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1 Introduction

Volatility of high frequency financial time series shows long range dependence. In
particular, when dealing with intradaily data one observes long range dependence
merged with periodic behavior due to some operating features of financial markets as
open, close and lunch time effects. Periodic components are represented as marked
peaks at some frequencies of the periodogram of the time series. If this empirical
evidence is neglected modelling and prediction of the volatility dynamics may be
seriously affected. To face this problem two approaches have been considered in the
literature. The first one uses suitable models that can explain non seasonal and
seasonal long memory behavior and applies them directly to the squared returns.
Examples of this approach are k-factor GARMA modelling (Woodward, Cheng and
Gray, 1998; Bisaglia, Bordignon and Lisi, 2003) and SARFIMA modelling (Porter-
Hudak, 1990). The second way consists of generalizing the basic GARCH model
introducing seasonal effects in the volatility equation. Seasonal GARCH and Peri-
odic GARCH (Bollerslev and Ghysel, 1996) belong to this class of models. Here we
follow this approach and propose a model, which is an extension of the classical FI-
GARCH model, to account for long memory also in the periodic component. Since
it is a Seasonal Fractionally Integrated GARCH, we call this model SFIGARCH.
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We show the effectiveness in capturing both seasonality and long memory through
the hourly series of the FIB30, the future on the italian stock market index MIB30.

2 Seasonal FIGARCH

The main feature of the SFIGARCH model is to allow for both periodic patterns
and long memory behavior in the conditional variance. In particular, it can also
merge these two aspects allowing to model periodic and long memory components.
Formally, in the SFIGARCH(p, d, ¢, S) model the conditional mean equation is de-
fined as y; = p + &, where p; is the (possibly time varying) conditional mean of
y¢ that can be described, for example, by an ARMA model. The error term gy is
such that E (g¢/I*"!) = 0 and E (¢}|I""') = 07, E (-|{I'"') denoting the conditional
expectation with respect to the history of the process until time ¢ — 1.

The model assumes then that the conditional variance of ¢; has the following dy-
namic evolution

p q
d
ol =w+ Y el i+ > ot + {1 ~(1-1%) } e2. (1)
=1 i=1

where L is the lag operator. The first three terms in the conditional variance re-
produce the traditional GARCH(p,q) structure while the fourth term introduces a
long memory component which operates at zero and at seasonal frequencies. The
parameter S represents the length of the cycle and d modulates the (long) memory
degree. As in the standard FIGARCH model, it must be 0 < d < 1 to ensure pos-
itivity of the conditional variance and strictly stationarity. The additonal GARCH
parameters must satisfy the standard restrictions for positivity (w > 0, a; > 0 for
j=1,2,..p,and §; > 0 for i = 1,2, ...q) and stationarity of the conditional variance
(Z§:1 aj + Y0, B8 < 1). The specific assumptions required by the SFIGARCH
for strictly stationarity can be derived adapting some results reported in Zaffaroni
(2004).

Using the standard relation €7 = o2 +1;, where v is a martingale difference sequence,
it is not difficult to show that if &; follows a SFIGARCH process the evolution of &7
can be described by the following Seasonal ARFIMA:

k q
(I—Ls)def:w—i-Z(aj-i-ﬁj)E?,j-i- (1—251‘Li> 7 (2)
= i—1

where k = max(p, q). The representation (2) permits to derive the theoretical spec-
trum of the e7. For example, under the assumption p = ¢ = 0 we have

[\

Flw) = ;7 (2 — 2 cos Sw) ¢ (3)
where o2 is the variance of the standardised residuals. In this case the spectrum
shows peaks at the frequencies w € {0, %’T, %’T, %%T’r} with %Tﬂ < .

From (1) it is trivial to see that the SFIGARCH model contains, as particular
cases, several other well known GARCH models: the standard GARCH (for d = 0
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and S = 1), and thus the IGARCH, the FIGARCH model (for 0 < d < 1 and
S =1) and the SGARCH (for d =0, p = kS, ¢ = rS). The PGARCH model is not
nested in the SFIGARCH. However the latter generalizes the PGARCH because it
includes long memory at the non-seasonal and seasonal frequencies. Note that the
long memory periodic modelling is entrusted with just a single parameter.

3 A case study: the FIB30 returns

In this section we perform an empirical comparison between the SFIGARCH and
four alternative models on the hourly log-returns, 7, of the FIB30 contract, the
Future on the MIB30, the Italian stock market index of most highly capitalised
firms. Our data cover the period 13/03/2000 - 20/03/2001 for a total of 260 market
days. Since in that period the italian market was open from 9.30 to 17.30, we
have 8 observations for every day, for a total of 1960 data. The raw data have been
subjected to a correction for abnormal trading days and outliers (see Caporin, 2004).

In order to filter out the linear dependence on the conditonal mean we fitted
an ARMA model to the log-returns. The selected model, chosen by considering the
significance of the parameters and the ACF of the residuals, was a Seasonal AR
(1—¢1L) (1 — ¢sL®) ry = &, with estimated parameters ¢; = 0.1483 (s.e. 0.0222)
and ¢A8 = 0.0788 (s.e. 0.0223). The residuals of the linear model, e;, resulted to be
incorrelated in the level, but they showed a clear linear dependence in the squares,
as testified by the ACF of e?. This latter, moreover, showed a seasonal pattern of
period 8. The periodic beavhior is also confirmed by the periodogram of e? (Fig.2)
which shows four peaks. The first one, at the zero frequency and of magnitude 158,
is associated to a long memory component. The other three peaks are at frequencies
associated with long memory seasonal components of periods 8, 4 and 2.6 hours.
The first periodic component, corresponding to a daily cycle, is due to the operating
features of the market. The second cycle probably reflects a different dynamics in
the first and in the second half of a trading day. Finally the third cycle might be
connected with the opening of the US market. The magnitudes of the three cycles
are, respectively, 400, 140 and 60. Given these characteristics, we fittted to the series
e; our SFIGARCH model. Furthermore, for the same data, we estimated also other
four models: a misspecified GARCH(1,1), a short memory Seasonal GARCH model
(SGARCH), a short memory Periodic GARCH (PGARCH) and a misspecified long
memory FIGARCH.

The models identification was carried out by choosing the models which, on
the whole, gave the best performance in term of significance of the parameters and
in term of periodogram and autocorrelation function of the squared standardized
residuals, zZ. The expressions for the conditional variance of the identified models
are given in Tab.1.

In the estimation step quasi maximum likelihood estimates have been considered.
These estimates are reported in Tab.2. In the SFIGARCH model the parameter as
is significant only at a 6.7% level, but we chose to retain it because it improved the
behavior of the ACF.

The comparison among the models is based on three criteria: the value of the
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SFIGARCH | 02 = w + are?_, + ase? 5 + are? 5 + fro? | + [1 ~(1- L8)d] e?

GARCH o2 =w+aie? 1+ Bioi,

SGARCH ol =w+aie;; +arel ;7 +ase;_ g+ aise; 16+ 1071

PGARCH oi=wH (a1 +yexIo+y3x Iz +yaxIy) el |+ frof

FIGARCH ol =w+onel | +oagel g+ [1 -(1- L)d} e2

Table 1: Identified models for the conditional variance. In the PGARCH model the
I; are dummy variables which take value 1 if e? | refers to the j-th hour of a trading
day.

loglikelihood, the autocorrelation function of the z? and the periodogram of the same
quantities. Concerning the loglikelihood, the model with the best performance is
the SFIGARCH, followed, respectively, by the SGARCH, PGARCH, FIGARCH and
GARCH models (see Tab.2 ). We first note that the models have a different number
of parameters. However, given the sample size, the consideration of this aspect, for
example by using standard information criteria, is not rilevant. Furthermore, all
periodic models have the same number of parameters. Since the models are not
nested, standard LR tests can not be used to compare them.

Looking at Fig.2 it is possible to compare the periodogram of the z? for the five
models. Not surprisingly the standard GARCH does not account for long memory
or seasonal pattern and infact the periodogram of its squared residuals shows both
these components. At the same way, it is not strange that the FIGARCH model
explains the non periodic long memory behavior, but clearly fails to describe the
periodic components. Among the periodic models, the SGARCH model seems to
be able to capture short memory seasonal behavior but not the long memory at
zero and seasonal frequencies. The PGARCH model sensibly reduces the peak at
the zero frequency and partially explains the periodic component but the peak at
the frequency f = 0.125 is again significant. Finally, the periodogram of z? for the
SFIGARCH model does not show any dominant peak suggesting that it adequately
accounts for both long memory and periodic behavior (see Fig.2).

Similar conclusions can be reached by analysing the autocorrelation functions
of the 22 (Fig. 1). To this purpose, we considered the Ljung-Box statistics at lags
5 and 16 to test for short time and seasonal residual correlation. For non periodic
models, namely GARCH and FIGARCH, the ACF of 2? is not significant at the first
lags but it is clearly significant at the periodic lags (see Tab.3). For the PGARCH
and SGARCH models the Ljung-Box test rejects the null both at the lag 5 and at
the lag 16. On the contrary, for the SFIGARCH model both Q(5) and Q(16) lead
to accept the hypothesis of incorrelation.
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par. est. std.err. | t-stat est. std.err. | t-stat
GARCH SGARCH
w 0.0097 0.0075 1.290 0.0371 0.0063 | 5.884
o1 0.0862 0.0275 3.140 0.0925 0.0396 | 2.336
ar - - - 0.2357 0.0533 | 4.418
as - - - 0.0803 0.0237 | 3.386
Q16 - - - 0.1596 0.0323 | 4.937
B1 0.8523 0.0742 | 11.489 0.1867 0.0543 | 3.434
Logl 982.5 - - 1149.4 - -
FIGARCH SFIGARCH
w1 0.0165 0.0087 1.894 0.0000 0.0046 | 0.000
d 0.1156 0.0379 3.050 0.1815 0.0286 | 6.335
o1 0.2454 0.0456 5.377 0.1107 0.0351 | 3.151
a3 - - - 0.0192 0.0105 | 1.830
ar - - - 0.0643 0.0211 | 3.057
as 0.1375 0.0619 2.221 - - -
B - - - 0.1354 0.0485 | 2.787
Logl 1079.3 - - 1248.4 - -
PGARCH

w 0.0298 0.0062 4.841

o 0.8625 0.2042 4.223

Y2 -0.8312 0.1931 | -4.303

3 -0.8054 0.1891 | -4.259

Y4 -0.8451 0.2073 | -4.077

B1 0.4735 0.0691 6.851

Logl 1082.3 - - - - -

Table 2: Estimated parameters of the conditional variance of the models.

In the whole, thus, with respect all the three criteria the best model is the SFI-
GARCH which seems to adequately describe the dynamics of the empirical volatility.

FIGARCH | PGARCH | GARCH | SGARCH | SFIGARCH
Q(5) 0.274 0.000 0.149 0.001 0.173
Q(16) 0.000 0.000 0.000 0.009 0.123

Table 3: p-values of the Ljung-Box test for the squared standardized residuals 22 of
the models.
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Figure 1: Autocorrelation function of squared residuals e? and of squared standard-
ized residuals of the FIGARCH, PGARCH, GARCH, SGARCH and SFIGARCH
models. Horizontal lines are 95% confidence intervals.
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Figure 2: Periodograms of squared residuals e? of the ARMA model and of squared
standardized residuals 2? of the FIGARCH, PGARCH, GARCH, SGARCH and
SFIGARCH models.
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