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Abstract: The phenomena of long range dependence and regime switching are intimely
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1 Introduction

Since the seminal papers of Granger and Joyeux (1980) and Hosking (1981) there
has been a considerable interest in modelling strong persistence in time series. This
interest is motivated by the analysis of many empirical time series, such as, for
instance, the hydrological time series of Nile River minima (Hurst, 1951), the time
series of Ethernet traffic (Leland et al., 1993) and financial time series (Granger and
Ding, 1995, 1996). For all these series the autocorrelation function decreases to zero
like a power function rather than exponentially and the spectral density diverges as
the frequencies tend to zero.

Many authors have studied the problem of estimating the long memory pa-
rameter with both parametric and non/semi-parametric methods (see Beran, 1994
for a good review on this argument). However, recently, it has been shown that
inference on the long memory parameter and persistence tests are severely com-
promised in series which display occasional breaks, since these processes give the
impression of persistence. In other words, neglecting structural breaks causes an
over estimation of the long memory parameter, leading the reseacher to believe in a
long memory data generating process. Granger and Terasvirta (1999), Granger and
Hyung (2004), Diebold and Inoue (2001), Mikosch and Starica (1999) and Gourier-
oux and Jasiak (2001) provide both theoretical justification and Monte Carlo evi-
dence that models with structural breaks may exhibit spurious long memory prop-
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erties and it is troublesome in practice to distinguish between the occasional break
process and the long memory process. Indeed, if an occasional break process (for
instance a STOBREAK process) is generate and the long memory parameter, d, is
estimated, it is likely that the estimation method does not recognize the process as
a short memory one with breaks in mean, but it produces instead a value of d bigger
than zero.

Morana and Beltratti (2004) analyse the realized variance process for the DM /USS$
and Yen/US$ exchange rates. They find that while long memory is evident in the
actual process, a structural break analysis reveals that this feature is partially ex-
plained by anaccounted changes in regime. In all these papers only the Geweke-
Porter Hudak (1983) method (hereaftere GPH) or Robinson’s LM test (1994) are
used to distinguish between long memory and switching regime.

On the other hand, as formally demonstrated by Bai (1998), when the distur-
bances of a regression model follow an I(1) process there is a tendency to estimate
a break point in the middle of the sample, even though a break point does not
actually exist. Moreover, Granger and Hyung (2004) demonstrated that, in case
of a DGP with long memory characteristics, the estimation techniques, as for in-
stance quasi-maximum likelihood or least squares, usually used to estimate break
points, encounter some difficulties in distinguishing between structural change and
long memory. In particular, as the value of the long memory parameter d increases,
it grows also the estimated number of breaks even when the DGP have no break
points. So the long memory properties of the DGP might cause many breaks to
be detected spuriously by standard estimation methods and unlike I(0) processes,
caution should be exercised in estimating break points in presence of d > 0.

The choice between long memory and structural break model is very important
especially if we devoted much attention to forecasting. In fact Diebold and In-
oue (2001) suggest that long memory models may be a useful description of the real
process in terms of providing good forecasts, even if the DGP possesses structural
breaks. However, the authors do not offer empirical evidence supporting their view
and, moreover, Gabriel and Martins (2004) show, by Monte Carlo study and an
empirical comparison using a real time series, that although long memory models
may capture some in-sample features of the data, their forecasting performance is
relatively poor when shifts occur in the series, compared to simple linear and Markov
switching models.

In this paper, we consider the problem of distinguishing between long memory
and swithing regime processes and in particular we are interested in evaluating and
comparing the performance of some estimation methods often used in the litera-
ture. We orient our interest to the semiparametric GPH method, the paramet-
ric pseudo-likelihood Whittle method and some non parametric methods like the
Higuchi method, the aggregate variance method and the riscaled range method. We
want to find out whether the bad performance exhibited by the long memory tests
considered so far in the literature (in particular the GPH) is typical also of the other
estimation methods or some of them manage to be somehow more robust in case of
structural breaks.

The plan of the paper is as follows. In Section 2, we briefly introduce long mem-
ory ARFIMA models and some simple linear models with occasional or infrequent
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breaks in mean. Section 3 reviews the link between long memory and occasional
switching regime. Section 4 is devoted to Monte Carlo simulations to compare the
performance of the various estimation methods used to distinguish between long
memory and structural breaks and Section 5 concludes.

2 Long memory ARFIMA and Occasional Structural Break
processes

In this Section we want to recall some basic notions about long memory ARFIMA
processes, some estimation metodologies for the long memory parameter and three
simple models of stochastic regime switching that we will use in our experiments.

2.1 Long memory ARFIMA processes

There exists different definitions of long memory processes. In particular, long mem-
ory could be expressed either in the time domain or in the frequency domain. In
the time domain, a stationary discrete time series is said to be long memory if its
autocorrelation function decays to zero like a power function. This definition implies
that the dependence between successive observations decays slowly as the number
of lags tends to infinity. On the other hand, in the frequency domain, a stationary
discrete time series is said to be long memory if its spectral density is unbounded at
low frequencies.

Alternatively, the memory of a process can be expressed in terms of the rate of
growth of variances of partial sums, var(St) = O(T?%*1), where (S;) = %!_,2; and
d is the long memory parameter. These definitions are not completly equivalent but
there is a tight connection between them (Beran, 1994).

In this paper we consider one of the most popular long memory processes that is
the Autoregressive Fractionally Integrated Moving Average process, ARFIMA(p, d, q)
in the following, independently introduced by Granger and Joyeux (1980) and Hosk-
ing (1981). This process simply generalizes the usual ARIMA(p,d, q) process by
assuming d to be fractional.

Let ¢; be a white noise process having E[e7] = o2. The process {X;, t € Z} is
said to be an ARFIMA (p,d, q) process with d € (—1/2,1/2), if it is stationary and
satisfies the difference equation

®(B) A(B) (X¢ — p) = O(B) &,

where ®(-) and ©(+) are polynomials in the backward shift operator B of degree p and
q, respectively, A(B) = (1 — B)Y = >, m; B/ with m; =T'(j —d)/[[(j + 1)[(—d)],
and I'(-) is the gamma function.

If p = ¢ = 0 the process {X;, t € Z} is called Fractionally Integrated Noise
and denoted by I(d). When d € (0,1/2) the ARFIMA(p, d, q) process is stationary
and the autocorrelation function decays to zero hyperbolically at a rate O(k?¢~1),
where k denotes the lag. In this case we say that the process has a long-memory
behavior. When d € (—1/2,0) the ARFIMA(p, d, q) process is a stationary process
with intermediate memory. In the following we will concentrate on I(d) processes
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with d € (0,1/2): for this range of values the process is stationary, invertible and
possesses long-range dependence. Moreover, we will assume for convenience and
without loss of generality that o> =1 and p = 0.

2.2 Estimation techniques for ARFIMA processes

Now we briefly describe the methods we consider to estimate the long memory
parameter d and so to detect long memory behaviour on real data.

1. The R/S method. The R/S or rescaled adjusted range statistic was first
introduced by Hurst (1951), who investigated the question of how to regularize
the flow of the Nile river. This problem has been refined among others by
Mandelbrot (1972, 1975) and Mandelbrot and Taqqu (1979).

The statistic R/S can be used both to estimate the long-memory parameter
and to test the presence of long-range dependence in a process.

Let (X, t =1,2,...) be the observed data and let X,, =n~'>"" | X; denote
the sample mean and s2 =n~t > (X; — X)? the usual sample variance.
The R/S statistic is the range of partial sums of deviations of the time series

from its mean rescaled by its standard deviation. For every n > 0 it is given
by:

where n represents a lag. Mandelbrot (1975) proves that if the process (X¢, t €
T) is such that (X2, ¢t € T) is ergodic and N~ 3"V | X, converges weakly to
a Fractional Brownian Motion as N — oo, where N is the sample size of the
series, then as n — oo

nHQmn) L ¢ (1)

where £ is a nondegenerate random variable and 2 denotes the convergence in
distribution. If we consider H = 1/2, these assumptions are generally satisfied
by a short-memory process. H is called Hurst exponent and its relation with
the long memory parameter d is H = d+1/2. Moreover if the random variables
X; are i.i.d. with E(X?) < oo or with F(X?) = oo and X; in the domain of
attraction of a stable process with 0 < a < 2, then H = 1/2 (Mandelbrot,
1972). In this case:

Q) a

NG

where V' is the range of a Brownian Bridge on the unit interval.

This means that if we plot the log(Q(n)) against log(n), the points should be
scattered randomly around a straight line with slope H. Thus if the process
(X:, t € T) is a short-memory process, then H = 1/2 (or d = 0), and if the
process (X, t € T') has a long-memory dependence then H > 1/2 (or d > 0).
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2. The aggregate variance method. If the process (X, t € T') is a stationary,
long-memory process then

Var(X,) ~ Cn?1=2

when n — oo, where C' is a positive constant. This means that the variance of
the sample mean converges to zero slower than at the usual rate of convergence
n~! (nevertheless the loss of efficiency with respect to the best linear unbiased
estimator is very small: about two percent if the model is Gaussian). This
suggests that we can estimate H or d proceeding as follows:

Let (X3, t=1,2,...,N) be the time series.

(a) For m =2,3,...,N/2 we divide the series into N/m subseries of size m.
For each subseries we calculate the sample mean

i=(k—1)m+1 m
and then the overall mean
_ 1 Mmoo
X(m) = Nim ; Xi(m)

(b) For each m we calculate the sample variance of the sample means X (m),
k=1,2,...,N/m, that is:

N/m
Var(X(m) = ———— 3 (Xi(m) — X (m))2.
N/m—1
k=1

(c) We plot log Var(X(m)) against log m.

For large values of m the data should produce a straight line with slope (2H —2)
or (2d—1). The straight line is fitted according to the least squares procedure.
If the data have not long-range dependence (H = 1/2, d = 0), then the slope
of the straight line should equal —1. In practice we have to consider m and N
large enough and m < N so that both the length of each subseries and the
number of subseries are large.

3. The Higuchi method. This method was introduced by Higuchi (1988) for
measuring the fractal dimension of a non periodic and irregular time series,
like for instance H — self-similar processes.

Let (Xy, t = 1,2,...,N) be a Fractional Gaussian Noise series. Then the
partial sums of X;
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reproduce the Fractional Brownian Motion series. We assume here that Yo =0
with probability 1. For the time series Y;, t = 1,2,..., N we can build the &
time series

Y =X, Xotks X2k ooy X

mA[Em

where m = 1,2, ...,k is the initial time and k indicates the interval time. For
each series it is possible to define the normalized length of the curve:

(A
N —1
Lm(k) = W;m] Zl ’ Ym+ik‘ - Ym+(i71)k ‘ :

Finally we define the length of the curve for the time interval k as:

In the case of a self-similar series we have the following result:
E[L(k)] ~ Cyk™P

where D = 3/2 — d. Then if we plot log L(k) with respect to logk the data
should produce a straight line with slope —D. The straight line is fitted

according to the least squares procedure. If the time series has not long-
dependence, then d = 0 and thus we should find D = 3/2.

. The log-periodogram method This is one of the best known methods to
estimate in a semiparametric way the fractional parameters d of long-range
dependence behaviour. The advantage of this method is that the specification
of the model is not really necessary because the only information we need
is the behaviour of the spectral density near the origin. Furthermore, the
long-memory parameter can be estimated alone.

This method was first introduced by Geweke and Porter-Hudak (1983) for
the Gaussian case when d belongs to (—1/2,0) and then it was developed by
Robinson (1995).

Assume that the process (X;, t =1,2,...,N) is a ARFIMA(p,d,q) model:

®(B)AYX, =O(B)e;, e ~N(0,0%)
then we can observe that the spectral density of this model is proportional to

(4sin?(\/2))~¢ near the origin, i.e.

FO) ~ eslasin? (), 2

when A tends to 0. Since the periodogram I()) is an asymptotically unbiased
estimate of the spectral density, that is:

lim BI(A)] = f(A)
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it is possible to estimate d applying the least squares method to the following
equation:

In(I(\jn)) =Incs+ BIn(4 sin2(%)) +¢€; (3)

where a@ = Incy, 8 = —d and ¢;, j = 1,2,...,n" are the ii.d. error terms,
evaluating the equation (2) at the Fourier frequencies \; y = (27j/N), j =
1,2,...,n*, where n* is the integer part of (N —1)/2.

If we define y; = In(I(\;n)), ; = In(4sin?(\/2)), e = ¢; + C, and o =
Incy + C, then the equation (3) can be written as:

yi=a+Brj+e, j=12,...,N

where now the e; are i.i.d. zero mean variables.

The equation (2) is an asymptotic relation that holds only in the neighborhood
of the origin, then if we use this relation from all periodogram ordinates (—7 <
A < 7) the estimator of d can be highly biased. GPH proposed to estimate
the least squares line (3) from the periodogram ordinates at low frequencies
only. Nevertheless the results are not always optimal.

Even if this method presents some problems, it is the only non parametric
method to estimate d for which it is possible to derive an asympototic dis-
tribution of the estimator. Thus it is possible to build tests and confidence
intervals for d.

5. Whittle estimator Several theoretical and practical advantages are possessed
by the frequency domain approximate maximum likelihood method proposed
by Fox and Taqqu (1986), also called Whittle estimator. This estimator ex-
tends the results of Hannan (1973), who applied Whittle’s method to the
estimation of the parameters of ARMA models. Fox and Taqqu’s result, later
generalized by Dahlhaus (1989) to the exact maximum likelihood estimator, is
the basis of one of the most used methods for estimating the long (and short,
if both are present) memory parameters in Gaussian time series. Giraitis and
Surgailis (1990) generalized the result of Fox and Taqqu in order to prove the
asymptotic normality of Whittle’s estimator without the Gaussianity assump-
tion.

The exact maximum likelihood estimator has the drawback of implying a
large computational burden and it might also cause computational problems
when calculating the autocovariances needed to evaluate the likelihood func-
tion (Sowell, 1992). These difficulties do not occur when using the Whittle
estimator, which has the further advantage of not requiring the estimation of
the mean of the series (generally unknown in practice). Besides, under some
regularity assumptions (Fox and Taqqu, 1986, Dahlhaus, 1989) fulfilled by
ARFIMA(p, d, q) processes, it is possible to prove that the Whittle estimator
has the same asymptotic distribution as the exact maximum likelihood esti-
mator and it converges to the true values of the parameters at the usual rate
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of n=/2, where n is the length of the series. Finally, for Gaussian processes
the Whittle estimator is asymptotically efficient in the sense of Fisher.

If the Whittle approximation to the log-likelihood function is used, the pa-
rameter vector 8 = (d, ¢1,...,¢p,01,...,0,) is estimated by minimizing with
respect to O the estimated variance of the underlying white noise process:

6%(0) = 5= ?,:1 fl(")\()‘b)), where n’ is the integer part of (n —1)/2, I,,();) de-
7

notes the periodogram of the series, defined at the Fourier frequencies \; =
2rj/n(j =1,...,n'), and f(\;, @) indicates the spectral density of the ARFIMA

process at the Fourier frequency ;.

The disadvantage of this estimator is that it assumes the parametric form
of the spectral density to be known a priori. If the specified spectral density
function is not the correct one (as it is often the case) the estimated parameters
may be biased and consequently the forecast will not be optimal in the sense
of minimizing the mean square prediction error.

2.3 Occasional break processes

In this section we will describe some well known structural break processes that we
will use in our finite sample experiments.

In all the models we are describing there are only occasional breaks in mean,
which means that the number of breaks that can occur in a specific period of time
is somehow bounded.

More formally, we assume that the probabiliy of breaks, p, converges to zero
slowly as the sample size increases, i.e. p — 0 as T' — o0, yet limp_,,Tp is a non-
zero finite constant. The meaning of this assumption is that the number of breaks,
T'p, is bounded from above, even in the extreme case that T" increases to infinity. To
maintain memory property induced by breaks the number of breaks has to remain
finite as the size of sample increases. Yet this sample size dependent probability is
not truly time varying parameter, it is only a condition under which regarless the
sample size, realization tends to have finite breaks.

The first model we consider and describe is the so called mean plus noise or
occasional break model (Chen and Tiao, 1990; Engle and Smith, 1999)

Y = My + €, tzl,...,T, (4)

where €; is a noise variable and occasional level shifts, m;, are controlled by two
variables ¢; (date of breaks) and n; (size of jump), as

My = My—1 + QM (5)

where n; is i.i.d. (0, 0727). In the following sections the distribution of 7; has been

taken to be normal although this distribution has no particular relevance. We assume
that ¢; follows an i.i.d. binomial distribution, that is,

_ | 0, with probability 1 —p (6)

4= 1, with probability p
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Combine Eqs. 4 and 5, then y; is represented by
yr = (mo +qum + ... + @i} + & (7)

The time-varying mean of y; is (mo + ¢1m1 + ... + qum¢ }, which shows infrequent level
shifts.

The binomial model we described is so characterized by sudden changes only.
It might be also the case that structural changes occur gradually. In this case a
Markov switching model (Hamilton, 1989), a simple generalization of Eq.7, is more
adapt. Suppose s; is a latent random variable that can assume only the two discrete
values 0 or 1. Each value of s; represents a different state in the length of memory
of shock. s; is assumed to be governed by the following Markov probability law:
pij = Pr(s; = j/st—1 =1). Then, it is possible to use a switching model of ¢; such
that ¢4 = 0 when s; = 0 and ¢ = 1 when s; = 1. In this specification, called
Markov switching model a regime with s; = 1 represents a period of structural
change. Therefore, there is structural change everytime s; = 1, both if s;_1 = 1
and if s;_1 = 0. We have to observe that graphically only in the second case the
swithing regime will be so visible, whereas in the first case, there will be a switching
regime followed by another switching regime of approximately the same magnitude
order. This causes the presence of local trends that look like those of a long memory
process and because of this we expect the tests for long memory perform particularly
bad in case of a Markov switching model.

Finally we present the so called Stocastic Permanent Break model (STOP-
BREAK model) formulated by Engle and Smith (1999) to bridge the gap between
transience and permanence of the shocks. Typically time series analysis tends to
draw a sharp line between processes where shocks have a permanent effect and those
where they do not. The most notable example of this is the distinction between sta-
tionary AR(1) where all the shocks are transitory and random walk where all the
shocks have infinite memory. The STOPBREAK is a stocastic process in which the
long run impact of each obervation is time varying and stochastic. At one extreme
all innovations are transitory, at the other all shocks are permanent.

The formulation is as follows:

Yt =My + € (8)

my =M1+ G161 9)

where ¢, = ¢ (]e|) is non decreasing in |¢;| and bounded by zero and one, so that
bigger innovations have more permanent effects, and ¢; are i.i.d N (0, 062), moreover

q = % for v > 0. Therefore in the STOPBREAK process permanent shocks can
t

be indentified by their larger magnitude. In this approach the effects of shocks can
fluctuate between transitory and permanent and typically such data exhibit periods
of apparent stationarity punctuated by occasional mean shifts.

3 Long memory and infrequent structural breaks

The appareance of long memory may be a genuine feature of time series or it could
occur when several processes are aggregated (Granger, 1980) or because of the pres-
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ence of structural breaks and regime switching (Granger and Hyung, 2004; Diebold
and Inoue, 2001). In this Section we will discuss how recent literature has dealt
with the presence of occasional structural breaks and infrequent regime switching in
studying long memory in the data.

Granger and Terasvirta (1999) give an example of a very simple nonlinear au-
toregressive short memory model (that is essentially a regime switching model) that
produces empirical autocorrelations declining slower to zero like that of an I(d)
process.

Gourieroux and Jasiak (2001) study how processes with infrequent stochastic
breaks can generate a long memory effect in the estimated autocorrelation func-
tion. According with the idea of Granger and Terasvirta (1999) they assess that
the hyperbolic decay rate of the estimated autocorrelograms may results from non-
linear dynamics with infrequent switching regimes and not from genuine fractional
dynamics.

Granger and Hyung (2004) study the sample autocorrelation function of an oc-
casional break model, that is a model with only a few breaks in the mean. The
authors prove that the sample autocorrelation function of the model (4) can be
approximated by the following expression:

2
o 0D (-2 e
PT ~
T%U%+0'62

(10)

where ~ denotes approximate equality for any k such that k/T — 0 as T increases.
The value of T'p implies an expected number of structural breaks with the sample
size T', and 0% is related to the size of breaks. Moreover, the authors show that for
this process, if the probability of breaks p converges to zero slowly as the sample
size increases, i.e., p — 0 as T' — oo, then

602 \
r (k) — (1 €
o (k) ( +Tpgg>

where 0 < (1 + 7?;%) ' < 1. That is the k — th sample autocorrelation converges
to nonzero value for] any k such that k/T — 0 as T increases. Obviously, when
0 < p <1 and p is fixed the break process is I(1) and pr (k) — 1 as T — oo, while
when p = 0 then there are not break, the process is 1(0) and p7 (k) — 0 as T' — oo.

Note that, although the autocorrelations in eq. (10) decay very slowly as k in-
creases, there is a fondamental difference with the theoretical autocorrelation func-
tion of an ARFIMA process. For this process, in fact, the asymptotic decay of
the correlations is hyperbolic, while for the occasional break process considered by
Granger and Hyung (2004) is polynomial. Moreover, the autocorrelation function
for the occasional break process depends on the sample size T" because the process is
non stationary, while the ARFIMA process is stationary for the interest value of the
parameter, 0 < d < 1/2. Thus we make a mistake if we calculate the autocorrela-
tion function for an occasional break process because we are considering just linear
properties of the data.
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Engle and Smith (1999) show that the STOPBREAK model they propose is an
approximation to the mean-plus-noise model considered by Granger and Hyung (2004).
So, we suppose, the autocorrelation function of this model behaves like eq. (10).

Moreover, Diebold and Inoue (2001) introduce a slight variation in the STOP-

2

BREAK model allowing v changing with the sample size, i.e. ¢ = m., The
t

autors showed that if E(ef) < oo and v — oo as T' — oo with v(T) = O(T?%), § >0,
then the variances of the partial sums match those of an I(d) process with d = 1—9.
When 7 is fixed then § = 0 and the STOPBREAK process is I(1).

4 Monte Carlo study

In this Section we describe the Monte Carlo study we carried out to show and
compare the performance of the different long memory estimation methods when
the real DGP is a structural break process.

The functions we use are written in R language (Ihaka and Gentlemen, 1996)
and are available upon request by the authors.

Simulations were conducted for the following models:

1. DGP1: mean plus noise model (4), with p = 0.0025, 0.005, 0.01, 0.05, 0.1 and
o2 = 0.005, 0.01, 0.05, 0.1;

2. DGP2: Markov switching model, with (p, ¢) = (0.95,0.95; 0.95,0.99; 0.99, 0.95;
0.99,0.99; 0.999,0.999) and 072] = 0.005, 0.01, 0.05, 0.1. In this case the initial
state s; is generated by a Bernoulli random variable with p = 0.5;

3. DGP3: STOPBREAK model (8), with v = (107°,1073,1071, 1, 10, 102, 10%),
following Diebold and Inuoe (2001), in order to make comparisons.

For each model we have considered o2 = 1 and s = 1000 independent realizations.
Thus for a given estimation method we obtain s = 1000 estimated values for d.
Moreover, to evaluate the effects of different sample size, we have considered T =
500, 1000, 2000. All series are generated with 200 additional values in order to
obtain random starting values.

In the following we present the tables with the results we obtained.

By observing the tables, in general we can notice that the performance of all
methods becomes poor as the sample size increases. This could be justified by
thinking that as the series become longer, the non stationary behaviours are more
emphasized, therefore a structural break process is more similar to a long memory
one.

From a very general point of view, it is also worth noticing that the Whittle
estimator exhibits always the best performance. Indeed, if compared to the other
techniques, the estimates obtained with the Whittle method are often much closer
to zero over all the DGP’s we considered. On the other hand, it is interesting to
point out that the GPH technique has often a bad perfomance. This is because
the GPH procedure focuses on the elasticity of the spectral density close to zero
frequency: when p = 0 (no break), the elasticity is 0 which implies no long memory
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in the frequency domain, but when 0 < p < 1 and p is fixed, then the elasticity tends
to one as the frequency tends to zero (for details, see Granger and Hyung, 2004).

Going into further details, if we read tables 1-3 about DGP1 we can notice
that for all methods the bias tend to grow with the increase both of the number
of expected breaks T'p, and the size of jump o0,. In those conditions the level of
similarity between long memory and structural break processes is much higher and
because of this it is more difficult for the estimation methods to distinguish the two
different typologies.

As we already pointed out, the Whittle method is the one which performs best.
Indeed, for low values of o, the Whittle estimation manages to approach zero quite
well even when p reaches the higher value. At the same time when the expected
number of breaks is not too high the Whittle method produces an estimate close
to zero also when o, is big. This good performance of the Whittle method is very
interesting and we are still working on a justification for it.

The Higuchi and GPH methods are those which perform worst. Indeed, only
for the lowest value of p and o, the two estimates manage to be reasonably close to
Zero.

If we read table 4-6 about DGP2, first of all we notice that the general perfor-
mance of all methods is worse than in case of DGP1. Even the Whittle method does
not manage to produce an estimate close to zero, although it still performs better
than the other procedures.

When p = ¢ the unconditional probability of having a break is always 1/2. If p
and ¢ increase, the bias reduces, but the variabiliy of the estimates grows because
the probability of remaining in the same initial state is bigger and so the estimate
can be evaluated from very low values of d to high ones. For instance, if the initial
state is 1 and p = 0.999 it is very likely that the process will remain in state 1, so we
would end up having a I(1) process, on the contrary, but following the same logic,
if the initial state is 0, and g = 0.999, we would end up with an 7(0) process.

When p # g the performances are definitely not symmetric and that is because

the unconditional probabiliy are different. The latter can be computed following
Hamilton (1989) p = Qi;—q' So, as expected, when p = 0.95 and ¢ = 0.99 the
performance is generally better since there is a higher probability of remaining in

the state 0 and so the process has a more stationary appearance.

As far as tables 7-9 about DGP3 are concerned, first of all we can notice that
with the increase of v the performance of the estimator improves since the size of
the jump becomes smaller. Also we observe that the GPH and the Whittle methods
seem to be more sensitive to the variations of 7, than the other methods. However
the standard error of the Whittle method is always the smallest.

For all the DGP’s we considered the results we obtained are consistent with previous
results presented in literature (Granger and Hyung, 2004; Diebold and Inoue, 2001),
where, in fact, only the GPH (in test version) has been used.
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Table 1: Estimation results for d: DGP1, T=500
Uﬁ p = 0.0025 p = 0.005 p=10.01 p=0.05 p=0.1
rs | 0.046 (0.077) | 0.054 (0.076) | 0.065 (0.087) | 0.148 (0.106) | 0.199 (0.119)
av | -0.013 (0.077) | -0.008 (0.077) | 0.006 (0.081) | 0.086 (0.095) | 0.133 (0.104)
0.005 | hi | 0.034 (0.128) | 0.073 (0.139) | 0.125 (0.149) | 0.274 (0.152) | 0.335 (0.134)
gph | 0.014 (0.171) | 0.022 (0.166) | 0.041 (0.177) | 0.162 (0.175) | 0.220 (0.187)
wh 0.012 (0.019) 0.012 (0.018) | 0.015 (0.022) | 0.035 (0.033) | 0.053 (0.042)
rs | 0.050 (0.081) | 0.065 (0.086) | 0.091 (0.094) | 0.204 (0.125) | 0.285 (0.139)
av | -0.008 (0.078) | 0.008 (0.082) | 0.030 (0.088) | 0.136 (0.106) | 0.208 (0.111)
0.01 | hi | 0.067 (0.142) | 0.130 (0.155) | 0.190 (0.157) | 0.337 (0.134) | 0.380 (0.118)
gph | 0.018 (0.178) 0.042 (0.185) | 0.080 (0.180) | 0.225 (0.188) | 0.326 (0.193)
wh 0.012 (0.020) 0.015 (0.022) | 0.019 (0.024) | 0.055 (0.045) | 0.089 (0.056)
rs | 0.095 (0.111) | 0.136 (0.131) | 0.194 (0.138) | 0.376 (0.157) | 0.474 (0.154)
av 0.032 (0.104) 0.071 (0.117) | 0.129 (0.121) | 0.284 (0.109) | 0.357 (0.083)
0.05 hi 0.157 (0.184) 0.253 (0.169) | 0.327 (0.144) | 0.424 (0.095) | 0.446 (0.080)
gph | 0.077 (0.196) | 0.134 (0.208) | 0.219 (0.203) | 0.458 (0.206) | 0.584 (0.198)
wh 0.023 (0.031) 0.034 (0.038) | 0.054 (0.048) | 0.141 (0.069) | 0.203 (0.072)
rs | 0.125 (0.139) | 0.176 (0.150) | 0.256 (0.161) | 0.474 (0.160) | 0.546 (0.156)
av 0.062 (0.124) 0.109 (0.130) | 0.181 (0.133) | 0.350 (0.093) | 0.398 (0.069)
0.1 | hi | 0.205 (0.190) | 0.292 (0.174) | 0.372 (0.133) | 0.444 (0.077) | 0.458 (0.069)
gph | 0.122 (0.211) | 0.196 (0.213) | 0.297 (0.218) | 0.582 (0.198) | 0.688 (0.189)
wh 0.033 (0.043) 0.050 (0.051) | 0.080 (0.062) | 0.199 (0.077) | 0.262 (0.076)
Table 2: Estimation results for d: DGP1, T=1000
05 p = 0.0025 p = 0.005 p=0.01 p=0.05 p=0.1
rs | 0.055 (0.081) | 0.082 (0.093) | 0.117 (0.100) | 0.260 (0.132) | 0.346 (0.142)
av | 0.006 (0.075) | 0.028 (0.085) | 0.065 (0.089) | 0.193 (0.104) | 0.264 (0.098)
0.005 | hi | 0.093 (0.139) | 0.170 (0.152) | 0.231 (0.146) | 0.355 (0.121) | 0.404 (0.101)
gph | 0.038 (0.143) | 0.058 (0.148) | 0.106 (0.151) | 0.261 (0.158) | 0.359 (0.166)
wh | 0.010 (0.015) | 0.014 (0.018) | 0.020 (0.023) | 0.059 (0.039) | 0.093 (0.048)
rs | 0.080 (0.092) | 0.111 (0.109) | 0.168 (0.117) | 0.343 (0.148) | 0.438 (0.147)
av | 0.030 (0.083) | 0.058 (0.097) | 0.112 (0.099) | 0.263 (0.103) | 0.331 (0.087)
0.01 | hi | 0.151 (0.153) | 0.217 (0.162) | 0.284 (0.143) | 0.399 (0.104) | 0.431 (0.085)
gph | 0.067 (0.141) | 0.099 (0.154) | 0.163 (0.152) | 0.359 (0.171) | 0.472 (0.167)
wh | 0.014 (0.019) | 0.020 (0.024) | 0.033 (0.030) | 0.091 (0.050) | 0.135 (0.055)
rs | 0.160 (0.144) | 0.240 (0.157) | 0.325 (0.155) | 0.538 (0.152) | 0.604 (0.153)
av | 0.106 (0.122) | 0.172 (0.125) | 0.244 (0.113) | 0.392 (0.073) | 0.426 (0.057)
0.05 | hi | 0.267 (0.171) | 0.338 (0.141) | 0.391 (0.112) | 0.453 (0.072) | 0.462 (0.067)
gph | 0.154 (0.178) | 0.239 (0.183) | 0.335 (0.177) | 0.616 (0.171) | 0.717 (0.164)
wh | 0.034 (0.036) | 0.055 (0.045) | 0.085 (0.051) | 0.199 (0.064) | 0.254 (0.068)
rs | 0.208 (0.176) | 0.311 (0.172) | 0.416 (0.164) | 0.602 (0.146) | 0.648 (0.156)
av | 0.146 (0.144) | 0.233 (.129) | 0.311 (0.105) | 0.425 (0.056) | 0.446 (0.048)
0.1 | hi | 0.302(0.176) | 0.373 (0.129) | 0.425 (0.094) | 0.465 (0.059) | 0.468 (0.062)
gph | 0.212 (0.206) | 0.328 (0.202) | 0.437 (0.184) | 0.714 (0.160) | 0.813 (0.151)
wh | 0.051 (0.049) | 0.083 (0.057) | 0.125 (0.063) | 0.250 (0.066) | 0.312 (0.068)
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Table 3: Estimation results for d: DGP1, T=2000
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o2 p = 0.0025 p = 0.005 p = 0.01 p =005 p=0.1
rs 0.096 (0.101) | 0.143 (0.111) | 0.206 (0.124) | 0.408 (0.149) | 0.493 (0.149)
av | 0.051 (0.088) | 0.101 (0.094) | 0.153 (0.104) | 0.310 (0.091) | 0.368 (0.073)
0.005 | hi | 0.189 (0.155) | 0.265 (0.152) | 0.323 (0.131) | 0.416 (0.084) | 0.440 (0.074)
gph | 0.071 (0.124) | 0.124 (0.122) | 0.174 (0.132) | 0.373 (0.144) | 0.486 (0.147)
wh | 0.011 (0.014) | 0.019 (0.019) | 0.030 (0.026) | 0.091 (0.042) | 0.130 (0.047)
s | 0.143 (0.119) | 0.226 (0.127) | 0.303 (0.135) | 0.515 (0.154) | 0.580 (0.151)
av | 0.097 (0.102) | 0.166 (0.104) | 0.235 (0.096) | 0.371 (0.072) | 0.407 (0.060)
001 | hi | 0.250 (0.152) | 0.324 (0.131) | 0.375 (0.111) | 0.439 (0.077) | 0.461 (0.062)
gph | 0.118 (0.130) | 0.182 (0.132) | 0.268 (0.124) | 0.487 (0.140) | 0.596 (0.142)
wh | 0.019 (0.020) | 0.034 (0.028) | 0.054 (0.035) | 0.130 (0.048) | 0.170 (0.052)
rs | 0.304 (0.180) | 0.408 (0.167) | 0.501 (0.157) | 0.681 (0.155) | 0.706 (0.157)
av | 0.223 (0.126) | 0.302 (0.103) | 0.362 (0.080) | 0.445 (0.045) | 0.458 (0.039)
0.05 | hi | 0.361 (0.133) | 0.412 (0.102) | 0.438 (0.084) | 0.466 (0.056) | 0.471 (0.056)
gph | 0.263 (0.168) | 0.378 (0.166) | 0.482 (0.145) | 0.736 (0.142) | 0.816 (0.134)
wh | 0.059 (0.041) | 0.089 (0.048) | 0.127 (0.051) | 0.242 (0.059) | 0.292 (0.063)
rs 0.385 (0.192) | 0.493 (0.170) | 0.579 (0.164) | 0.710 (0.151) | 0.729 (0.156)
av | 0.281 (0.122) | 0.350 (0.088) | 0.402 (0.067) | 0.461 (0.038) | 0.470 (0.031)
0.1 | hi | 0.393(0.121) | 0.423 (0.091) | 0.454 (0.071) | 0.475 (0.052) | 0.474 (0.052)
gph | 0.347 (0.183) | 0.470 (0.163) | 0.584 (0.155) | 0.826 (0.126) | 0.895 (0.121)
wh 0.083 (0.051) | 0.122 (0.055) | 0.169 (0.059) | 0.352 (0.059) | 0.352 (0.059)
Table 4: Estimation results for d: DGP2, T=500
Uﬁ p=0.95 p=0.95 p=0.99 p=0.99 p = 0.999
q=10.95 q=0.99 q=0.95 q=0.99 q = 0.999
s | 0.386 (0.159) | 0.231 (0.163) | 0.461 (0.155) | 0.365 (0.187) | 0.286 (0.238)
av | 0.291 (0.104) | 0.161 (0.133) | 0.343 (0.076) | 0.273 (0.131) | 0.201 (0.188)
0.005 | hi | 0.423 (0.099) | 0.355 (0.134) | 0.459 (0.068) | 0.414 (0.113) | 0.296 (0.220)
gph | 0.469 (0.200) | 0.272 (0.224) | 0.665 (0.194) | 0.446 (0.235) | 0.344 (0.320)
wh | 0.145 (0.067) | 0.072 (0.062) | 0.246 (0.074) | 0.139 (0.082) | 0.116 (0.104)
s | 0.472 (0.165) | 0.299 (0.183) | 0.529 (0.154) | 0.432 (0.190) | 0.318 (0.265)
av | 0.350 (0.090) | 0.216 (0.142) | 0.389 (0.076) | 0.319 (0.125) | 0.218 (0.208)
0.01 | hi | 0.444 (0.083) | 0.396 (0.120) | 0.459 (0.068) | 0.435 (0.099) | 0.293 (0.230)
gph | 0.584 (0.198) | 0.355 (0.244) | 0.664 (0.194) | 0.542 (0.230) | 0.392 (0.364)
wh | 0.200 (0.074) | 0.103 (0.076) | 0.246 (0.074) | 0.182 (0.089) | 0.145 (0.128)
s | 0.634 (0.158) | 0.483 (0.219) | 0.661 (0.173) | 0.599 (0.210) | 0.407 (0.330)
av | 0.439 (0.053) | 0.341 (0.135) | 0.455 (0.044) | 0.412 (0.101) | 0.266 (0.233)
0.05 hi 0.470 (0.059) | 0.454 (0.080) | 0.473 (0.056) | 0.467 (0.069) | 0.315 (0.234)
gph | 0.822 (0.184) | 0.598 (0.272) | 0.890 (0.173) | 0.781 (0.235) | 0.538 (0.455)
wh | 0.357 (0.083) | 0.221 (0.111) | 0.424 (0.085) | 0.341 (0.119) | 0.254 (0.205)
rs | 0.679 (0.178) | 0.558 (0.222) | 0.694 (0.189) | 0.651 (0.208) | 0.439 (0.341)
av | 0.455 (0.046) | 0.382 (0.119) | 0.464 (0.040) | 0.434 (0.087) | 0.285 (0.235)
01 | hi | 0.474(0.057) | 0.463 (0.074) | 0.477 (0.052) | 0.468 (0.065) | 0.328 (0.234)
gph | 0.891 (0.174) | 0.693 (0.259) | 0.931 (0.167) | 0.854 (0.226) | 0.588 (0.464)
wh | 0.436 (0.089) | 0.282 (0.123) | 0.499 (0.082) | 0.419 (0.121) | 0.308 (0.234)
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Table 5: Estimation results for d: DGP2, T=1000

2

o p=0.95 p=0.95 p=0.99 p=0.99 p = 0.999
q=0.95 q=0.99 q=0.95 g = 0.99 g = 0.999
s | 0.527 (0.155) | 0.383 (0.173) | 0.587 (0.151) | 0.529 (0.167) | 0.405 (0.275)
av | 0.386 (0.075) | 0.285 (0.116) | 0.419 (0.059) | 0.380 (0.085) | 0.286 (0.194)
0.005 | hi 0.455 (0.068) | 0.414 (0.104) | 0.461 (0.067) | 0.450 (0.076) | 0.348 (0.201)
gph | 0.609 (0.169) | 0.407 (0.198) | 0.693 (0.164) | 0.599 (0.187) | 0.485 (0.329)
wh | 0.192 (0.064) | 0.112 (0.064) | 0.239 (0.064) | 0.193 (0.072) | 0.159 (0.113)
rs | 0.601 (0.151) | 0.473 (0.173) | 0.640 (0.149) | 0.579 (0.160) | 0.426 (0.299)
av 0.425 (0.058) | 0.345 (0.102) | 0.443 (0.051) | 0.409 (0.072) | 0.297 (0.205)
0.01 | hi | 0.465 (0.061) | 0.435 (0.084) | 0.475 (0.053) | 0.459 (0.074) | 0.353 (0.207)
gph | 0.723 (0.161) | 0.515 (0.198) | 0.789 (0.156) | 0.695 (0.177) | 0.532 (0.369)
wh | 0.251 (0.066) | 0.156 (0.069) | 0.299 (0.067) | 0.239 (0.074) | 0.194 (0.137)
s | 0.709 (0.172) | 0.640 (0.175) | 0.725 (0.189) | 0.708 (0.175) | 0.503 (0.337)
av | 0.465 (0.040) | 0.428 (0.072) | 0.471 (0.034) | 0.459 (0.048) | 0.328 (0.214)
0.05 hi 0.475 (0.054) | 0.466 (0.060) | 0.475 (0.053) | 0.475 (0.053) | 0.358 (0.214)
gph | 0.898 (0.143) | 0.767 (0.192) | 0.934 (0.135) | 0.879 (0.163) | 0.661 (0.413)
wh | 0.401 (0.072) | 0.285 (0.089) | 0.457 (0.071) | 0.391 (0.084) | 0.304 (0.194)
rs | 0.713 (0.180) | 0.691 (0.176) | 0.723 (0.207) | 0.749 (0.186) | 0.534 (0.341)
av | 0.469 (0.035) | 0.447 (0.060) | 0.474 (0.034) | 0.467 (0.040) | 0.342 (0.212)
0.1 | hi | 0.475 (0.054) | 0.473 (0.059) | 0.479 (0.052) | 0.480 (0.046) | 0.371 (0.204)
gph | 0.936 (0.134) | 0.836 (0.176) | 0.962 (0.132) | 0.938 (0.149) | 0.715 (0.419)
wh | 0.472 (0.075) | 0.348 (0.095) | 0.532 (0.071) | 0.469 (0.086) | 0.367 (0.219)
Table 6: Estimation results for d: DGP2, T=2000
o2 =095 p =095 »=0.99 p=0.99 » = 0.999
q=0.95 q=0.99 q=0.95 ¢ =0.99 q = 0.999
s | 0.669 (0.148) | 0.552 (0.165) | 0.714 (0.151) | 0.655 (0.168) | 0.559 (0.265)
av 0.446 (0.045) | 0.384 (0.079) | 0.461 (0.038) | 0.434 (0.059) | 0.376 (0.151)
0.005 | hi 0.471 (0.055) | 0.441 (0.084) | 0.474 (0.049) | 0.462 (0.062) | 0.409 (0.152)
gph | 0.736 (0.133) | 0.533 (0.159) | 0.826 (0.123) | 0.715 (0.148) | 0.637 (0.264)
wh | 0.240 (0.055) | 0.151 (0.055) | 0.293 (0.058) | 0.231 (0.064) | 0.204 (0.103)
s | 0.713 (0.148) | 0.636 (0.158) | 0.728 (0.165) | 0.724 (0.157) | 0.601 (0.304)
av | 0.462 (0.037) | 0.424 (0.059) | 0.469 (0.032) | 0.458 (0.041) | 0.381 (0.169)
0.01 hi 0.476 (0.051) | 0.455 (0.069) | 0.471 (0.058) | 0.473 (0.054) | 0.409 (0.165)
gph | 0.824 (0.120) | 0.670 (0.169) | 0.881 (0.114) | 0.816 (0.142) | 0.702 (0.314)
wh | 0.295 (0.057) | 0.205 (0.064) | 0.353 (0.062) | 0.291 (0.065) | 0.252 (0.128)
s | 0.741 (0.213) | 0.742 (0.147) | 0.755 (0.208) | 0.768 (0.184) | 0.683 (0.315)
av | 0.476 (0.028) | 0.464 (0.038) | 0.478 (0.028) | 0.473 (0.032) | 0.410 (0.159)
0.05 | hi | 0.475 (0.055) | 0.475 (0.052) | 0.476 (0.055) | 0.476 (0.050) | 0.419 (0.163)
gph | 0.965 (0.104) | 0.870 (0.135) | 0.964 (0.097) | 0.947 (0.109) | 0.837 (0.303)
wh | 0.496 (0.061) | 0.330 (0.073) | 0.495 (0.059) | 0.431 (0.067) | 0.384 (0.157)
s | 0.744 (0.224) | 0.779 (0.169) | 0.739 (0.243) | 0.788 (0.214) | 0.695 (0.298)
av | 0.478 (0.026) | 0.467 (0.039) | 0.481 (0.025) | 0.477 (0.030) | 0.420 (0.141)
0.1 | hi | 0.481 (0.047) | 0.472 (0.059) | 0.479 (0.048) | 0.480 (0.049) | 0.426 (0.142)
gph | 0.968 (0.096) | 0.870 (0.135) | 0.987 (0.096) | 0.975 (0.109) | 0.837 (0.272)
wh | 0.502 (0.061) | 0.330 (0.073) | 0.573 (0.062) | 0.501 (0.069) | 0.448 (0.162)
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Table 7: Estimation results for d: DGP3, T=500
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v 10-° 10-3 101 1 10 102 10° |
rs || 0.722 (0.308) | 0.719 (0.308) | 0.731 (0.330) | 0.714 (0.285) | 0.709 (0.191) | 0.337 (0.152) | 0.044 (0.085)
av || 0.476 (0.030) | 0.476 (0.033) | 0.478 (0.033) | 0.475 (0.033) | 0.463 (0.041) | 0.234 (0.107) | -0.012 (0.075)
hi || 0.476 (0.051) | 0.479 (0.051) | 0.479 (0.049) | 0.479 (0.047) | 0.475 (0.052) | 0.394 (0.117) | 0.076 (0.132)
gph || 1.003 (0.158) | 1.005 (0.160) | 0.997 (0.161) | 0.996 (0.161) | 0.923 (0.166) | 0.368 (0.189) | 0.009 (0.165)
wh || 0.982 (0.023) | 0.982 (0.023) | 0.958 (0.033) | 0.825 (0.059) | 0.485 (0.082) | 0.104 (0.058) | 0.012 (0.018)
Table 8: Estimation results for d: DGP3, T=1000
Y 105 103 1071 1 10 102 103
rs || 0.729 (0.348) | 0.725 (0.354) | 0.707 (0.339) | 0.731 (0.302) | 0.728 (0.199) | 0.481 (0.158) | 0.061 (0.084)
av || 0.478 (0.029) | 0.478 (0.028) | 0.478 (0.029) | 0.478 (0.046) | 0.473 (0.031) | 0.349 (0.083) | 0.011 (0.073)
hi || 0.477 (0.052) | 0.478 (0.049) | 0.476 (0.052) | 0.479 (0.046) | 0.477 (0.054) | 0.445 (0.075) | 0.147 (0.144)
gph || 0.995 (0.129) | 1.001 (0.126) | 0.994 (0.127) | 1.000 (0.118) | 0.955 (0.125) | 0.513 (0.168) | 0.045 (0.141)
wh || 0.987 (0.015) | 0.988 (0.016) | 0.965 (0.025) | 0.834 (0.049) | 0.514 (0.069) | 0.149 (0.060) | 0.010 (0.015)
5 Conclusion
In this article we have presented further Monte Carlo evidence about the issue of
distinguishing between a time series process exhibiting long-range dependence and
one with short memory but suffering from structural shifts. We considered several
different estimation methods of the long memory parameter d, in particular we
focused our attention on the GPH method, Whittle, Higuchi, aggregate variance
and riscaled range.
We considered three differnet DGP’s among the most used in recent literature
on this topic, the mean plus noise, the Markov switching and the STOPBREAK
model.
We found out that almost all the test tend to be biased and this is because the
process with a occasional breaks looks very similar to a long memory one, especially
when the size of the jumps is relatively big and also it is high the expected number
of breaks.
The Markov switching model is the one where it is too difficult to detect the
structural breaks, probably because in this case the shifts take place gradually,
giving the impression of a local trend more than a break point.
Among our future research lines we can mention:
1. the analysis of the other side of the problem, that is to understand the perfor-
mance of the tests to detect structural breaks in hypothesis of long memory
data generating processes;
2. to develop an appropriate test procedure to distinguish real long memory from
Table 9: Estimation results for d: DGP3, T=2000
~ 10—° 1073 1071 1 10 102 103
rs || 0.725 (0.384) | 0.702 (0.369) | 0.692 (0.362) | 0.708 (0.327) | 0.741 (0.225) | 0.611 (0.156) | 0.119 (0.098)
av || 0.482 (0.026) | 0.479 (0.026) | 0.480 (0.026) | 0.481 (0.026) | 0.478 (0.028) | 0.421 (0.056) | 0.070 (0.083)
hi || 0.474 (0.049) | 0.478 (0.051) | 0.479 (0.049) | 0.479 (0.052) | 0.476 (0.053) | 0.458 (0.067) | 0.244 (0.139)
gph || 1.002 (0.104) | 1.003 (0.101) | 1.004 (0.108) | 1.002 (0.103) | 0.976 (0.097) | 0.634 (0.139) | 0.089 (0.117)
wh || 0.992 (0.010) | 0.992 (0.010) | 0.968 (0.019) | 0.841 (0.049) | 0.542 (0.062) | 0.191 (0.052) | 0.014 (0.015)
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spurious one generate by infrequent breaks;

3. the problem of forecasting with long memory processes when the real DGP is
a switching regime process and viceversa.
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