the GRP on the routine work they conduct in benchmarking and reconcilation. As
we have shown in this paper, and in the companion paper Di Fonzo and Marini
(2011a) on benchmarking, the nonlinear GRP problem can be solved accurately and
efficiently through optimization algorithms exploiting the full derivative information
of the problem. If one aims at preserving the growth rates of the variables in the
system under adjustment, our simultaneous GRP solution is undoubtedly the most
accurate and reliable approach. Nonetheless, we have also shown that very similar
performance can be reached by using a two-step procedure where the GRP is more
conveniently applied at the first step on each individual series of the system.

We note, however, that in the great majority of the cases the PFD solution is
very close to the GRP one. Large differences in the adjustment arise only when the
series are volatile and present large discrepancies with respect to their low-frequency
benchmark values. When the series are smooth and discrepancies are consistently
small across the system – two desirable conditions in any reconciliation problem
–, simultaneous or two-step reconciliation procedures based on the Denton PFD
principle can approximate very well the GRP results.

Other aspects of benchmarking and reconciliation merit further investigation
and are left for future research. First, so far we have only dealt with systems with
binding and linear constraints. Our solutions may be easily extended to include
in the system soft (e.g., only positive variables) and nonlinear (e.g., ratios between
variables) constraints (Danilov and Magnus, 2008), as well as users’ information
about the reliability of the preliminary figures (Bikker and Bujithenek, 2006, Quen-
neville and Fortier, 2012). Second, we are already looking at different criteria to
preserve the yearly growth rates (period compared to the same period of the pre-
vious year) rather than the period-to-period change preserved by both the GRP
and PFD criteria, which may be interesting especially for seasonal time series. Fi-
nally, benchmarking and reconciliation in extrapolation (i.e. for quarters with no
annual/quarterly benchmarks yet available) are yet to be fully explored11.

Appendix A. Matrix representation of the constraints

Let YT be the low–frequency measurement of a given phenomenon for T = 1, . . . , N .
Let pt be some high–frequency preliminary information related to the same phe-

11Di Fonzo and Marini (2012) illustrates an enhancement for the Denton PFD benchmarking
method in extrapolation, based on the projection of the unavailable annual benchmark-to-indicator
ratio.
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nomenon, observed for t = 1, . . . , n. The benchmarking problem looks for the
high–frequency values of an unknown target variable yt, for t = 1, . . . , n, which
should be consistent with the benchmarks YT and show movements as close as pos-
sible to the movements in pt

12. Let s be the aggregation order (e.g., s = 4 for
quarterly-to-annual aggregation, s = 12 for monthly-to-annual aggregation, s = 3
for monthly-to-quarterly aggregation), and let C be a (N ×n) temporal aggregation
matrix, converting n high–frequency values in N low-frequency ones (we assume
n = s ·N). If we denote with x the (n× 1) vector of desired high–frequency values,
and with Y the (N × 1) vector of low–frequency values, the aggregation constraints
of a benchmarking problem can be expressed as

Cx = Y. (14)

Depending on the nature of the involved variables (e.g., flows, averages, stocks),
the temporal aggregation matrix C usually can be written as

C = IN ⊗ cT , (15)

where the (s× 1) vector c may assume one of the following forms:

1. flows: c = 1s = ( 1 1 . . . 1 )T ,

2. averages: c = 1
s
1s ,

3. stocks (end-of-the-period): c = ( 0 0 . . . 1 )T ,

4. stocks (beginning-of-the-period): c = ( 1 0 . . . 0 )T .

In a reconciliation problem, the target high–frequency series are also required
to be in line with known totals, or satisfy certain given equalities, in any observed
periods at the same high–frequency level. Let us suppose there are m series to
adjust. We introduce an additional sub-index j in our notation to identify each
series in this system, so that the input data become the m n-dimensional vectors pj

and the m N -dimensional vectors Yj , for j = 1, . . . ,m. The target variables of a
reconciliation process are denoted as yj .

The temporal constraints linking the high-frequency component series to their
temporally aggregated counterparts in (14) can be extended to cover all the variables

in the system. Denoting now Y =
[

YT
1 Y

T
2 . . .YT

m

]T
, we have

(Im ⊗C)y = Y, (16)

where ⊗ is the Kronecker product and y =
[

yT
1 y

T
2 . . .yT

m

]T
denotes the (mn × 1)

vector of all the unknown component series.
The cross-sectional constraints are less obvious to define and vary according

to the nature of the relationships between the variables in the system. Let G be a
(k×m) matrix of known constants (often 0, 1 and -1) defining the (contemporaneous)
accounting relationships between yj, k being the number of linear relationships to

12In general, we use capital letters to denote low–frequency series (and matrices as well) and
small letters to indicate high–frequency series.
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be fulfilled. Let zh, h = 1, . . . , k, be the (n × 1) vectors of high-frequency known
quantities associated to the k accounting constraints in G. The contemporaneous
aggregation constraints can be written in compact form as

(G⊗ In)y = z, (17)

where z =
[

zT1 z
T
2 . . . zTk

]T
has dimension (kn×1). When G is a (1×m) row vector of

constant values we have a single contemporaneous constraint. In addition, G = 1′m
when a simple summation constraint links the variables, 1m being a (m× 1) vector
of one. Di Fonzo and Marini (2011a) show how the matrix G can be derived using
some examples.

Let A be the ((kn+Nm)× nm) aggregation matrix

A =

[

G⊗ In
Im ⊗C

]

and b = [z′Y′]′ the ((kn + Nm) × 1) vector containing both high–frequency and
low–frequency known values. The complete set of constraints between the unknown
high-frequency component series and the available constraints can be expressed in
compact form as

Ay = b. (18)

Notice that the contemporaneous aggregation of temporally aggregated series implies

(G⊗ IN )Y = (Ik ⊗C) Z̄, (19)

where13

(Ik ⊗C) z = Z̄ =
[

ZT
1 Z

T
2 . . .ZT

k

]T
. (20)

Relationship (19) reflects the fact that the temporally aggregated information has
to be consistent with the system constraints. Thus, the low-frequency component
series, when ‘longitudinally’ aggregated through matrix G, must be equal to the
series obtained by temporal aggregation of the high-frequency series in z. In other
words, we are assuming that Y and Z̄ fulfill, respectively, all contemporaneous and
temporal aggregation constraints. This point must be stressed, because it is a strong
pre-requisite in order the reconciliation procedure may work.

It must be noted that the target series of the reconciliation problem yj , for
j = 1, . . . ,m, are different from the benchmarked series xj , which are only required
to be consistent with the annual benchmarksYj . Most likely the following inequality
holds true after the application of independent univariate benchmarking processes:

(G⊗ In)x 6= z. (21)

In summary, provided that Ap 6= b, a reconciliation problem looks for estimates
of the high-frequency component series y for which, while the temporal profile of
the original preliminary series is preserved “at the best” (movement preservation

principle), the aggregation constraints (18) must hold.

13We use the symbol Z̄ to avoid confusion with the null-space matrix Z described in section 3.2.
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Appendix B. Gradient and Hessian of the global GRP criterion

In this appendix we present the analytical expressions of the gradient vector and
of the Hessian matrix for the global GRP criterion (5), which can be exploited by
Newton-type nonlinear programming optimization procedures. The derivation is a
straighforward extension of the expressions shown by Di Fonzo and Marini (2011b)
for the univariate GRP criterion.

Let us denote with yj,t and pj,t, respectively, the j
th target and preliminary series

of the system observed in the period t, with j = 1, . . . ,m, t = 1, . . . , n, where m
is the number of variables and n the number of the high–frequency periods. The
value {yj,t} is the [i+ (j − 1)n]− th element in the stacked nm-dimensional vector
y. The gradient vector of function (5) is the (nm× 1) vector

∇f (y) = g (y) = {gi}
nm
i=1 ,

where

g1+(j−1)n = −2
yj,2
y2j,1

(

yj,2
yj,1

−
pj,2
pj,1

)

gt+(j−1)n =
2

yj,t−1

(

yj,t
yj,t−1

−
pj,t
pj,t−1

)

− 2
yj,t+1

y2j,t

(

yj,t+1

yj,t
−

pj,t+1

pj,t

)

t = 2, . . . , n− 1

gn+(j−1)n =
2

yj,n−1

(

yj,n
yj,n−1

−
pj,n
pj,n−1

)

.

for j = 1, . . . ,m.
Let us denote the elements of the Hessian matrix, ∇2f (y) = H(y), as

hr,s =
∂2f (y)

∂yr∂ys
=

∂gr
∂ys

, r, s = 1, . . . , nm.

Notice that the Hessian matrix is both symmetric and tri-diagonal, that is its non-
zero items are hs,s, s = 1, . . . , nm, hs−1,s, s = 2, . . . , nm, and hs+1,s, s = 1, . . . , nm−
1. After some calculations, we find:

h1+(j−1)n,1+(j−1)n = 2
yj,2
y3j,1

(

3
yj,2
yj,1

− 2
pj,2
pj,1

)

hi+(j−1)n,i+(j−1)n =
2

y2j,t−1

+ 2
yj,t+1

y3j,t

(

3
yj,t+1

yj,t
− 2

pj,t+1

pj,t

)

t = 2, . . . , n − 1

hn+(j−1)n,n+(j−1)n =
2

y2j,n−1

hi+(j−1)n,k+(j−1)n = −
2

y2j,i

(

2
yj,k
yj,i

−
pj,k
pj,i

)

i = k + 1, k = 1, . . . , n− 1
∨i = k − 1, k = 2, . . . , n,

for j = 1, . . . ,m.
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