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Abstract: The proposed approach is useful whenever the variability of the response
in a linear model can be viewed as the sum of two independent sources of variability,
one that is common to all clusters and it is unknown, and another which is assumed to
be available and it is cluster-specific. Here by clusters we mean, for instance, second-
level units in multi-level models (schools, hospitals etc.), or subjects in repeated mea-
sure experiments. The responses here have to be thought as functions of the first-level
observations, whose variability is known to depend only on the cluster’s specificities.
These settings include linear mixed models (LMM) when the estimators of the param-
eters of interest are obtained conditionally on each cluster. The model may account
for additional informations on the clusters, such as covariates, or contrast vectors. An
estimator of the common source of variability is obtained from the residual deviance
of the (multivariate) model, opportunely re-scaled, through the moment method. An
iterative procedure is then suggested (whose initial step depends on the available in-
formation), that turns out to be a special case of the EM-algorithm.
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Nonparametric Estimation of the Random Effect Variance-
Covariance Matrix with Partial Information from the
Clusters

Dario Basso
Department of Statistical Sciences
University of Padua
Italy

Abstract: The proposed approach is useful whenever the variability of the response in a linear
model can be viewed as the sum of two independent sources of variability, one that is common to
all clusters and it is unknown, and another which is assumed to be available and it is cluster-specific.
Here by clusters we mean, for instance, second-level units in multi-level models (schools, hospi-
tals etc.), or subjects in repeated measure experiments. The responses here have to be thought as
functions of the first-level observations, whose variability is known to depend only on the cluster’s
specificities. These settings include linear mixed models (LMM) when the estimators of the param-
eters of interest are obtained conditionally on each cluster. The model may account for additional
informations on the clusters, such as covariates, or contrast vectors. An estimator of the common
source of variability is obtained from the residual deviance of the (multivariate) model, opportunely
re-scaled, through the moment method. An iterative procedure is then suggested (whose initial step
depends on the available information), that turns out to be a special case of the EM-algorithm.

1 Introduction

In many experimental and observational studies, such as multi-level or repeated measure
designs, the responses measured on the same cluster are not independent. This is because
the one-level units (trials) all share some specific features depending on the cluster. In these
situations, linear mixed models are usually assumed to describe the responses, because they
account for the correlation between data of the same cluster. In linear mixed models there
are two sources of variability, one which is assumed to be common to all clusters and it
is due to the random effects, and another which is specific for each cluster. Within this
framework, the generation of the response can be viewed as a two-step process: at first,
the individual effects are generated from a common probability law, which determine what
is to be though as the ‘true’ individual effects. Later, the final responses are generated
conditionally on the random effect realization (and on the individual design matrix) with an
additional source of variability due to the individual errors.

Moving on the opposite direction, if the fixed effects are estimated conditionally on the
clusters, the conditional variability of their estimators will not depend on the random effects,
but only on the variabilty of the individual errors. In a parametric framework, the individual
source of variability is usually described by the dispersion parameter, which is assumed to
be knwon and equal for all subjects [1]. Similarly, if we assume the dispersion parameters
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to be known within each cluster (but not necessarely equal), the conditional variability of
the estimators will be known as well. This is what is meant by ‘partial information from the
clusters’.

The idea behind this work is to describe the marginal distributions of the conditional
estimators up to their second moment, through a linear model that eventually takes into
account additional covariates of the clusters. The response vector Y in next section has to
be imagined as a data matrix whose rows are independent and heteroscedastic vectors with
the estimators of the parameters of interests (e.g. intercept and slope).

2 Variance-Covariance Matrix Estimation

Let Y be a n×p data matrix whose rows are independent but not identically distributed ran-
dom vectors, and whose distributions are continuous and admit finite variance/covariance
matrix. Since this assumption is very broad, we will assume that these observations are
associated to a n× q design matrix Z full of rank, through the linear model

Y = Zγ + E, (1)

where γ is a q × p matrix of coefficients, and E is a n × p matrix, whose rows e′is
are independent random vectors with zero mean and variance V ar(ei) = Vi. We will
write ei ∼ (0,V) to underline that the attention will be focused on the first two moments
of the multivariate distribution. We will also assume that each row of the error matrix E
is in fact sums of two independent random vectors ui and εi, where the first component
is a random realization from a common distribution, whereas the second is specific for
each cluster. Namely, the uis are i.i.d. random vectors from a common density function
fu(0,Σu), and εi ∼ (0,Σi), where Σi is specific for each cluster. The reason of this
assumptions will be clearer in the Section 4. Model (1) can be equivalently viewed in terms
of the single row of Y, which are independent random vectors satisfying yi ∼ (Zγ,Vi),
where Vi = Σu + Σi. Note that the error matrix is such that E[E′E] =

∑n
i=1[Σu + Σi]

and E[E′E] = diag{tr(Σu + Σi)}, i = 1 . . . , n, where tr(·) denotes the trace operator.
In case the matrices Vi are assumed to be equal for all the clusters, it is well known that

the BLUE estimator of the parameter vector γ is given by the weighted least square (WLS)
estimator. It is also known that if the error vectors are homoscedastic, the the Ordinary
Least Square and the WLS estimators coincide ([3]). In a similar fashion, we consider a
n × n weighting matrix V = diag{tr(Σu + Σi)} and the following multiple regression
model

V−1/2Y = V−1/2Zγ + V−1/2E. (2)

We denote with Ẽ = V−1/2E the current error matrix, whose rows satisfy:

E[Ẽ′Ẽ] =

n∑
i=1

Σu + Σi

tr(Σu + Σi)
and E[ẼẼ′] = In.

Note that in the univariate case this is exactly equivalent to the general linear model ap-
proach. The WLS estimator of γ is then given by γ̂ = (X′V−1X)−1X′V−1Y, which is
obtained by minimizing with respect to γ the residual deviance of model (2). The residuals
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of model (2) can be viewed as the projection of the weighted response Ỹ = V−1/2Y into
the sub-space orthogonal to the one spanned by the columns of Z̃ = V−1/2Z. This opera-
tion is made possible by the pre-multiplication of the weighted response for the projection
matrix (I−HV), where HV = V−1/2Z(Z′V−1Z)−1Z′V−1/2. The matrix HV is indeed a
projection matrix since it is symmetric and idempotent, and the matrix of residuals of model
(2) can therefore be written as:

R̃ = (I−HV)Ỹ = (I−HV)Ẽ, (3)

Note that the residuals of model (3) are such that E[R̃R̃′] = I−HV and

E[R̃′R̃] =
n∑

i=1

n∑
j=1

[I−HV]ijE[ẽiẽ
′
j ] =

n∑
i=1

[I−HV]iiV [ẽi],

where [I − HV]ij is the (i, j) element of I − HV. Let us denote by ω2
i the element in

the diagonal of W′W, where W = [I − HV]V−1/2. We are now able to express the
expectation of the quadratic form as a function of the original errors:

E[R̃′R̃] =

n∑
i=1

ω2
i V (ei) = tr(W′W)Σu +

n∑
i=1

ω2
i Σi, ω2

i =
[I−HV]ii
tr(Σu + Σi)

.

Finally, through the moment estimation method, we obtain an unbiased estimator of the
unknown variance/covariance matrix:

Σ̂u =
1

tr(W′W)

[
R̃′R̃−

n∑
i=1

ω2
i Σi

]
. (4)

Note that the same solution can be achieved by considering the eigen decomposition of the
projection matrix I −HV = ΛVΛ′V, in which case the residual matrix can be expressed
as R̃ = Λ′VV−1/2Y and the weight matrix becomes W = Λ′VV−1/2. Also note that the
estimator is based on a difference, so it can lead to negative definite estimates. In order to
avoid this, we will consider the eigen decomposition of Σ̂u and force the eigenvalues to be
nonnegative.

Despite the fact that the weights ω2
i s in (4) are themselves dependent on the unknown

matrix Σu, this representation will be useful for the iterative estimation algorithm discussed
in Section 3, where the ω2

i s will play the role of weights. Note that here the role usually
played by the degrees of freedom in the estimation is replaced by the trace of W′W, which
is generally not an integer.

3 Iterative Estimation

The main assumption in this work is that the individual variance/covariance matrices Σi’s
are known. If so, we can consider as inital guess for the error covariance matrix the matrix
V0 = diag{tr(Σi)}, in which case the weights will also be known, and obtain a first
estimate of Σu. This value can be used to update the guess of V by adding it to the elements
in the diagonal of V0, obtain an updated vector of weights and repeat these steps iteratively
until convergence. Summaryzing, at step s:
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• Obtain the vector of modified residuals Rs = Ws−1Y, where Ws−1 has been de-
fined in Section 2 with V replaced by Vs−1, and where Vs−1 is the estimate of the
error variance/covariance matrix obtained at the previous step (M -step).

• Obtain the weights ω2
i , i.e. the diagonal elements of W′

s−1Ws−1 and the current
estimate of σ2u (E-step) as:

Σ̂us =
1∑n

i=1 ω
2
i

[
R′sRs −

n∑
i=1

ω2
isΣi

]

• Consider the eigen decomposition of Σ̂us = ΛsΨsΛ
′
s, where Λs is the eigenvector

matrix and Ψs = diag{ψis} is the eigenvalue matrix. Force the current estimate to be
nonnegative definite by setting Σ̂us = ΛsΨs

∗Λ′s, where Ψs
∗ = diag{ψis · I(ψis >

0)} and I(·) is the indicator function. Finally let Vs = diag{tr(Σ̂us + Σi)}.

If the algorithm does not stop because all the eigenvalues of Σ̂u are negative (in which case
Σ̂u = 0), the converge is ensured by the EM algorithm theory [2], of which this algorithm
is a special case. Indeed the maximization step is represented by the WLS estimation of
the residuals, which are obtained by minimizing the residual deviance (hence maximizing
the related likelihood), whereas the expectation step is implicit in the moment estimation.
The algorithm can be stopped after a maximum number of iterations, or as soon as some
convergence criterion is satisfied; for instance, given a precision value δ, when |tr(Ψs

∗)−
tr(Ψs+1

∗)| < δ.

4 Example

In this section a simple example where such estimation method is applied will be explained.
Consider a repeated measure experiment where a response variable Y is measured on n
subjects observed on ni trials, i = 1, . . . , n, that depend on the levels/values of a certain
treatment/covariate xi. Additionally, suppose that another covariate is available for each
cluster, say the age, z = [z1, . . . , zn]′. Assume a linear mixed model with random intercept
and slope for the ni × 1 response of each subject holds:

yi = Xiβi + εi, βi = β + ui

where Xi = [1ni ,xi] is the ni × 2 design matrix for the ith subject, β is a 2 × 1 vector of
fixed effects, ui is a 2× 1 vector of random effects from a common probability law, i.e. ui

∼ (0,Σu), and εi is a ni × 1 vector of i.i.d. errors, so εi ∼ (0, σ2Ini). Now consider the
OLS estimator of βi obtained on the ith cluster: β̂i = (X′iXi)

−1X′iyi.
Conditionally on the realization of the random effect ui, we have the usual result β̂i|ui

∼ (Xi[β + ui],Σi), where Σi = σ2i (X′iXi)
−1 only depends on the ith cluster features.

If the dispersion parameter σ2i is assumd to be known, so is the conditional covariance
matrix Σi. As far as the unconditional distribution of β̂i is concerned, we have β̂i ∼
(Xiβ,Σu + Σi).
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Now suppose that we are interested on testing wheter there is a significant interaction
between age and treatment, we can do this by considering a further linear model:

B = ZΓ + E, Bn×2 =

 β̂
′
1

...
β̂
′
n

 , Zn×2 = [1n, z], Γ2×2 =

[
Γ′0
Γ′1

]

and E is a n × 2 data matrix whose rows are independent random vectors satisfying ei ∼
(0,Σu + Σi). The hypothesis of no interaction between age and treatment can be thus
translated into the null Γ1 = 0.
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