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Pairwise likelihood inference for multivariate categorical re-
sponses with application to customer satisfaction

Euloge Clovis Kenne Pagui

Department of Statistical Sciences
university of padua
Italy

Antonio Canale

Department of Economics and Statistics
University of Turin and Collegio Carlo Alberto
Italy

Abstract: A common practice in customer satisfaction analysis is to administer surveys

where subjects are asked to express opinions on a number of statements, or satisfaction

scales, by use of ordered categorical responses. Motivated by this application, we propose

a pseudo-likelihood approach to estimate the dependence structure among multivariate cat-

egorical variables. As it is commonly done in this area, we assume that the responses are

related to latent continuous variables which are truncated to induce categorical responses.

A Gaussian likelihood is assumed for the latent variables leading to the so called ordered

probit model. Since the calculation of the exact likelihood is computationally demanding,

we adopt an approximate solution based on pairwise likelihood. To asses the performance

of the approach, simulation studies are conducted comparing the proposed method with

standard likelihood methods. A parametric bootstrap approach to evaluate the variance

of the maximum pairwise likelihood estimator is proposed and discussed. An application

to customer satisfaction survey is performed showing the effectiveness of the approach in

the presence of covariates and under other generalizations of the model which can make a

difference in real data situations.

1 Introduction

Surveys and questionnaires are a fundamental research tool in many application
areas such as psychometry or marketing research among others. Responses in cus-
tomer satisfaction surveys, for example, are generally in the form of rating scale or
Likert scale (Likert, 1932). When responding to a Likert questionnaire, customers
specify their level of agreement or disagreement for each of the q questions or items.
Usually each item consists in K = 5 ordered response levels, but sometimes also
K > 5 can be adopted. Each item aims to measure one different aspect of the
overall phenomenon under study (e.g. global customer satisfaction) and hence the
responses are clearly correlated.

A single item, in Likert questionnaires, can be considered as an ordered-categorical
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outcome. An approach to model ordinal categorical responses which, albeit wrong,
is commonly adopted, consists in treating them as continuous observation and to
use standard methods such as linear regression to estimate covariate dependence,
t-test or ANOVA models to test for differences among groups, and so forth. A more
rigorous and elegant approach consists in considering that the observed categorical
data are related to continuous latent variables. The relation between the latent con-
tinuous variables and the observed categorical variables is usually induced by use of
thresholds partitioning the latent sample space into a series of regions correspond-
ing to each ordinal category. If a Gaussian distribution is assumed for the latent
variables, an ordered probit model is induced (Agresti, 2002).

Multivariate ordered probit models are the straightforward multivariate exten-
sion of ordered probit models where both the latent and the observed variables have
dimension q ≥ 2, as it is the case for customer satisfaction surveys. With regard
to this class of models, we discuss the problem of the estimation of the dependence
structure, following a frequentist likelihood-based approach. The multivariate or-
dered probit model has clear computational problems related to the calculation of
a q dimensional integral for each single likelihood contribution. Such a procedure is
computationally demanding or even unfeasible also for moderate q. For that reason
we adopt an approximate solution based on a simple pseudolikelihood belonging
to the class of composite likelihoods (Lindsay, 1988): the pairwise likelihood (PL)
(Cox and Reid, 2004). The use of the PL when the full likelihood is computation-
ally unmanageable is becoming a commonly adopted procedure (Varin et al., 2011).
Applications of pairwise likelihood to ordered probit models are not new, and signif-
icant contributions can be found in De Leon (2005), where the dependence among
the ordered variables is evaluated in terms of polychoric correlation, i.e. the linear
correlation of the latent variables, and in Varin and Vidoni (2006) and Varin and
Czado (2010) in the context of longitudinal data and focusing on the mean evolution
in time. Our contribution to the PL approach in the case of ordered probit model
is building up over De Leon (2005), but it differs for three main aspects. First, we
estimate different measures of dependence and not only the polychoric correlation,
i.e. the linear correlation coefficient and the L measure coefficient (Lu, 2011). The
polychoric correlation is indeed based on the latent Gaussianity assumption which
we consider more as a computational solution rather than an exact characteristic of
the model. Second, the dimensions that we consider mimic real contexts and are
greater than q = 3. This has clearly no theoretical difference, but it increases the
computational burden. In addition, this causes the number of model parameters
to leaven, leading to the practical impossibility of evaluate the Fisher’s and Go-
dambe’s information matrices and forcing us to study other approaches to evaluate
the variability of the maximum likelihood estimator. Third, we apply the methods
to a concrete customer satisfaction application, introducing subject-specific covari-
ates and other complications. We discuss a bootstrap-based approach which allows
us to perform classical hypothesis testing on each pairwise variable dependence and
on the significance of the regression coefficients. This bootstrap-based approach is,
to our knowledge, the first attempt to asses the variance of the maximum likelihood
estimator for this class of problems.

The rest of the paper is organized as follows. In the next section we review the
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multivariate ordered probit model and introduce our solution based on pairwise like-
lihood. In Section 3 an extensive simulation experiment is conducted comparing the
point estimates obtained maximizing the full and pairwise likelihoods. A discussion
on the computational feasibility of the two procedures is also reported. In Section 4
the model is generalized including the effect of subject specific covariates, motivated
by applications to customer satisfaction surveys. Data from a survey conducted by
a company operating in the sector of information technology services and consulting
are then analyzed and discussed, introducing a bootstrap-based solution to asses the
estimator standard errors. Section 5 summarizes the main results.

2 Multivariate ordered probit model

Let Yi = (Yi1, . . . , Yiq)
T, Yij ∈ {1, 2, . . . ,K} for j = 1, . . . , q be a q-dimensional ordi-

nal categorical random vector with joint density g(Yi) depending on some unknown
parameter θ, with i = 1, . . . , n defining a collection of iid random vectors. The or-
dered probit model assumes that, for each i = 1, . . . , n, there exists a latent random

vector Zi = (Zi1, . . . , Ziq)
T, with Zi

iid∼ N(0,Σ) where

Σ =


1 ρ1,2 . . . . . . ρ1,q

1 . . . . . . ρ2,q

1 ρrs
...

1 ρq−1,q

1


is an unknown q-dimensional positive definite correlation matrix. In observing yij ,
the following relation is assumed

yij = k if and only if zij ∈ (ak−1, ak], (1)

where −∞ = a0 < a1 < · · · < aK = ∞ is a sequence of real numbers defining
a disjoint partition of R. The likelihood function for a single observation is then
proportional to

pr(Yi1 = yi1, . . . , Yiq = yiq) =

∫ ayi1

ayi1−1

. . .

∫ ayiq

ayiq−1

φΣ(zi1, . . . , ziq)dzi1 . . . dziq,

where φΣ(·) denotes the multivariate Gaussian distribution with mean zero and
variance Σ. The full log-likelihood for the n observations is therefore given by

`(θ) =

n∑
i=1

log

{∫ ayi1

ayi1−1

. . .

∫ ayiq

ayiq−1

φΣ(zi1, . . . , ziq)dzi1 . . . dziq

}
, (2)

where the parameters of the model are the thresholds (a1, . . . , aK−1) and the latent
correlations {ρr,s} for r, s = 1, . . . q, and r < s, and θ = (a1, . . . , aK−1, ρ1,2,

. . . , ρq−1,q) is the joint vector of all parameters with θ̂ denoting its maximum likeli-
hood estimator. Equation (2) presents a q-dimensional integral for each observation.
In fact this function is not easily tractable, since its direct evaluation requires the
computation of n integrals of a q-dimensional Gaussian distribution.
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2.1 Pairwise likelihood for multivariate probit model

The pairwise likelihood that we discuss in this paper, is a pseudolikelihood con-
structed from bivariate margins. Specifically, the pairwise log-likelihood for our
ordered categorical data is

`P (θ) =
n∑
i=1

q−1∑
r=1

q∑
s=r+1

wrs log
{

pr(Yir = yir, Yis = yis)
}

=
n∑
i=1

q−1∑
r=1

q∑
s=r+1

wrs log

{∫ ayir

ayir−1

∫ ayis

ayis−1

φΣ(ρr,s) (zir, zis) dzirdzis

}
,

where wrs are nonnegative weights to be chosen and Σ(ρ) denotes the 2 × 2 corre-
lation matrix with off-diagonal entries equal to ρ. The PL approach is particularly
attractive because it substitutes a log-likelihood involving high dimensional integra-
tions with a sum of bivariate integrals, which can be easily evaluated with standard
available software. Similar PL has been considered by De Leon (2005) for likelihood
inference within group continuous models, that is models for multivariate ordinal
data. While the latent model is the same, we are not interested in estimating just
the polychoric correlations (i.e. the linear correlation if the latent variables) but also
directly a measure of relation among the ordered categorical responses. To this end
we use both the standard correlation coefficient and the L measure defined as

Cor(U, V ) =
Cor(U, V )√

Var(U)Var(V )
(3)

L(U, V ) =

[
1− exp

{
−2I(U, V )

1− I(U, V )/min{H(U)H(V )}

}]1/2

, (4)

where I(U, V ) =
∑

x,y pr(u, v) log{pr(u, v)/pr(u)pr(v)} is the mutual information
between U and V and H(U) = −

∑
u pr(u) log(pr(u)) is the entropy of U . The

L measure is a positive and symmetric index of dependence between any possible
random variable. It equals 0 if and only if the random variables are independent
and 1 if there is a strict dependence between the random variables. The L measure
is defined using the mutual information index I(·, ·), it is invariant under marginal
one-to-one transformations of the random variables, and it equals the correlation
coefficient if the two random variables are normally distributed. Note also that
definition (4) exploits the fact that, in our case, each random variable is discrete.
For further details see Lu (2011).

Generally, the composite likelihood inferential procedures are similar to the
ones based on the standard likelihood. For example, the pairwise score vector,
UP (θ) = ∂`P (θ)/∂θ, is still unbiased being the sum of the score vector based on the
likelihood contribution of each pair of observations. As for the standard likelihood,
the maximum pairwise likelihood estimator θ̂P can be obtained either by maximizing
`P (θ) or by solving the pairwise score equation UP (θ) = 0. Under the usual regular-
ity conditions (Molenberghs and Verbeke, 2005), the maximum pairwise likelihood
estimator is consistent and asymptotically normal as n→∞. Specifically

θ̂P ∼̇N(θ,G(θ)−1)
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where G(θ) = K(θ)J(θ)−1K(θ) is known as the Godambe information or sand-
wich information, K(θ) = Eθ{−∂UP (θ)/∂θ} is the sensitivity matrix and J(θ) =
Varθ{UP (θ)} is the variability matrix.

The use of a pseudo-likelihood usually leads to a loss of efficiency when the length
of the random vector increases (see, for example, Cox and Reid, 2004, Section 1; Zhao
and Joe, 2005, Section 6 and Xu and Reid, 2011, Section 3 for some illustrations).
On the other hand, there are few classes of models in which the maximum pairwise
likelihood estimator is fully efficient (Mardia et al., 2009). An appropriate choice
of weights might affect on efficiency. For the pairwise likelihood defined above, it
seems plausible to use equal weights.

With regard to the present model, both the standard and pairwise likelihood
involve a numerical integration and thus the evaluation of the Fisher information,
K(θ), and J(θ) may be a daunting task. Particularly in the applications we have
in mind which involve high dimensions q. To this end, in Section 4 we adopt a
bootstrap-based approach.

3 Computation and simulation

To asses the performance of the procedure based on the PL we conduct a simulation
study. Before describing the simulation study and commenting its results we briefly
discuss the computational issues related to the proposed model stressing when it is
preferable to the full-likelihood approach.

3.1 Computational issues

Our code is implemented in the R software (R Core Team, 2013) with call to C
functions for the most demanding operations. To evaluate the Gaussian integrals,
the package uses the Fortran 77 subroutine sadmvnt.f by Genz (1992). As discussed
in Varin and Vidoni (2006), to assure the ordering of the thresholds a0, < · · · < aK ,
we reparametrize the model defining

δk = log(ak − ak−1)

for k = 2, . . . ,K − 1. Clearly, it is not possible to identify both the mean of the
latent variables and the first threshold a1. To deal with this, we fix the latent mean
to be zero. For optimization, we consider as starting values for the thresholds a1 = 0
and δk = 0 for k = 2, . . . ,K−1. This is equivalent to assume that the thresholds are
equally spaced with distance one. As for the covariance components, we consider as
starting values the sample covariances of the observed categorical variables treated as
continuous. Optimization of the PL and of the full-likelihood functions is performed
via quasi-Newton box-constrained optimization algorithm, with a relative tolerance
of 1× 10−10.

A comparison between the PL and the full-likelihood is reported in the next
section. However such a comparison is feasible only for moderate q. Indeed our
motivation to use the PL approach lies both in speeding up computations, and
in avoiding the numerical instability intrinsically related to the calculation of q-
dimensional integrals. Figure 1 gives an idea of the former aspect. We plot the
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Figure 1: Execution time of a single likelihood evaluation for different dimensions q
for the full likelihood (continuous line) and pairwise likelihood (dashed line) for a
sample of size n = 50.

executions time of a single evaluations of the likelihood functions for samples of size
n = 50 and different dimensions q = 2, 5, 10, 15, 20. The computational burden of
the full likelihood with respect to the PL is clearly comparable for q = 2 while it
is double for q = 5 and even ten times bigger for q > 5. Note that in maximizing
the likelihood function numerically, several evaluation of the likelihood functions
are needed leading to a leavening of the differences between the two approaches. In
particular, by our experience, we have noted that for q > 5 the maximization of
the full likelihood turns out to be extremely slow. The times are in seconds and
calculated when running the algorithms in R version 3.0.1 on a 64bit Mac OS X
10.6 machine with a 2.4 Ghz Intel Core 2 processor with 4 Gb of RAM.

3.2 Simulation experiment

To assess the performance of the proposed approach we simulate data from three
scenarios. All scenarios consider q = 5 and K = 5. As previously discussed the
computations for the full likelihood when q > 5 are demanding and hence we decide
to fix q = 5 for sake of comparison. However, the PL proposal is feasible also for
higher q as we show in the application of Section 4. In the first scenario we first
simulate latent Zi from a multivariate normal with mean vector equal to (2, . . . , 2)
and the unconstrained variance matrix Σ1 reported in the Appendix, and then round
Zi with thresholds −∞, 1, 2, 3, 4,∞. In the second scenario we substitute Σ1 with
a constrained covariance matrix with all correlations equal to ρ = 0.8 while in
the last one we use Σ3, a sparse matrix which is reported in the Appendix. For
each scenario we simulate 1000 samples of sizes n = 50, 100, 200 and then estimate
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Table 1: Mean square error of the polychoric correlation coefficients under the three
scenarios

n full likelihood pairwise likelihood

Scenario 1 50 0.0195 0.0192 0.0232 0.0184 0.0250 0.0245 0.0218 0.0184
- 0.0009 0.0225 0.0142 - 0.0008 0.0255 0.0152
- - 0.0208 0.0089 - - 0.0243 0.0097
- - - 0.0101 - - - 0.0122

100 0.0088 0.0025 0.0112 0.0062 0.0122 0.0028 0.0116 0.0045
- 0.0047 0.0129 0.0091 - 0.0058 0.0127 0.0131
- - 0.0117 0.0026 - - 0.0110 0.0023
- - - 0.0115 - - - 0.0109

200 0.0027 0.0025 0.0054 0.0032 0.0060 0.0052 0.0060 0.0061
- 0.0001 0.0044 0.0046 - 0.0008 0.0023 0.0059
- - 0.0049 0.0049 - - 0.0059 0.0054
- - - 0.0015 - - - 0.0063

Scenario 2 50 0.0053 0.0044 0.0048 0.0044 0.0047 0.0050 0.0048 0.0048
- 0.0050 0.0050 0.0049 - 0.0045 0.0050 0.0049
- - 0.0044 0.0038 - - 0.0051 0.0054
- - - 0.0047 - - - 0.0050

100 0.0020 0.0020 0.0019 0.0020 0.0021 0.0022 0.0020 0.0021
- 0.0021 0.0022 0.0022 - 0.0023 0.0023 0.0023
- - 0.0022 0.0021 - - 0.0024 0.0021
- - - 0.0020 - - - 0.0021

200 0.0010 0.0011 0.0011 0.0010 0.0011 0.0011 0.0011 0.0011
- 0.0011 0.0011 0.0010 - 0.0011 0.0011 0.0010
- - 0.0011 0.0010 - - 0.0012 0.0010
- - - 0.0011 - - - 0.0012

Scenario 3 50 0.0255 0.0095 0.0200 0.0253 0.0247 0.0090 0.0212 0.0255
- 0.0261 0.0233 0.0089 - 0.0255 0.0249 0.0079
- - 0.0208 0.0270 - - 0.0222 0.0268
- - - 0.0172 - - - 0.0185

100 0.0123 0.0084 0.0114 0.0107 0.0123 0.0083 0.0117 0.0109
- 0.0122 0.0111 0.0079 - 0.0123 0.0126 0.0084
- - 0.0117 0.0114 - - 0.0118 0.0125
- - - 0.0022 - - - 0.0020

200 0.0061 0.0048 0.0062 0.0058 0.0061 0.0048 0.0062 0.0058
- 0.0062 0.0069 0.0058 - 0.0062 0.0069 0.0058
- - 0.0049 0.0064 - - 0.0049 0.0063
- - - 0.0060 - - - 0.0060

the vector of parameters θ. From the estimated values of parameters, we derive
the polychoric correlation coefficients and calculate with a plug-in approach, the
pairwise correlation and L measure coefficients as (3)–(4). The Monte Carlo mean
squared errors for the polychoric correlations, linear correlations and L measures are
reported in Table 1, 2 and 3.

As expected, in all scenarios and considering the three measures of dependence,
the mean squared errors decrease towards zero as the sample size increases, both in
the full and in the pairwise likelihood approach. Consider Table 1. In the second
scenario, namely when we have all the polychoric correlations fixed to ρ the mean
squared errors between the full likelihood and the PL approach are almost identical
also for n = 50. Also in scenario 3 the resulting errors converge but only for greater
sample size. Consider now Table 2 and 3. Here the PL always shows greater mean
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Table 2: Mean square error of the correlation coefficients under the three scenarios
n full likelihood pairwise likelihood

Scenario 1 50 0.0153 0.0153 0.0183 0.0147 0.0195 0.0193 0.0173 0.0148
- 0.0011 0.0179 0.0118 - 0.0010 0.0201 0.0128
- - 0.0168 0.0078 - - 0.0194 0.0085
- - - 0.0088 - - - 0.0107

100 0.0069 0.0023 0.0088 0.0054 0.0095 0.0026 0.0091 0.0040
- 0.0042 0.0102 0.0072 - 0.0051 0.0101 0.0103
- - 0.0093 0.0025 - - 0.0088 0.0023
- - - 0.0092 - - - 0.0088

200 0.0023 0.0022 0.0042 0.0026 0.0048 0.0042 0.0047 0.0048
- 0.0002 0.0036 0.0036 - 0.0008 0.0020 0.0047
- - 0.0040 0.0039 - - 0.0047 0.0043
- - - 0.0014 - - - 0.0049

Scenario 2 50 0.0053 0.0045 0.0049 0.0045 0.0048 0.0051 0.0048 0.0049
- 0.0051 0.0050 0.0049 - 0.0045 0.0051 0.0050
- - 0.0045 0.0039 - - 0.0052 0.0055
- - - 0.0048 - - - 0.0051

100 0.002 0.0021 0.0020 0.0021 0.0021 0.0023 0.0020 0.0022
- 0.0021 0.0022 0.0022 - 0.0024 0.0023 0.0023
- - 0.0022 0.0021 - - 0.0025 0.0022
- - - 0.0021 - - - 0.0022

200 0.001 0.0011 0.0011 0.0010 0.0011 0.0012 0.0012 0.0011
- 0.0011 0.0011 0.0010 - 0.0011 0.0012 0.0010
- - 0.0012 0.0010 - - 0.0012 0.0010
- - - 0.0011 - - - 0.0012

Scenario 3 50 0.0200 0.0083 0.0159 0.0198 0.0193 0.0079 0.0168 0.0200
- 0.0205 0.0183 0.0079 - 0.0200 0.0195 0.0070
- - 0.0165 0.0212 - - 0.0176 0.0210
- - - 0.0142 - - - 0.0152

100 0.0096 0.0069 0.0089 0.0084 0.0096 0.0068 0.0092 0.0086
- 0.0095 0.0087 0.0065 - 0.0097 0.0098 0.0068
- - 0.0093 0.0090 - - 0.0093 0.0098
- - - 0.0021 - - - 0.0020

200 0.0048 0.0038 0.0048 0.0045 0.0048 0.0038 0.0049 0.0045
- 0.0048 0.0054 0.0045 - 0.0049 0.0054 0.0045
- - 0.0039 0.0050 - - 0.0039 0.0050
- - - 0.0047 - - - 0.0047

squared errors, if compared to the full likelihood approach. For increasing n, the
mean squared errors are however more comparable.

4 Application to customer satisfaction analysis

Customer satisfaction surveys are useful tools to measure customers’ opinions on
products and services. For example, a typical surveys structure to measure the
quality of services, follows the so called SERVQUAL structure (Parasuraman et al.,
1988). The main idea behind this approach is that, in order to guarantee a good
quality of service, it is necessary to go beyond a customer’s expectations. Thus,
it is important to measure the gap between expected services and experienced ser-
vices. To this end, questionnaires are typically divided into two separate blocks of
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Table 3: Mean square error of the L measures under the three scenarios
n full likelihood pairwise likelihood

Scenario 1 50 0.0086 0.0117 0.0172 0.0158 0.0133 0.0121 0.0172 0.0165
- 0.0010 0.0130 0.0138 - 0.0009 0.0125 0.0150
- - 0.0148 0.0100 - - 0.0158 0.0108
- - - 0.0112 - - - 0.0133

100 0.0038 0.0032 0.0082 0.0071 0.0053 0.0037 0.0091 0.0054
- 0.0052 0.0093 0.0055 - 0.0063 0.0097 0.0074
- - 0.0096 0.0036 - - 0.0094 0.0033
- - - 0.0100 - - - 0.0097

200 0.0029 0.0028 0.0032 0.0031 0.0045 0.0044 0.0045 0.0041
- 0.0001 0.0040 0.0026 - 0.0012 0.0027 0.0045
- - 0.0043 0.0031 - - 0.0041 0.0044
- - - 0.0019 - - - 0.0046

Scenario 2 50 0.0075 0.0063 0.0068 0.0063 0.0067 0.0072 0.0068 0.0069
- 0.0071 0.0070 0.0068 - 0.0063 0.0071 0.0070
- - 0.0063 0.0055 - - 0.0073 0.0077
- - - 0.0067 - - - 0.0072

100 0.0029 0.0030 0.0029 0.0029 0.003 0.0032 0.0029 0.0032
- 0.0031 0.0032 0.0032 - 0.0034 0.0033 0.0033
- - 0.0032 0.0030 - - 0.0035 0.0031
- - - 0.0030 - - - 0.0031

200 0.0014 0.0016 0.0016 0.0015 0.0015 0.0016 0.0017 0.0016
- 0.0016 0.0015 0.0014 - 0.0016 0.0017 0.0015
- - 0.0017 0.0014 - - 0.0017 0.0015
- - - 0.0016 - - - 0.0017

Scenario 3 50 0.0206 0.0109 0.0138 0.0204 0.0199 0.0105 0.0146 0.0206
- 0.0212 0.0189 0.0107 - 0.0207 0.0202 0.0097
- - 0.0155 0.0218 - - 0.0158 0.0217
- - - 0.0160 - - - 0.0167

100 0.0099 0.0077 0.0053 0.0086 0.0098 0.0076 0.0054 0.0087
- 0.0097 0.0089 0.0073 - 0.0099 0.0101 0.0077
- - 0.0093 0.0091 - - 0.0094 0.0100
- - - 0.0030 - - - 0.0028

200 0.0049 0.0041 0.0040 0.0046 0.0048 0.0040 0.0040 0.0046
- 0.0049 0.0055 0.0029 - 0.0050 0.0055 0.0029
- - 0.0041 0.0051 - - 0.0041 0.0051
- - - 0.0032 - - - 0.0032

questions. In the first, customers are asked to say how important are some charac-
teristics of a given service in general. In the second, customers are asked to report
their actual satisfaction on the same characteristics, for the experienced service.

We focus on data from n = 324 questionnaires collected in 2009 by an Italian
company operating in the sector of information technology services. The survey
consists of q = 14 questions, divided into two blocks of seven items each. In the
first block, the question was “how important are the following aspects”, while in
the second block the question was “how satisfied are you regarding the following
aspects”. The seven aspects are: efficiency of the service, reliability of the service,
flexibility of the service, velocity in giving solutions, ability to satisfy the customers’
needs, ability to implement technological innovation, velocity in adapting to chang-
ing legislation. Each item is measured on a scale of K = 10 levels. In addition to the
responses above, subject specific covariates are available, namely gender, age, and
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educational level (elementary school, high school, and university) of the customer.
Let xi the vector of the covariates for customer i.

From an application point of view, we are mainly interested in the mean re-
sponses, accounting for meaningful dependence structure between and within the
two blocks. Specifically, we want to allow for different means for each different
items in order to measure the discrepancy between experienced and expected qual-
ity of service, while controlling for any effect due to the covariates. The company
hopes to record similar means in the two block and possibly higher scores in the
experienced quality block and positive correlation between an item of the first block
and the relative item in the second block.

To this end we modify the model of Section 2, assuming

Zi = (Zi1, . . . , Ziq)
T, E[Zij ] = ξj + xTi β, Var[Zi] = Σ (5)

for all i = 1, . . . , n and j = 1, . . . , q, with Σ being a q-dimensional positive definite
correlation matrix to be estimated. Let furthermore ρ = (ρ1,2, . . . , ρq−1,q)

T , the q(q−
1)/2 vector containing all the upper diagonal elements of Σ and ξ = (ξ1, . . . , ξq)

T , the
vector of the item-specific means. We assume to observe yij = k if zij ∈ (ak−1, ak]
and let a = (a2, . . . , aK−1)T , be the vector of K − 2 thresholds. Note that it is not
possible to identify both the mean of the latent variables and all the thresholds.
Thus a1 is fixed to zero. We fix the first thresholds rather than the means because
the generalization (5) has a different mean for each item and subject. For the same
reason, we cannot compute the actual correlations and L-measures, and hence we
focus on the polychoric correlation estimation only.

The parameter vector of model (5) is thus made of K − 2 thresholds, q(q − 1)/2
correlations, q item-specific intercept levels, and p regression coefficients. The PL
log-likelihood for the parameters is

`P (ρ, ξ, β, a) =

n∑
i=1

q−1∑
r=1

q∑
s=r+1

log
{

pr(Yir = yir, Yis = yis)
}

where

pr(Yir = yir, Yis = yis) =

∫ ayir

ayir−1

∫ ayis

ayis−1

φΣ(ρrs) (zir − µir, zis − µis) dzirdzis,

and µik = ξk + xTi β. Clearly, the high number of parameters (117, for our dataset)
makes the likelihood optimization a demanding task. By our experience, the quasi-
Newton box-constrained optimization algorithm, greatly benefits from the following
initialization. As before, we consider as starting values for the polychoric correla-
tions, the sample covariances of the observed categorical variables. Then, for the
β coefficients we first compute the average scores over the items for each subject,
then we standardize them and after that, we perform a linear regression between
the standardized-average-scores and the covariates. The least squares estimates for
the regression coefficients act as starting values for the β parameters. For ξ, we
simply consider the sample mean for each item over the subjects. For what concerns
the initialization of the thresholds we first compute the sample mean (ȳ), standard
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deviation (sy), and relative frequencies of the categories (f̂1, . . . , f̂10) of the whole

sample. Then we calculate the quantiles of levels f̂j for j = 2, . . . , 10 of a Gaussian
distribution with mean ȳ and standard deviation sy and consider those values as
stating values for the thresholds.

In this applied problem, we are facing a very complex model both from the ana-
lytical and computational viewpoints. Despite the fact that we unburden the prob-
lem with the use of the pairwise likelihood, it still remains the question of evaluating
the unmanageable pairwise likelihood quantities such as K(θ) and J(θ), necessary
for inference on the parameters. The nonparametric bootstrap methods reveal to be
of great help to provide an alternative solution. The steps of the methodology are
briefly summarized in what follows. Several independent resample from the original
dataset are carried out with replacement obtaining bootstrap parameter estimates,
θ̂∗b for each b = 1 . . . , B, where B refers to the number of bootstrap replicates. The

empirical distribution of θ̂∗ is used as a good estimate for the distribution of the
estimator θ̂ from which we can derive for example bias, standard error, and so forth.
Thanks to the independence among the bootstrap replicates, the procedure strongly
benefits from a parallel implementation on multicores machines or clusters of CPUs.
For this problem, we took B = 1400.

To calculate confidence intervals only for correlation parameters, we use the bias
corrected and accelerated confidence intervals (BCa) which are recommended for
complex models (Efron and Tibshirani, 1994; DiCiccio and Efron, 1996). The BCa
method has the advantage to be transformation respecting and second order accu-
rate. A 100(1− α)% BCa percentile confidence interval is based upon the quantiles

of the bootstrap distribution of the estimates and is given by
[
θ̂∗(α1), θ̂∗(α2)

]
, where

θ̂∗(α) is the empirical percentile of level α and

α1 = Φ

(
ẑ0 +

ẑ0 + z(α/2)

1− â(ẑ0 + z(α/2))

)
, α2 = Φ

(
ẑ0 +

ẑ0 + z(1−α/2)

1− â(ẑ0 + z(1−α/2))

)

where ẑ is a bias correction constant defined as

ẑ0 = Φ−1

(
#(θ̂∗b < θ̂)

B

)
,

where and # means ”number of”. To calculate the accelerated constant â we follow
(Efron and Tibshirani, 1994, p. 186):

â =

∑n
i=1(θ̂(·) − θ̂(i))

3

6{
∑n

i=1(θ̂(·) − θ̂(i))2}3/2
,

where θ̂(i) is the estimate of θ based on the observed data with the ı̇-th observation

deleted and θ̂(·) =
∑n

i=1 θ̂(i)/n. The estimates for the polychoric correlations and
their 95% confidence intervals are also reported in Table 4.

The results reported in Table 5 and 6 are obtained thanks to the normal approx-
imation of estimators. From Table 5, we comment that age and sex are not linearly
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Figure 2: Maximum pairwise likelihood estimates for the polychoric correlations rep-
resented on a color scale ranging from red (polychoric correlation equal to 0) to white
(polychoric correlation equal to 1).

related to the global item scores. On the other side higher scores are more promi-
nent among subjects with higher educational level (p-value lower than 5% level). To
visualize the relations among the items, consider the plot in Figure 2 in which we
represent the estimated polychoric correlations with a color ranging from white (cor-
relation equal to one) to red (correlation equal to zero). Note that we do not have
any negative estimate. Our estimates indicate that the correlations of the latent
Gaussian variables are higher within the two blocks of questions and lower between
the two blocks. This is a very important evidence, since it means that high rating
in the first item, i.e. high expected quality for the first item, is strongly related to
the expected quality of other items, but not so related to its experienced quality. To
confirm that, consider Table 6, reporting the differences ξj+7 − ξj , namely the gap
between experienced quality and expected quality for the j-th characteristic. For all
j = 1, . . . , 7, this gap is negative with high significance (p-value lower than 10−40),
meaning that the the experienced quality is clearly below customers’ expectations.

5 Discussion

In this paper we have studied the pairwise likelihood approach for multivariate or-
dinal probit models, showing that its computational gain is dramatic if compared
to the standard likelihood approach. The method has been applied to customer
satisfaction data, introducing several complications to the basic model, such as co-
variates dependence and different means parameter for each latent variable. Despite
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the considerable number of parameters, the likelihood optimization is feasible in
reasonable time. A bootstrap-based approach to evaluate the estimators’ standard
errors has been adopted. We hope that our contribution will encourage the use
of pairwise likelihood for ordered probit models in several applied fields such as
marketing, psychometry, and medical research.

Appendix

The matrices used in the simulation experiment of Section 3 are

Σ1 =


1 −0.06 0.16 −0.30 −0.36

1 0.93 0.11 0.49
1 0.21 0.60

1 0.59
1



Σ3 =


1 0 −0.65 −0.26 0

1 0 0 −0.69
1 −0.23 0

1 0.41
1


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Table 4: Estimated polychoric correlations and 95 % accelerated bias corrected boot-
strap confidence intervals for the quality of service dataset.

Index Estimate CI Index Estimate CI
(1, 2) 0.516 (0.406,0.625) (5, 6) 0.120 (0.565,0.737)
(1, 3) 0.446 (0.331,0.562) (5, 7) 0.127 (0.642,0.806)
(1, 4) 0.730 (0.357,0.556) (5, 8) 0.154 (0.109,0.334)
(1, 5) 0.462 (0.42,0.611) (5, 9) 0.139 (0.079,0.313)
(1, 6) 0.683 (0.372,0.567) (5, 10) 0.177 (0.04,0.275)
(1, 7) 0.629 (0.365,0.56) (5, 11) 0.165 (0.018,0.243)
(1, 8) 0.516 (0.174,0.39) (5, 12) 0.756 (0.017,0.248)
(1, 9) 0.738 (0.075,0.307) (5, 13) 0.769 (0.002,0.245)
(1, 10) 0.684 (0.057,0.294) (5, 14) 0.797 (0.039,0.274)
(1, 11) 0.720 (-0.019,0.206) (6, 7) 0.149 (0.7,0.832)
(1, 12) 0.473 (0.025,0.251) (6, 8) 0.173 (0.165,0.395)
(1, 13) 0.590 (-0.007,0.231) (6, 9) 0.194 (0.105,0.332)
(1, 14) 0.673 (-0.022,0.213) (6, 10) 0.198 (0.059,0.305)
(2, 3) 0.661 (0.66,0.799) (6, 11) 0.133 (0.055,0.286)
(2, 4) 0.650 (0.556,0.77) (6, 12) 0.189 (0.056,0.294)
(2, 5) 0.470 (0.666,0.807) (6, 13) 0.171 (-0.012,0.24)
(2, 6) 0.711 (0.501,0.671) (6, 14) 0.813 (-0.02,0.231)
(2, 7) 0.661 (0.629,0.787) (7, 8) 0.799 (0.146,0.368)
(2, 8) 0.641 (0.157,0.361) (7, 9) 0.835 (0.105,0.338)
(2, 9) 0.719 (0.167,0.383) (7, 10) 0.841 (0.076,0.309)
(2, 10) 0.767 (0.035,0.257) (7, 11) 0.127 (0.042,0.267)
(2, 11) 0.291 (0.009,0.216) (7, 12) 0.162 (0.047,0.279)
(2, 12) 0.267 (0.057,0.275) (7, 13) 0.182 (0.054,0.291)
(2, 13) 0.300 (0.039,0.277) (7, 14) 0.126 (0.073,0.312)
(2, 14) 0.245 (0.055,0.28) (8, 9) 0.124 (0.692,0.82)
(3, 4) 0.219 (0.512,0.718) (8, 10) 0.126 (0.753,0.861)
(3, 5) 0.291 (0.599,0.761) (8, 11) 0.176 (0.692,0.824)
(3, 6) 0.260 (0.588,0.751) (8, 12) 0.702 (0.765,0.861)
(3, 7) 0.206 (0.575,0.739) (8, 13) 0.780 (0.628,0.78)
(3, 8) 0.276 (0.179,0.416) (8, 14) 0.820 (0.592,0.763)
(3, 9) 0.238 (0.113,0.351) (9, 10) 0.720 (0.791,0.875)
(3, 10) 0.229 (0.075,0.319) (9, 11) 0.829 (0.71,0.83)
(3, 11) 0.199 (0.01,0.243) (9, 12) 0.099 (0.738,0.853)
(3, 12) 0.231 (0.081,0.303) (9, 13) 0.175 (0.723,0.835)
(3, 13) 0.226 (0.062,0.302) (9, 14) 0.160 (0.589,0.772)
(3, 14) 0.756 (0.035,0.275) (10, 11) 0.197 (0.726,0.863)
(4, 5) 0.192 (0.642,0.797) (10, 12) 0.165 (0.784,0.884)
(4, 6) 0.154 (0.584,0.74) (10, 13) 0.114 (0.769,0.869)
(4, 7) 0.196 (0.53,0.736) (10, 14) 0.204 (0.678,0.833)
(4, 8) 0.204 (0.135,0.364) (11, 12) 0.678 (0.793,0.879)
(4, 9) 0.161 (0.124,0.341) (11, 13) 0.677 (0.643,0.801)
(4, 10) 0.195 (0.096,0.312) (11, 14) 0.750 (0.656,0.824)
(4, 11) 0.201 (0.033,0.269) (12, 13) 0.746 (0.774,0.881)
(4, 12) 0.808 (0.086,0.311) (12, 14) 0.830 (0.778,0.887)
(4, 13) 0.835 (-0.001,0.258) (13, 14) 0.811 (0.748,0.902)
(4, 14) 0.102 (0.074,0.315)

Table 5: Regression coefficients for the effect of the covariates
Estimate Std. Error z value Pr(>|z|)

Male 0.0130 0.0086 1.5148 0.1298
Age -0.2002 0.1645 -1.2170 0.2236
High school 1.2857 0.6051 2.1249 0.0336
University 1.4260 0.6222 2.2919 0.0219
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Table 6: Differences between the item specific intercepts in the expected and expe-
rienced blocks

Estimate Std. Error z value Pr(< z)
Gap 1 -2.0277 0.1587 -12.7737 <1e-40
Gap 2 -2.7384 0.1862 -14.7066 <1e-40
Gap 3 -2.7536 0.1736 -15.8601 <1e-40
Gap 4 -3.3125 0.1985 -16.6898 <1e-40
Gap 5 -2.9145 0.1907 -15.2857 <1e-40
Gap 6 -2.6237 0.1909 -13.7470 <1e-40
Gap 7 -2.9021 0.1892 -15.3385 <1e-40

Gap 1: efficiency of the service; Gap 2: reliability of the service; Gap 3: flexibility of the service;
Gap 4: velocity in giving solutions; Gap 5: ability of satisfy the customer’s needs; Gap 6: ability
to implement technological innovation; Gap 7: velocity in adapting to changing legislation;
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