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A new competition model combining the Lotka-Volterra
model and the Bass model in pharmacological market com-
petition

Dalla Valle Alessandra

Department of Statistical Sciences
University of Padua
Italy

Abstract: The diffusion of products that compete in the marketplace is a strategic issue

for market analysts. In this paper, we propose a new model for two competing products

that is essentially considered an extension of the Lotka-Volterra competition model. This

model was first introduced by Guseo (2004) but the application of the model in a real case

was missing from that paper. This extension came from the observation that in a standard

Bass model, the role of innovators is vital because it incorporates the innovative effect due

to external action (a firm communication, advertising) that is proportional to the residual

market. Consequently the role is highly relevant in the initial part of diffusion process even if

it progressively reduces. Lotka-Volterra models allow for a definition of the residual market of

a product category that is more general with respect to alternative approaches. The residual

market is not simply defined as the difference between the initial market potential and the

sum of all brands adoptions. Conversely, the adoption of competing products contributes to

the residual market with different weights. This generates the perception of brands-specific

residual markets. Furthermore, the model overtakes the heavy restriction of synchronicity

between the two products and provides a simple solution based on the Bass model.

Keywords: Lotka-Volterra competition model, diachronic competition model, Bass model,

diffusion processes.

1 Introduction

The life cycle of a product in a target market is a strategic and fundamental mar-
keting concept by firms that are planning new and innovative products take the
place of older and outmoded ones. In concept, a product typically is launched, is
adopted by consumers followed by a rapid growth period, reaches a deadlock, and
then irremediably declines. These product phases may be quite different in both
duration and framework.

The univariate analysis of the life cycle of a single product had a consolidated
theoretical development starting from the works of Fourt and Woodlock (1960),
Mansfield (1961), and Bass (1969). In particular, in the standard Bass model, the
innovators, the first pioneering adopters, and the imitators (those who later adopted
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through word of mouth) are the principal latent drivers leading the diffusion process
of a product in the market.

The original work of Bass was successful in supporting an authentic research
line that, in the sequel, was reorganized in books by Mahajan and Peterson (1985),
Mahajan and Wind (1986), and Mahajan et al. (2000) as well as articles by Mahajan
and Muller (1979), Mahajan et al.(1990), Mahajan et al.(1993), and Parker (1994).
Recently, the Bass model was extended due to a number of issues that, in prac-
tice, limited its application. Bemmaor and Lee (2002) and Karmeshu and Goswami
(2001) treated the problem of heterogeneity of agents; Guseo and Guidolin (2009)
made the latent market potential time dependent and ascribed it a dynamic char-
acter; and Bass et al. (1994) introduced a general intervention function to include
in the modeling marketing-mix variables under the control of managers, external
accidents, incentives or policy measures, and so on.

In the beginning of competition modeling, competition was considered a syn-
chronic process, which is a very simplistic assumption if we consider that this con-
dition is anything but common in real life. In fact, products typically enter the
market at different times, and the roles that they assume reciprocally are quite dif-
ferent depending on whether they stood alone for a little while, stood alone for a
long time, or stood in competition all along or only later in their life cycle. It is
natural that the dynamics change, and a competition model should have a suitable
degree of flexibility to allow for changing parameters.

In the literature on competition, locating the first synchronic modeling ap-
proaches requires going back to the works of Peterson and Mahajan (1978), Parker
and Gatignon (1948), Mahajan et al. (1993), and Kalish et al. (1995). The di-
achronic competition approach is divided into balanced and unbalanced models. In
the balanced models, word of mouth affects the adoptions of both products without
distinctions, while in the unbalanced models, the interpersonal communication is
split into two components: within-brand effects and cross-brand effects. The dis-
tinction appears crucial as it provides further flexibility because the products are
perceived as different by consumers.

There are not as many examples in literature about diachronic competition. We
cite Krishnan et al. (2000) for a balanced model with a partial regime change in
the model parameters; Guseo and Mortarino (2012) for a regime change after com-
petition; Savin and Terwiesch (2005) for proposing an unbalanced model; and again
Guseo and Mortarino (2014) for generalizing the model proposed earlier through a
parameter that continuously allows one to shift from a balanced to an unbalanced
model.

In addition to the specific literature about competition models cited above, there
is also a consolidated research line about competitive models that numbers the
Lotka-Volterra model as one of the most widely used synchronic competition models.
It was extensively used to model the dynamics of growth, coexistence, and survival
of two (or even more) populations that share the resources in the same environment.
It is essentially grounded on an alteration of a logistic equation to incorporate the
interspecific competition coefficients, which, when added to the intraspecific coeffi-
cients make the modeling more complete. In fact, the species, being different, also
possess different characteristics about the reproductive behavior and the exploita-
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tion of resources; therefore, it is natural that the influence that each species has on
one another is different. In a notable number of applications, the study of the system
of differential equations leads us to consider the possible longstanding scenarios for
the analyzed species, such as extinction and coexistence.

In this paper, we propose two extensions of the Lotka-Volterra competition
model. The first one is inspired by the innovation component that is a fundamental
part of the standard Bass model and permits one of the principal drivers of adop-
tions in the markets to be taken into account. The second extension allows that the
Lotka-Volterra model may become diachronic by simply adjoining a standard Bass
model that is able to capture the diffusion of the first competitor in its stand-alone
period.

In Section 2, an introductory history about contents and developments of Lotka-
Volterra equations is treated. In Section 3, the extensions of LVC models are pre-
sented and discussed. In Section 4, an application to pharmaceutical drugs data
assesses the goodness-of-fit of modeling. As a concluding section, the obtained re-
sults are discussed and commented in Section 5.

2 The Lotka-Volterra competition models: A brief history

The roots of the Lotka-Volterra model hail from the Malthus model first published
in 1978 that is a basic step of the theory of population growth. The equation of the
Malthus model is

Xt+1 = Xt(1 + α),

where Xt is the population in time t, and α is the population growth index.
The continuous representation of previous discrete equation is

δX

δt
= αX.

Its solution is an exponential function. The simplicity of this model is its strength
and, at the same time, also its weakness because, in this case, the unique evolutionary
prospects for a population may be either extinction or unlimited growth. Obviously,
this is not true in practice. For example, small populations often grow heavily,
and large populations diminish, but the trend is to reach a natural equilibrium
despite no significant changes occurring in the meantime. The carrying capacity is
the key factor that is not included in the Malthus model, and it is connected to the
capacity of the environment to absorb population growth, given the limited available
resources. Therefore, the carrying capacity is the amount of population in which the
number of births and deaths are equal. In other words, it is the greatest number of
individuals that may be sustained given the available resources. In these conditions,
population is in a stable equilibrium. Verhulst (1838) adopted a logistic conception
and proposed the following differential equation for population at time t,

δX

δt
= αX

(
1− X

K

)
, (1)
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where K is the carrying capacity; in this case, the population progressively increases
to the limit K when t→∞. This equation was also rediscovered by Pearl and Reed
(1920) to explain the growth of the population of the United States.

The logistic model (1) deals only with internal competition between individuals
of a species. Later, Lotka (1925) and Volterra (1926) introduced, independently, a
mathematical competition model (LVC) that describes the dynamics of two species
coexisting in the same environment and that act as prey and predator, competing
for resources. In this sense, the LVC model is an extension of the logistic model
because it incorporates a part that describes the effects of external competition
among individuals of different species. The concept of environment and the dynamics
of growth and death are intentionally simplified and, together with the assumption
of no external special interventions result in a framework that it is still a convincing
model. The differential equations of the LVC model are:

dX1

dt
=

α1X1

K1
(K1 −X1 − α12X2)

(2)
dX2

dt
=

α2X2

K2
(K2 −X2 − α21X1),

where X1 and X2 are populations of species 1 and 2, respectively; α1 and α2 are the
growth rates of species 1 and 2, respectively; K1 and K2 are the carrying capacities
of the populations; α12 is the competition coefficient that measures the competitive
effect that population 2 has on population 1 and vice versa for α21. In other words,
α12 measures the external competition with respect to the internal one, that is, how
many individuals of species 1 are equivalent to individuals of species 2. The inter-
specific coefficients identify the different influences that the two species reciprocally
exercise and that condition intensively their whole competitive evolution.

The system of Equation (2) has no analytics solution, but approximate solutions
are easily numerically computed.

The applications of this model and also its extensions are innumerable in biology,
demography, and physics. There is also a long history of the use of these equations in
economics theory. We could cite, among others, a work by Morris and Pratt (2003)
that proposed an application of the Lotka-Volterra competition model in a market
in which populations are competitors that contend for market shares to obtain a
competitive advantage. Their analysis describes the evolution of the diffusion model
of the second competitor that invades the market with respect to the first competitor
as a function of parameters of the models, classifying the final situation in defined
classes. In this case, they consider forcedly the two competitors as if they were
synchronous, even if it is not clearly so. In Section 3, we try to overtake this
disadvantageous issue by proposing an alternative model.

Moreover, in the literature, the majority of the applications of the LVC model are
properly concentrated on the mathematical approach, which is focused on describing
the development of the trajectory traced by the system of differential equations. In
this case, it is necessary to find the equilibrium points, if they exist, to establish
whether they are stable or not, to discuss the phase plane, and to determine the
evolution of the competition between species. In this paper, we estimate the param-
eters of the model as a linear model, and then in Section 4, we discuss the estimates
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from a statistical point of view.

3 Extensions of the LVC model: The LVBC diachronic model

Our main idea is to obtain a new competition model that overtakes some limitations
of LVC models (2) by introducing a framework that, on one hand, emphasizes the
role of innovators in the start-up of competition processes and that, on the other
hand, considers that products competing in the market often are not synchronous.
These extensions can be introduced separately and give rise to the models that we
present in the following.

Let us consider two different brands competing in a market and sharing the same
group of adopters. We propose an extension of model (2), denoted as LVBC model,

dX1

dt
=

(
p1 +

α1X1

K1

)
(K1 −X1 − α12X2)

(3)
dX2

dt
=

(
p2 +

α2X2

K2

)
(K2 −X2 − α21X1),

where p1 and p2 are parameters that identify the innovation effect of the two different
brands on the market. As in LVC model (2), X1 and X2 are cumulative adoptions
of products 1 and 2, α1 and α2 are respectively the growth rates of product 1 and
product 2, K1 and K2 are the carrying capacities of products 1 and 2, and α12

is the competition coefficient that measures the competitive effect that product 2
has on product 1, and vice versa for α21. In other words, in the case of products
instead of populations, α12 is interpreted as the reduction of growth in the diffusion
of product 1 due to the presence of product 2 and vice versa for α21. The competition
between the two products can lead also to the exclusion of one of the products or
the coexistence of both products.

The contribution given in model (3) by innovation parameters p1 and p2, which
represent a fundamental part of standard Bass models, is relevant because they
start the mechanism of the diffusion process by highlighting the role of pioneers
functioning by a subgroup of individuals.

With respect to other competition models, model (3) extends the local perception
of the residual market of each brand (Ki −Xi), i = 1, 2 through a quantity αijXj ,
with i, j = 1, 2, and i 6= j that measures the strength of inhibition of the antagonist
in the competition.

However, because the class of Lotka-Volterra models is conceived for simultane-
ous processes, the application of model (3) cannot be considered completely satis-
factory when the two products enter the market at different times. Unfortunately,
the condition of not equal launch times for products coexisting in the market is a
recurring case in practice and not only in particular cases or for special products. In
fact, it is quite common that a brand launches a new product into the marketplace,
and thereafter a competitor responds with a new product that is the antagonist of
the preceding one. Marketing strategies of the firms address eroding market shares
of other brands producing similar but not equivalent products. Waiting times may
be short or long according to the reaction times and the peculiarities of the firms.
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In the presence of a non trivial delay, it is not advantageous to avoid the market
evolution of the first product because it implies a distorted estimation of competi-
tion between competitors. In this way, the two local perceived residual markets are
dynamically modified to also consider external competitive effects with respect to
the internal ones.

A possible solution is to modify the LVBC model by introducing a standard
Bass model to capture the growth evolution in the stand-alone period for the first
competitor. Because it is the initial period of a product’s evolution, the choice
of a simple Bass model does not appear simple, but is appropriate. Therefore, in
diachronic competition, model (3) is modified as

dX1

dt
=

[(
p1A +

α1AX1

K1A

)
(K1A −X1)

]
I[t<t0] +

[(
p1 +

α1X1

K1

)
(K1 −X1 − α12X2)

]
I[t≥t0]

(4)
dX2

dt
=

(
p2 +

α2X2

K2

)
(K2 −X2 − α21X1),

where p1A, α1A, and K1A are respectively the coefficients of innovation, imitation,
and potential market for the first product in the stand-alone period until time t0
when a second competitor gets in competition with the first already existing product,
and Iη indicates a dummy function that is equal to 1 when condition η is satisfied.

This model denoted by LVBC-diac recovers those data that are normally censored
using a synchronic modeling and that, on the contrary, are essential to describe
the whole evolution of the product first coming to the market. Furthermore, this
clearly affects the final differential equations system by returning a more balanced
and reliable competition model. This is an essential feature, especially when the
stand-alone period is particularly wide so that the preceding history for the first
competitor, which in practice is a monopoly period, is too long and complex to be
recovered. This special modeling with two distinct regimes allows for this diachronic
competition by giving the correct weight to competitors with different sales histories.

Because LVBC-diac (4) and also LVC (2) and LVBC (3) models do not have
closed-form solutions, they have to be applied directly beginning with the differential
form, which will be used to estimate the parameters involved.

4 An application to pharmaceutical drugs

The need for testing the performance of our model with respect to the preceding
models introduced in the literature drove us to make comparisons using the same
data as Guseo and Mortarino (2012) and Guseo and Mortarino (2014). Data were
provided by IMS-Health, Italy, and consist of a cumulative quarterly number of
packages of Cimetidine and Ranitidine sold in Italy. Cimetidine was introduced in
the second quarter of 1979; Ranitidine was commercialized by the fourth quarter of
1981. Data are available until the third quarter of 1991, and on the whole, there
are 50 observations for Cimetidine and 40 observations for Ranitidine. These drugs
are histamine H2−receptor antagonists and inhibit the production of acid in the
stomach. Cimetidine was marketed by Smith, Kline & French in the United Kingdom
in 1976 and in the United States three years later. It was an authentic success with
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more the $1 billion a year in sales. In 1981, Glaxo, in response to Cimetidine,
developed Ranitidine, which was found to have fewer adverse drug reactions, longer-
lasting action, and 10 times the activity of Cimetidine. By 1988, it was the world’s
best-selling prescription drug.

Table 1: Multivariate estimation results for model LVBC-diac.

Parameters Estimate Standard Error
p1A 0.006396 0.01099
α1A 0.3923 0.09459
K1A 11280 2067
p1 0.03246 6.894
α1 -0.03374 7.483
K1 38280 8157000
α12 0.05714 1.027
α2 0.09758 0.03641
p2 0.0003021 0.001916
K2 4803000 30220000
α21 90.47 616.7

These data represent a case of diachronic competition: Ranitidine was introduced
in the Italian pharmaceutical market when Cimetidine was the leader of the market
for 2 years and also in a descending phase of its life cycle.

Our first aim is to assess the performance of the LVBC-diac model (4). To
estimate the parameters of the LVBC-diac model, it is necessary algebraically to
simplify the model to reduce it in minimal terms. We consider that dX1/dt is in
practice a function of X1, X

2
1 and X1X2 and that dX2/dt is equally a function of X2,

X2
2 and X1X2. Therefore, we can use a multiple linear regression analysis method

using R software.

Figure 1 shows the correspondence between the observed trends of the number of
packages sold for each pharmaceutical drug and the values fitted by the LVBC model
whose parameter estimates are summarized in Table 1. The difference between the
two trends is clearly evident: Ranitidine at the beginning came into the market
at the highest degree with respect to Cimetidine, and afterwards its growth was
impressive, carrying the overall potential market at a very high level. On the other
hand, Cimetidine, which was in its descending phase at the moment of the entry
of Ranitidine, surely took advantage of the competitor’s entrance, extending the
duration of its life cycle. These considerations are justified also by the estimated
parameters of Table 1. The greatly different orders of magnitude between K1 and
K2 highlight the enormous potential market achieved by the second competitor
Ranitidine (4803000) with respect to the first competitor Cimetidine (49560). The
estimated coefficient of innovation p1 is evidently and correctly greater than p2 given
that the innovation process was started just by Cimetidine when Ranitidine was
missing. Moreover, the relevant weight in the competition is confirmed also by the
different values of the competition coefficients α12 and α21, proving the inhibition
strength of Ranitidine. The fit of model (4) seems quite good, but it has to be
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assessed by also evaluating other existing models in literature.
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Figure 1: The LVBC-diac model: observed versus fitted values for Cimetidine and Raniti-
dine

So, as our second aim, we compare the performance of model (4) with the CRCD
model introduced in Guseo and Mortarino (2012) and also with the UCRCD model
introduced in Guseo and Mortarino (2014), both of them tested on the same data.
In Guseo and Mortarino (2012), the authors compared the CRCD model with the
Bass model and the joint model KBKD introduced by Krishnan et al. (2000).
This model can be obtained by the CRCD model as a particular case, and it was
the only alternative balanced diachronic model available in the literature. The
authors showed that the CRCD model had a better goodness-of-fit in the specific
case studied. Figure 2 and Figure 3 exhibit separately the fit of the LVBC model
versus the CRCD and UCRCD models, which for this data, until now, are considered
the better models with respect to KBKD.

Figure 2 shows that, for Cimetidine, the LVBC model is perfectly intermediate
between the other two models and seems to follow the observed trend better, espe-
cially in the final period where CRCD and UCRCD take different directions. In the
initial part, the three models are quite perfectly overlapped given that they all lie
on the same Bass model, but afterwards, the difference is quite evident. In Figure 3,
the differences are notably reduced, and the curves are overlapped, so the trend is
notably good for each of the considered models. It is not redundant to observe that
because CRCD and UCRCD models were obtained by a closed-form solution, it is
perfectly possible for them to give forecasts for any number of quarters, as visible
in Figure 2 and Figure 3 in which the CRCD and UCRCD curves are longer than
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Figure 2: Comparison between observed and fitted values for the LVBC-diac model, CRCD
model, and UCRCD model with respect to Cimetidine

the LVBC curve. This is not a prosaic difference, and it shows that the forecasts
are a natural completion for these models rather than for the LVBC and LVBC-diac
models, which are estimated directly from the differential form through a numeri-
cal minimization procedure. In particular, future research should polarise on this
peculiar aspect in order to enable this model to do forecasts.

Table 2: Squared Pearson correlation coefficient between observed and fitted values
for the LVBC-diac model, CRCD model, and UCRCD model.

ρ2 LVBC-diac model CRCD model UCRCD model
Cimetidine (n=50) 0.9143862 0.874174 0.899239
Ranitidine (n=40) 0.9383331 0.937024 0.939933

Moreover, in order to assess the goodness-of-fit of the different models consid-
ered, an easy but effective measurement is given by the squared Pearson correlation
coefficient ρ2 between observed and fitted values. The results presented in Table 2
are split with respect to the two competing pharmaceutical drugs Cimetidine and
Ranitidine. The differences between the performance of the alternative models with
respect to these drugs are self-evident. In particular, it is not surprising that the ρ2
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Figure 3: Comparison between observed and fitted values for the LVBC-diac model,
CRCD model, and UCRCD model with respect to Ranitidine

is quite similar for each model when Ranitidine is considered, with a slight better
fit for UCRCD model, while for Cimetidine the dissimilarities are notable even if
not dramatic. In this specific case, the LVBC-diac model performs better than the
CRCD and UCRCD models, determining a clear ranking among models, in which
the worst fit is associated with the CRCD model. Therefore, it seems to be con-
firmed that the introduction of substantial changes in LVC competition model (2)
obtaining the LVBC-diac model was essential, especially to capture the particular
behavior of the first competitor in a more accurate way than the CRCD and UCRCD
models which were already shown to be superior. The differences are very slight for
the second competitor and become absolutely inappreciable. It seems inappropriate
to give a ρ2 to assess the global fit of both competitors because the risk is the lack of
a reliable indicator that attempts to put together two different trends and thereby
distorts the reality.

Moreover, we consider it worthwhile to point out that the values of ρ2 in Table
2, which are smaller for CRCD and UCRCD models than those found in Guseo and
Mortarino (2012) and Guseo and Mortarino (2014), were obtained by an analysis
based upon instantaneous data, so these differences are perfectly normal. In fact, it
is well known that the nonlinear squares algorithm for cumulative data determines
high values of standard determination indexes that, in case of a good performance,
are characterized by values higher than 0.99. The analysis of residuals highlights
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the good performance of the LVBC-diac model (4) as shown in Figures 4 and 5.
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Figure 4: Residual analysis for LVBC-diac model for Cimetidine

5 Conclusion

The possibility of measuring the effects of competition processes for particular cate-
gory products is an issue of strategic importance for firms and brands. In this paper,
we introduce two models that are essentially extensions of the class of LVC compe-
tition models that have a consolidated history in literature. The need to recover an
excellent competition framework that was applied in innumerable disciplines, from
biology to physics and so on, has essentially motivated this extension. The principal
and appealing feature in these models is that they offer a definition of residual mar-
kets that is more general with respect to the existing competition models available
in literature, allowing that competing products contribute with different weights to
perceived residual markets. On the other hand, both the lack of specific coefficients
to capture the innovation components of competitors, which are essential to model
the diffusion and competition model, and the heavy restriction of syncronicity in the
entrance in the market by competitors lead us to propose the LVBC and LVBC-diac
models. They are first discussed and then tested on pharmacological data already
used to test among other existing competition models in the literature. The results
are reassuring and appreciable, and they effectively confirm that the LVBC-diac
model fits better than the considered CRCD, UCRCD, and KBKD models overall
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Figure 5: Residual analysis for the the LVBC-diac model for Ranitidine

when the first competitor enters the market considerably earlier than the second
one. For the second competitor in this specific analyzed case, the improvements are
not appreciable, but they are perfectly overlapped.
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