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Abstract

Tidal channels form the pathways for tidal currents to propagate and distribute clas-

tic sediments and nutrients, thus providing a primary control on tidal-landscape

ecomorphodynamics. Most tidal channels in both estuarine and lagoonal environ-

ments have a tendency to meander, yet very few studies exist that investigate the

full spectrum of processes controlling tidal meander morpho-sedimentary evolution.

The Venice Lagoon (Italy) offers a unique opportunity to shed light on this topic,

because a long record of morphological and sedimentary data is available, which

allows one to relate tidal channel evolution to the hydrodynamic and morphological

changes undergone by the lagoon. In particular, during the last 130 years, feedback

between rising relative sea levels and anthropogenic interventions has caused severe

modifications of the Lagoon hydro- and morphodynamics. Here we investigate how

these modifications fed back into the morpho-sedimentary evolution of a meander-

ing tidal channel located in the northern lagoon. Combining extensive datasets of

aerial photographs, topographic and bathymetric surveys, geophysical investigations,

sedimentary core analysis, and numerical modelling, we show that enhanced local

tidal ranges and water discharges determined adjustments of channel cross-sectional

geometries proportional to increasing tidal prisms, while changes in local tidal

asymmetries caused modifications of the local sediment transport regime, resulting

in the development of bar–pool patterns according to the dominant tidal phase. Such

bar–pool patterns eventually determined channel migration through a bar-push

mechanism controlled by a fluvial-like, quasi-linear relationship between local chan-

nel curvature and lateral migration rates. Critical differences in sediment transport

regime are, however, highlighted between fluvial and tidal meanders the latter being

potentially characterized by high concentrations of suspended sediment during

periods of slack waters when wind-driven sediment transport processes are not

negligible. This could hamper the formation of high-relief bedforms, with profound

implications for the sedimentology of tidal point-bar deposits.
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1 | INTRODUCTION

Tidal landscapes are commonly dissected by networks of tidal chan-

nels that exert a strong control on the ecomorphodynamic evolution

of these environments, facilitating the exchange of water, sediments,

and nutrients (Coco et al., 2013; D’Alpaos et al., 2005; Hughes, 2012).

Tidal-channel evolution, both in time and space, depends on forcings

related to both the physical and biological features of the landscapes

they wander through (e.g. bank erodibility, sediment characteristics,

vegetation cover, bioturbation), as well as to local hydrodynamics, in a

fashion that is generally not easily comprehensible because of the

relationships and interactions among these forcings and processes

(Finotello, Ghinassi, et al., 2020; Kästner et al., 2017; Leuven

et al., 2018) acting on overlapping spatial and temporal scales (Feola

et al., 2005).

A secondary, yet very important process in tidal network evolu-

tion is the meandering behaviour of tidal channels and the resulting

point-bar formation (Choi et al., 2004; Choi & Jo, 2015; Dalrymple

et al., 2003; Ghinassi et al., 2019; Ghinassi, Brivio, et al., 2018;

Hughes, 2012). Besides influencing the planform evolution of the net-

work, meandering impacts the stratigraphy of coastal sedimentary

successions, shaping architectures of sedimentary bodies. Indeed, the

evolution of tidal meanders is typically recorded in the stratigraphic

record through laterally accreted deposits, as well as through channel

infilling as the tidal prism (i.e. the volume of water flowing through a

given cross-section during half of a tidal cycle; D’Alpaos et al., 2010,

2021) decreases when the channel is partially abandoned via either

avulsion or meander cut-off (Brivio et al., 2016; Cosma et al., 2019,

2020; D’Alpaos et al., 2017; Fenies & Faugères, 1998; Ghinassi,

D’Alpaos, et al., 2018; Wilson et al., 2017).

Despite their prominence and wide occurrence, however, the

characteristics and dynamics of meanders shaped exclusively by tidal

flows have frequently been approached assuming a close morpho-

sedimentary similarity with their fluvial counterparts (Barwis, 1978;

Choi, 2011a; Choi et al., 2004; de Mowbray, 1983), the latter having

been studied extensively in the scientific literature (e.g. Hooke, 2013;

Ikeda et al., 1981; Lanzoni & Seminara, 2006; Parker et al., 1982;

Seminara, 2006). Nevertheless, this assumption is challenged by the

observation that several differences exist in the processes that sculpt

tidal and fluvial meanders (Finotello, Ghinassi, et al., 2020;

McMahon & Davies, 2019), including periodically reversing flows

punctuated by slack water intervals, maximum flow discharges not

corresponding to bankfull conditions, different external controls on

sediment entrainment and deposition (e.g. due to wind-wave action),

and a higher spatial density of lateral tributary channels (Finotello,

Canestrelli, et al., 2019; Finotello, D’Alpaos, et al., 2020; Marani

et al., 2003). Moreover, tidal and fluvial meanders display statistically

different morphological properties (Finotello, D’Alpaos, et al., 2020),

thus leading to a relevant question, with theoretical and practical

implications, that is whether (and to what extent) morphological,

dynamical, and sedimentological models derived from the study of flu-

vial meanders can be extended to their tidal counterparts

(Gabet, 1998; Kleinhans et al., 2009; Leuven et al., 2018; Solari

et al., 2002). This is especially important in view of the increasing

anthropogenic pressures to which tidal coastal landscapes are sub-

jected, thus making it critical to understand how tidal meandering

channels respond to natural and anthropogenically induced changes in

both external forcings and physical characteristics of the environ-

ments they are hosted by.

Here we present multidisciplinary, quantitative analyses aimed

to reconstruct 130 years of morpho-sedimentary evolution of a

meandering tidal channel located within the microtidal Venice

Lagoon (Italy), based on a collection of data derived from both his-

torical and recent aerial photos, tide gauge measurements, bathy-

metric field surveys, geophysical investigations, and numerical

modelling. This work builds upon and complements previous results

by Finotello, Canestrelli, et al. (2019), who provided field-based evi-

dence that dominance of tidal flows in tidal meandering channels

can be inferred locally from the point-bar patterns, with point-bars

developing upstream (downstream) of the meander apex in flood

(ebb) dominated settings in accordance with previous experimental

findings by Tambroni et al. (2017). In contrast, the present paper

aims to unravel how channel cross-sectional geometries and bed

morphologies respond to changes in local hydrodynamics, and how

such changes ultimately impact meander planform dynamics in

terms of channel lateral migration and its relation with local curva-

ture. Moreover, based on novel core-log data, we discuss how

alterations in sediment transport regime affected the sedimentology

of the studied point bar, as well as the formation of tidal bedforms,

which were investigated based on brand new hydro-acoustic data.

The ultimate goal of our work is to relate changes in tidal forcings

and sediment supply, due to both natural and anthropogenically

induced modifications of the lagoon basin, to the morphological

evolution, sedimentology, and planform dynamics of the studied

tidal meander bends.

2 | GEOMORPHOLOGICAL SETTING AND
STUDY AREA

2.1 | The Venice Lagoon

We analysed a high-amplitude meandering reach of the Gaggian

channel that wanders through the northern, best naturally pre-

served part of the Venice Lagoon (Marani et al., 2003) (Figure 1a).

The Venice Lagoon, which formed over the last 7500 years cover-

ing alluvial Late Pleistocene deposits (Zecchin et al., 2008), is the

largest Mediterranean brackish water body, with an area of about

550 km2. It is connected to the Adriatic Sea through three inlets—

namely Lido, Malamocco, and Chioggia from north to south—and is

subject to a semidiurnal tidal regime, with an average tidal range of

about 1.0 m and peak tidal amplitudes of about 0.75 m around

mean sea level (MSL), which can suddenly be increased by meteo-

rological forcings (Carniello et al., 2011; Mel & Lionello, 2014).

Seasonal high-tide surges triggered by a combination of astronomi-

cal tides and weather conditions cause episodic floodings, locally

known as Acqua Alta events, in the city centre of Venice and

other settlements within the lagoon. These events are typically

produced by either strong Sirocco winds blowing from the south-

east or Bora windstorms from the northeast (Mel et al., 2019;

Rinaldo et al., 2008), and exert pre-eminent control over the

medium to long term (i.e. tens to hundreds of years) on the mor-

phodynamic evolution of the lagoon (Carniello et al., 2009). This is

especially true for events associated with the Bora wind, which is
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the most intense wind in the Gulf of Venice, with velocities that

can easily exceed 20 m/s (Figure 1a, inset; see Tommasini

et al., 2019).

The tidal regime in the northern Venice Lagoon, where the stud-

ied channel is located, has been affected by several anthropogenic

interventions over the last centuries (D’Alpaos, 2010; Ferrarin

F I GU R E 1 Study site. (a) Satellite image of present-day morphology of the Venice Lagoon (Italy). Green areas denote salt marshes. Locations

of both the Chioggia anemometric station and of the Consiglio Nazionale delle Ricerche (CNR) Acqua Alta oceanographic platform are also
highlighted. Wind-rose diagram representing the wind climate measured at the Chioggia anemometer in 2005 is shown in the lower-right inset
(image © Google, Landsat/Copernicus). (b) Satellite image of the study area around the Gaggian channel. All the major morphological features are
highlighted, including the two major lateral tributaries (TE and TW) connecting the channel to the Palude della Centrega tidal flat to the north
(image © Google, Landsat/Copernicus). (c) Salt-marsh elevation in the study area, derived from a flight survey carried out in 2002 (Wang
et al., 2009), shown together with sediment grain sizes measured at the bottom of the channel (image © Google, Landsat/Copernicus).

F I GU R E 2 Evolution of the northern
Venice Lagoon from 1811 to 2014.
Colour-coded bathymetries, derived from
available topographic data, are over-
imposed on a present-day satellite image.
Brownish colours approximate salt-marsh
extension by denoting areas lying above
the mean sea level at the time of the
topographic survey. Solid red lines show
locations of jetties and seawalls at the
Lido inlet, while yellow lines in panel (f)
highlight the Mo.S.E. project floodgates.
Reduction of the lagoonal area is due to
land reclamation.
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et al., 2015) (Figure 2). By the end of the 17th century, the Sile and

Piave rivers were diverted to the open sea, thus almost entirely elimi-

nating freshwater and sediment inputs. Between 1882 and 1892,

massive jetties were constructed at the Lido inlet to allow larger ves-

sels to enter the lagoon. In addition, extensive land reclamation for

fish farming and urban development caused a reduction in the total

area open to tidal expansion between the 1930s and the 1970s, espe-

cially on the edges of the lagoon (Figure 2). Furthermore, prior to

1930, the lagoon was subject to a relative sea level (RSL) rise in the

order of 0.15 � 0.06 cm/year; in the following years, such a rate

increased up to 0.38 � 0.05 cm/year due to the anthropogenically

induced subsidence generated by massive groundwater exploitation,

which proceeded until the 1970s (Carniello et al., 2009; Ferrarin

et al., 2015; Gatto & Carbognin, 1981). The present-day rate of RSL

rise is in the order of 0.17 � 0.04 cm/year (Carbognin et al., 2010;

Valle-Levinson et al., 2021). Finally, further modifications to the inlet

configuration began in the early 2000s to allow for the installation of

mobile floodgates (Mo.S.E. Project) intended to protect the city of

Venice and other lagoon settlements from extensive flooding. These

modifications caused reductions in tidal amplitude and increases in

tidal phase delays within the lagoon (Ghezzo et al., 2010; Matticchio

et al., 2017).

The combined effects of these interventions, among which the

modification of the inlet morphology is paramount, significantly

altered the hydrodynamic regime of the Lagoon. Later studies showed

that the average tidal range in the northern Lagoon increased as much

as 25% from the construction of the jetties to the 1970s, with local

variations being even more pronounced (Ferrarin et al., 2015;

Seminara, 2006; Silvestri et al., 2018; Tomasin, 1974). Progressively

larger portions of the lagoon became dominated by ebb flows, espe-

cially in the areas surrounding the inlets where strong ebb-flow

asymmetries enhanced net-sediment export and prevented sediment

import from the open sea. As a consequence of sediment loss, both a

generalized deepening of tidal flats and a reduction in salt-marsh areas

were observed (Carniello et al., 2009; D’Alpaos, 2010; Sarretta

et al., 2010).

2.2 | Study area

The study site is a 1300 m-long, 100 m-wide reach of the Gaggian

channel comprising two adjacent meander bends, named Bend 1 and

Bend 2, which are characterized by average radii of curvature equal to

250 and 200 m, respectively (Figure 1b). Nowadays, the channel is up

to 8 m deep and receives tributaries on both its inner and outer banks.

Two main tributaries along the outer bank, named hereafter TW

(Western Tributary) and TE (Eastern Tributary), enter the Gaggian

channel near the outer-bank apex of Bend 1 and connect it with the

0.55 m-deep Palude della Centrega tidal flat to the north (Figure 1b).

The TW and TW tributaries are about 40 and 30 m wide and up to 3.6

and 3.0 m deep, respectively. The present-day channel morphology at

Bend 2 is characterized by the presence of an elongated depositional

body, similar to a barb in planform, that detaches from the seaward

side of the bend (Figure 1b).

The median sediment grain size (d50) at the channel bed is about

129 μm, with cohesive sediment (d < 63 μm) content <20% in volume

(Finotello, Canestrelli, et al., 2019). Medium to coarse-grained sand is

common in the deepest parts of the channel, whereas fine-grained

silty sand occurs in shallower areas and along the thalweg of both TW

and TE (Figure 1c).

3 | MATERIALS AND METHODS

3.1 | Historical maps and aerial images

A long record of historical topographic maps, high-resolution aerial

photographs, and satellite images of the Gaggian channel and its

surrounding area is available, ranging from 1901 to nowadays

(Figure 3) (Carniello et al., 2009; D’Alpaos, 2010). The 1901 histori-

cal map is part of the topographic/hydrographic map of the Venice

Lagoon produced by the Genio Civile of Venezia. Aerial photos

were retrieved from the 1929–1938 Istituto Geografico Militare

(IGM) flight survey (1938), the IGM 1955 Gruppo Aereo Italiano

flight survey (1955), the Compagnia Generale Riprese aeree Parma,

Veneto Region aerial photo survey (1968), the Regione del

Veneto – L.R. n. 28/76 Formazione della Carta Tecnica Regionale

aerial photogrammetric survey (1978, 1987, 1995). All images are

freely available from the Atlante della Laguna (http://www.

atlantedellalaguna.it/) and/or—upon registration—from the Circe

Laboratory of Cartography and GIS of the IUAV University of Ven-

ice (https://circe.iuav.it/catalogo-foto-aeree/). Satellite images

(2001, 2014) are Landsat/Copernicus products that were accessed

through Google Earth™. All available images were georeferenced

with ArcGIS 10 (Esri) and then overlaid to quantify channel lateral

migration. The latter was computed based on changes in the

position of the channel centreline, derived from manual digitaliza-

tion of channel banks for all the available aerial images, and

measured at a spatial resolution of 2 m (see Figure 3). We utilized a

standard dynamic time warping (DTW) algorithm implemented in R

(Giorgino, 2009) and performed through the QGIS software (v.3.6.3)

processing tool. The DTW algorithm represents the state-of-the-art

method to compute lateral channel migration in dynamic meander-

ing systems. It employs a cost matrix to minimize the sum of

distances between two consecutive channel centrelines, weighted

by both the spatial distance and the similarity in local channel

curvature. In doing so, it monitors changes in channel centreline

location and curvature (see Sylvester et al., 2019 for further details;

Donovan et al., 2021; Finotello, D’Alpaos, et al., 2019; Ielpi

et al., 2020). In more detail, DTW alignment of the initial and final

channel centrelines is performed using a Euclidean distance matrix

for corresponding spline points, augmented with the third dimension

of curvature at those points. That is, for each point i of the original

centreline and j of the final centreline, the following matrix of

distances is computed:

di, j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

i, jþλ2 Ci�Cj

� �2q

where Δi,j denotes the Euclidean (i.e. planar) distance between i and j,

C is the local channel-axis curvature, and λ is a multiplier parameter

used for weighting curvature values. Given the limited migration rates

that characterize our studied channel (see Section 4), we adopted a

reduced value of λ=103 m2, thus giving more emphasis to centreline

spatial proximity.
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Besides computing migration rates, comparison among the differ-

ent available photos also allowed us to outline changes in the width of

the main channel and its tributaries, as well as to identify the estab-

lishment of depositional or erosional processes along specific portions

of the channel banks.

3.2 | Bathymetric and topographic data

Elevation data, both within the Gaggian channel and along the salt

marshes flanking it, are available since 1901 from the topographic/

hydrographic map of the Venice Lagoon produced by the Genio Civile

of Venezia. Elevation data for the 1932 and 1970 configurations were

also obtained from the bathymetric maps of the Venice Lagoon pro-

duced by the Venice Water Authority (Magistrato alle Acque). The

elevation data were georeferenced and analysed in a GIS environment

(ArcGIS 10, Esri), spatially interpolating the data points through a

cubic spline method with a grid spacing varying between 0.8 and 3 m,

according to the spatial density of the original data (Figure 4). Addi-

tionally, two geophysical surveys were carried out in 2011 and 2020

to provide bathymetries and a detailed image of the possible channel

seabed structures (e.g. bedforms), which were not previously

described in the literature (Finotello, Canestrelli, et al., 2019; Ghinassi,

Brivio, et al., 2018; Madricardo et al., 2017). In 2011, geophysical data

were acquired by means of an Innomar SES 2000 compact parametric

sub-bottom profiler. Overall, 27 profiles were collected: 2 longitudinal

and 22 cross-sectional profiles along the Gaggian channel, and

3 along-channel profiles within the TE and TW tributaries (Figure 4d).

Position data were recorded via GPS [two TOPCON GR-3 receivers—

dual frequency (L1/L2) and dual constellation (NavStar/Glonass), with

integrated UHF Tx/Rx radios were used] and processed using Geo

Office software (Leica).

A second survey was carried out in summer 2020 using an

Innomar SES 2000 standard plus (parametric sub-bottom profiler) and

a Starfish 452f sidescan sonar. The SES was pole-mounted at the bow

of a 6 m aluminium catamaran in order to minimize the noise due to

F I GU R E 3 Planform
evolution of the study channel.
(a–i) Historical maps and aerial
images showing the evolution of

the study area between 1901 and
2014. In each panel, red lines
denote the position of the
channel centreline, whereas
yellow lines represent migration
vectors, relative to the previous
channel configuration, computed
through a dynamic time warping
algorithm. Erosional and
depositional patterns
reconstructed from the available
images are also shown for the
periods 1901–1938 (l), 1938–
1968 (m), and 1968–2014 (n),
approximately corresponding to
the time intervals investigated
through numerical simulations.
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the boat engine, and the sidescan sonar was side-mounted on the

starboard of the boat. The positioning was recorded by means of a

Trimble SPS852 rover/base system, including RTK corrections for high

accuracy. Four longitudinal profiles covered the Gaggian channel par-

allel to its borders. A zig-zag profile crossed the channel over the

entire length of the study area (Figure 4e). The Innomar ISE software

was employed for extracting the channel depth from the sub-bottom

high frequency (100 kHz) and the resulting {x, y, z} data were gridded

by means of Surfer 13 (Golden Software) using the Kriging algorithm.

The sidescan sonar data were exported in xtf. format and processed

with SonarWiz 7.2 software. Geometric and radiometric corrections

were performed, as well as slant range and offset corrections. All data

were eventually analysed using GIS software (ArcGIS 10, Esri).

The different datasets were employed to monitor changes in bed

morphologies, cross-sectional geometries, and channel bedforms,

when possible. Besides, bathymetric data were used to assign bed ele-

vation to the computational grids employed for numerical modelling

(see Section 3.4).

3.3 | Sedimentological data

Sedimentary cores were recovered along the seaward side of the

point-bar associated with Bend 1 (Figure 1b) from deposits accreted

between 1901 and today. Two cores were recovered from a depth of

2 m using a vibrocorer, equipped with an aluminium liner (8 cm in

diameter). An additional core was collected from a depth of 4.5 m

using an Ejikelkamp hand auger, through a gouge sampler with a

length of 1 m and a diameter of 30 mm. All the recovered cores were

cut longitudinally, photographed, and logged. Core logging included a

macroscopic description of sediment grain size, sedimentary struc-

tures, vertical grain-size trends, degree of bioturbation, and occur-

rence of plant and/or shell remains. The core halves’ surface was

glued using wood stain and peeled in order to create a storable record

of the cores and to highlight sedimentary structures.

3.4 | Numerical modelling

In order to analyse temporal changes in flow and sediment-transport

regimes along the studied bends, we carried out several numerical

simulations using the finite-element, bidimensional (depth-averaged),

hydrodynamic and wind-wave model developed by Carniello

et al. (2011). The model—which is suitable to reproduce tidal flows,

wind waves, and the related sediment transport processes in shallow

microtidal basins—has been widely tested and calibrated against mod-

ern and historical field data from the Venice Lagoon (Carniello

et al., 2005, 2009, 2011, 2012; Tommasini et al., 2019). While a brief

introduction to the modelling approach is provided in the following

paragraphs, the reader is referred to Carniello et al. (2005, 2011,

2012, 2014) for extensive descriptions and details concerning the cali-

bration of model parameters and their match to field measurements

and remote-sensing data in terms of water levels, wave heights, flow

rates, and suspended sediment concentrations.

The model consists of a hydrodynamic module that solves the

depth-averaged shallow-water equations, suitably modified to repro-

duce wetting and drying processes in very shallow and irregular

domains, using a semi-implicit staggered finite element method based

F I GU R E 4 Depth evolution of the Gaggian channel. (a) 1901 bathymetry derived from the Genio Civile di Venezia topographic/hydrographic
map of the Venice Lagoon; black dots show the position of available data points used for spatial interpolation. (b, c) 1932 and 1970 bathymetries
based on the bathymetric map of the Venice Lagoon by the Magistrato alle Acque (Venice water authority); black dots show the position of
available data points used for spatial interpolation. (d) Bathymetry obtained from the 2011 geophysical data. Tracks of the sub-bottom profiler are
highlighted by black solid lines. (e) Bathymetry calculated from the 2020 geophysical data. Tracks of the sub-bottom profiler are highlighted by
black solid lines. (f) Bathymetric changes observed in the study area between 2011 and 2020, based on data reported in panels (d) and (e).
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on the discontinuous Galerkin approach (after Defina, 2000). The

hydrodynamic module is coupled with a wind-wave module that

reproduces the generation and propagation of wind waves in shallow-

water tidal environments, solving the wave-action conservation equa-

tion parameterized using the zero-order moment of the wave action

spectrum in the frequency domain (Carniello et al., 2005, 2011). Out-

puts from the hydrodynamic and the wind-wave modules are finally

employed by a sediment-transport and bed-evolution module, which

solves the advection–diffusion equation and the related processes of

sediment entrainment, transport, and deposition that control bed evo-

lution (Carniello et al., 2012). Notably, the model accounts for the

simultaneous presence of both cohesive (i.e. muddy) and non-

cohesive (i.e. sandy) sediments, as well as for the nonlinear interac-

tions between bottom shear stresses induced by wind-wave (τww) and

tidal currents (τb) in determining the total bottom shear stress

(Soulsby, 1997).

Several accurately calibrated WWTM computational grids rep-

roducing the whole Venice lagoon in its past and present configura-

tions already existed and had been used in previous studies (Carniello

et al., 2009; Finotello, Marani, et al., 2020; Silvestri et al., 2018;

Tommasini et al., 2019). Here we considered the grids representing

the lagoon morphology in 1887, 1901, 1931, 1970, and 2014. The

available grids account for: (i) the construction of the jetties at the

Lido inlet, completed between 1882 and 1892; (ii) the progressive

deepening of the lagoon; and (iii) the loss of salt marshes and lagoonal

areas due to both natural processes and land reclamation (Figure 2).

The spatial resolution of the computational grids has been refined in

the study area, in order to provide more detailed results along the

studied channel. The bathymetries of the computational grids were

reconstructed from the available elevation data, and are referred to

the MSL recorded when each survey was performed. In this way, RSL

rise was implicitly accounted for since all the numerical simulations

were performed by forcing the model with tidal waves imposed at the

open sea boundary and oscillating around the MSL (Carniello

et al., 2009; Silvestri et al., 2018).

Two distinct series of numerical simulations were carried out. For

both series, boundary conditions are the same as those employed by

Finotello, Canestrelli, et al. (2019), but additional simulations were car-

ried out, including the 1901 and 1887 configurations of the lagoon, in

order to better highlight changes in tidal propagation and wind-wave-

induced sediment transport processes across the tidal basin, and their

effects on the studied meander morphodynamics. First, we simulated

the propagation of a semidiurnal (M2) tide characterized by an ampli-

tude of 0.5 m akin to typical spring tides in the High Adriatic Sea

(D’Alpaos, 2010; Townend, 2010). These simulations were aimed at

providing an overview of the changes in local hydrodynamics and the

related sediment-transport processes that occurred along the Gaggian

channel over the last 130 years. Therefore, no wind-wave-related pro-

cesses were considered. Second, variations in the sediment transport

regime associated with both wind waves and tidal currents were

investigated by simulating 28 days of tides and wind waves. We took

advantage of hourly tidal levels and both wind velocities and direc-

tions measured, respectively, at the Acqua Alta oceanographic plat-

form and the Chioggia anemometric station (Figure 1a) from

16 November to 14 December 2005. This time span embodies a prob-

ability distribution of wind velocities and directions that makes it rep-

resentative of the typical wind field observed within the Venice

Lagoon over much longer periods of time (D’Alpaos et al., 2013). In

particular, the 28-day period selected for our simulations is character-

ized by strong Bora windstorm events with velocities exceeding

20 m/s (see details in Finotello, Canestrelli, et al., 2019, their

Figure 6), thus allowing us to focus on the role of storm-induced sedi-

ment resuspension on the sediment transport regime in the

study area.

4 | RESULTS

4.1 | Morphological evolution

During the last 130 years, only minor changes were observed in the

overall planform morphology of the studied channel (Figure 3). None-

theless, analyses of aerial images show that the average channel wid-

ths (� standard deviation) increased by 38%, from 81.96 � 14.04 m in

1901 to 113.53 � 23.47 m in 2014. The most pronounced widening

occurred between 1932 and 1955, when the channel increased its

width at a rate of about 0.63 � 0.22 m/year, compared to a width

increase of 0.11 � 0.06 and 0.46 � 0.11 m/year in the periods 1901–

1932 and 1968–2014, respectively. Dynamic time warping analysis of

channel centreline migration (Figure 3) (Donovan et al., 2021;

Finotello, D’Alpaos, et al., 2019; Ielpi et al., 2020; Sylvester

et al., 2019) indicates an average migration rate equal to

0.38 � 0.36 m/year throughout the whole study period,

corresponding to a normalized migration rate of about 0.4% of chan-

nel width per year, with a peak value of 0.51 � 0.54 m/year observed

between 1987 and 1995. A clear change in the type of meander plan-

form evolution, from symmetric expansional to downstream transla-

tional, is observed between 1901 and 1938. From 1938 onwards,

centreline migration appears more pronounced on the seaward side of

bend apexes, especially for Bend 1, whereas the migration trajectory

of Bend 2 is less obvious, likely because of disturbance imposed by

complex bank evolution dynamics at the outflow of both the TE and

TW tributaries, where significant widening is observed throughout the

years (Figure 3). The magnitude of migration seems to decrease pro-

gressively through time, with the lowest migration rates among all the

analysed time intervals recorded for the period 2001–2014, when the

direction of migration appears to be reversed compared to previous

trends. Specifically, the channel centreline moved preferentially

towards the inner (convex) bank in the area around the apex of Bend

1, thus giving rise to inner bank erosion that is also reflected by the

bathymetric changes between 2011 and 2020 (Figure 4f).

The bathymetry of the Gaggian channel underwent significant

modifications during the last century, with a progressive deepening

that occurred mostly between 1932 and 1970 (Figure 4). Such a deep-

ening trend is also observed in the surrounding area, where the Palude

della Centrega tidal flat (Figure 1b) steadily deepened from 0 to

�0.63 m below MSL between 1901 and 1970, before slowly recover-

ing elevation up to �0.55 m in 2014 (Ghinassi, Brivio, et al., 2018).

Clearly, caution should be employed when interpreting the results

derived from the 1901 bathymetry which, although derived using

state-of-the-art topographic techniques, suffers from a lack of data

points within the studied channel (Figure 4a). In spite of this, however,

the distribution of channel depths observed from the available data

exhibits reduced depth at the bend apex and maximum depth at the
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bend inflection points, a result that is consistent with the nearly sym-

metric local tidal regime that characterized the studied channel when

the bathymetric survey was carried out (see Section 4.2; see also

Finotello, Canestrelli, et al., 2019 for a detailed discussion). In terms

of meander-bend morphologies, the 1901 historical map suggests

that both Bend 1 and Bend 2 were characterized by two pool areas

located immediately landward and seaward of the bend apexes

(Figure 4a). From 1932 to nowadays, the pool areas became progres-

sively deeper and moved towards the bend-apex zone, being regu-

larly interspaced by shallower riffle zones at the meander inflection

points (Figures 4b-e). During the same period, the barb grew on the

seaward side of Bend 1: it became wider and shallower through time,

and its topset is nowadays characterized by elevations in the range

0.4–0.8 m below MSL, being almost exposed at low tides. Compari-

son between the 2011 and 2020 bathymetries (Figure 4f) highlights

rapid changes of the channel bed morphology over a relatively short

time span, especially in the area facing the TW and TE outlets. How-

ever, the resulting differential bathymetry appears quite noisy, such

that no clear trends emerge in the morphological evolution of the

channel aside from a relatively widespread erosion occurring along

the inner bank of Bend 1. Such unexpected erosion at the meander

inner bank, together with the high level of noise observed from the

data, might be related to the significant anthropogenic modifications

of the Lido inlet morphology that were put in place between 2006

and 2014 to accommodate the Mo.S.E. floodgates. These modifica-

tions significantly altered the hydrodynamic regime of the lagoon

(see details in Section 5.1), especially in tidal channels located rela-

tively close to the inlets such as, for example, the Gaggian channel

(Matticchio et al., 2017), in this way producing non-negligible mor-

phological adjustments. Further detailed morphological studies

would, however, be required in order to better elucidate this

hypothesis.

In spite of all these morphological changes, all the relevant mean-

der morphometric features exhibited by Bend 1 and Bend 2—

including wavelength, curvature radius, bankfull depth, and bend

amplitude—consistently scaled to the average meander width and

remained within the range of variability typically observed for tidal

(as well as fluvial) meanders (Figure 5).

4.2 | Hydrodynamics and sediment transport
regime

Numerical simulations suggest that profound changes in local hydro-

dynamics occurred from 1887 to today. In particular, damping of the

tidal wave was progressively reduced, such that the local tidal range

increased continuously from 0.36 m in 1887 to 0.74 m in 2014, rising

67% (from 0.36 to 0.60 m) in the period 1887–1901 alone (Figure 6b).

Changes in the local tidal range were accompanied by rises of both

flow velocities (v) and discharges (Qw ) through the Gaggian channel

(Figures 6a and c). Two major incremental steps are observed during

the study period, especially in terms of v, which occurred from 1887

to 1901 and from 1932 to 1970, respectively (Figure 6a). The reader

is referred to Finotello, Canestrelli, et al. (2019) for details about dis-

tribution and changes through time of depth-averaged and three-

dimensional (i.e. cross-sectional) velocities within the studied channel.

Variations of the maximum ebb and flood velocities through time also

determined changes in the local peak flow asymmetry (ρs). The latter

parameter is defined as the ratio between the flood and the ebb max-

ima of cross-sectionally averaged velocities (Friedrichs &

Aubrey, 1988), and is suitable to discriminate flood-dominated (ρs > 1)

and ebb-dominated (ρs < 1) flows within tidal channels (Finotello,

Canestrelli, et al., 2019; Guo et al., 2019). In the Gaggian channel, ρs

reduced from 1.07 in 1887 to 1.01 and 0.88 in 1901 and 1932,

F I GU R E 5 Planform features of the
Gaggian channel’s Bend 1 and Bend
2 compared against literature data on
both tidal and fluvial meanders (see
Finotello, Ghinassi, et al., 2020 and
references cited therein). Average
meander width is plotted against
(a) meander wavelength, (b) meander
radius of curvature, (c) meander bankfull
depth, and (d) meander amplitude.
Squares represent data for the Gaggian
channel derived from aerial images and
averaged over the entire study period
(Figure 3), whereas the shadowed areas
denote the associated range of
variations.
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respectively. After that, it remained nearly constant in 1970

(ρs =0.89) before increasing to 1.04 in 2014.

Analyses of numerically simulated sediment transport processes

highlight changes in the direction of net sediment transport (Q�) over

a single tidal cycle according to changes in ρs (Figure 6d) (Finotello,

Canestrelli, et al., 2019). The suspended sediment concentration (SSC)

in the absence of wind is strongly correlated with flow discharges and

never exceeds 10mg/L, with values below 5mg/L between 1887 and

1901 (Figure 6e). Notably, SSC does not fall to zero even when tidal

flows are absent (i.e. slack-water periods corresponding to Qw =0m3/

s), and SSC associated with ebb slacks is typically larger than those

observed during flood slacks (Figure 6e). Numerical simulations carried

out with observed tidal and wind data suggest that in 1887 and 1901,

Bora windstorm events had limited influence on SSC, the latter always

being lower than 10mg/L (Figure 6f). In contrast, starting from 1932,

SSC reaches maximum values up to 70mg/L during Bora windstorm

events and easily exceeds 10mg/L even during slack waters

(Figure 6f).

4.3 | Bedforms

The 2020 sidescan data highlighted the presence of channel

bedforms, in the form of dunes, within a restricted area immediately

downstream of the Bend 1 apex (Figure 7a). These dunes are charac-

terized by lengths (L) ranging between 2.80 and 18.88 m (mean value

5.66 � 2.59 m) and heights (H) varying from 0.01 to 0.34 m (mean

value 0.10 � 0.06 m). They also appear to be nearly symmetric on

average, since their mean asymmetry index is Ai =0.01�0.29, Ai

being defined as Ai = ℓu�ℓdð Þ/L, where ℓu and ℓd denote the

distance between the dune crest and its upstream and downstream

troughs, respectively. Estimates of average flow depths (h) above the

dunes were also obtained from numerical simulations, which provided

values within the range 4.3–6.3m (mean value 5.10�0.52m). Values

of the dune lee-side angles were also derived from the available SES

data. The average maximum and mean lee-side angle, computed

following the approach proposed by Cisneros et al. (2020), is equal to

2.51�1.67� and 2.09�1.51�, respectively, whereas the highest

lee-side angle observed in the Gaggian channel is equal to 9.69�

(Figure 7).

4.4 | Point-bar deposits

Point-bar deposits are located on the seaward side of Bend 1 and are

4.5–5.5 m thick. Analyses of seismic images (see Ghinassi, Brivio,

et al., 2018) show that beds consistently dip c. 10–20� towards the

channel thalweg without relevant truncations, but these beds are

locally truncated by the present-day inner bank of the channel. Point-

bar deposits cover a layer of medium sand with fragmented shells and

pebble-size mudclasts. That layer represents older thalweg deposits.

Point-bar deposits show an overall fining-upward grain-size trend

from medium to fine sand with mud to mud, with millimetric laminae

of fine to very fine sand (Figure 8). Sandy bar deposits include

F I GU R E 6 Results of numerical simulations. (a) Variations in water levels h and associated average flow velocities v within the Gaggian
channel over two complete semidiurnal tidal cycles. (b) Changes in the Gaggian channel’s local tidal range through time. (c) Variations in water
levels h and associated average flow discharges Qw within the Gaggian channel over two complete semidiurnal tidal cycles. (d) Net sediment flux
Q* through the Gaggian channel over a complete semidiurnal tidal cycle. (e, f) Variations in suspended sediment concentration SSC and associated
average flow discharges Qw within the Gaggian channel over two complete semidiurnal tidal cycles. All the results were obtained imposing a
0.5 m-amplitude semidiurnal (M2) tide at the open sea boundary, except for panel (f) that refers to a 28-day-long simulation carried out using
hourly measured tide and wind data (see Section 3.4). Filled dots in panel (f) denote SSC associated with Bora windstorm events, whereas empty
dots refer to normal, windless conditions. Colours in each panel denote different years according to the colour bar shown in panel (b).

FINOTELLO ET AL. 9



scattered shell fragments, and muddy layers are enriched in commi-

nuted plant debris. Both sandy and muddy bar deposits are character-

ized by a pervasive lamination dipping towards the channel thalweg,

consistent with the overall bar bedding. The dip angle of the laminae

is c. 10–20�, and evidence of cross-stratifications is almost missing.

The very few lamina set are up to 1 cm thick. Laminations are defined

by the alternation of sand and mud, which range in thickness between

0.3 and 30 mm. Only in the lowermost part of the bar, sandy layers

can be up to 5–15 cm thick. Laminae do not show any clear cyclic

change in thickness, except for localized thinning or thickening-

upward trends developed at millimetric scale. Couplets of 0.3–0.5 mm

muddy laminae, which embed a 0.5–1 mm drape of sand, are common

in the middle to upper part of the bar. The upper part of the bar mud

is pervasively oxidized and has root remains associated with the

development of halophytic vegetation.

5 | DISCUSSION

5.1 | Morphodynamics

Morphological features of the study-case meander bends are consis-

tent with those observed for other tidal and fluvial meanders

worldwide (Finotello, D’Alpaos, et al., 2020) (Figure 5), suggesting that

results obtained in this area could be extended beyond the specific

study site at hand, at least in terms of planform morphologies and

dynamics. The observed bank-migration rates (mean value

MR =0.38�0.36m/year) are consistent with values typically

observed in tidal meanders within the Venice Lagoon (Finotello

et al., 2018; McClennen & Housley, 2006) and other tidal systems

worldwide (Gabet, 1998; Garofalo, 1980). More importantly, MR does

not appear to be correlated with either the observed changes in chan-

nel width (ΔB) or rates thereof (ΔBR) (Figures 9a and b). This would

exclude the chance that the observed bank migrations were simply

due to channel widening driven by increased tidal prisms (D’Alpaos

et al., 2010), rather than to actual meander dynamics. Indeed, time-

lapse analyses of bank migration suggest that width-adjusted migra-

tion rates (M�
R ¼MR �B [�]) are strongly controlled by dimensionless

channel curvature (C� ¼C �B [�]) in a fluvial-like fashion (Hickin &

Nanson, 1975; Hooke, 2013). Particularly, we show that both median

and 95th values of the M�
R distribution, corrected by the spatial lag

between maxima in migration rate and curvature (Sylvester

et al., 2019), exhibit a linear functional relationship to C� for C� values

<0.25, and then plateau at C� >0.25–0.50 (Figure 9c). This corrobo-

rates previous results (Finotello et al., 2018) suggesting that tidal

meanders recapitulate fluvial-meander morphodynamics by essentially

F I GU R E 7 Channel bedforms. (a) Location of the bedforms and detailed view of the sidescan data. Black dashed line represents the SES
track, which was used for extracting the bathymetric data, whereas red lines denote hand-digitized dune crests. (b) Dune height (H) plotted
against dune length (L). Red dots represent data from the Gaggian channel. Field and flume data derived from data compilation by Bradley &
Venditti (2017), together with best-fit power law by both Bradley & Venditti (2017) and Flemming (1988), are also reported. (c) Dune height (H)
plotted against flow depth (h). Red dots represent data from the Gaggian channel. Field and flume data derived from data compilation by
Bradley & Venditti (2017), together with lines representing different H/h ratios, are also reported. (d) Dune length (L) plotted against flow depth
(h). Red dots represent data from the Gaggian channel. Field and flume data derived from data compilation by Bradley & Venditti (2017), together
with lines representing different L/h ratios, are also reported. (e) PDF plots for the mean and maximum dune lee-side angles measured in the
Gaggian channel. Data from fluvial dunes compiled by Cisneros et al. (2020) are also reported for direct comparison. (f) Hotspot graph of the
potential for flow separation in which the submerged dune height (H/h) is plotted against the dune lee-side angle. Limits of the zones of no-flow
separation, the onset of flow separation, and fully developed zone separation according to Lefebvre & Winter (2016) are also reported.
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replicating the same physical mechanisms driving meander planform

dynamics. The paramount control exerted by channel curvature on

tidal meander evolution is further supported by the analyses of bank

migration in relation to other hydraulic parameters, such as tidal asym-

metry (ρs) and tidal prism (P), which we computed taking advantage of

outputs from our numerical simulations (Figures 9d and e). Though a

one-to-one comparison between MR and both ρs and P through time

is not feasible because of the different time resolution of aerial images

and numerical simulations, our results advocate that no significant

correlations exist between the analyzed parameters (Figures 9d and

e). Conversely, a significant, positive correlation (p-value < 0.01) is

observed between the relative increase in the average channel cross-

sectional area (ΔΩ, computed from the available bathymetric data)

and the relative change in tidal prism (ΔP, calculated through numeri-

cal simulations) (Figure 9f). Moreover, comparisons with early data by

D’Alpaos et al. (2010) (Figure 9f, inset) confirm that P;Ωf g values from

the Gaggian channel are within the range of variability typically

emerging from field data.

In view of the above, our results can be straightforwardly inter-

preted and bear critical implications for tidal-meander geomorphology,

as we discuss in the following. First, both direct and induced

morphological modifications of the lagoon determined changes in

local hydrodynamics within the studied channel, resulting in enhanced

local tidal ranges and water discharges (Figures 6a–c). Numerical simu-

lations firmly support this hypothesis, showing that two major incre-

ments in local tidal range, flow velocities, and flow discharges

occurred: (i) between 1897 and 1901, immediately after the comple-

tion of the jetties at the Lido inlet; and (ii) between 1932 and 1970,

when the lagoon experienced a significant deepening (Carniello

et al., 2009) and loss of salt-marsh areas (Figures 2c and d) as a result

of extensive land reclamation and the ongoing exploitation of ground-

water resources, which was at its peak during that period. Local

modifications of tidal-system properties can lead to far-reaching

morphodynamic changes.

Then, increasing water discharges determined adjustments of

channel cross-sections through widening and deepening in order to

accommodate larger tidal prisms (Figure 9f). In contrast, changes in

local tidal asymmetries caused modifications of the local sediment

transport regime (Figures 6d–f), resulting in the development of

morpho-sedimentary (i.e. bar–pool) patterns according to the domi-

nant tidal phase, as highlighted by bathymetric data (Figure 4) and

similar to previous findings regarding both tidal channels in general

F I GU R E 8 Sedimentary features of point-bar
deposits at Bend 1. (a) Location of recovered
sedimentary cores. (b) Vertical grain-size
distribution in core 2. (c–e) Lamination in point-
bar deposits. Note that laminae are commonly
marked by plant debris, and that no changes in dip
angle occur within single cores. (f, g) Couplets of
muddy laminae embedding a drape of fine sand.
(h) Subtle upward thinning of laminae.
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(Tambroni et al., 2017) and the Gaggian channel in particular

(Finotello, Canestrelli, et al., 2019). Such bar–pool patterns eventually

determine channel migration through a bar-push mechanism (van de

Lageweg et al., 2014), whose intensity directly depends on the local

channel curvature (Figure 9c) in a fashion similar to river meanders,

whereas the direction of migration is dictated by the locally dominant

tidal phase (i.e. ebb or flood). Indeed, dynamic time warping of channel

centreline migration (Figure 3) highlights changes in the migration

direction consistent with the changes in local tidal flow asymmetry.

Specifically, progressively larger ebb–peak velocities in the period

1887–1932 led to more pronounced migration on the seaward side of

bend apexes, in accordance with earlier field, numerical, and experi-

mental studies (Finotello, Canestrelli, et al., 2019; Tambroni

et al., 2017). Such a migration trajectory was maintained, though with

reduced magnitude, as tidal flow asymmetry remained nearly constant

from 1932 to 1970, whereas a shift to flood-dominated tidal flows,

likely dictated by manmade interventions at the Lido inlet and testi-

fied by a value of ρs =1.04 in 2014, gave rise to inner bank erosion

and promoted more symmetric migration, especially around bend

apexes (Figure 3).

Different from classic alluvial rivers, however, wherein the highest

SSC values are typically observed during the major flood events, we

show that SSC is not strictly related to local flow conditions within

tidal channels. Rather, high SSC can occur even during slack waters,

especially when the growth of wind waves is not impeded by wide-

spread salt-marsh areas that limit wind fetches. Our results indeed

suggest that increasingly high SSC values are observed during Bora

windstorms (Figure 6f), with markedly more pronounced raises from

1970 onwards, which are most likely dictated by the progressive wid-

ening and deepening of tidal flat surfaces at the expense of salt-marsh

areas (Carniello et al., 2009; Finotello, Marani, et al., 2020; Tommasini

et al., 2019). Such a difference in sediment transport regime has pro-

found implications for the sedimentology of microtidal point-bar

deposits, as well as for the development of channel bedforms, as we

discuss in the next section.

5.2 | Sedimentology

Aerial photos show that cored point-bar deposits of Bend

1 accreted seaward during the whole study period (Figures 3l–n),

which agrees with observational evidence provided by seismic

records as highlighted by Ghinassi, Brivio, et al. (2018). Bar accre-

tion arose from the lateral shift of the meander bend driven by

secondary currents, transverse to the main flow, which developed

from both the curvature of the channel axis (i.e. curvature-driven

secondary currents; Figure 9c) and the shoaling effect due to the

bar–pool pattern that typically characterizes meandering channels

(i.e. topography-driven secondary currents; Figure 4) (Blanckaert &

de Vriend, 2004; Camporeale et al., 2007; Johannesson &

Parker, 1989). Upbar transport of sediments allows only the finer

deposits to reach the bar top, leading to the development of a

fining-upward grain-size trend such as that observed in the cored

deposits (Figure 8).

F I GU R E 9 Tidal meander morphodynamics. (a, b) Relationships are shown between meander bank migration rates and both changes in
channel width (a) and rates thereof (b). (c) Width-normalized migration rates, corrected for the reach-averaged lag between maximum migration
and curvature (Sylvester et al., 2019), are plotted against the corresponding width-normalized curvature values. White and black triangles
represent the binned 95th and 50th percentiles of the M�

R distribution, obtained from progressively binning the data into equal sets of 50 points.
Shaded areas represent the 2D kernel density estimates of the data. (d, e) Covariance of bank migration rates computed from aerial images and
both tidal asymmetry ratio (d) and tidal prism (e) calculated from numerical simulations. (f) Relative changes in channel cross-sectional area as a
function of relative tidal prism increase. Dotted red line represents the best linear fit of the data. The inset shows field data from D’Alpaos
et al. (2010), with the red point representing average value from the Gaggian channel.

12 FINOTELLO ET AL.



Dune-scale bedforms, which only occur locally within the

present-day channel, are nearly symmetric in shape and characterized

by a low relief and the lack of a defined avalanching front (Figure 7).

Our data clearly show that while these bedforms display heights (H)

and lengths (L) similar to those observed in rivers (Bradley &

Venditti, 2017), they are characterized by markedly reduced lee-side

angles, as well as H/h ratios, with h being the local flow depth

(Figure 7). Ratios of L to h close to 1 (Figure 7d) suggest that dunes in

the Gaggian channel are shaped by mechanisms similar to those acting

in rivers, though likely mediated by significant amounts of suspended

sediment preventing the formation of high-angle dunes (Bradley &

Venditti, 2017; Cisneros et al., 2020). Indeed, in the Venice Lagoon, a

large amount of mud is suspended from tidal flats by storm waves and

flushed into tidal channels, where it can potentially settle down during

slack-water periods (Figure 6f). This substantial mobilization of mud,

along with the paucity of sandy deposits due to both the lack of any

relevant riverine input into the Venice Lagoon (D’Alpaos, 2010;

Rinaldo et al., 2008) and sand grain stabilization operated by algal

maths (Sfriso et al., 1992, 2001), promotes depositional dynamics

potentially similar to that occurring in major rivers characterized by

high SSC, where low-angle dunes have been widely documented

(Cisneros et al., 2020). The dominance of sediment settling in a nearly

symmetric tidal regime could also be responsible for the formation of

symmetric bedforms, which were progressively shaped by bidirec-

tional currents with comparable intensities, as testified by the

present-day local peak flow asymmetry (ρs = 1.04).

Integration between sedimentological core data and morphology

of surveyed bedforms allows discussion of how tidal processes are

documented in the bar deposits. The widespread paucity of cross-

stratified deposits fits with the overall lack of high-relief bedforms

developed both at the ripple and dune scale, which, on the contrary,

are commonly documented in meso- to macrotidal channels

(Archer, 2013; Choi, 2011a; Cruz & Noernberg, 2020; Dalrymple

et al., 2012; Dalrymple & Choi, 2007; Hughes, 2012). Pervasive lami-

nations conformable to accretion surfaces (Ghinassi, Brivio,

et al., 2018) suggest that the bar accreted mainly through progressive

draping of its slope, which is also confirmed by the dominance of

muddy deposits. The local variability of the dip angle of laminae could

fit with the development and preservation of low-angle dunes

(Bradley & Venditti, 2017; Cisneros et al., 2020), where suspended

sediment bypasses the dune lee and settles in the trough, shaping a

more rounded morphology since less sediment is available at the crest

to maintain an avalanching front (Hendershot et al., 2016; Kostaschuk

et al., 2009). The presence of sporadic ripple cross laminations points

to the occurrence of restricted zones where the local availability of

sand, possibly due to the reworking of older unconsolidated deposits,

allows the development of high-relief bedforms. Therefore, we posit

that the mobilization of large volumes of sediment during major

storms is responsible for the scarce development of high-relief

bedforms, and hinders the accumulation of deposits recording a typi-

cal tidal cyclicity, which is commonly well documented where large

accretional rates occur (Tessier, 1993). Accordingly, the millimetric

intervals showing a progressive change in thickness of laminae

(Figure 8) could document parts of neap–spring cycles that occurred

during storms lasting 5–6 days, where the larger availability of sedi-

ment allowed us to record the progressive change in tidal intensity

over a time interval of several days. In this frame, the clearest tidal

signature in the studied bar deposits is, therefore, represented by the

millimetre-scale mud couples (Figure 8), which are interpreted as dou-

ble mud drapes (Chen et al., 2015) documenting mud settling during

two consecutive slack-water phases. Despite being generated in a

purely tidal environment, sedimentary features of the point-bar

deposits do not show a clear signature of tidal processes, such as that

associated with tidal rhythmites or bundles, providing a warning in

interpreting sedimentary successions accumulated in microtidal

settings.

Though we claimed that the Gaggian channel represents an ideal

proxy for investigating the morphodynamics of microtidal meandering

channels, at least in terms of planform morphologies and dynamics,

care should be taken when extending the sedimentological results

described above to other tidal settings. In particular, sediment dynam-

ics in tidal embayments characterized by limited wind fetches

(e.g. where tidal flat areas are reduced compared to salt marshes),

more energetic meso- or macrotidal regimes compared to the micro-

tidal setting analysed here (Archer, 2013), and/or different sediment

physical properties (e.g. in tidal settings much sandier than the Ven-

ice Lagoon) could be much less dependent on the action of wind

waves compared to the conditions we illustrated above, thus poten-

tially giving rise to sedimentary features different from those we

describe here, especially in term of bedform morphologies and the

presence of tidal rhythmites (Bartholdy et al., 2002; Choi, 2010,

2011b; Choi et al., 2013, 2021; Choi & Dalrymple, 2004; Cosma

et al., 2022; Dalrymple et al., 2012; Flemming & Bartholoma, 2009;

Tessier, 2012; Tessier et al., 1995, 2010). This has potential implica-

tions not only for the development of tidal bedforms, but also for the

dynamics of meander bends, which are critically influenced by the

availability of external sediment supply (Constantine et al., 2014;

Horton et al., 2017). However, the paucity of studies on tidal mean-

ders carried out so far prevents a direct and meaningful comparison

between the morphodynamics of meander bends found in

distinct tidal coastal environments, and calls for new field, numerical,

theoretical, and experimental insights into a topic that is of broad

interest to the entire community of coastal ecogeomorphologists and

managers.

6 | CONCLUSIONS

We have combined historical and present-day multidisciplinary data

to reconstruct and interpret the morphodynamic and sedimentological

evolution of a meandering channel reach in the microtidal Venice

Lagoon (Italy). Blending together remote sensing, field data, and

numerical modelling, we demonstrated that natural and anthropogen-

ically induced changes in both external forcings and morphological

characteristics of the tidal embayment critically affected the mor-

phodynamic evolution of the channels by changing local hydrodynam-

ics. We observed that changes in local flow rates and peak tidal flow

asymmetry produced, respectively, adjustments of the channel cross-

sectional area proportional to increasing tidal prism and modifications

of the channel-bed morphologies, with depositional bodies forming

downstream of the bend apexes relative to the locally dominant tidal

flows. Moreover, changes in the channel bar–pool patterns due to

variations of tidal flow asymmetries decisively impacted the trajectory

of planform evolution of the studied meanders through a bar-push
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mechanism, which enhanced secondary flows and promoted channel

lateral migration according to the dominant tidal flow in a fluvial-like

fashion wherein migration rates depend primarily on local channel cur-

vature. We also demonstrated that modifications of the lagoonal mor-

phologies caused profound alterations to the channel sediment

transport regime, directly affecting erosional/depositional dynamics

and depositional processes associated with the development of tidal

point bars and bedforms. In particular, we argued that wind-driven

high concentrations of suspended sediments during slack water condi-

tions can limit the development of high-relief bedforms, as well as the

formation and preservation of classic sedimentological signatures of

tidal processes in sedimentary deposits associated with meandering

channels. The lack of these signatures in a purely tidal environment

such as the Venice Lagoon provides a warning in interpreting sedi-

mentary successions accumulated in tidal settings characterized by

reduced tidal amplitudes and critically affected by wind-induced sedi-

ment transport processes.
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