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1 Introduction

A rich literature on the econometrics of persistence has developed in recent years.
At the beginning, the question of the nature of long term trend and consequent
persistence in the empirical autocorrelation function had been explored by some
researchers (among the others Nelson and Plosser, 1982) using ARIMA models or
ARMA models around a deterministic trend. Others, for instance Harvey (1985),
based their analysis on linear unobserved components models. A third choice em-
ployed the cointegrated specification of Engle and Granger (1987). All this inter-
pretations were based on the assumption that first differences of the series follow a
linear stationary process.

In the last fifteen years some alternative schemes have been proposed and consid-
ered to investigate the nature of persistence in economic time series. One approach
has been studying mechanisms, such as structural breaks, that can somehow cause
this form of long range dependence in the series. The idea is that the underlying
DGP is a nonlinear process subjected to discrete shifts in regimes, that are episodes
across which the dynamic behaviour of the series is markedly different. For example,
the economy may either be in fast growth or in a slow growth phase, with the switch
between the two governed by the outcome of Markov process (so called Markov
Switching processes, Hamilton, 1989).

An alternative methodology for explaining persistence in time series has been to
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look at their short or long memory properties. From an empirical perspective, long
memory is related to a high degree of persistence of the observed data. The starting
point of the literature on fractionally integrated processes has been the fact that
many economic and financial time series show evidence of being neither I(1) nor
I(0), but more generally I(d), where d is real. They show significant autocorrelation
up to very long lags, often defined as hyperbolic rate. However, when first differenced
those series appear as overdifferenced.

A significant strand of the debate has also considered the properties of tests for
unit root, cointegration or long memory in the presence of structural breaks. It has
been shown that persistence tests are severely compromized in terms of their size
and power properties, in series which display breaks because these processes give
the impression of persistence.

Recently, in several papers (among the others, Granger and Hyung, 2004; Diebold
and Inoue, 2001), it has been pointed out that structural change can be easily con-
fused with fractional integration since the structural breaks processes generate slowly
decaying autocorrelations and other properties of I(d) processes. Often it happens
that a time series exhibits long memory not because it is really I(d), but because of
the neglected occasional breaks in the series. As a consequence, level shifts in mean
give rise to the observed long memory phenomenon and it is very difficult for almost
all the procedures of estimation of d to actually recognize that in this specific case
d = 0 and, generally speaking, the estimate is spuriously set to d > 0.

From another point of view, the fractional integration of the DGP causes many
breaks being detected spuriously by the usual estimation methods. Indeed, under
assumptions of weakly dependent heterogenous error term, the consistency of a quasi
maximum likelihood estimator or the least squares estimator of the breaks is well
demonstrated. But, the estimators show quite different properties for the time series
that is integrated by fraction or integer. One might find a break spuriosly near the
middle of the time series even though there is no break.

In this paper we propose a strategy to deal empirically with the spurious effects
that can emerge when estimating both the parameter d and the break points in a
series that exhibits some kind of persistence. Our idea is to estimate d and then
repeat the estimation after filtering out the structural breaks that correspond to the
points of estimated level shifts, since in hypothesis of no long memory, the process
should be I(0) between breaks. If the estimation procedure still produces a value
of d̂ that is bigger than zero, we can conclude that behind the persistence in the
observed data, there should be a fractionally integrated DGP. Therefore the breaks
points previously estimated are spurious. If, on the contrary the estimation of d is
closer to zero, the long range dependence is caused by the occasional level shifts.
Therefore what is spurious this time is d > 0.

To show the performance of this procedure we present some simulations re-
sults, whose starting points are some findings reported in Bisaglia and Gerolimetto
(2005) about the performance of 5 different methods to estimate d in hypothesis
of structural break processes. In that paper the authors found out that although
the local Whittle estimate performs somehow better, generally speaking all meth-
ods encounter an evident difficulty in recognizing the structural break nature of the
process. Especially for a relatively big number of expected breaks and a high value
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of the jump size all methods produce values of d̂ far from zero.
In this paper the simulations will be realized in two phases. Firstly we will con-

sider the case of some structural breaks processes where the procedure to estimate
d wrongly produced d̂ > 0 and again estimate d after filtering out the break points.
This group of simulation puts in evidence the spurious long memory that appears
because of the presence of some level shifts. Once they have been estimated and
eliminated from the series, the latter should not look like a long fractionally inte-
grated time series any more and d̂ should become closer to zero. Secondly we will
consider some fractionally integrated DGP where d will be again estimated after
filtering out the estimated breaks point. This second group of simulation shows how
from I(d) DGP some break points are spuriously detected.

The plan of the paper is as follows. In Section 2, we recall some notions about
ARFIMA process, in section 3 we briefly introduce some basics on the structural
break research together with a description of the models we will use and most com-
mon techniques to estimate break points. Section 4 is devoted to discuss the spurious
effects in structural breaks and fractionally integrated processes. In section 5 we de-
scribe our Monte Carlo experiment and Section 6 concludes.

2 ARFIMA models

The concept of long memory can be defined either in the time domain or in the
frequency domain. In the time domain, a stationary discrete time series is said to
be long memory if its autocorrelation function decays to zero like a power function.
This means that the dependence between successive observations decays slowly since
the observations are strongly correlated even when they are very far from each other.
In the frequency domain, a stationary discrete time series is said to be long memory
if its spectral density is unbounded at low frequencies.

The memory of a process can also be expressed in terms of the rate of growth
of variances of partial sums, var(ST ) = O(T 2d+1), where (St) = Σt

t=1xt and d is the
long memory parameter. These definitions are not completly equivalent but there
is a tight connection between them (Beran, 1994).

In this paper we consider one of the most popular long memory processes that is
the Autoregressive Fractionally Integrated Moving Average process, ARFIMA(p, d, q)
in the following, independently introduced by Granger and Joyeux (1980) and Hosk-
ing (1981). This process simply generalizes the usual ARIMA(p, d, q) process by
assuming d to be fractional.

Let ǫt be a white noise process having E[ǫ2t ] = σ2. The process {Xt, t ∈ Z} is
said to be an ARFIMA(p, d, q) process with d ∈ (−1/2, 1/2), if it is stationary and
satisfies the difference equation

Φ(B)∆(B) (Xt − µ) = Θ(B) ǫt,

where Φ(·) and Θ(·) are polynomials in the backward shift operator B of degree p and
q, respectively, ∆(B) = (1−B)d =

∑

∞

j=0
πjB

j with πj = Γ(j − d)/[Γ(j + 1)Γ(−d)],
and Γ(·) is the gamma function.

If p = q = 0 the process {Xt, t ∈ Z} is called Fractionally Integrated Noise
and denoted by I(d). When d ∈ (0, 1/2) the ARFIMA(p, d, q) process is stationary
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and the autocorrelation function decays to zero hyperbolically at a rate O(k2d−1),
where k denotes the lag. In this case we say that the process has a long-memory
behavior. When d ∈ (−1/2, 0) the ARFIMA(p, d, q) process is a stationary process
with intermediate memory, when d ∈ (0, 1/2) the process is stationary, invertible
and possesses long-range dependence. We will assume for convenience and without
loss of generality that σ2 = 1 and µ = 0.

3 Structural breaks research

In this section we will introduce some basics about the structural break research
and we also present the Bai-Perron test for multiple breaks. Finally we will describe
three well-known break processes we will use in the Monte Carlo experiment.

3.1 Introduction

In 1960s and 1970s business cycles were commonly thought of as departures from
a secular trend. The trend was believed to be deterministic, often linear, while
departures were assumed to be stationay therefore transitory.

Nelson and Plosser (1982) were the first to observe that the secular component
could possess a stochastic nature and many long US macroeconomic time series
had been examined and were unable to reject the null hypothesis of a unit root
against trend-stationary alternatives for most of the series considered. In two seminal
works Rappoport and Reichlin (1989) and Perron (1989) argued that the majority
of shocks to the key economic variables of any economy would be transitory and
that only few events would have any permanent effect. They represents such shocks
as breaks in the underlying deterministic trends. They also demonstrated that if
structural breaks were present in the data generating process but not allowed for
the specification of an econometric model, the analysis would be biased towards
erroneous non rejection of the unit root hypothesis.

The subsequent development of the literature took place in two directions. One
referes to a scheme where, firstly the structural break point is estimated and then
the model is built (Perron (1989) for the case of one break point, Bai (1997), Bai
and Perron (1998) for the case of multiple breaks). The second direction refers to a
scheme where the break points are interpreted as endogenous (Hansen, 2000).

In the first approach, the multiple breaks option is obviously more general since
it allows for the possibility of multiple changes during the lifetime of the sample.
Indeed, even when the date of the break is unknown, it is restrictive to allow only
for one structural break. Just as a model of a process with a change of parameters
would be misspecified if the presence of the break would be ignored, allowing for
one break, when in fact multiple breaks are present, could lead to false conclusions.

3.2 The Bai-Perron test

In this framework it is inserted the Bai and Perron (1998) procedure (hereafter BP)
to estimate and test for multiple breaks at unknown dates. They considered a type
test for the null hypothesis of no change versus a prespecified number of changes
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and also an alternative of an arbitrary number of changes (up to some maximum) as
well as a procedure that allows one to test for the null hypothesis of, say, l changes
against the alternative hypothesis of l + 1 changes. The latter is particularly useful
in that it allows a specific to general modeling strategy to consistently determine the
appropriate number of changes in the data. The tests can be constructed allowing
different serial correlation in the errors, different distributions for the data and the
errors across segments or imposing a common structure.

The relevant asymptotic ditributions depend on a trimming parameter ǫ = h/T ,
where T is the sample size and h is the minimal permissible length of a segment.

The model considered is a multiple regression model with m breaks (m + 1
regimes)

yt = x′

tβ + z′tδj + ut, t = Tj−1 + 1, ..., Tj , (1)

for j = 1, ..., m+1. In this model, yt is the observed dependent variable at time t, xt

(p×1) and zt (q×1) are vectors of independent variables and β and δj , j = 1, ..., m+1
are the corresponding vectors of coefficients, ut is the disturbance at time t. The
indices (T1, ...Tm), or break points, are treated as unknown (T0 = 0, Tm+1 = T ).
This is a partial structural change model since β is not subject to the shift, whereas
if p = 0, we would obtain a pure structural change model where all the coefficients
vary with the break point.

The purpose is to estimate consistently (β0, δ0
1, ..., δ

0
m, T 0

1 , ..., T 0
m) then to test for

the presence of structural change. The method of estimation is based on the least
squares principle, where for each m-partition of the sample (T1, ...Tm), estimates
of the parameters are obtained by minimizing the sum of squared residuals (SSR)
from Eq. 1. The estimated break points (T̂1, ...T̂m) are given by the outcome of the
algorithm

(T̂1, ..., T̂m) = argminT1,...Tm
ST (T1, ...Tm) (2)

where ST (T1, ...Tm) is the SSR from Eq. 1 for a given m-partition and the mini-
mization is taken over all parititions (T1, ..., Tm).

3.3 Models for structural breaks

Now we briefly recall the structural breaks model we will consider in the paper. In all
the models we are describing there are only occasional breaks in mean, which means
that the number of breaks that can occur in a specific period of time is somehow
bounded.

More formally, we assume that the probabiliy of breaks, p, converges to zero
slowly as the sample size increases, i.e. p → 0 as T → ∞, yet limT→∞Tp is a
non-zero finite constant.

The first model we consider and describe is the so called mean plus noise or
occasional break model (Chen and Tiao, 1990; Engle and Smith, 1999)

yt = mt + ǫt, t = 1, ..., T, (3)

where ǫt is a noise variable and occasional level shifts, mt, are controlled by two
variables qt (date of breaks) and ηt (size of jump), as
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mt = mt−1 + qtηt (4)

where ηt is i.i.d. (0, σ2
η). In the following sections the distribution of ηt has been

taken to be normal although this distribution has no particular relevance. We assume
that qt follows an i.i.d. binomial distribution, that is,

qt =

{

0, with probability 1 − p
1, with probability p

(5)

The binomial model we described is so characterized by sudden changes only.
It might be also the case that structural changes occur gradually. In this case a
Markov Switching Model (Hamilton, 1989) is more adapt. Suppose st is a latent
random variable that can assume only the two discrete values 0 or 1. Each value
of st represents a different state in the length of memory of shock. st is assumed
to be governed by the following Markov probability law: pij = Pr (st = j/st−1 = i).
Then, it is possible to use a switching model of qt such that qt = 0 when st = 0 and
qt = 1 when st = 1. In this specification a regime with st = 1 represents a period
of structural change. Therefore, there is structural change everytime st = 1, both if
st−1 = 1 and if st−1 = 0.

Finally we present the so called Stocastic Permanent Break Model (STOP-
BREAK model) formulated by Engle and Smith (1999) to bridge the gap between
transience and permanence of the shocks. The STOPBREAK is a stocastic process
in which the long run impact of each obervation is time varying and stochastic.

The formulation is as follows:

yt = mt + ǫt (6)

mt = mt−1 + qt−1ǫt−1 (7)

where qt = q (|ǫt|) is non decreasing in |ǫt| and bounded by zero and one, so that
bigger innovations have more permanent effects, and ǫt are i.i.d N

(

0, σ2
ǫ

)

, moreover

qt =
ǫ2t

(γ+ǫ2t )
for γ > 0. Therefore in the STOPBREAK process permanent shocks can

be indentified by their larger magnitude. In this approach the effects of shocks can
fluctuate between transitory and permanent and typically such data exhibit periods
of apparent stationarity punctuated by occasional mean shifts.

4 Spurious effects

In this section we consider the problem of some spurious effect that can emerge in
hypothesis of structural breaks DGP and long memory DGP because of the similarity
of the two classes of processes.

4.1 Spurious long memory

The notion of long memory appears in many different fields, including hydrology,
internet traffic, economic and finance. Observing long memory characteristics in a
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given data set, however, does not imply necessary an underlying long range depen-
dent process since there are spurious cases of this characteristic such as structural
breaks. Granger and Terasvirta (1999), Granger and Hyung (2004), Diebold and
Inoue (2001) demonstrate this fact using analytic and simulation evidence. Unfor-
tunately, detecting the nature of long range dependence and differentiating between
true and spurious nature of this dependence is a rather difficult task.

It has been shown recently that inference on the long memory parameter and
persistence tests can be severely compromised in series which display occasional
breaks, since these processes give the impression of persistence and their autocorre-
lation decays very slowly. This means that neglecting structural breaks causes an
over estimation of the long memory parameter, leading to believe in a long memory
data generating process.

Some part of the literature has been devoted to analyse the effects on the methods
to estimate the long memory parameter on hypothesis of structural breaks. Recently
Bisaglia and Gerolimetto (2005) carried out a simulation experiment to show that
all the major methods to estimate d are somehow biased in hypothesis of occasional
break data generating process. This means that if an occasional break process (for
instance a STOBREAK process) is generated and the long memory parameter, d,
is estimated, it is likely that the estimation method does not recognize the process
as short memory with breaks in mean, but it produces instead a value of d̂ bigger
than zero.

4.2 Spurious break points

Recently, some implications of long memory dependence when testing for structural
change in a time series have been explored. The problem seems natural one to study
because long memory time series analysis is often applied to series which extend over
a long period of time, and the longer is the time period, the greater the possibility
of structural breaks.

Hidalgo and Robinson (1996) proposed a test for a change in parameter values
at a given point in linear regression models with long memory errors. Although
the structural change test they proposed is designed specifically for I(d) data, they
put in evidence that their test may still have large size distortions in small samples
leading to estimate the change point even when there is none.

In another paper Kuan and Hsu (1998) show that in hypothesis of fractionally
integrated data the least squares estimator of the change point is consistent only
when a mean change occurs and that the rate of convergence depends on the value of
d. Moreover, when the data have strong dependence, a much larger sample would be
needed to ensure that the least squares estimator is as precise as that for data with
short memory. On the contrary when there is no mean change, the least squares
estimator seems to be inconsistent in hypothesis of positive d, suggesting in that
way a spurious change point in the middle of the sample.

Granger and Hyung (2004) also demonstrated that, in case of a DGP with long
memory characteristics, the estimation techniques, as for instance quasi-maximum
likelihood or least squares, usually used to estimate break points encounter some dif-
ficulties in distinguishing between structural change and long memory. In particular,
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as the value of the long memory parameter d increases, it grows also the estimated
number of breaks even when the DGP have no break points. So the long memory
properties of the DGP might cause many breaks to be detected spuriously by stan-
dard estimation methods and unlike I(0) processes, caution should be exercised in
estimating break points in presence of d > 0.

These results confirm that spurious change may arise from stationary data with
long memory. Hence nonstationarity is not a necessary condition for a spurious
change and also distingushing between long memory time series and short memory
time series with structural change is as difficult as distinguishing between I(1) time
series and I(0) time series with one or more break points.

4.3 A strategy to deal with spurious effect

In this section we suggest a strategy to cope with the problem of the spurious effects
described above. When an estimation method produces d̂ bigger than zero, there
might be sometimes the suspicion that this result is caused by spurious instead of
true long memory. If this is the case, our idea to concretely understand the nature of
this long range dependence is to repeat the estimation procedure of d in the series,
where break points have been estimated and then if eliminated from the series itself.

If after filtering out the break points, d̂ is still bigger than zero, this means that
long memory should be a true feature of the series and the structural breaks had
been spuriously detected. This is consistent with the theory described in section 4.2
and what happens is that the long memory properties compromised the performance
of the BP test, which for this reason estimated spuriously some break points in the
series.

If on the contrary, after deleting from the series the break points, d̂ is closer to
zero we can conclude that the long memory feature had been spuriously estimated
at the beginning and was caused by the presence of level shifts giving the series the
impression of persistence.

In summary, the following is a simple scheme of the procedure applied to a series
that exhibits some form of persistence:

• Estimate d in the original series xt, obtaining d̂

• Identify the break dates in xt

• Obtain the break-free series x′

t = xt − m̂t where m̂t is the sample mean of xt

of each regime

• Estimate d in x′

t, obtaining d̂′

If d̂ ∼= d̂′, we conclude that xt is a true long memory time series, whereas if
d̂ 6= d̂′ and d̂′ goes closer to zero, the conclusion is that xt should be characterized
by structural breaks and not by long memory.
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5 Finite sample experiment

In this section we describe our Monte Carlo study. It has been realized to show the
performance of our procedure to distinguish between long memory and structural
break and it consists of two groups of simulations. Firstly we focus our attention
on spurious long memory by generating three structural break models and then we
orient our interest to spurious structural breaks by generating ARFIMA models.
The functions we use are written in R language (Ihaka and Gentlemen, 1996) and
are available upon request by the authors.

In the first part of the experiment we simulate:

1. DGP1: mean plus noise model (3), with p = 0.01, 0.05, 0.1 and σ2
η = 0.01,

0.05, 0.1;

2. DGP2: Markov switching model, with (p, q) = (0.95, 0.95; 0.95, 0.99; 0.99, 0.95;
0.99, 0.99; 0.999, 0.999) and σ2

η = 0.1. In this case the initial state s1 is gener-
ated by a Bernoulli random variable with p = 0.5;

3. DGP3: STOPBREAK model (6), with γ = (10−5, 10−1, 1, 10, 103).

For each model we have considered σ2
ǫ = 1 and s = 1000 independent realizations.

Thus for a given estimation method we obtain s = 1000 estimated values for d.
Moreover, to evaluate the effects of different sample size, we have considered T =
500, 1000. All series are generated with 200 additional values in order to obtain
random starting values.

Since the objective of this Monte Carlo experiment is to evaluate the performance
of our strategy we decided to put ourselves in the most difficult circumstances to
distinguish between long memory and structural breaks. Therefore, following some
results obtained in Bisaglia and Gerolimetto (2005), we choose for this experiment
high values both in terms of expected number of breaks and size of the jumps. To
estimate d we employed the 5 methods that had been considered by Bisaglia and
Gerolimetto (2005): the R/S method (Hurst,1951), the Higuchi method (Higuchi,
1988), the aggregate variance method, the log-periodogram or GPH method (Geweke
and Porter-Hudak, 1983) and Whittle’s pseudo-likelihood method (Fox and Taqqu,
1986).

In the second part of the experiment we simulate ARFIMA(0, d, 0) processes,
where d = 0.1, 0.2, 0.3, 0.4, 0.45 and the noise is normally distributed with zero
mean and unit variance. Also in this second part d has been estimated with the five
methods listed above.

Following the steps described in section 4.3 the procedure can be implemented
by estimating d (obtaining d̂), identifying the break dates with the BP method,
obtaining the break-free series and finally re-estimating d in the new series (obtaining
d̂′). In the first group of simulations we expect to find d̂′ much closer to zero than d̂
since the DGP possesses structural breaks and the long memory effect is spurious. In
the second group of simulations, we expect to find d̂′ not very far from the previous
estimate d̂ because the DGP is long memory and the structural breaks detected by
BP are spurious.
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In the following tables the results are reported. In tables 1− 6 the results of the
first group of simulations are presented, i.e. the estimates and standard deviation
(in parenthesis) of d for DGP1, DGP2, DGP3 relatively to the break-free series.
If we compare the results with the corresponding estimation in the original series
(Bisaglia and Gerolimetto, 2005) it is clear that once the level shift is removed from
the series, the estimation of d are dramatically different.

As expected, by eliminating the break components from the series, the cause of
its persistent appearance is reduced and for this reason the estimate of d is now
smaller.

If we look at the results relative to DGP1 (table 1 and 2), all methods perform
well since once the level shift is removed from the series the estimation of d, d̂′,
goes close to zero meaning that the true nature of the series is definitely not long
memory, but stationary with structural breaks. The good perfomance of all method
is particularly striking in case of big jumps (high value of σ) and several expected
break points (high value of p).

If we observe results in table 3 and 4 (DGP2) we can again conclude that the
elimination of the breaks makes possible to recognize that the process is not long
memory. Indeed, the first four methods produce negative d̂′ evidencing some form
of overdifferencing (we remind that d < 0 means antipersistence in the process),
whereas Whittle’s method produces d̂′ much smaller than in the original series al-
though slightly bigger than zero. For this DGP the results are particularly interest-
ing since in the original series (table 4 and 5, Bisaglia and Gerolimetto, 2005) the
performance of all methods (including Whittle) were particularly bad.

Some more comments have to be made for table 5 and 6 (DGP3) where the
improvement in the estimation of d after removing the breaks is not so evident as in
the two previous cases. The reason of this only small improvement is probably the
nature of the STOPBREAK process. Indeed in that process qt is ǫt

γ+ǫt
therefore if

γ → 0, qt → 1 and the process is almost I(1), whereas if γ → ∞, qt → 0 and the
process is I(0). As a consequence, when γ does not tend to zero all methods work,
since the process is I(0) and it is actually easier to recognize the non long memory
features. It is different when γ tends to zero, since the increasing similarity to an
I(1) process complicates distinguishing it from a non stationary process. For the
smallest values of γ the process is so close to I(1) that by differencing it any negative
moving average components appear (results available by the authors upon request).
It seems that in this case the strategy of differencing may be more adequate than
looking for structural breaks.

A possible explanation of the better performance in DGP1 than in DGP2 and
DGP3 could be that the latter two processes are characterized by structural breaks
that arise in a somehow gradual way. Therefore it is more difficult to identify the
actual date of the break. As a consequence also the estimation of d is affected by
this weakness.

From a general point of view we observe that the performance of the suggested
method is slightly less good with the increase of the sample size. As pointed out by
Bisaglia and Gerolimetto (2005) this is consistent with the nature of the structural
break processes, since the longer is the process the more level shifts can take place,
so it is even more difficult to distinguish it from a long memory one.
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Table 1: Estimation results for d: DGP1, T=500
σ2

η p = 0.01 p = 0.05 p = 0.1

rs 0.063 (0.089) 0.067 (0.095) 0.074 (0.093)
av -0.002 (0.078) 0.011 (0.079) 0.021 (0.083)

0.01 hi 0.126 (0.178) 0.094 (0.216) 0.065 (0.210)
gph 0.038 (0.178) 0.043 (0.176) 0.048 (0.188)
wh 0.014 (0.021) 0.015 (0.021) 0.017 (0.022)

rs 0.057 (0.099) 0.054 (0.093) 0.044 (0.084)
av 0.001 (0.085) 0.012 (0.082) 0.011 (0.082)

0.05 hi 0.084 (0.218) -0.028 (0.157) -0.064 (0.122)
gph 0.029 (0.187) 0.036 (0.186) 0.006 (0.199)
wh 0.013 (0.020) 0.019 (0.024) 0.022 (0.026)

rs 0.056 (0.098) 0.046 (0.089) 0.027 (0.082)
av -0.002 (0.087) 0.011 (0.088) -0.004 (0.085)

0.1 hi 0.053 (0.216) -0.057 (0.133) -0.103 (0.106)
gph 0.030 (0.186) 0.014 (0.195) -0.031 (0.191)
wh 0.012 (0.018) 0.021 (0.026) 0.027 (0.029)

Another interesting general comment is on the performance of the estimation
methods of d inside the strategy. The best and most recommended method is defi-
nitely the Whittle method which is somehow the most robust over all the considered
DGP. This result is very important especially if we take into account that we are
considering the most difficult circumstances. The R/S method exhibits a good per-
formance for the third DGP. The worst methods seem to be Higuchi and GPH, as
already pointed out in the literature.

As far as the I(d) processes, in tables 7 and 8 the results are reported, both
before and after removing the break components from the series. In the first line
of the tables there are the estimation results for the original series. The second
line contains the results for the break-free series. It seems that with the Whittle
method our strategy works well also with the increasing of the sample size. The
estimation of d produced in the final step is approximately stable around the value
obtained in the first step, meaning that the procedure recognizes the true long
memory nature of the process. We have to observe that there is a slight tendence
to underestimate d in the second step, but this is expected because implementing
the procedure means substrating the sample means of each estimated regime from
the series and so somehow compressing the series and reducing his appearance of
persistence. However when we use Whittle method this is only a negligible effect,
whereas for the other estimation methods this phenomenon affects much more the
estimates that turn up to be often negative, typical synthom of overdifferencing. As
far as the GPH method is concerned, the results are consistent with the findings of
Granger and Hyung (2004).

6 Conclusions

In this article we present a strategy to distinguish between a time series exhibiting
long-range dependence and one with short memory but suffering from structural
shifts. In particular, we focus our attention on the problem of the spurious effects
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Table 2: Estimation results for d: DGP1, T=1000
σ2

η p = 0.01 p = 0.05 p = 0.1

rs 0.074 (0.085) 0.075 (0.088) 0.091 (0.079)
av 0.023 (0.072) 0.041 (0.077) 0.078 (0.075)

0.01 hi 0.112 (0.186) 0.028 (0.177) 0.019 (0.154)
gph 0.061 (0.141) 0.083 (0.149) 0.132 (0.149)
wh 0.011 (0.014) 0.016 (0.018) 0.029 (0.024)

rs 0.067 (0.093) 0.054 (0.081) 0.049 (0.071)
av 0.027 (0.083) 0.043 (0.077) 0.049 (0.075)

0.05 hi 0.021 (0.174) -0.062 (0.106) -0.094 (0.086)
gph 0.063 (0.158) 0.079 (0.156) 0.079 (0.158)
wh 0.015 (0.018) 0.036 (0.025) 0.058 (0.030)

rs 0.067 (0.089) 0.044 (0.064) 0.055 (0.059)
av 0.031 (0.078) 0.043 (0.073) 0.056 (0.074)

0.1 hi -0.004 (0.148) -0.101 (0.084) -0.113 (0.073)
gph 0.069 (0.155) 0.068 (0.154) 0.069 (0.147)
wh 0.017 (0.021) 0.057 (0.033) 0.097 (0.036)

Table 3: Estimation results for d: DGP2, T=500
σ2

η p = 0.95 p = 0.95 p = 0.99 p = 0.99 p = 0.999
q = 0.95 q = 0.99 q = 0.95 q = 0.99 q = 0.999

rs -0.031 (0.068) 0.015 (0.084) -0.064 (0.055) -0.025 (0.081) -0.027 (0.079)
av -0.082 (0.088) -0.042 (0.084) -0.121 (0.079) -0.085 (0.087) -0.084 (0.091)

0.1 hi -0.185 (0.090) -0.084 (0.134) -0.236 (0.067) -0.154 (0.121) -0.132 (0.180)
gph -0.233 (0.220) -0.064 (0.196) -0.366 (0.192) -0.221 (0.213) -0.221 (0.247)
wh 0.053 (0.039) 0.021 (0.026) 0.098 (0.049) 0.051 (0.046) 0.066 (0.059)

Table 4: Estimation results for d: DGP2, T=1000
σ2

η p = 0.95 p = 0.95 p = 0.99 p = 0.99 p = 0.999
q = 0.95 q = 0.99 q = 0.95 q = 0.99 q = 0.999

rs -0.069 (0.053) -0.018 (0.076) -0.091 (0.038) -0.046 (0.063) -0.038 (0.076)
av -0.139 (0.072) -0.060 (0.079) -0.177 (0.058) -0.117 (0.074) -0.120 (0.089)

0.1 hi -0.246 (0.064) -0.142 (0.098) -0.281 (0.049) -0.200 (0.089) -0.156 (0.167)
gph -0.336 (0.159) -0.126 (0.177) -0.451 (0.140) -0.284 (0.174) -0.266 (0.228)
wh 0.099 (0.041) 0.031 (0.028) 0.164 (0.037) 0.102 (0.046) 0.099 (0.073)

Table 5: Estimation results for d: DGP3, T=500
γ 10−5 10−1 1 10 103

rs -0.093 (0.043) -0.092 (0.041) -0.089 (0.046) -0.059 (0.060) 0.037 (0.086)
av -0.204 (0.058) -0.207 (0.058) -0.192 (0.060) -0.116 (0.084) -0.018 (0.074)
hi -0.279 (0.042) -0.282 (0.042) -0.278 (0.042) -0.230 (0.074) 0.069 (0.131)

gph -0.605 (0.162) -0.589 (0.152) -0.589 (0.152) -0.345 (0.192) -0.004 (0.176)
wh 0.695 (0.051) 0.657 (0.051) 0.472 (0.056) 0.080 (0.046) 0.009 (0.017)

Table 6: Estimation results for d: DGP3, T=1000
γ 10−5 10−1 1 10 103

rs -0.057 (0.046) -0.055 (0.048) -0.010 (0.045) 0.128 (0.060) 0.044 (0.081)
av -0.163 (0.049) -0.163 (0.053) -0.104 (0.061) 0.111 (0.069) -0.001 (0.068)
hi -0.271 (0.036) -0.267 (0.039) -0.229 (0.046) -0.087 (0.068) 0.137 (0.155)

gph -0.496 (0.107) -0.505 (0.133) -0.343 (0.128) 0.158 (0.141) 0.023 (0.146)
wh 0.825 (0.033) 0.793 (0.033) 0.656 (0.036) 0.324 (0.045) 0.009 (0.014)
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Table 7: Estimation results for d: DGP ARFIMA(0,d,0), T=500
d 0.1 0.2 0.3 0.4 0.45

rs 0.117 (0.089) 0.201 (0.103) 0.272 (0.111) 0.360 (0.120) 0.393 (0.129)
0.075 (0.087) 0.048 (0.077) 0.000 (0.069) -0.033 (0.056) -0.041 (0.054)

av 0.068 (0.074) 0.153 (0.075) 0.216 (0.074) 0.289 (0.073) 0.317 (0.069)
0.024 (0.076) 0.011 (0.078) -0.037 (0.073) -0.080 (0.069) -0.095 (0.074)

hi 0.074 (0.107) 0.184 (0.109) 0.262 (0.117) 0.369 (0.104) 0.417 (0.098)
0.017 (0.122) -0.029 (0.147) -0.138 (0.089) -0.194 (0.072) -0.208 (0.071)

gph 0.092 (0.170) 0.216 (0.169) 0.292 (0.173) 0.404 (0.179) 0.463 (0.182)
0.020 (0.178) -0.029 (0.174) -0.179 (0.183) -0.305 (0.182) -0.335 (0.178)

wh 0.093 (0.036) 0.194 (0.033) 0.291 (0.036) 0.396 (0.039) 0.446 (0.036)
0.079 (0.037) 0.148 (0.041) 0.215 (0.044) 0.291 (0.046) 0.332 (0.047)

Table 8: Estimation results for d: DGP ARFIMA(0,d,0), T=1000
d 0.1 0.2 0.3 0.4 0.45

rs 0.101 (0.089) 0.199 (0.099) 0.286 (0.109) 0.354 (0.118) 0.399 (0.114)
0.062 (0.077) 0.021 (0.067) -0.017 (0.054) -0.034 (0.048) -0.032 (0.042)

av 0.063 (0.067) 0.155 (0.071) 0.235 (0.071) 0.292 (0.068) 0.325 (0.062)
0.027 (0.067) -0.007 (0.066) -0.056 (0.067) -0.089 (0.061) -0.099 (0.060)

hi 0.080 (0.111) 0.181 (0.110) 0.275 (0.106) 0.359 (0.109) 0.401 (0.105)
0.024 (0.118) -0.085 (0.122) -0.169 (0.079) -0.216 (0.062) -0.220 (0.060)

gph 0.086 (0.133) 0.198 (0.131) 0.307 (0.139) 0.406 (0.149) 0.454 (0.136))
0.039 (0.134) -0.056 (0.153) -0.163 (0.145) -0.246 (0.141) -0.269 (0.053)

wh 0.094 (0.025) 0.196 (0.025) 0.296 (0.027) 0.399 (0.027) 0.449 (0.026)
0.087 (0.024) 0.165 (0.027) 0.242 (0.031) 0.333 (0.032) 0.379 (0.032)

that can arise in hypothesis of processes with structural breaks and I(d) processes.
In the first case the presence of level shifts make the process look like a long memory
one, so when d is estimated the obtained value d̂ is generally far from zero although
the process is short memory.

In the second case the presence of long memory compromises the consistency of
the techniques to estimate the break points. This means that if one estimates the
break points on a long memory process, one or more break points would probably
be estimated although the process is I(d) and not an occasional break one.

Both these spurious effects create many difficulties to distinguish between long
memory and structural break processes as already pointed out in some papers in
literature (for example, Granger and Hyung, 2004).

The strategy we propose consists of estimating the long memory parameter d on
a series that gives the impression of persistence, then detecting the structural break
dates and finally re-estimating d on the series after filtering out the estimated break
points. If the estimated d is still unchanged after removing the break components,
this means that the series should be generated from a true long memory process,
whereas if the estimated d changes dramatically becoming closer to zero, this means
that the true process should be an occasional break process.

To show the performance of our strategy we realize a Monte Carlo experiment in
two parts in order to show what happens both in case of long memory and occasional
breaks. The latter has been considered in very difficult cases, i.e. big jumps and
several expected break points. By observing the tables of our results, it seems that
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generally speaking both in case of structural break and long memory the strategy
manages to approximately recognize the true nature of the process, especially if the
estimation of d is done with the Whittle method.

These results seem to be rather encouraging and to our knowledge any other
procedures have not been proposed to distinguish between the occasional breaks
and long memory features. However, we are aware that a formal test is needed and
it is under way by the authors.
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