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composite likelihood ratio tests in order to recover an asymptotic chi square
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cations sensitivity and variability matrices usually need to be estimated, but

there are no comparisons of the performance of composite likelihood based

statistics in such an instance. We compare the accuracy of inference based

on the statistics considering two methods typically employed for estimation of

sensitivity and variability matrices, namely an empirical method that exploits

independent observations, and Monte Carlo simulation. The results in two

examples involving the pairwise likelihood show that a very large number of

independent observations should be available in order to obtain accurate cover-

ages using empirical estimation, while simulation from the full model provides
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Abstract: Composite likelihood inference has gained much popularity thanks to its com-

putational manageability and its theoretical properties. Unfortunately, performing compos-

ite likelihood ratio tests is inconvenient because of their awkward asymptotic distribution.

There are many proposals for adjusting composite likelihood ratio tests in order to recover

an asymptotic chi square distribution, but they all depend on the sensitivity and variability

matrices. The same is true for Wald-type and score-type counterparts. In realistic appli-

cations sensitivity and variability matrices usually need to be estimated, but there are no

comparisons of the performance of composite likelihood based statistics in such an instance.

We compare the accuracy of inference based on the statistics considering two methods typ-

ically employed for estimation of sensitivity and variability matrices, namely an empirical

method that exploits independent observations, and Monte Carlo simulation. The results in

two examples involving the pairwise likelihood show that a very large number of indepen-

dent observations should be available in order to obtain accurate coverages using empirical

estimation, while simulation from the full model provides accurate results regardless of the

availability of independent observations.

Keywords: composite likelihood, equicorrelated multivariate normal, multivariate probit,

pairwise likelihood.

1 Introduction

The use of the likelihood function to perform inference in statistical models is becom-
ing more and more cumbersome for diverse reasons, as for example the availability
of huge datasets and the implementation of complex models developed to repro-
duce natural phenomena. This problem is often overcome through the definition of
pseudo-likelihood functions that are computationally manageable, but retain some
nice properties of the likelihood function. Many of the pseudo-likelihood functions
proposed in the literature belong to the class of composite likelihoods (Lindsay,



2 Cattelan and Sartori

1988; Varin, 2008; Varin et al., 2011). Indeed, the definition of composite likelihood
given by Lindsay (1988) is quite general and encompasses any function which is a
product of marginal or conditional probabilities for subsets of events. Composite
likelihoods share some nice properties of the ordinary likelihood, as the unbiasedness
of the composite likelihood score function and the asymptotic normal distribution
of the maximum composite likelihood estimator (Molenberghs and Verbeke, 2005).
The simplifications of both computational issues and model assumptions that derive
from this type of pseudo-likelihood led to a considerable diffusion of composite like-
lihood estimation and hence the investigation of its theoretical properties and the
development of further inferential techniques based on composite likelihood.

In this paper, we focus on hypothesis testing and confidence regions construction
when a composite likelihood is employed. There are composite likelihood versions
of the tests developed in the full likelihood context. Hence, Wald-type, score-type
and likelihood ratios statistics based on the composite likelihood can be specified.
However, as with the full likelihood, the Wald-type statistic lacks invariance under
reparameterisations of the model and forces confidence regions to have an elliptical
shape. On the other hand, score-type statistics are often numerically unstable (Rot-
nitzky and Jewell, 1990; Molenberghs and Verbeke, 2005; Pace et al., 2011), while
composite likelihood ratio statistics do not have the usual asymptotic chi square
distribution.

There are different proposals to overcome the problem of the awkward asymptotic
distribution of the composite likelihood ratio statistic. All such proposals, as well
as the Wald-type and score-type statistics, depend on sensitivity and variability
matrices, which are, respectively, the expected value of minus the hessian of the
composite log likelihood and the variance of the composite score function. The
computation of these matrices is generally cumbersome and approximations are
typically used (Varin et al., 2011, §5.1). The main purpose of this paper is to compare
the behavior of the various statistics when they are based on estimated sensitivity
and variability matrices. In particular, empirical and Monte Carlo estimates are
considered. Two simulation studies are implemented to compare the performance
of adjusted composite likelihood ratio statistics when pairwise likelihood is used for
inferential purposes.

The paper is organized as follows. Section 2 reviews composite likelihood based
statistics and the proposals to overcome the problem of the asymptotic distribu-
tion of the composite likelihood ratio statistics. Section 3 presents the methods
commonly employed to estimate the sensitivity and variability matrices. Section 4
shows the results of simulation studies that compare the different statistics in two
model settings, namely equicorrelated multivariate normal data and a multivariate
probit model, and Section 5 concludes with a brief discussion.

2 Adjusting composite likelihood ratio statistics

Let y1, . . . , yn be independent realizations of a q-dimensional random vector Yi =
(Yi1, . . . , Yiq), with density or probability function f(yi; θ) depending on a d-dimensional
parameter θ. If the full likelihood is computationally cumbersome, or the model
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cannot be fully specified, composite likelihood may offer a valid alternative. A com-
posite likelihood is a combination of likelihoods for conditional or marginal events
(Lindsay, 1988). Assume there are K marginal or conditional events Ak(yi) in-
volving elements of yi, k = 1, . . . ,K, for which we can compute the likelihood
Lk(θ; yi) ∝ f(Yi ∈ Ak; θ), then the composite likelihood is

cL(θ; y) =
n∏
i=1

K∏
k=1

Lk(θ; yi)
wk ,

where wk are non negative weights and y = (y1, . . . , yn). The composite log like-
lihood is cl(θ; y) = log cL(θ; y) and the composite score function is cU(θ; y) =
∇θ cl(θ; y). The maximizer of cl(θ; y), θ̂c, is the maximum composite likelihood
estimate. The maximum composite likelihood estimator is asymptotically normally
distributed, θ̂c

·∼ Nd(θ,G(θ)−1), where G(θ) denotes the Godambe information ma-
trix. Specifically, the asymptotic covariance matrix is G(θ)−1 = H(θ)−1J(θ)H(θ)−1,
where H(θ) = E{−∇θcU(θ; y)} is called the sensitivity matrix and J(θ) = E{cU(θ)
cU(θ)T } is called the variability matrix. Composite likelihood is not a proper likeli-
hood, but it can be interpreted as the likelihood for a misspecified model, hence the
second Bartlett identity does not hold and typically J(θ) 6= H(θ).

A type of composite likelihood often used in applications is the pairwise likeli-
hood, which is the product of marginal bivariate probabilities,

pL(θ; y) =
n∏
i=1

q−1∏
j=1

q∏
k=j+1

f(yij , yik; θ)
wij,ik ,

and the pairwise log likelihood is pl(θ; y) = log pL(θ; y).
Assume that interest lies in a p-dimensional parameter γ, where θ = (γ, δ) and

δ is a nuisance parameter of dimension d − p. It is possible to define test statistics
based on the composite likelihood which are analogous to those based on the full
likelihood. Denote by θ̂cγ the constrained maximum composite likelihood estimate

of θ for a fixed γ, and let θ̂c = (γ̂c, δ̂c). The Wald-type statistic for the parameter of
interest is

cW (γ) = (γ̂c − γ)T {Gγγ(θ̂cγ)}−1(γ̂c − γ), (1)

where Gγγ(θ̂cγ) denotes the p×p submatrix of the inverse of G(θ̂cγ) pertaining to γ.
The statistic cW (γ) has an asymptotic χ2

p distribution. Unfortunately, this quantity
is not invariant to reparameterisations of the model.

The score-type statistic based on the composite likelihood is

cS(γ) = cUγ(θ̂cγ)Hγγ(θ̂cγ){Gγγ(θ̂cγ)}−1Hγγ(θ̂cγ)cUγ(θ̂cγ), (2)

where cUγ(θ) = ∇γcl(θ; y) denotes the derivative of the composite log likelihood

with respect to the parameter of interest and Hγγ(θ̂cγ) denotes the submatrix of the

inverse of H(θ̂cγ) pertaining to γ. The asymptotic distribution of cS(γ) is χ2
p, but

this statistic is often numerically unstable (Molenberghs and Verbeke, 2005).
Finally, it is possible to define also a composite likelihood ratio statistic

cLR(γ) = 2{cl(θ̂c)− cl(θ̂cγ)},
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but its asymptotic distribution is a weighted sum of p independent chi square random
variables with one degree of freedom, precisely

∑p
i=1 ωiχ

2
1i, where ω1, . . . , ωp are the

eigenvalues of {Hγγ(θ̂cγ)}−1Gγγ(θ̂cγ). This awkward distribution prevents the use
of the composite likelihood ratio statistic when the dimension of the parameter of
interest is larger than one, hence various adjustments have been proposed, mainly
in order to recover an approximate χ2

p distribution.
A first proposal for the adjustment of composite likelihood ratio statistics sug-

gests to match the first order moment of the composite likelihood ratio statistic with
that of a χ2

p random variable (Molenberghs and Verbeke, 2005)

cLR(γ)1 = ω(γ)−1cLR(γ),

where ω(γ) =
∑p

i=1 ωi(θ̂cγ)/p, and then use a χ2
p as approximate distribution. A bet-

ter approximation can be obtained through first and second order moment matching
(Varin, 2008), which gives a Satterthwaite type adjustment (Satterthwaite, 1946)

cLR(γ)2 = κ−1cLR(γ),

where κ = κ(γ) =
∑p

i=1 ωi(θ̂cγ)2/
∑p

i=1 ωi(θ̂cγ). This quantity has an asymptotic χ2
ν

distribution, where the degrees of freedom are ν = ν(γ) = (
∑p

i=1 ωi(θ̂cγ))2/
∑p

i=1 ωi(θ̂cγ)2.
Unfortunately, this adjustment yields an asymptotic distribution with number of de-
grees of freedom depending on the parameter.

Other two adjustments of the composite likelihood ratio statistics are proposed
by Chandler and Bate (2007) and Pace et al. (2011). The former suggest the fol-
lowing adjustment

cLR(γ)CB =
(γ̂c − γ)T {Gγγ(θ̂c)}−1(γ̂c − γ)

(γ̂c − γ)THγγ(θ̂c)(γ̂c − γ)T
cLR(γ), (3)

which has asymptotic χ2
p distribution. In a simulation study Chandler and Bate

(2007) show that their proposal behaves well, and at least it does not perform worse
than statistics (1) and (2) in all settings considered. However, Pace et al. (2011) show
that cLR(γ)CB is not parameterisation invariant, and therefore propose a different
rescaling that preserves the parameterisation invariance of likelihood ratio statistic,
that is

cLR(γ)I =
cS(γ)

cUγ(θ̂cγ)Hγγ(θ̂cγ)cUγ(θ̂cγ)
cLR(γ), (4)

which is again asymptotically χ2
p distributed. Despite being partially based on the

score statistic cS(γ), cLR(γ)I usually does not inherit its numerical instability.
The performance of the different adjustments is compared in a simulation study

in Pace et al. (2011) that consider two different model settings: equicorrelated mul-
tivariate normal data and first order autoregression. In both cases, the authors
use pairwise likelihood for making inference on model parameters and compare the
results with those produced by maximum likelihood based statistics. Moreover, in
both settings it is possible to compute analytically the Fisher information matrix
and the matrices H(θ) and J(θ) for the pairwise likelihood. In general, the statis-
tic (4) seems to behave well in all settings considered, while in some instances the
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empirical coverage of adjustment (3) is much lower than the nominal value. These
results are obtained when the quantities of interest can be computed analytically.
This rarely occurs in applications where composite likelihood is employed. Indeed,
composite likelihood is often used in complex models where not only it is not pos-
sible to deal with the full likelihood, but also the analytical computation of H(θ)
and J(θ) is typically unfeasible. The main concern of this paper is to investigate the
behavior of the different proposals when the quantities involved in the computation
of the statistics have to be estimated.

3 Estimation of H(θ) and J(θ)

Estimation of the matrices H(θ) and J(θ) is a typical concern in applications in
which composite likelihood is employed since they are necessary also to report the
standard errors of the maximum composite likelihood estimates. While H(θ) can be
reasonably estimated through the observed hessian, the estimation of the variability
matrix J(θ) poses major difficulties.

Matrices H(θ) and J(θ) are usually estimated either empirically, exploiting
groups of independent or almost independent data, or through simulation. When
there are groups of independent observations, as for example when data are divided
into clusters, it is possible to estimate J(θ) as

ĴE(θ) =
1

n

n∑
i=1

cU(θ; yi)cU(θ; yi)
T ,

where cU(θ; yi) denotes the elements of the composite score involving only observa-
tions of the vector yi. For example, cU(θ; yi) =

∑q−1
j=1

∑q
k=j+1∇θ log f(yij , yik; θ) if

pairwise likelihood is employed. When independent repetitions of the data are not
available, as in time series or spatial data, but it is possible to identify groups of data
with low dependence, this method may be applied to groups of slightly dependent
data. For example, when dealing with time series with dependence decreasing in
time, a window subsampling method may be employed (Varin, 2008). The empirical
estimate of the sensitivity matrix is

ĤE(θ) = − 1

n

n∑
i=1

∇θcU(θ; yi),

which corresponds to minus the Hessian matrix. However, since the second Bartlett
identity holds for single subsets of the data (Varin, 2008), the sensitivity matrix can
also be estimated as

ĤE(θ) =
1

n

n∑
i=1

K∑
k=1

cU(θ; yi ∈ Ak)cU(θ; yi ∈ Ak)T ,

which avoids the computation of the second derivative. When pairwise likelihood is
employed, this corresponds to

ĤE(θ) =
1

n

n∑
i=1

q−1∑
j=1

q∑
k=j+1

cU(θ; yij , yik)cU(θ; yij , yik)
T .
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The empirical estimation of H(θ) and J(θ) does not require any further assumptions
than those made for the composite likelihood function, which consist only in the
specification of low order marginal or conditional probabilities.

An alternative method to estimate the Godambe information matrix is through
simulation, which requires assumptions about the full distribution of the data. Al-
though this may appear an important limitation of this method, in most of the
applications of composite likelihood a full model is assumed for the data, but the
difficulties in computing the likelihood function lead to the use of composite likeli-
hood. In these cases the likelihood function is difficult to evaluate, but it may be
quite straightforward to simulate from the full model. This is the same kind of sit-
uations where modern Approximate Bayesian Computation methods are nowadays
widely used (Marin et al., 2012). Let ym, m = 1, . . . ,M , denote the mth dataset
simulated from f(y; θ), the full distribution of the data. Then, the Monte Carlo
estimates of J(θ) and H(θ) are

ĴS(θ) =
1

M

M∑
m=1

cU(θ; ym)cU(θ; ym)T ,

and

ĤS(θ) = − 1

M

M∑
m=1

∇θcU(θ; ym).

Again, in the estimation of H(θ) it is possible to exploit the second Bartlett identity,
this may be convenient especially if analytical first derivatives can be computed.
Usually a few hundreds simulated datasets are sufficient for reasonable accuracy.

Even when it is possible to compute J(θ) exactly, it may be computationally
more convenient to use ĴS(θ). Indeed, consider a single observation (n = 1) of a q-
dimensional multivariate normal random vector, as for instance in spatial statistics.
The computational cost of the likelihood is of order q3, while that of the pairwise
likelihood and score functions is of order q2. On the other hand, the computational
cost of J(θ) is of order q4, while that of ĴS(θ) is Mq2.

The main interest here is in investigating whether there are differences in the
performances of the various composite likelihood based statistics when H(θ) and
J(θ) have to be estimated with respect to cases in which they are available ana-
lytically, and which of the two estimating methods yields better results. Such an
investigation has an important practical relevance since the estimation of H(θ) and
J(θ) is the only option in most realistic applications. The proposed solutions are
explored in simulation studies.

4 Simulation studies

Simulation studies are performed considering two different model settings and using
pairwise likelihood for inferential purposes. The first setting assumes equicorrelated
multivariate normal data. In this rather toyish case it is possible to compute analyt-
ically the sensitivity and the variability matrices (Pace et al., 2011), thus allowing a
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comparison of the performance of analytical, empirical and simulation based quan-
tities. The second model considered is a multivariate probit model, in which the
analytical form of H(θ) and J(θ) is not available.

4.1 Equicorrelated multivariate normal

Assume that Yi, i = 1, . . . , n, has a q-dimensional normal distribution in which all
components have mean µ, variance σ2 and cor(Yij , Yik) = ρ, ∀ j 6= k. Analytical
expressions for H(θ) and J(θ) when pairwise likelihood is employed are reported in
Pace et al. (2011). Several different settings are considered with increasing values
of the correlation parameter ρ and increasing number of independent observations
n. The values of the model parameters in the simulations are µ = 0, σ2 = 1 and
ρ = 0.2, 0.5, 0.9. The dimension of the datasets considered is n = 5, 30 and 100, while
q = 30. For each setting 100,000 datasets were simulated and the various statistics
were computed using analytical, empirical and simulated versions of H(θ) and J(θ).
Although a few hundreds repetitions are enough, as will be shown in a further
simulation study reported later, in order to obtain an accurate approximation of the
sensitivity and the variability matrices, M = 1, 000 simulations are employed for the
Monte Carlo estimation of H(θ) and J(θ). Table 1 shows the empirical coverages of
the statistics when the nominal levels are 0.95 and 0.99. The superscripts A, E, and
S denote that the statistic is computed employing analytical, empirical and Monte
Carlo versions of matrices H(θ) and J(θ), respectively. The empirical coverages of
statistics based on analytical quantites are analogous to those obtained in Pace et
al. (2011). Given the poor performance of the adjustment (3) and of that based
on first order matching, they are not reported here. The Wald-type statistic based
on analytical quantities shows poor coverages that worsen for increasing values of
the correlation parameter. Even though its coverage improves as n gets larger, it
remains unsatisfactory even for n = 100 when ρ = 0.9. The score-type statistic
behaves quite well, its coverage is not influenced by the strength of the correlation
parameter, and it improves as n increases. On the other hand, shapes of confidence
regions based on the score statistics may be quite irregular as shown in Pace et al.
(2011). The adjustment of the composite likelihood ratio statistic based on second
order matching and the one proposed by Pace et al. (2011) provide quite good results.
The latter has a coverage somewhat lower than the nominal values when n = 5 and
ρ = 0.9, but the problem disappears when n increases to 30.

Now consider the coverages when the statistics are computed using empirical or
simulation based sensitivity and variability matrices. When empirical estimation is
employed, the dimension of the dataset n appears of great importance. When n = 5
the coverages are worse than those obtained with analytical quantities. They seem
to approach those obtained using analytical quantities as the dimension n increases,
but they are not as accurate even for n = 100. On the contrary, the coverages of the
statistics based on simulated quantities are almost identical to those of the statistics
based on analytical calculations. In this case, the use of simulation based sensitivity
and variability matrices appears definitely preferable.

Table 2 reports the empirical coverages of the statistics when µ is considered
as a nuisance parameter. The Wald-type statistic does not perform well for small
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n ρ WA WE WS SA SE SS LRA
2 LRE

2 LRS
2 LRA

I LRE
I LRS

I

95.0

5
0.2 96.1 90.3 96.0 93.9 100.0 93.8 95.3 100.0 95.3 95.1 100.0 95.0
0.5 80.6 67.6 80.5 94.1 100.0 94.0 95.7 100.0 95.7 94.6 99.9 94.5
0.9 52.4 41.5 52.3 94.0 100.0 93.9 92.8 98.9 92.7 90.4 99.3 90.2

30
0.2 95.3 93.8 95.1 94.8 88.8 94.8 95.2 94.3 95.1 95.2 91.3 95.1
0.5 91.6 89.8 91.5 94.9 88.8 94.8 95.1 94.0 95.1 94.9 95.0 94.8
0.9 77.8 75.4 77.8 94.8 89.0 94.8 94.6 97.7 94.6 94.3 97.6 94.2

100
0.2 95.1 94.0 95.0 95.0 92.5 94.9 95.2 94.8 95.1 95.1 93.2 95.0
0.5 93.8 92.9 93.8 95.1 92.6 95.0 95.1 94.4 95.1 95.0 94.2 94.9
0.9 87.0 85.7 86.9 94.9 92.5 94.8 94.8 95.0 94.8 94.7 95.6 94.6

99.0

5
0.2 99.1 94.7 99.1 97.6 100.0 97.5 98.9 100.0 98.9 98.7 100.0 98.7
0.5 88.8 75.8 88.8 97.6 100.0 97.5 99.1 100.0 99.1 98.8 100.0 98.8
0.9 57.9 47.0 57.9 97.6 100.0 97.6 98.7 99.3 98.7 96.9 99.9 96.8

30
0.2 99.1 98.5 99.0 98.7 95.5 98.6 98.9 98.8 98.8 99.0 97.6 99.0
0.5 96.7 95.1 96.7 98.6 95.4 98.6 99.0 98.9 99.0 99.0 99.5 98.9
0.9 84.4 81.8 84.3 98.6 95.5 98.6 98.9 99.9 98.9 98.7 99.8 98.7

100
0.2 99.1 98.5 99.0 98.9 97.5 98.8 98.9 98.7 98.8 99.0 98.0 99.0
0.5 98.2 97.6 98.2 98.9 97.6 98.8 99.0 98.7 99.0 99.0 98.7 98.9
0.9 93.0 91.7 92.9 98.8 97.5 98.8 99.0 99.2 98.9 98.9 99.3 98.8

Table 1: Empirical coverages of the statistics: Wald-type (W ), score-type (S), com-
posite likelihood ratio using second order matching adjustment (LR2) and compos-
ite likelihood ratio adjustment by Pace et al. (2011) (LRI) for nominal values 95%
and 99% in an equicorrelated multivariate normal model for parameters of interest
(µ, σ2, ρ), with ρ = 0.2, 0.5, 0.9 and n = 5, 30, 100, using analytical (A), empirical
(E) and Monte Carlo (S) versions of H(θ) and J(θ).

values of n when correlation is high. The score-type statistic, the adjustments of the
composite likelihood ratio statistic proposed by Pace et al. (2011) and that based
on second order matching behave quite well, even though the latter two improve
their accuracy as n gets larger. Again, the coverages of the statistics computed with
empirical estimation of the matrices H(θ) and J(θ) are quite different from those
deriving from the analytical quantities, and they clearly improve as the number of
independent repetitions of observations increases. On the contrary, the statistics
based on Monte Carlo simulations of the sensitivity and variability matrices are
almost equal to those based on analytical quantities.

When the only parameter of interest is ρ, we have qualitatively the same re-
sults, the empirical coverages of the different statistics are given in Table A.1 in the
Appendix.

In order to obtain accurate estimates of H(θ) and J(θ) in the Monte Carlo pro-
cedure we employed M = 1, 000 replications. In some instances, this number of
replications may require considerable computational time. We therefore investigate
whether it is possible to obtain accurate coverages with fewer replications. In par-
ticular, we consider the situation in which all the parameters of the equicorrelated
multivariate normal model are of interest and compare the coverages of the statistics
based on simulated sensitivity and variability matrices when M = 100, 250 and 500.
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n ρ WA WE WS SA SE SS LRA
2 LRE

2 LRS
2 LRA

I LRE
I LRS

I

95.0

5
0.2 95.9 95.2 96.2 95.9 100.0 95.9 96.6 98.6 96.6 96.0 99.6 96.0
0.5 96.0 80.1 86.1 96.0 100.0 96.0 96.5 98.8 96.4 94.4 99.3 94.3
0.9 62.1 53.7 62.1 96.0 100.0 95.9 90.7 98.9 90.6 89.0 98.4 88.9

30
0.2 95.2 92.8 95.1 95.3 90.0 95.2 95.4 92.6 95.3 95.3 91.6 95.2
0.5 95.3 91.8 93.3 95.4 89.9 95.3 95.1 92.4 95.0 94.8 94.2 94.8
0.9 85.5 83.3 85.5 95.4 89.9 95.3 94.3 97.7 94.3 94.1 97.0 94.0

100
0.2 95.2 94.1 95.1 95.2 93.2 95.2 95.3 94.1 95.3 95.2 93.7 95.1
0.5 95.1 93.8 94.4 95.2 93.1 95.1 95.0 93.8 95.0 94.9 94.2 94.8
0.9 95.1 90.6 91.4 95.2 93.3 95.1 94.9 95.1 94.9 94.8 95.7 94.7

99.0

5
0.2 98.7 99.2 99.3 98.8 100.0 98.7 99.4 100.0 99.3 99.2 100.0 99.2
0.5 98.8 88.2 94.1 98.8 100.0 98.8 99.7 100.0 99.7 98.8 100.0 98.7
0.9 67.6 60.0 67.6 98.8 100.0 98.7 98.0 99.9 97.9 96.1 99.8 96.1

30
0.2 98.9 98.0 99.1 99.0 96.1 98.9 99.1 98.0 99.0 99.1 97.4 99.1
0.5 98.9 96.8 98.0 98.9 96.1 98.9 99.1 98.4 99.0 99.0 99.1 98.9
0.9 91.1 89.3 91.1 98.9 96.0 98.9 98.7 99.8 98.7 98.6 99.5 98.6

100
0.2 99.0 98.6 99.0 99.0 98.0 99.0 99.0 98.5 98.9 99.1 98.4 99.0
0.5 99.0 98.1 98.6 99.0 97.8 99.0 99.0 98.3 99.0 99.0 98.7 98.9
0.9 99.0 95.5 96.3 99.1 97.9 99.0 99.0 99.3 98.9 98.9 99.3 98.9

Table 2: Empirical coverages of the statistics: Wald-type (W ), score-type (S), com-
posite likelihood ratio using second order matching adjustment (LR2) and compos-
ite likelihood ratio adjustment by Pace et al. (2011) (LRI) for nominal values 95%
and 99% in an equicorrelated multivariate normal model for parameters of interest
(σ2, ρ), with ρ = 0.2, 0.5, 0.9 and n = 5, 30, 100, using analytical (A), empirical (E)
and Monte Carlo (S) versions of H(θ) and J(θ).

Table 3 reports the coverages of the statistics for increasing values of replications
M and considering dimension n = 5, 30 in the most extreme case with ρ = 0.9. The
results for the other values of the correlation parameter are included in Tables A.2
and A.3 in the Appendix. In all cases, the results with M = 500 are almost identical
to those obtained withM = 1, 000, and evenM = 250 seems to provide very accurate
results. Other numbers of Monte Carlo simulations between 500 and 1,000 yield the
same results obtained with M = 500. The relatively low value of M sufficient for
reasonable accuracy may be explained by the fact that matrices H(θ) and J(θ) are
expected values and they are only a part of the adjusted statistics.

4.2 Multivariate probit

Consider a multivariate probit model in which Yij is a binary random variable that
can assume values either 0 or 1. We use the latent variable representation

Yij = 1⇔ Zij > 0, i = 1, . . . , n, j = 1, . . . , q,

with Zij = xTijβ +Ui + εij , where xij is an r-dimensional vector of covariates, β is a

vector of regression parameters, Ui
iid∼ N(0, σ2), are independent zero-mean random

effects and εij are independent normally distributed errors with mean 0. The errors
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WS SS LRS2 LRSI
n 5 30 5 30 5 30 5 30

M 95.0

100 51.8 77.0 93.1 94.0 92.6 94.5 89.0 93.3
250 52.2 77.5 93.7 94.5 92.7 94.6 89.9 93.9
500 52.3 77.7 93.8 94.7 92.7 94.6 90.2 94.2

99.0

100 57.4 83.8 97.1 98.2 98.5 98.8 96.2 98.2
250 57.7 84.1 97.4 98.5 98.6 98.9 96.6 98.5
500 57.8 84.3 97.5 98.5 98.6 98.9 96.7 98.6

Table 3: Comparison of coverages of the statistics: Wald-type (W ), score-type (S),
composite likelihood ratio using second order matching adjustment (LR2) and com-
posite likelihood ratio adjustment by Pace et al. (2011) (LRI) based on Monte
Carlo simulation as M increases in an equicorrelated normal model with ρ = 0.9
and n = 5, 30.

are independent of the random effects and their variance is set to 1 for identification
purposes. Hence, the latent variables Zij and Zkl are independent if i 6= k, while Zij
and Zik have correlation ρ = σ2/(1+σ2), ∀ j 6= k. The full likelihood is cumbersome
since it entails calculation of multiple integrals of a q-variate multivariate normal
distribution. In this instance pairwise likelihood is a valid alternative (Le Cessie and
Van Houwelingen, 1994), indeed the pairwise log-likelihood is

pl(β, ρ; y) =
n∑
i=1

q−1∑
j=1

q∑
k=j+1

log f(Yij = yij , Yik = yik;β, ρ),

where, for instance, f(Yij = 1, Yik = 1;β, ρ) = Φ2(λij , λik; ρ) is the standard bi-
variate normal distribution with correlation ρ, computed in (λij , λik) with λij =
xTijβ
√

1− ρ.
However, in this case it is not possible to compute analytically the matrices

H(θ) and J(θ) deriving from the pairwise likelihood, so only statistics based on
estimated quantities can be compared. In the model, an intercept term and one
covariate are included. The covariate is simulated from a uniform distribution in
[−1, 1], while model parameters (β0, β1, σ

2) are set to (0.5, 1, 1). The length of
the multivariate binary observations is set to q = 30, and increasing dimension
of the dataset is considered, namely n = 10, 30 and 100. For each setting 10,000
datasets are simulated and the Monte Carlo estimates of H(θ) and J(θ) are based
on M = 1, 000 replications.

Table 4 shows the empirical coverages when only two parameters are of interest,
namely (β1, ρ). As expected, for small n the simulation based statistics have better
coverages than the empirical based ones, and with n = 100 the difference is still
evident for the Wald-type statistic. Coverages of the statistics based on Monte
Carlo simulation of H(θ) and J(θ) are always quite good.

Finally, Table 5 reports the empirical coverages when ρ = σ2/(1+σ2) is the only
parameter of interest. Again, the coverage of simulation based statistics are more
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accurate for small values of n, but when the number of independent repetitions is
large, even statistics based on empirical quantities provide good results. The results
when all parameters are of interest are reported in Table A.4 in the Appendix.

n WE WS SE SS LRE
2 LRS

2 LRE
IN LRS

IN

95.0
10 86.0 92.8 93.6 95.1 97.8 95.6 96.1 95.1
30 90.6 93.7 93.2 94.7 97.2 95.0 96.0 94.7
100 92.8 94.6 94.7 95.1 95.3 94.9 95.4 95.1

99.0
10 90.9 96.5 99.8 99.1 99.5 99.1 99.0 99.1
30 94.8 97.8 98.4 98.9 99.4 98.9 99.1 98.9
100 96.8 98.5 98.8 98.9 99.2 98.9 98.9 98.9

Table 4: Empirical coverages of the statistics: Wald-type (W ), score-type (S), com-
posite likelihood ratio using second order matching adjustment (LR2) and composite
likelihood ratio adjustment by Pace et al. (2011) (LRI) for nominal values 95% and
99% for the parameter of interest (β1, ρ) in a multivariate probit model with q = 30
and n = 10, 30, 100, using empirical (E) and Monte Carlo (S) versions of H(θ) and
J(θ).

n WE WS SE SS LRE
2 LRS

2 LRE
IN LRS

IN

95.0
10 89.9 93.7 89.9 94.7 97.0 95.0 97.0 95.0
30 92.8 95.2 93.2 95.1 96.4 95.1 96.4 95.1
100 94.3 94.7 94.5 95.0 95.1 95.1 95.1 95.1

99.0
10 93.3 96.4 98.1 99.2 99.0 99.2 99.0 99.2
30 96.1 98.0 97.9 99.0 99.2 99.1 99.2 99.1
100 97.4 98.6 98.8 99.0 99.0 99.0 99.0 99.0

Table 5: Empirical coverages of the statistics: Wald-type (W ), score-type (S), com-
posite likelihood ratio using second order matching adjustment (LR2) and composite
likelihood ratio adjustment by Pace et al. (2011) (LRI) for nominal values 95% and
99% for the parameter of interest ρ in a multivariate probit model with q = 30 and
n = 10, 30, 100, using empirical (E) and Monte Carlo (S) versions of H(θ) and J(θ).

5 Discussion

This paper considers hypothesis testing using likelihood based statistics when a com-
posite likelihood is employed for inferential purposes. Hypothesis testing presents
some difficulties since Wald-type tests lack invariance to reparameterisations of the
model, score-type tests are often numerically unstable, while composite likelihood
ratio statistics do not follow the usual asymptotic chi square distribution. Many
different adjustments of the composite likelihood ratio statistic have been proposed
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to overcome the problem of its awkward asymptotic distribution. The proposal by
Pace et al. (2011) seems an interesting alternative, however its performance has been
considered so far only in examples in which the sensitivity and the variability ma-
trices can be computed analytically. This rarely happens in applications in which
composite likelihood is employed and typically those matrices need to be estimated.
We considered the performance of the different statistics when H(θ) and J(θ) are
estimated either empirically, or through Monte Carlo simulation. The score-type
statistic, the adjustment of the composite likelihood ratio statistic based on second
order moment matching and the adjustment proposed by Pace et al. (2011) seem
to perform quite well in all situations considered. However, score-type tests can
be numerically unstable, while the adjustment based on the second order moment
matching has an asymptotic distribution which depends on the parameters of the
model.

The results show that empirical estimation of the sensitivity and variability ma-
trices requires a large number of independent repetitions of the observations and in
our simulations it is not very accurate even with a dataset with as much as 100 inde-
pendent replications. In many applications, as in time series or in spatial statistics,
subsets of independent data are not available and the empirical method is applied
to subsets of data with low dependence, using for example window subsampling. In
these instances we may expect that the performance of the statistics based on em-
pirical quantities will be even worse. The coverages of the statistics based on Monte
Carlo simulation are almost identical to those of the statistics based on analytically
computed quantities in the equicorrelated multivariate normal setting. In the mul-
tivariate probit model it is not possible to compute the sensitivity and variability
matrices analytically, but the statistics based on simulation provide coverages closer
to the nominal values than the empirically estimated ones. A further simulation
study shows that the computational burden deriving from the simulation of the ma-
trices H(θ) and J(θ) can be reduced since M = 500 repetitions, or even M = 250,
may be enough. Moreover, such moderate number of repetitions can be done in
parallel, thus substantially reducing computational time. In general, it seems that
simulation based quantities are preferable, even when the number of independent
repetitions of the data is quite large. Therefore, even considering the computational
cost of exact calculation of matrix J(θ) in complex models, the simulation approach
should be the default choice whenever simulation from the full model is feasible.
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A Appendix

n ρ WA WE WS SA SE SS LRA
2 LRE

2 LRS
2 LRA

I LRE
I LRS

I

95.0

5
0.2 98.7 74.0 98.7 98.7 78.6 98.7 98.7 76.8 98.6 98.7 76.8 98.6
0.5 95.7 65.6 87.9 95.8 81.2 95.7 93.9 73.8 93.9 93.9 73.8 93.9
0.9 72.7 56.6 72.7 90.1 83.7 90.0 86.5 69.1 86.4 86.5 69.1 86.4

30
0.2 95.4 89.3 95.3 95.5 89.8 95.4 95.4 89.6 95.4 95.4 89.6 95.4
0.5 95.0 87.7 94.0 95.0 90.6 95.0 94.8 89.9 94.8 94.8 89.9 94.8
0.9 90.6 83.3 90.5 94.1 91.0 94.1 93.7 89.3 93.7 93.7 89.3 93.7

100
0.2 95.1 93.0 95.1 95.2 93.1 95.1 95.2 93.1 95.1 95.2 93.1 95.1
0.5 94.9 92.5 94.6 94.9 93.4 94.9 94.9 93.2 94.9 94.9 93.2 94.9
0.9 93.6 90.4 93.5 94.7 93.6 94.7 94.6 93.1 94.6 94.6 93.1 94.6

99.0

5
0.2 99.7 100.0 99.8 99.7 100.0 97.7 99.7 100.0 99.6 99.7 100.0 99.6
0.5 100.0 77.0 96.9 100.0 100.0 100.0 100.0 95.8 99.9 100.0 95.8 99.9
0.9 79.5 62.4 79.5 98.5 100.0 98.4 94.6 81.5 94.6 94.6 81.5 94.6

30
0.2 99.3 95.1 99.3 99.3 95.8 99.3 99.3 95.5 99.3 99.3 95.5 99.3
0.5 99.1 93.4 98.4 99.1 96.6 99.1 99.0 95.7 99.0 99.0 95.7 99.0
0.9 95.3 88.7 95.3 98.6 97.1 98.6 98.4 94.6 98.4 98.4 94.6 98.4

100
0.2 99.1 97.6 99.1 99.1 97.9 99.1 99.1 97.8 99.0 99.1 97.8 99.0
0.5 99.0 96.9 98.8 99.0 98.1 99.0 99.0 97.8 99.0 99.0 97.8 99.0
0.9 97.8 94.9 97.8 98.9 98.4 98.9 98.8 97.6 98.8 98.8 97.6 98.8

Table A.1: Empirical coverages of the statistics: Wald-type (W ), score-type (S),
composite likelihood ratio using second order matching adjustment (LR2) and com-
posite likelihood ratio adjustment by Pace et al. (2011) (LRI) for nominal values
95% and 99% in an equicorrelated multivariate normal model for parameter of in-
terest ρ, with ρ = 0.2, 0.5, 0.9 and n = 5, 30, 100, using analytical (A), empirical (E)
and Monte Carlo (S) versions of H(θ) and J(θ).
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WS SS LRS2 LRSI
n 5 30 5 30 5 30 5 30

M 95.0

100 95.2 94.2 93.1 93.9 95.1 95.0 94.2 94.1
250 95.7 94.9 93.6 94.5 95.2 95.1 94.7 94.8
500 95.9 95.1 93.8 94.7 95.2 95.1 95.0 95.0

99.0

100 98.8 98.7 97.1 98.3 98.8 98.7 98.3 98.6
250 99.0 98.9 97.4 98.5 98.8 98.8 98.5 98.8
500 99.1 99.0 97.4 98.6 98.9 98.8 98.6 98.9

Table A.2: Comparison of coverages of the statistics: Wald-type (W ), score-type
(S), composite likelihood ratio using second order matching adjustment (LR2) and
composite likelihood ratio adjustment by Pace et al. (2011) (LRI) based on Monte
Carlo simulation as M increases in an equicorrelated normal model with ρ = 0.2
and n = 5, 30.

WS SS LRS2 LRSI
n 5 30 5 30 5 30 5 30

M 95.0

100 79.5 90.7 93.3 94.0 95.5 94.9 93.5 93.9
250 80.2 91.3 93.8 94.5 95.7 95.0 94.2 94.5
500 80.3 91.4 94.0 94.7 95.7 95.1 94.4 94.7

99.0

100 88.0 96.2 97.2 98.2 99.0 98.9 98.3 98.5
250 88.5 96.5 97.4 98.5 99.1 99.0 98.6 98.8
500 88.6 96.7 97.5 98.5 99.1 99.0 98.7 98.9

Table A.3: Comparison of coverages of the statistics: Wald-type (W ), score-type
(S), composite likelihood ratio using second order matching adjustment (LR2) and
composite likelihood ratio adjustment by Pace et al. (2011) (LRI) based on Monte
Carlo simulation as M increases in an equicorrelated normal model with ρ = 0.5
and n = 5, 30.
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n WE WS SE SS LRE
2 LRS

2 LRE
IN LRS

IN

95.0
10 68.1 91.8 91.5 94.9 99.0 94.7 98.0 94.9
30 82.7 93.5 91.7 94.7 99.0 94.6 97.7 94.7
100 89.6 94.6 94.3 95.3 95.8 95.0 96.1 95.1

99.0
10 75.7 96.1 100.0 98.7 99.2 98.8 99.5 98.9
30 88.6 97.8 97.2 98.9 100.0 98.7 99.6 99.0
100 94.8 98.6 98.6 99.0 99.4 98.8 99.3 99.1

Table A.4: Empirical coverages of the statistics: Wald-type (W ), score-type (S),
composite likelihood ratio using second order matching adjustment (LR2) and com-
posite likelihood ratio adjustment by Pace et al. (2011) (LRI) for nominal values
95% and 99% for the parameter of interest (β0, β1, ρ) in a multivariate probit model
with q = 30 and n = 10, 30, 100, using empirical (E) and Monte Carlo (S) versions
of H(θ) and J(θ).
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