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In nonlinear models the information matrix depends on some unknown parameters,
as it is the case of the binary response model. Sometimes explicit local optimum
designs depending on the parameters can be derived. Then, for a given initial
value of the parameter the optimum design is completely determined (see e.g.
Atkinson and Donev, 1992). Explicit formulae for designs and efficiencies and for
all possible values of the parameters are of interest for robustness studies on the
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Abstract

Recently, Dette and Sahm (1998) have put forward a procedure to con-
struct MV— and SMV-optimum designs for binary response models. In order
to implement computationally this procedure some assumptions have to be
made and some theoretical results must be proved. This paper provides
the background to produce a computer code for computing local designs for
different regions of the parameters of the model. Designs for some models
used in practice are also provided as well as the efficiencies for estimating
the parameters.
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nominal values.
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Optimum experimental designs for models with binary response have been
studied widely. Ford, Torsney and Wu (1992), Wu (1985, 1988) and Sitter and Wu
(1993) use local optimality criteria. On the other hand, Abdelbasit and Plackett
(1983) and Chaloner and Larntz (1989) used Bayesian approaches to solve the
problem of the optimum design dependence on the unknown parameters. Torsney
and Lépez Fidalgo (2001) give MV-optimal designs for general compact interval
design spaces. Lépez-Fidalgo and Wong (2000) provide a study of the sensitivity to
the nominal values comparing efficiencies of the MV— and SMV-optimal designs.

Dette and Sahm (1998) have recently proposed a procedure for binary response
models with symmetric pdf. They have proved that there is always a symmetric
MV-optimum design with 2, 3 or 4 points in its support. In this paper a k-point
symmetric design will be a design with k distinct points in its support and such
that if it has weight at point z then it has the same weight at point —z. In the
first step the equivalence theorem is checked for the 2-point design. If it is not
satisfied the equivalence theorem is checked for 3-point design. If it is not satisfied
the 4-point design must be optimum. In most of the models used in practice this
last possibility never shows up. In this paper an example of a model needing a
4—point design will be provided.

The theory and results given in this paper are developed for computational
purposes. A code for computing local MV— and SMV-optimal designs for binary
models is available from the second author. Optimal designs for some classic
models and efficiencies for estimating each parameter will be provided in general
as well as for some specific models.

2 Symmetric MV— and SMV-optimum designs
for symmetric density functions

Let y be a binary response variable with probability of success

p(y=1;6,2) = Flpz—p)l, 0=(mp)", z€R (1)
where F(z) is a known cdf with a symmetric pdf f(z) differentiable at z # 0. The
possible lack of differentiability at z = 0, allows some useful models in practice,
as it is the case of linear increasing for z < 0 and linear decreasing for z > 0.
The variable z denotes the experimental condition, that in this paper will not be
submitted to any restriction.

For this model the Fisher information matrix at  of a design £ is well known
(see e.g. Fedorov and Hackl, 1997),

= 4 g o FBEEBY e
10.6)= [woe-w (o2, LEH) e,

where
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The MV—criterion, introduced by Elfving (1959), is defined by
(DMV[I(O, 6)] = m?X e; 1—1(01 6) €i,

where e; denotes the unit vector. Very often, the diagonal elements of the Fisher
information matrix are of a very different scale. Then MV-optimality gives too
much importance for instance to one of the parameters yielding 1-point optimal
designs. In order to give a proportional importance to all the parameters in the
model Dette (1997) proposes to standardize the optimality criteria. The corre-
sponding standardized MV—criterion is the SMV—criterion,

e; 171(8,€) e
i miny e{I1=(0,n) e’

Psmv[I(6,€)] =

Dette and Sahm (1998) give a general procedure for finding MV- and SMV-
optimum designs for the binary response model (1), under the hypotheses

max h(z) = h(0) and o max 2h(z) = Ah(c). (2)

The graphical Elfving’s method (1952), provides the optimum design for estlmatmg

B,

e, [n—clB utelp

p 1/2 82 |
It is MV—optimum if and only if 32 > ¢. Otherwise (3% < c), equal variance designs
are needed. This leads to information matrices with equal diagonal elements. To

verify whether an equal variance design £ is MV—optimum the following equivalence
theorem inequality must be checked,

ok ST L ®

where equality holds on the support of €, and &, is the 1-point design at . The de-
tails are provided by Dette and Sahm (1998) who have also proved that a symmet-
ric MV-optimum design with at most 4 support points always exists. Therefore,
when (32 < c, the first step of Dette and Sahm’s procedure is to check whether the
2-point symmetric design with equal diagonal elements in the information matrix
is MV—optimum using the equivalence theorem inequality. This design is

@>_{u1ﬂ uTﬁ}

]

MV =
3
and after easy but tedious algebra, the equivalence theorem inequality (3) becomes

§%(B%)h(z) + 28°h(FP)(z) - K(P*)o*h(z) — 28°H(F) <O s € R
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If 51(;)‘, is not MV-optimum a 3-point symmetric design with equal diagonal ele-
ments in the information matrix is the next candidate. This design has to be,

(3) _{“—% B l"*'%}’ w h(20) (2 — B%) (4)

MV = ~ B[A(0) — h(z0)] + zgh(z0)’

where H(z) = [h(0) — h(z)]/z*h(z) and
min H(z) = H(z). (5)

z>32

The function H will be of paramount importance in the determination of MV-
optimal designs for different values of 32. In order to check the MV-optimality of
13 IS)V the equivalence theorem inequality (3) has now a simple form,

H(z) > H(z), zeR (6)

Actually, Dette and Sahm (1998) propose to take v, where the global minimum
point of H(z) is reached instead of z, restricted to z > (2. Both procedures are
equivalent but 2z, is more convenient for computational purposes.

If inequality (6) is not satisfied either, then the last step is to compute the
MV-optimum design in the class of all the 4—point symmetric designs with equal
diagonal elements in the information matrix. This design is

_Aa _ 2 i el

@ _JH 3 2 H B H 8

MV_{ w 1—5 1—w w ' (7)
- 2 2

where
h(zz)(/34 o Zg)
h(z2) (8" — 23) + h(21)( — B°)

and (21, 22) is the minimum point for a fixed § of the function

h(y)(B* — y*) + h(z)(=* — B)
(22 — y?)h(z) h(y) ;

subject to the constraint 0 < y < 3% < z.
Summarizing the process, when 32 > c, the 2-point design &g is MV-optimum.
If 32 < ¢, it may have 2, 3 or 4 support points. The aim of this work is to identify
the parametric subsets where the symmetric MV—-optimum design coincides with
J(Z)V, 51(3)‘, and 51(&)‘,, respectively. In the next section some theoretical results are
provided in order to give sufficient conditions to implement this method compu-
tationally. The identification of these parametric regions will be used to compute
SMV-optimum designs, {spy. In fact if & ¢ is the symmetric MV-optimum design
for p =0 and 3 = s = k'/2h(0) /4 then the weight of the SMV-optimum at point
z is Esmv(z) = €o,5[8/s(z — p)] (Dette and Sahm, 1998). Thus, depending on the
parametric subset where lies 52, £gpp will be completely determined. '

w =

G(z,y,8) =
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3 Subsets of the parametric space producing dif-
ferent MV-optimum designs

Since 3 > c leads always to {g as MV—optimum, it shall be considered only the
case 3> < c henceforth. The next theorem identifies parametric regions where a
symmetric MV-optimum design cannot have either 2 or 3 support points. Since
h(z) and H(z) are symmetric respect to zero, we will only consider the case z > 0.

Theorem 3.1 If v, € [0,c) is the unique global minimum point of H(z), then

a) if 32 € (0,v), a 2-point symmetric MV-optimum design is not possible and
the 3—point design

@ _{#—% g #+%}, oo — PO -8Y o

v = = FT(0) — h(uo)] + v2h(ow)
18 M V-optimum;
b) if 3% € [vo,c), a §-point symmetric MV-optimum is not possible.
Proof
a) If 3% € (0,v) then 2y = vy and the 3-point designs (4) and (8) are the same.

Comparing the diagonal elements of the inverse information matrices of fﬁ)v and
653)‘, we have
vg h(vo) + 8* [R(0) — h(wo)] < 1
2 h(0) vg h(wo) 22 h(B?)’
since H(vp) < H(3?). Thus there always exists a 3-point design that is better
than £2),. Moreover, £, is MV—optimum since (6) is satisfied (2 = o).

b) If 3% € [vp,c), there are essentially three possible cases.

b.1) If H(z) is non decreasing on (vp,+00), then the solution of (5) is 2 = (32
and the 3—point design (4) becomes fﬁ)v

b.2) If H(z) tends to some limit greater than H(vo), say H(v:) as in Figure 1(a),
then for any 3 € [vp,v1] the 3-point design (4) and 51(\3)!/ are the same, while for
any 32 > v there is not solution for (5).

b.3) If v, is a local minimum point of H(z) such that vy < v; < ¢, as in Figure
1 (b), then for any 32 € [vg,v1] U [v3,c) the 3—point design (4) and £}, are the
same. For any (3? € (v;,v,) the solution of (5) is 20 = v;. The 3—point design
(4) cannot be MV—optimum. This can be proved taking into account that v, is a
local minimum point of H(z) and replacing v, for 2 in the equivalence theorem
inequality (6).

These three cases show that a symmetric MV-optimum design has 2 or 4
support points. In fact (5) produces the design (4) that becomes fﬁ)v, otherwise
it is not MV—-optimum. The case of H with more local optima after v, does not .
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(b)

Vo vy c

Figure 1: Two possible shapes of H(z), for z > 0.

add more to the argument given above. u

Remark 1. If the global minimum point of H(z) is not unique, then setting vp
equal to the largest of such global minimum points, all the previous considerations
remain valid.

The next theorem gives sufficient conditions for which a 4-point symmetric MV—
optimum design is not possible. In this case if 3% € (0,vp) the MV—optimum
design is f}f?v and for any 3% € [vp,c) the MV—-optimum is 51(5)‘, The interest of
this theorem is to identify the cases where the search for a 4-point design is not
needed that is obviously very convenient from the computational point of view.

Let us assume now that the 4-point symmetric MV—optimum design exists.
The point (21,2;) given in (7) minimizes the function G(z,y, ) for a fixed value
of 3. Thus, setting the gradient of G(z,y, 3) equal to zero and after some algebra,
(21, 22) is a solution of one of the following systems of equations,

h(z1) = h(za), K(21) = B(z) = 0

or

h(z1) — h(z2)
t(z1) = t(z2), t(21) TR 2N 9)
where t(z) = h'(z)/[0z%h(z)/8z] and 0 < 22 < % < 2z;. The symmetric design
Eﬁ)‘, will be MV-optimum if and only if the equivalence theorem inequality (3) is
satisfied. After some algebra this inequality can be written as

[22h(2,) — 22h(2;)] h(z)+[h(22) —h(21)] 22h(z) < (27— 23) h(z1) h(2), z€R (10)

If (21, 22) is a solution of the first system, then h(z) = h(2,) and then inequality
(10) becomes h(z) < h(z,), for any z € IR. But this is only possible if h(z) =
h(z) = h(0), since h(z) has a unique maximum point at z = 0. Therefore, if
a symmetric MV-optimum design with 4 support points exists, (z,2;) will be
necessarily a solution of the system (9).

Theorem 3.2 Assuming that the symmetric function h(z) is decreasing for z > 0
(W(z) < 0) and £*h(z) has a unique local mazimum point on (0,+o0) at =
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c, being increasing before (0z°h(z)/dz > 0) and decreasing all the way after
(0z*h(z)/8z < 0) then a 4—point symmetric MV-optimum design is not possi-
ble in any of the two cases,

a) the function t(z) is decreasing on (0,c) or

b) the function H(z) has a unique local optimum point that is a local minimum at
v and t(z) has a unique local optimum point that is a mazimum on (0,c).

Proof

From the assumptions of the theorem ¢(z) < 0if z < c and ¢(z) > 0 if z > c.
Thus, if £(2;) = t(2) then 0 < 2 < 2, < ¢ or ¢c< 2 < z. But #? < c and for
a 4-point design follows that 2, < 3% < z;. Hence the only possible situation is
<<y se.

a) If ¢(z) is decreasing on (0, c) then t(z,) = t(22) cannot be satisfied and then a
4-point symmetric MV—-optimum design is not possible.

b)- I fﬁ)‘, is MV-optimum for some 32 < c, then the equivalence theorem in-
equality (10) must be satisfied for any z, in particular for z = 0,

H(z) < H(z). (11)

If the function H(z) has a unique local minimum point at z = vy, then H'(z) >
0 for z € [vo, ). This means [h(z) —h(0)]8z*h(z)/0z — h'(z)z*h(z) > 0, and then,
—H(z) > t(z) for > vp.

Thus, if ¢(z) has a unique local maximum point on (0,c), it has to be less
than or equal to vp. Since 0 < 2; < z < c is a solution of ¢(z) = t(2;), then
either 2, < z; < vp or 2, < Yp < 2; < c. In the first case —H(2z;) < —H(z). If
7y < vy < 21 < cthen —H(2) < t(z) = t(21) < —H(21). Thus both cases are in
contradiction with (11) and fﬁ)‘, cannot be MV-optimum. a
Remark 2. The hypotheses made in these theorem are stronger than assumptions
(2), which Dette and Sahm (1998) made. But under these hypotheses, as shown in
the previous theorem, any singular point of G(z,y, 3) where the derivative vanishes
for a fixed value of 3 is in the set {(z,y) : 0 < y < z < c¢}. Taking into account
that 0z%h(z)/0z = zh(0)[2 — z3H'(z)]/[z?H(z) + 1]* and the hypothesis of the
last theorem any singular point of H(z), where the derivative vanishes, has to be
in (0,c). These properties are also useful from the computational point of view.

4 Efficiencies of MV- and SMV-optimum de-

signs

In this section we give the efficiencies of MV—- and SMV-optimum designs with
respect to the best designs for estimating p and 3, respectively. From,

mine; I (0,€)e, = 1/h(0)F" and  miné, (0, €)es = 5/
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then
1/[3*h(0)] B /K
et 110, €Emv)er ehI-1(0,Emv)ex

Table 1 shows efficiencies for the possible MV—optimum designs in order to estimate
each parameter. As (3 tends to zero, the efficiency of the MV—optimum design

eﬂ:“(va) — and effp(va) =

P eff , (Epv) effg(Emv)
(0, vo) w + (1 — w)h(vo)/h(0) (1 — w)vg h(wo)/k*
[vo, 22] h(8%)/h(0) B* h(B8%)/c* h(c)
(ehiizi) h(z1)h(22) (2] — 23 Bh(z1)h(z2) (2] — 23)
' h(0)[h(z2)(B* — 23) + h(z1) (21 — BY)] | Ph(e)[R(22)(B* — 23) + h(z1) (21 — B7)]
[21,¢) h(8%)/h(0) B* h(B%)/c* h(c)
[¢, 0) h(c)/h(0) 1

Table 1: Efficiencies of MV-optimum designs for a general function h(z), where w =
h(vo)(v§ — B*)/{B*[h(0) — h(vo)] + vih(wo)}.

for estimating (3 tends to zero and the efficiency for estimating u tends to one.
Thus £py tends to the 1-point design at u that actually is the optimum design
for estimating y. In this sense a MV-optimum design may become inefficient for

the estimation of 3.

On the other hand, for model (1), a SMV-optimum design guarantees equal
efficiencies for individual parameter estimation, eff,(§spmv) = effg(€smy). This is
a consequence of Lemma 2.3 in Dette and Sham (1998). Table 2 gives the three
different candidates for SMV—-optimality and their efficiencies for estimating each
parameter.

52 Esmv effu(ésmv) = effg(§smv)
(0, vo) o {”;;ﬁ“ # ’Ifﬁ} (1 — @) 98 h(uo)/K?
< YEReL Sk o
o gﬁng{“gf’ Y ﬁ} h(s2)/1(0)
2 2

5 ey pg W g h(z1)h(z) (22 — 2z3)

) | 5" o L | o B e
[21, ) ‘s?w:{“;ﬁ ;H%rﬁ} h(s?)/h(0)

Table 2: Efficiencies of SMV-optimum designs for a general function h(z), where @; =
h(vo) (v§ — s*)/{s*[h(0) — h(vo)] +v§h(vo) } and Gy = h(z3)(s*~23)/{R(z2)(s*~25) +h(z1)(z5—s")}-
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5 Some particular models

Before giving some examples where the previous results are used, we stress that
the assumptions made in Theorem 3.1 and Theorem 3.2 are not too restrictive.

Many cdf’s satisfy these conditions. Some of the most used in practice are shown
in Table 3.

F(z) 0< B%<v < P<e B%>c| SMV
Error distribution: 3 '3 M(!)V Exv &s 5?1?,“,
1+sg(2)  sg(2) —|z/2 287 1
—2—1 = —,—2 e eff, : st e 0861 | .526
287 + .2223° Pl
;46 i 26856 !
(c=3.6828, v = 3.1873) | effy | 52 WLl 1 | 52
Normal: I3 g)v €5 .(92124V
3(2) eff,, 1/4e5*®(8%)[1 — ®(52)] 385 | .701
(c = 1.575, vo = 0) eff 10464 /48 ®(5%)[1 — (52)] 1 701
e £ . MV & | E5dev
5/2 4\2 4
_&Zérl / oo (1+ y2 (1 +y2/4)5/2 eff, gL LA PR IN 295 | .660
(c = 1.4813, vy = 0) effg 394.96%/(4 + p*)%(16 + 38*) 1 .660
Eogabie: ¢ Env & | &l
e*/(1 + €*) eff, 47’ /(1 + B*)2 305 | .663
(c = 2.3994, vy = 0) eff 5 2.28¢5” 8% /(1 + p2)2 1-| 463
Cauchy: £ Eﬁ)v s (sﬂn)lv
1/2 +1/m arctan z e 9 87/(1 + p*)%[n? — (2arctan )% 201 | .618
(c=1.3274, vo = 0) effg | 2. 2776‘6,34/(1 + B*)2[n?—(2arctanf?)?)| 1 618
Double exponential: (3 § MV (3 M)V &s 6(532“,
1+sg(z)  sg(2) e 287 1 596
983 342
= 1.8414, vy = 1.5936 1 526
(c = 1.8414, vo = 1.5936) | effg m F{L

Table 3: Locally MV- and SMV-optimum designs and their efficiencies for different models.
Here eff, and eff s are the efficiencies with respect to the optimum designs for estimating p and
B, respectively.

All these models satisfy one of the sufficient conditions given in Theorem 3.2,
thus for none of them a 4-point symmetric MV—-optimum design exists.

If the sufficient conditions are not satisfied, a 4-point symmetric MV-optimum
design is possible. For instance, let us consider a function H(z) like the one showed
in Figure 1 (b). As proved in part (b.3) of Theorem 3.1, for any 3% € (v;,v) the 3—
point symmetric design (4) cannot be MV-optimum. On the other hand, following
the same argument as in part (a) of the same theorem it is easy to prove that f )
cannot be MV—optlmum as well. Therefore the only possible symmetric MV—
optimum design is { My- 1t is not easy to find a cdf needing a 4—point symmetric
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design. Looking for a simple polynormal H(z) Wlth a shape like in Figure 1(b)
and taking into account that h(z) = [2* H(z) + 11" we offer the example:

h(z) = 0.037
T 1412224910524+ 3.5 10-526 — 7.6 10-628 + 5.3 10-7210°

Lépez-Fidalgo, Torsney and Ardanuy (1998) showed that any function h(z) can be
o0
expressed as in (2) if and only if h(z) > 0 and / Vv h(2)dz = 7, as it is here the

case. Then F(z) = 05[1 —cos(f Vh( dz)] Here c=4, v =1, 2, = 2.4141

and z, = 1.3197, and a 4-point symmetric MV-optimal design is needed when
1.3197 < 5% < 2.4141.
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