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Section 1 Introduction 1

Towards unifying second-order theory of likelihoods and pseudolike-
lihoods

Nicola Lunardon

Department of Statistical Sciences
University of Padova
Italy

Abstract: Theory is developed to show that second-order distributional behaviour of pseudolikelihood

ratios can be modified to resemble that of likelihood counterparts by means of a suitable adjustment.

The latter is conceived to enable the Bartlett correction for pseudolikelihood ratios when inference fo-

cuses on a scalar parameter. The proposed methodology can be framed in the likelihood setting where it

can be interpreted as a device to achieve second-order accurate inference that takes into an account po-

tential erroneous model assumptions. The efficacy of the proposal is demonstrated via simulation studies.

Keywords: Bartlett correction; Composite likelihood; Model misspecification; Pseudolikelihood; Second-

order asymptotics.

1 Introduction

Pseudolikelihood is the heading that subsumes a wide class of inference functions conceived
to conduct likelihood-like inference yet circumventing restrictive model assumptions. Typically,
pseudolikelihoods and derived quantities possess only a few key properties of the likelihood coun-
terparts. These are related to first-order asymptotics, as the consistency and the asymptotic
normality of estimators, and guarantee the validity of the inferential conclusions. Neverthe-
less, the distributional characterisation of pseudolikelihood ratios may be different from that of
likelihoods and the discrepancies may arise even at first-order (Kent, 1982). On the one hand,
standard first-order distributional behaviour can be restored by means of suitable modifications,
as witnessed by the substantial body of work by Rotnitzky and Jewell (1990), Chandler and
Bate (2007), and Pace et al. (2011). On the other hand, the development of general strategies to
correct for the second-order behaviour have been neglected. Contributions are usually devoted
to assess the properties of specific instances of pseudolikelihoods (DiCiccio et al., 1991) or to de-
scribe how close they relate to likelihoods (Mykland, 1999). Consequently, it is seldom possible
to draw a direct link between second-order theory for pseudolikelihoods and likelihoods. Our
endeavour is to create the breading ground to try to fill this gap by showing that second-order
behaviour of pseudolikelihoods can be manipulated to resemble that of likelihoods. In particular,
we prove that it is possible to create the necessary conditions to enable the Bartlett correction
for pseudolikelihood ratios. The result is not only of relevance for pseudolikelihoods because it is
susceptible of a clear-cut interpretation from the standpoint of likelihood theory: second-order
accurate inference can be safeguarded against erroneous model assumptions.

We focus on a broad class of pseudolikelihoods that generalises and includes the likelihood,
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namely marginal composite likelihoods (Varin, 2008). Let y1, . . . , yn be a sample of size n of
independent and identically distributed observations from a q-dimensional random vector Y
having unknown density g(y). Marginal composite likelihoods may be defined by considering
a parametric statistical model {f(y; θ), θ ∈ Θ ⊆ R, y ∈ Rq} and a set of marginal events on the
sample space {E1, . . . , EK} involving the components of yi. If we denote the likelihood function
associated to each event by f(yi ∈ Ek; θ), then the marginal composite log likelihood is

`(θ) =
n∑
i=1

K∑
k=1

wk log f(yi ∈ Ek; θ) =
n∑
i=1

`(θ; yi), (1)

where wk are non-negative weights. The events Ek may regard subsets of components of yi whose
dimension are, for instance, 1, 2, up to q, leading to respectively the independence likelihood,
the marginal pairwise likelihood, and the likelihood. This is in no way an exhaustive list and
we defer the reader to Varin (2008, Sect. 2) for an overall view.

The remainder of this introduction is devoted to introduce further definitions and notation.
Let W (θ) = 2{`(θ̂)− `(θ)} be the composite log likelihood ratio for θ, with θ̂ = argmaxθ `(θ) the
maximum composite likelihood estimate. Denote by `j(θ) = ∂j`(θ)/∂θj the j-th order derivative
of the composite log likelihood. We define

αrstu(θ) = ν Eg
{

[`1(θ;Y )]r[`2(θ;Y )]s[`3(θ;Y )]t[`4(θ;Y )]u
}

along with the centred random variables

Arstu(θ) = ν n−1
n∑
i=1

[`1(θ; yi)]
r[`2(θ; yi)]

s[`3(θ; yi)]
t[`4(θ; yi)]

u − αrstu(θ),

where r, s, t, u are non negative integers. The factor ν = (−1)(2r+s+2t+2u)! switches the sign of
α01 and A01 only, i.e. it ensures α01 > 0. We shall adopt the shorthand α101(θ) ≡ α1010(θ),
A2(θ) ≡ A2000(θ), and so forth, i.e. zeroes are retained when they precede an index greater or
equal than 1. Further, we denote by κj(T ) the j-th cumulant of some random variable T .

2 Background

We give a brief review about the precise meaning of consistency of estimators and model correct-
ness for marginal composite likelihoods (Sect. 2.1). These concepts are crucial to frame properly
the differences that arise at first- and second-order between composite likelihood and likelihood
ratios (Sect. 2.2) and provide the suitable environment for our developments.

2.1 Model correctness and consistency of estimators

The definition of model correctness for marginal composite likelihoods is termed to as marginal
correct specification by Xu and Reid (2011), i.e. g(y ∈ Ek) = f(y ∈ Ek; θ′) for all k = 1, . . . ,K
and for some θ′ ∈ int(Θ). This definition is weaker than the usual one of model correctness
g(y) = f(y; θ0), θ0 ∈ int(Θ), because the latter involves q-dimensional densities.

The maximum composite likelihood estimator θ̂ is root-n consistent for the pseudo true pa-
rameter value θ∗, which is defined as the minimiser of the composite Kullback-Leibler divergence
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(Varin and Vidoni, 2005)

Eg

{
K∑
k=1

wk [log g(Y ∈ Ek)− log f(Y ∈ Ek; θ)]

}
,

where Eg denotes expectation with respect to g(y). If it holds g(y) = f(y; θ0) and further

g(y ∈ Ek) = f(y ∈ Ek; θ0), all k, then we also have θ∗ = θ0; this implies that θ̂ converges in
probability to the true parameter value even under the marginal correct specification (Xu and
Reid, 2011). Nonetheless, as our results are not tied to such circumstance, we hereafter must
assume that θ∗ still has a meaningful scientific interpretation because it is the only quantity for
which we may conduct inference. We remark in passing that when `(θ) is the ordinary likelihood
function our setting recovers the more familiar theory of misspecified likelihoods developed by
Kent (1982) and White (1982).

To ease the notation, in the sequel we drop the dependence on the parameter whenever
quantities defined as functions of θ are evaluated at θ∗, e.g. W ≡W (θ∗).

2.2 Bartlett identities and first- and second-order asymptotics for W

Bartlett identities regard expected balancing relations involving moments of likelihood deriva-
tives and hold for the log likelihood under model correctness g(y) = f(y; θ0) (see, e.g., Barndorff-
Nielsen and Cox, 1994, pp 146-147). For our purposes it suffices to consider the first four
identities only, which are respectively (reading from top to bottom and left to right)

α1(θ0) = 0 α001(θ0) + 3α11(θ0) + α3(θ0) = 0
α2(θ0)− α01(θ0) = 0 α0001(θ0) + 4α101(θ0) + 3α02(θ0) + 6α21(θ0) + α4(θ0) = 0.

Since marginal composite log likelihoods are formed by the sum of n contributions that do not
necessarily originate from proper density functions, such identities, but the first, do not hold
even under the marginal correct specification. The first identity is still valid regardless such
condition, i.e. α1 ≡ α1(θ

∗) = 0, as can be deduced from Section 2.1.
Because some identities do not hold, the properties of W (θ) depart remarkably from those of

the log likelihood ratio. The differences are here outlined by referring to formal Edgeworth series
for the density of n1/2R(θ). The latter is the signed square root of W (θ), i.e. a random variable
chosen to fulfil W = nR2 + Op(n

−3/2). It is understood that the desired properties of W are
derived from the density of n1/2R by using transformation rules of random variables. From the
expansion of W in the Appendix 1, we have R = R1 +R2 +R3, with Rj = Op(n

−j/2), j = 1, 2, 3,
where

R1 =
A1

α
1/2
01

R2 =
A1A01

2α
3/2
01

+
α001A

2
1

6α
5/2
01

R3 =
3A1A

2
01

8α
5/2
01

+
A2

1A001

6α
5/2
01

+
5α001A

2
1A01

12α
7/2
01

+
α2
001A

3
1

9α
9/2
01

+
α0001A

3
1

24α
7/2
01

.

The leading terms of the cumulants of n1/2R are

κ1(n
1/2R) = O(n−1/2) κ2(n

1/2R) = α2α
−1
01 +O(n−1) κ3(n

1/2R) = O(n−1/2)

κ4(n
1/2R) = O(n−1) κ5(n

1/2R) = O(n−3/2) κj(n
1/2R) = o(n−2), j ≥ 6.

(2)
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First-order behaviour of W may be assessed by constructing a series for the density of n1/2R
based on the leading term of κ2(n

1/2R). Because of the failure of the second Bartlett identity
such term is not equal to 1, consequently W is not asymptotically chi-square distributed as the
log likelihood ratio. It follows

W
d→ α2α

−1
01 Z

2,

with Z ∼ N(0, 1) (see Kent, 1982). The same first-order limiting behaviour of the log likelihood
ratio may be restored by using suitable modifications to W (θ), as suggested by Rotnitzky and
Jewell (1990) and Pace et al. (2011). When θ is scalar these adjustments coincide and result in
a modified statistic of the form W1(θ) = α2(θ)

−1α01(θ)W (θ). A further adjustment is provided
by Chandler and Bate (2007) and the purpose is to modify the curvature of the composite log
likelihood about θ̂ by defining `cb(θ) = `(θcb(θ)), with θcb(θ) = θ̂ − (θ̂ − θ)C1. The associated
composite log likelihood ratio Wcb(θ) = 2{`cb(θ̂) − `cb(θ)} achieves the desired limit if C1 =
α2(θ)

−1/2α01(θ)
1/2 (Chandler and Bate, 2007, Sect. 3·2).

For the second-order properties of W , and in particular to enquire about the Bartlett cor-
rection, we need to develop a series for the density of n1/2R up to O(n−3/2). If W was the log
likelihood ratio, then

κ1(n
1/2R) = O(n−1/2) κ2(n

1/2R) = 1 +O(n−1) κ3(n
1/2R) = O(n−3/2)

κ4(n
1/2R) = O(n−2) κ5(n

1/2R) = O(n−3/2) κj(n
1/2R) = o(n−2), j ≥ 6,

(3)

where the second, third, and fourth cumulant are different from those in (2) due to the validity
of the second, third, and fourth Bartlett identities. This mean that the series for n1/2R can be
based on κ1(n

1/2R) and κ2(n
1/2R) only. Computation of the cumulants of W leads to

κj(W ) = 2j−1(j − 1)! [EgW ]j +O(n−3/2),

where 2j−1(j − 1)! is the j-th cumulant of a chi-square variate with one degree of freedom.
Standard properties of cumulants suggest that division of W by its expectation results in (see,
e.g., Barndorff-Nielsen and Cox, 1994, Ch. 5)

P
{
W [EgW ]−1 ≤ cγ

}
= γ +O(n−2),

where cγ is the γ-quantile of a chi-square variate with one degree of freedom. The expectation
of W admits the expansion 1 + n−1b + O(n−2), where b is the Bartlett factor, provided, for
instance, in Barndorff-Nielsen and Cox (1994, formula 5·30). When the composite log likelihood
ratio is considered, then the required Bartlett identities are not satisfied, whereby the cumulants
of its signed root do not exhibit the structure in (3), implying that it is not Bartlett-correctable.
This is also the case for W1 and Wcb as the adjustments do not account for the third and fourth
Bartlett identities.

3 Second-order accuracy via the extended curvature adjustment

To establish our results in the present section, we assume conditions (A0)-(A7) in Xu and Reid
(2011) for the consistency of θ̂ and conditions (A1)-(A5) in Jensen (1993, Sect. 1·1). Contex-
tualised to our framework, the latter regard moment and smoothness conditions of composite
likelihood derivatives that are necessary to ensure the validity of the Edgeworth expansion for
the density of the signed root given in (4). All proofs are deferred to the Appendix 2.
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3.1 Expected extended curvature adjustment and Bartlett factor

In order to account for the failure of the second, third, and fourth Bartlett identities for marginal
composite likelihoods and to supply a version of W which is Bartlett-correctable, we generalise
the approach by Chandler and Bate (2007) as follows. We define `e(θ) = `(θe(θ)) along with
We(θ) = 2{`e(θ̂)− `e(θ)}, where

θe(θ) = θ̂ −
3∑
j=1

(θ̂ − θ)jCj

provides what we term to as the extended curvature adjustment, Cj = O(1), j = 1, 2, 3. Clearly

θ̂ = argmaxθ `(θ) = argmaxθ `e(θ). Provided the expansion of We in (6), we have We = nR2
e +

Op(n
−3/2), Re = Re1 +Re2 +Re3, with Rej = Op(n

−j/2), j = 1, 2, 3, and

Re1 =
A1C1

α
1/2
01

Re2 =
C1A1A01

2α
3/2
01

+
C2A

2
1

α
3/2
01

+
α001C

2
1A

2
1

6α
5/2
01

(4)

Re3 =
3C1A1A

2
01

8α
5/2
01

+
C2
1A

2
1A001

6α
5/2
01

+
3C2A

2
1A01

2α
5/2
01

+
5α001C

2
1A

2
1A01

12α
7/2
01

+
α001C2A

3
1

2α
7/2
01

+
α001C1C2A

3
1

3α
7/2
01

+

+
C3A

3
1

α
5/2
01

− α2
001C1A

3
1

8α
9/2
01

+
α2
001C

2
1A

3
1

4α
9/2
01

− α2
001C

3
1A

3
1

72α
9/2
01

− α0001C1A
3
1

12α
7/2
01

+
α0001C

2
1A

3
1

6α
7/2
01

− α0001C
3
1A

3
1

24α
7/2
01

.

The key idea to enable the Bartlett correction for We is to use the constants C1, C2, and C3 to
act on the cumulants of n1/2Re, given in (7)-(11), so that they achieve the same structure of
those in (3), i.e. the ones resulting from the signed root of the log likelihood ratio. Specifically,
C1 is employed to obtain κ2(n

1/2Re) = 1 + O(n−1), whereas C2 and C3 are tuned to downsize
κ3(n

1/2Re) and κ4(n
1/2Re) to O(n−3/2) and O(n−2), respectively. In the following theorem we

provide expressions for Cj , as well as that for the resulting Bartlett factor for We, j = 1, 2, 3.

Theorem 1. Let We = W (θe) and θe ≡ θ̂ −
∑3

j=1(θ̂ − θ∗)jCj, with

C1 = α
−1/2
2 α

1/2
01 C2 = −C1α11

2α2
− C1α3α01

6α2
2

− C2
1α001

6α01

C3 = −2C2
2

C1
− 3C1α

2
11

4α2
2

− 7C2α11

2α2
− C2

1α101

6α2
− C1α21α01

4α2
2

− C1α11α3α01

4α3
2

− C2α3α01

α2
2

+

− C1α4α
2
01

24α3
2

− C1α02

8α2
− C2

1α3α001

6α2
2

− C2α001

2α01
− C1C2α001

α01
− 3C2

1α11α001

4α2α01
+
C1α

2
001

8α2
01

+

− C2
1α

2
001

4α2
01

− C3
1α

2
001

24α2
01

+
C1α0001

12α01
− C2

1α0001

6α01
+
C3
1α0001

24α01
,

then P
{
We[1 + n−1be]

−1 ≤ cγ
}

= γ + O(n−2), where be is the Bartlett factor for We whose
expression is

be =
5α2

3

12α3
2

− α4

4α2
2

− α2
11

4α2α2
01

− α21

2α2α01
+

α11α3

2α2
2α01

+
α02

4α2
01

.



6 Nicola Lunardon

Because the class of marginal composite likelihoods include as a special instance the like-
lihood, the result in Theorem 1 may be also framed in the likelihood setting. Here it can be
interpreted as a device to achieve a robust Bartlett correction whenever the researcher is not
confident about the validity of the required Bartlett identities or, equivalently, about the correct-
ness of model assumptions. Note that when Bartlett identities hold, then Theorem 1 retrieves
C1 = 1, C2 = C3 = 0, and the Bartlett factor be reduces to the one of the likelihood ratio.

Should it be considered in the composite likelihood or likelihood framework, the result in
Theorem 1 provides a striking description of a general-purpose adjustment to manipulate first-
and second-order asymptotic properties of composite likelihood and likelihood ratios. Neverthe-
less, it is pointless from a practical point of view because θe(θ) still depends on the unknown
g(y) through expected moments of likelihood derivatives.

3.2 Observed extended curvature adjustment and Bartlett factor

The statistic We depends on expected moments αrstu in Cj , j = 1, 2, 3, and whenever they are
replaced by their root-n consistent estimates

α̂rstu = α̂rstu(θ̂) = ν n−1
n∑
i=1

[`1(θ̂; yi)]
r[`2(θ̂; yi)]

s[`3(θ̂; yi)]
t[`4(θ̂; yi)]

u, (5)

the result in Theorem 1 is struck down. A brief explanation is as follows. Let Ĉ1 be the empirical
counterpart of C1 in Theorem 1, i.e. expected moments are replaced by (5). Then it follows
Ĉ1 = C1 +r1 +r2, where r1 = Op(n

−1/2) and r2 = Op(n
−1) are given in (12) and (13). When Ĉ1

is plugged in R1e and R2e it produces disturbances of size Op(n
−1) and Op(n

−3/2) that modify
the current expressions of R2e and R3e, respectively. This implies that C2 and C3 need to the
be updated. Similarly, once a new expression for C2 is retrieved, the estimation process gives
rise to an error term that affects the expression of R3e. Note that estimation of C3 does not
alter R3e because the induced reminder is Op(n

−2).

In order to cope with these difficulties, we define a revised version of We(θ), namely W ′e(θ) =
2{`′e(θ̂)− `′e(θ)}, where `′e(θ) = `(θ′e(θ)) and θ′e(θ) = θ̂−

∑3
j=1(θ̂− θ)jĈj . The function W ′e(θ) is

suitable for practical purposes because in Theorem 2 we provide expressions for Ĉ1, Ĉ2, and Ĉ3

which are derived by taking into an account the estimation error of expected moments and are
readily provided in terms of sample moments.

Theorem 2. Let W ′e = W (θ′e) and θ′e ≡ θ̂ −
∑3

j=1(θ̂ − θ∗)jĈj with

Ĉ1 = α̂
−1/2
2 α̂

1/2
01 Ĉ2 =

Ĉ1α̂11

α̂2
+
Ĉ1α̂3α̂01

3α̂2
2

+
Ĉ1α̂001

2α̂01
− Ĉ2

1 α̂001

6α̂01

Ĉ3 = −2Ĉ2
2

Ĉ1

+
Ĉ1α̂

2
11

α̂2
2

+
5Ĉ2α̂11

2α̂2
− Ĉ1α̂101

2α̂2
− Ĉ1α̂21α̂01

α̂2
2

+
7Ĉ1α̂11α̂3α̂01

6α̂3
2

+
Ĉ2α̂3α̂01

α̂2
2

+

+
Ĉ1α̂

2
3α̂

2
01

3α̂4
2

− Ĉ1α̂4α̂
2
01

4α̂3
2

− Ĉ1α̂02

2α̂2
+
Ĉ2
1 α̂3α̂001

6α̂2
2

+
3Ĉ2α̂001

2α̂01
− Ĉ1Ĉ2α̂001

α̂01
− Ĉ1α̂11α̂001

4α̂2α̂01
+

+
5Ĉ2

1 α̂11α̂001

12α̂2α̂01
− Ĉ1α̂

2
001

4α̂2
01

+
Ĉ2
1 α̂

2
001

4α̂2
01

− Ĉ3
1 α̂

2
001

24α̂2
01

− Ĉ1α̂0001

6α̂01
+
Ĉ3
1 α̂0001

24α̂01
,
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then P
{
W ′e[1 + n−1b′e]

−1 ≤ cγ
}

= γ + O(n−2), where b′e is the Bartlett factor for W ′e whose
expression is

b′e =
α4

2α2
2

− α2
3

3α3
2

.

The result in Theorem 2 is still valid when be is replaced by its root-n consistent estimate
b̂e computed with sample moments α̂j , j = 2, 3, 4. We highlight that the Bartlett factor for W ′e
depends on the standardised third and fourth moments of the composite score function only.
Incidentally, it is equal to that for the empirical likelihood, with the difference that standardised
moments appearing in the latter are those of Y (DiCiccio et al., 1991).

4 Empirical evidence

In the sequel an example dealing with marginal pairwise likelihoods is considered to assess, via
Monte Carlo simulation, the coverage accuracy of confidence intervals for θ based on W b

e (θ) =
We(θ)[1 + n−1be]

−1, W1(θ), Wcb(θ), Wo(θ), W
b
eo(θ) = Weo(θ)[1 + n−1be]

−1. The latter two
are the ordinary likelihood ratio and its robust Bartlett-corrected version computed with the
extended curvature adjustment and Bartlett factor provided in Theorem 1. We also consider the
following versions of the aforementioned statistics: W ′be (θ) = W ′e(θ)[1+n−1b̂′e]

−1, W ′1(θ), W
′
cb(θ),

and W ′beo(θ) = W ′eo(θ)[1 + n−1b̂′e]
−1, where the second and third are the analogues of W1(θ) and

Wcb(θ) computed by replacing expected moments in the adjustments by empirical moments (5),
whereas the fourth is the analogue of W b

eo(θ) computed according to the quantities given in
Theorem 2. For the computation of W ′be (θ), W ′cb(θ), and W ′beo(θ) we use a bias-corrected version

of Ĉ1, namely Ĉbc1 = Ĉ1 − Êg[r2], where Êg[r2] is the sample counterpart of Eg[r2], without
affecting the validity of Theorem 2. The resulting expression for Ĉbc1 is

Ĉbc1 = Ĉ1 −
1

n

[
3Ĉ1α̂4

8α̂2
2

+
Ĉ1α̂

2
11

α̂2α̂2
01

− Ĉ1α̂101

α̂2
01

+
3Ĉ1α̂21

4α̂2α̂01
− 3Ĉ1α̂11α̂3

2α̂2
2α̂01

− 5Ĉ1α̂02

8α̂2
01

+

+
3Ĉ1α̂11α̂001

4α̂3
01

+
Ĉ1α̂3α̂001

4α̂2α̂2
01

− 3Ĉ1α̂2α̂
2
001

8α̂4
01

+
Ĉ1α̂2α̂0001

4α̂3
01

]
.

Similarly, for W ′1(θ) we adopt a bias-corrected version of the scaling factor α̂−12 α̂01, whose ex-
pression is

α̂01

α̂2
− 1

n

[
α̂21

α̂2
2

− 4α̂11α̂3

α̂3
2

+
4α̂2

11

α̂2
2α̂01

− 2α̂101

α̂2α̂01
+
α̂4α̂01

α̂3
2

− α̂02

α̂2α̂01
+
α̂3α̂001

α̂2
2α̂01

− α̂2
001

2α̂3
01

− α̂0001

2α̂2
01

]

The number of Monte Carlo trials is 100000 and expected moments of likelihood derivatives,
needed to compute the expected extended curvature adjustment and associated Bartlett factor
in Theorem 1, are approximated via an auxiliary simulation of 10000 replicates.

The R source code of a function that computes W ′e(θ) and W ′be (θ) for an arbitrary log likeli-
hood function is available from the Author.
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4.1 Marginal pairwise likelihood

Suppose that y1, . . . , yn is a sample from a q-dimensional normal distribution with null vector
of means and covariance matrix Σ whose diagonal and off-diagonal elements are 1 and ρ =
cor(Yj , Yk), j 6= k = 1, . . . , q, ρ ∈ (−(q − 1)−1, 1), respectively. The log likelihood and marginal
pairwise log likelihood for ρ admit an analytic expression, and for the latter is (Cox and Reid,
2004)

`(ρ) = −nq(q − 1)

4
log(1− ρ2)− q − 1 + ρ

2(1− ρ2)
SSW −

(q − 1)(1− ρ)

2q(1− ρ2)
SSB,

where SSW =
∑n

i=1

∑q
j=1(yij − ȳi)2, SSB = q2

∑n
i=1 ȳ

2
i , and ȳi = q−1

∑q
j=1 yij .

Simulations are from the true model (multivariate normal) and from a misspecified model,
i.e. a multivariate tτ distribution with τ = 10 degrees of freedom. In the first case, our aim
is to validate the results in Section 3 for pairwise likelihoods and to assess the behaviour of
the likelihood when we are too cautious and misuse the extended curvature adjustments along
with the related Bartlett factors. Note that the pairwise likelihood is correctly specified, in the
sense of Section 2.1. In the second case, the purpose is to assay the ability of the proposed
methodology to retain the stability, also to second-order, of levels of confidence intervals against
misspecification. In this case, neither the pairwise nor the likelihood are correctly specified.

We consider samples of size n ∈ {15, 30} and ρ ∈ {0·2, 0·5, 0·9}. The results for the first
and second setting discussed above are in Table 1 and Table 2, respectively. For the former, we
have that empirical coverages resulting from Wo(ρ), W1(ρ), Wcb(ρ), W b

e (ρ), and W b
eo(ρ) compare

similarly and are close to the nominal levels. When adjustments are estimated, second-order
accurate statistics W ′be (ρ) and W ′boe(ρ) outperforms W ′1(ρ) and W ′cb(ρ). The results for W b

oe(ρ)
and W ′boe(ρ) are slightly worse than those of Wo(ρ) but still comparable, meaning that the use
of the extended curvature adjustments do not harm substantially coverage accuracy. When we
consider the simulation from the t10 distribution, we have a different picture than before. On
the one hand, coverages from Wo(ρ) drop dramatically, highlighting that the likelihood ratio is
overwhelmed by the model misspecification. On the other hand, the expected adjustments for
W1(ρ), Wcb(ρ), W b

e (ρ), and W b
eo(ρ) are able to fix for the misspecification and lead to sensible

coverages. Once again W ′be (ρ) and W ′boe(ρ) provide better results than W ′1(ρ) and W ′cb(ρ).

Appendix 1

Expansion of We and W

To obtain the expansion of We to Op(n
−3/2) we need that of θ̂−θ∗ to the same order, which may

be found, for instance, in Barndorff-Nielsen and Cox (1994, p. 150), along with the first four
derivatives of θe(θ) and `e(θ) = `(θe(θ)). Let θej(θ) = ∂jθe(θ)/∂θ

j and `ej(θ) = ∂j`e(θ)/∂θ
j . It

follows θej(θ) =
∑3

t=j(−1)j+1t![(t− j)!]−1(θ̂ − θ)t−jCj , θe4(θ) = 0, and

`e1(θ) = `1(θe(θ))θe1(θ),

`e2(θ) = `2(θe(θ))θ
2
e1(θ) + `1(θe(θ))θe2(θ),

`e3(θ) = `3(θe(θ))θ
3
e1(θ) + 3`2(θe(θ))θe1(θ)θe2(θ) + `1(θe(θ))θe3(θ),

`e4(θ) = `4(θe(θ))θ
4
e1(θ) + 6`3(θe(θ))θ

2
e1(θ)θe2(θ) + `2(θe(θ))[3θ

2
e2(θ) + 4θe1(θ)θe3(θ)].
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Table 1: Empirical coverage probabilities for confidence intervals for ρ when simulation is from
the multivariate normal distribution. Monte Carlo standard errors for nominal levels {90, 95, 99}
per cent are {0·09,0·07,0·03}, respectively

n ρ Level Wo W1 Wcb W b
e W b

eo W ′1 W ′cb W ′be W ′beo

15 0·2 90 89·8 90·6 89·7 90·2 90·7 85·9 85·1 87·4 90·4
95 94·8 95·5 94·7 95·1 95·4 90·7 90·0 92·1 94·6
99 98·9 99·1 98·7 99·0 99·1 95·5 95·3 96·4 98·0

0·5 90 90·0 90·1 89·9 90·4 90·6 87·7 87·4 88·7 90·8
95 95·0 95·0 94·9 95·2 95·4 92·6 92·6 93·4 94·9
99 99·0 99·0 98·7 99·0 99·1 97·4 97·5 97·6 98·5

0·9 90 90·1 89·9 89·7 90·8 90·7 89·7 89·1 90·7 90·7
95 95·0 94·9 94·6 95·4 95·4 94·3 93·8 95·0 95·0
99 99·0 98·9 98·8 99·1 99·1 98·3 98·0 98·5 98·5

30 0·2 90 89·9 90·1 89·1 89·5 90·1 88·1 87·6 89·4 90·4
95 94·9 95·1 94·4 94·6 95·0 92·8 92·5 94·1 95·2
99 99·0 99·0 98·7 98·8 99·0 97·2 97·1 98·1 98·9

0·5 90 90·0 89·9 89·4 89·8 90·1 89·1 88·9 89·9 90·7
95 95·0 95·0 94·7 94·8 95·1 93·9 93·9 94·6 95·4
99 99·0 99·0 98·7 98·9 99·0 98·2 98·3 98·5 99·0

0·9 90 89·9 89·7 89·4 89·9 90·0 89·8 89·5 90·6 90·7
95 94·9 94·9 94·6 95·1 95·0 94·7 94·4 95·4 95·4
99 99·0 99·0 98·9 99·1 99·0 98·8 98·6 99·0 99·0

The Taylor expansion of `e(θ
∗) about θ̂ yields

We = (θ∗ − θ̂)2`e2(θ̂) +
1

3
(θ∗ − θ̂)3`e3(θ̂) +

1

12
(θ∗ − θ̂)4`e4(θ̂) + . . . (6)

= nC2
1

{
A2

1

α01
+
A2

1A01

α2
01

+
2A3

1C2

α2
01C1

+
A3

1C1α001

3α3
01

+
A2

1A
2
01

α3
01

+
A3

1A001C1

3α3
01

+
4A3

1A01C2

α3
01C1

+

+
A4

1C
2
2

α3
01C

2
1

+
2A4

1C3

α3
01C1

+
A3

1A01C1α001

α4
01

+
A4

1C2α001

α4
01C1

+
A4

1C2α001

α4
01

− A4
1α

2
001

4α5
01

+
A4

1C1α
2
001

2α5
01

+

− A4
1α0001

6α4
01

+
A4

1C1α0001

3α4
01

− A4
1C

2
1α0001

12α4
01

}
+Op(n

−3/2).

The expansion for W are readily recovered from that of We by setting C1 = 1 and C2 = C3 = 0.

The signed roots Re and R, and their cumulants

The signed root n1/2Re is derived by matching the expansion (6) order by order. Write We =
We1 + We2 + We3 + Op(n

−3/2), where Wej = Op(n
−(j−1)/2), j = 1, 2, 3, then it suffices to solve

for Re1, Re2, and Re3 the equations R2
e1 = n−1We1, 2Re1Re2 = n−1We2, and 2Re1Re3 − R2

e2 =
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Table 2: Empirical coverage probabilities for confidence intervals for ρ when simulation is from
the multivariate t10 distribution. Monte Carlo standard errors for nominal levels {90, 95, 99}
per cent are {0·09,0·07,0·03}, respectively

n ρ Level Wo W1 Wcb W b
e W b

eo W ′1 W ′cb W ′be W ′beo

15 0·2 90 59·6 90·9 88·7 89·7 90·5 84·0 83·0 87·3 86·9
95 68·0 95·5 93·9 94·5 95·4 88·8 88·3 91·7 91·5
99 81·2 98·9 98·1 98·6 99·0 94·5 94·2 95·7 95·9

0·5 90 52·3 90·3 88·7 90·0 89·9 85·2 84·9 88·1 87·2
95 60·4 95·1 93·8 94·7 94·8 90·8 90·0 92·9 92·0
99 73·7 98·8 98·3 98·6 98·6 95·6 95·5 97·1 96·6

0·9 90 50·9 90·3 88·3 90·0 90·0 85·5 85·3 87·2 87·3
95 58·8 95·0 93·7 94·7 94·7 90·7 90·0 92·1 92·1
99 72·0 98·7 98·3 98·6 98·6 95·9 95·2 96·8 96·8

30 0·2 90 59·4 90·1 88·1 88·6 89·2 86·5 86·4 89·1 89·2
95 67·8 95·1 93·6 94·0 94·3 91·7 91·4 93·8 93·9
99 80·8 98·9 98·3 98·5 98·7 97·0 96·7 98·0 97·9

0·5 90 51·7 89·9 88·5 89·2 89·0 87·7 87·5 89·4 88·9
95 59·8 94·8 93·8 94·2 94·1 92·8 92·5 94·4 93·9
99 72·9 98·8 98·4 98·6 98·5 97·3 97·2 98·4 98·0

0·9 90 50·2 89·7 88·0 88·9 89·0 87·4 87·4 88·8 88·9
95 58·2 94·6 93·6 94·1 94·1 92·5 92·1 93·8 93·8
99 71·3 98·7 98·4 98·6 98·5 96·8 96·7 98·1 98·1

n−1We3, respectively. The cumulants of n1/2Re are

κ1(n
1/2Re) = n−1/2C1

[
α11

2α
3/2
01

+
C2α2

α
3/2
01 C1

− C1α2α001

6α
5/2
01

]
+O(n−3/2) (7)

κ2(n
1/2Re) =

C2
1α2

α01
+ n−1C2

1

[
7α2

11

4α2
01

+
11C2α11α2

α2
01C1

+
2C2

2α
2
2

α2
01C

2
1

+
6C3α

2
2

α2
01C1

+
C1α2α101

α2
01

+
α21

α01
(8)

+
2C2α3

α01C1
+
α2α02

α2
01

+
17C1α11α2α001

6α3
01

+
3C2α

2
2α001

α3
01C1

+
8C2α

2
2α001

3α3
01

+
C1α3α001

3α2
01

+

− 3α2
2α

2
001

4α4
01

+
3C1α

2
2α

2
001

2α4
01

− C2
1α

2
2α

2
001

36α4
01

− α2
2α0001

2α3
01

+
C1α

2
2α0001

α3
01

− C2
1α

2
2α0001

4α3
01

]
+O(n−2)

κ3(n
1/2Re) = n−1/2C2

1

[
3C1α11α2

α
5/2
01

+
6C2α

2
2

α
5/2
01

+
C1α3

α
3/2
01

+
C2
1α

2
2α001

α
7/2
01

]
+O(n−3/2) (9)

κ4(n
1/2Re) = n−1C3

1

[
18C1α

2
11α2

α4
01

+
84C2α11α

4
2

α4
01

+
48C2

2α
3
2

α4
01C1

+
24C3α

3
2

α4
01

+
4C2

1α
2
2α101

α4
01

+ (10)

+
6C1α2α21

α2
01

+
6C1α11α3

α2
01

+
24C2α2α3

α2
01

+
C1α4

α2
01

+
3C1α

2
2α02

α4
01

+
18C2

1α11α
2
2α001

α5
01

+

+
12C2α

3
2α001

α5
01

+
24C1C2α

3
2α001

α5
01

+
4C2

1α2α3α001

α4
01

− 3C1α
3
2α

2
001

α6
01

+
6C2

1α
3
2α

2
001

α6
01

+

+
C3
1α

3
2α

2
001

α6
01

− 2C1α
3
2α0001

α5
01

+
4C2

1α
3
2α0001

α5
01

− C3
1α

3
2α0001

α5
01

]
+O(n−2)

κ5(n
1/2Rm) = O(n−3/2) κj(n

1/2Rm) = o(n−2), j ≥ 6. (11)
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The signed root R and its cumulants are recovered respectively from Re and (7)-(11) by setting
C1 = 1 and C2 = C3 = 0.

Appendix 2

The proofs for the Bartlett correctability of We and W ′e pivot on the development of formal
Edgeworth series for the density of the corresponding signed roots, as outlined in Section 2.2.
The construction of the series is straightforward once the second, third, and fourth cumulant of
the signed roots exhibit the structure in (3). Therefore, the proofs of Theorem 1 and Theorem
2 are confined to sketch the determination of the constants Cj and Ĉj , j = 1, 2, 3, respectively.

Proof of Theorem 1. The constant C1 in Theorem 1 is obtained by equating to 1 the leading
term of κ2(n

1/2Re), whereas C2 and C3 by equating to 0 the leading terms of κ3(n
1/2Re) and

κ4(n
1/2Re), respectively. The Bartlett factor be is obtained by taking termwise expectation in

We once C1, C2, and C3 are plugged.

Proof of Theorem 2. The estimate Ĉ1 admits the expansion C1 + r1 + r2 , where the reminder
terms r1 = Op(n

−1/2) and r2 = Op(n
−1) are obtained by Taylor expanding Ĉ1 about θ∗, provid-

ing

r1 = C1

[
− A2

2α2
+

A01

2α01
+
A1α11

α2α01
− A1α001

2α2
01

]
(12)

r2 = C1

[
3A2

2

8α2
2

− A2
01

8α2
01

− A1A001

2α2
01

+
3A2

1α
2
11

2α2
2α

2
01

− A1A01α11

2α2α2
01

− A2
1α101

2α2α2
01

− 3A1A2α11

2α2
2α01

+ (13)

+
A1A11

α2α01
− A2A01

4α2α01
− A2

1α02

2α2α2
01

+
3A1A01α001

4α3
01

+
A1A2α001

4α2α2
01

− 3A2
1α

2
001

8α4
01

+
A2

1α0001

4α3
01

]
.

Once Ĉ1 = C1 + r1 + r2 is plugged in R1e and R2e, we have that R2e and R3e become R̃2e =

R2e+r1A1α
−1/2
01 and R̃3e = R3e+r2A1α

−1/2
01 +r1A1A11α

−3/2
01 /2. The third cumulant of n1/2R̃e =

n1/2[R1e + R̃2e + R̃3e] is

κ3(n
1/2R̃e) = n−1/2C3

1

[
−6α11α2

α
5/2
01

+
6C2α

2
2

α
5/2
01 C1

− 2α3

α
3/2
01

− 3α2
2α001

α
7/2
01

+
C1α

2
2α001

α
7/2
01

]
+O(n−3/2),

and by equating the leading term to 0 we obtain the new expression for C2, which corresponds
to that given in Theorem 2 but with sample moments replaced with expected moments and Ĉ1

with C1. Similarly to Ĉ1, we have that Ĉ2 in Theorem 2 may be expanded as C2 + r3, where
r3 = Op(n

−1/2) is

r3 = C1

[
−3A2α11

2α2
2

+
A11

α2
+
A1α21

α2
2

− 5A1α11α3

3α3
2

− A01α3

2α2
2

+
A001

2α01
− A001C1

6α01
+ (14)

− 3A1α
2
11

α2
2α01

− A01α11

2α2α01
+
A1α101

α2α01
+
A3α01

3α2
2

− 5A2α3α01

6α3
2

+
A1α02

α2α01
+
A01α001

4α2
01

− A1α11α001

α2α2
01

+
A1C1α11α001

3α2α2
01

− A2α001

4α2α01
+
A2C1α001

6α2α01
− A1α3α001

2α2
2α01

+
A1α

2
001

4α3
01

+
A1α0001

2α2
01

− A1C1α0001

6α2
01

]
.
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Once Ĉ2 is plugged in R̃2e, we have R̃∗3e = R̃3e + r3A
2
1α
−3/2
01 . The fourth cumulant of n1/2R̃∗ =

n1/2[R1e + R̃2e + R̃∗3e] is

κ4(n
1/2R̃∗e) = n−1C4

1

[
−24α2

11α2

α4
01

− 60C2α11α
2
2

α4
01C1

+
48C2

2α
3
2

α4
01C

2
1

+
24C3α

3
2

α4
01C1

+
12α2

2α101

α4
01

+
24α2α21

α3
01

+

− 28α11α3

α3
01

− 24C2α2α3

α3
01C1

− 8α2
3

α2α2
01

+
6α4

α2
01

+
12α2

2α02

α4
01

+
6α11α

2
2α001

α5
01

− 10C1α11α
2
2α001

α5
01

+

− 36C2α
3
2α001

α5
01C1

+
24C2α

3
2α001

α5
01

− 4C1α2α3α001

α4
01

+
6α3

2α
2
001

α6
01

− 6C1α
3
2α

2
001

α6
01

+
C2
1α

3
2α

2
001

α6
01

+

+
4α3

2α0001

α5
01

− C2
1α

3
2α0001

α5
01

]
+O(n−2),

and by equating the leading term to 0 we obtain the new expression for C3 which corresponds
to that given in Theorem 2 but with sample moments replaced with expected moments and Ĉj
with Cj , j = 1, 2. Note that the leading term of κ2(n

1/2Re) is equal to that of κ2(n
1/2R̃∗e), and

κ3(n
1/2R̃e)−κ3(n1/2R̃∗e) = O(n−2). Finally, the Bartlett factor b′e is obtained by taking termwise

expectation of W ′e = n(R̃∗)2 +Op(n
−3/2) once Ĉ1, Ĉ2, and Ĉ3 are plugged in n1/2R̃∗.
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