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SUMMARY

Consider a generalized linear model with a canonical link function, containing both fixed
and random effects. In this paper, we consider inference about the fixed effects based on a
conditional likelihood function. It is shown that this conditional likelihood function is valid
for any distribution of the random effects and, hence, the resulting inferences about the fixed
effects are insensitive to misspecification of the random effects distribution. Inferences based
on the conditional likelihood are compared to those based on the likelihood function of the

mixed effects model.

Some key words: Conditional likelihood; Exponential family; Incidental parameters; Random

effects; Variance components.






1. INTRODUCTION

The addition of random effects to a generalized linear model substantially increases the
usefulness of such models; however, such an increase comes at a cost. To obtain the likelihood
function of the model, we must average over the random effects. In many cases, the resulting
integral does not have a closed form expression and, even when a closed form expression is
available, the simple structure of a fixed-effects generalized linear model is generally lost. Fur-
thermore, the resulting inferences may be sensitive to the choice of random effects distribution
(Neuhaus, Hauck, and Kalbfleisch 1992), an assumption that is often difficult to verify.

Let y;;, j =1,...,n4, @ =1,..., m denote independent scalar random variables such that
yi; follows an exponential family distribution with canonical parameter 6;;, 05 = 94,0 + 4yy
where z;; and z;; are known covariate vectors, 3 is a parameter vector representing the fixed
effects and ~y is a vector random variable representing the random effects. We assume that the
distribution of v is known, except for an unknown parameter 7.

Consider inference about the fixed effects parameter 3. If v is fixed, rather than random,
then the loglikelihood function is of the form

D {wiiwiiB + wijigy — k(w8 + zi57)}

4,
where k(-) denotes the cumulant function of the exponential family distribution. In this case,
it is well-known that inference about 3 in the presence of v may be based on the conditional
distribution of the data given the statistic s = Zi’j Yij%ij, which depends only on 3.

Although this conditional approach is typically used when = is fixed, the the same approach
may be used in the model in which v is random. Let p(y|y;B) and p(s|y;B) denote the
density functions of y and s, respectively, in the model with ~ held fixed and let p(y; 8,7) and

p(s; 8,m) denote the density functions of y and s, respectively, in the random effects model
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with -y removed by integration with respect to the random effects density h(7y; 7). For example,

p(y; B,n) = /p(ylv;ﬂ,v)h(v;n)dv-

Likelihood inference in the mixed effects model is based on L(8,7) = p(y; 8,n), which we will
call the integrated likelihood.

Let p(y|s; B,n) denote the density of y given s with v eliminated by integration. In this
paper, the properties of the conditional likelihood function based on p(y|s; B,7) are considered.
In section 2 it is shown that p(y|s; 8,n) depends only on 3. Furthermore, p(y|s; B) = p(y|s; B)
so that the conditional likelihood based on p(y|s; 3) does not depend on the choice of h(7y;n)
and inference based on 5(y|s; B) is robust with respect to the specification of h(v;7).

Thus, conditional inference in the mixed-effects model essentially uses a fixed-effects model
approach to inference regarding 3, while inference regarding +y is based on the assumption that
v is random. That is, the conditional approach in the mixed effects model is essentially a
hybrid between fixed-effects and mixed-effects methods.

Many different approaches to inference in generalized linear mixed models have been
considered; these approaches generally include some method of avoiding the integration needed
to compute the integrated likelihood. See, for example, Schall (1991), Breslow and Clayton
(1993), McGilchrist (1994), Engel and Keen (1994), Diggle, Liang, and Zeger (1994), and
Lee and Nelder (1994). For inference about population-averaged quantities, the generalized
estimating equation approach of Liang and Zeger (1986) may be used. Davison (1988) considers
inference based on conditional likelihoods in generalized linear models with fixed effects only;
in some sense, the present paper may be viewed as an extension of Davison's work to mixed
models. Breslow and Day (1980) use conditional likelihood methods for inference in a mixed

effects model for binary data. Another approach to inference in mixed models is to use Bayesian

2



ﬂnnunnﬂnﬂuuuuuuuuuuuuA
7



methods; see, for example, Zeger and Karim (1991), Draper (1995), and Gelman et al. (1995).

The mixed models considered here are closely related to mixture models in which the ran-
dom effects distributibn is treated as an unknown mixture distribution. Conditional likelihood
methods are often used for inference in these models; see, for example, Basawa (1981), Lindsay
(1983, 1995), van der Vaart (1988), and Lindsay, Clogg, and Grego (1991).

In section 2 the properties of the conditional likelihood function for 3 are considered and
in section 3 the conditional likelihood is compared to the infegrated likelihood for 3. Inference
based on the conditional likelihood is discussed in section 4. Sections 2 through 4 consider
models in which any possible dispersion parameter is known; in section 5 we ‘consider models

containing an unknown dispersion parameter. Section 6 contains a numerical example.

2. CONDITIONAL LIKELIHOOD

Since p(y|v; B) = p(yls; B)p(s|v; B), we have that
p(y; B,m) = /p(yi”r;ﬁ)h(v; n)dy = /p(yIS;B)p(Sl"y;ﬂ)h(v; n)dy
= p(yls; B)b(s; B,n)

Hence,

_ o Dy Bn) _ plyls; B)B(s; B, m)
Pulsbn) = Sebn) — (e Byn)

Therefore, the conditional likelihood based on p(y|s; B) is the the same as that based on

= p(yls; B).

p(y|s; B) and does not depend on the choice of h. Furthermore, since the conditional likelihood
is a genuine likelihood function for 3, its properties are not affected by the possibly high

dimension of 7.

Example 1. Poisson regression
Let y;5, 7 = 1,...,n4, @ = 1,...,m denote independent Poisson random variables such

that y;; has mean exp{zi; 3+ v:}. The conditional density of the data given v = (Y15« 5Tm)
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is given by

eXP{Zi,]’ YijTiiB + D ViYi — Zi,j exp(zi;B + %)}
ITi,; vis!

plyly; B) =

where y; = >, yi;. Hence, in the model with held fixed, (y1,...,Ym) is sufficient for fixed
B and the conditional likelihood function is given by

exp(D_; ; ¥ijTiih)
Hz{ZJ exp(zi;f)}¥

(1)

Now consider a distribution for the random effects. Suppose that exp{y1}, ..., exp{¥m}

are independent random variables, each with an exponential distribution with mean n. Then

— e . o i Py +1)
p(y; B,m) = eXP{ZZ,j: YijTijB} 1:Iny {n Ej explmy;0) -+ L H

yz]

Clearly, (y1,...,Ym) is sufficient in the model with 3 held fixed. Given 7, y1,...,Ym
are independent Poisson random variables with means exp{7y:} >_, exp{zi;8}, i = 1,...,m,

respectively. Hence, the marginal density of y; is

i F(yi + 1) 1
{zj: exp(z:;6)} 1:[ I Zj exp(zi;B) + 1}¥+1 Z—/j

and the conditional likelihood given y1,...,yn is identical to (1) given above. The argument
given earlier in this section shows that the same result holds for any random effects distribution.

Some functions of 3 may not be identifiable based on the conditional distribution given

s. Let X denote the n x p matrix, n = Y_ n;, p = dim(3), given by

X=Me)=(l of - ol o gl ok o o
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similarly, let Z = M(z;;) and y = M (y;;) so that Z isn x ¢, ¢ = dim(y), and y is n x 1. The
sufficient statistic in the full model is given by (X Ty, ZTy) and the conditioning statistic s is
equivalent to ZTy. Hence, if there exists a vector b such that Xb = Za for some vector a, the
corresponding linear function of 8 will not be identifiable in the conditional model. Therefore
we assume that Xb = Za only if a and b are both zero vectors, so that the entire vector 3 is
identifiable in the conditional model. If, for a given model, this condition is not satisfied, the
results based on the conditional likelihood given below may be interpreted as applying only to
those components of 3 that are identifiable in the conditional model.

Those components that are not identifiable in the conditional model may be viewed as
being parameters of the random effects distribution. Clearly, the conditional likelihood function
cannot be used for inference about those parameters. Furthermore, inferences regarding param-
eters that are not identifiable in the conditional model are particularly sensitive to assumptions
regarding the random effects distribution.

If exact computation of the conditional likelihood is difficult, an approximation may be
used. Using a saddlepoint approximation to the marginal likelihood function based on s, an
approximation to the conditional likelihood given yi, ..., yn, is given by

1
L(B) = ‘{Z z5k" (i B + Zz'ﬂﬁ)zij}i " exp[)_{yijziiB + zijip — k(@i B + 2i578)}]
1,J 1,J
where 43 is the maximum likelihood estimator of y for fixed 3 in the model with v held fixed.
Note that this approximation is of the form |~ (8, ﬁﬁ)l%Lp(,B) where L, () denotes the profile
likelihood for 3 and j(8,y) denotes the observed information for fixed 3; in both cases, v is
treated as a vector of fixed effects. If the dimension of + is fixed, the error of the approximation
is O(n~1). If m, the dimension of v, increases with n, then the error is, under some conditions,

o(1), provided that m = o(n#); see Sartori (2001) for further details.
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This approximation was given by Davison (1988) for inference in a fixed-effects generalized
linear model; it is also identical to the modified profile likelihood function (Barndorff-Nielsen
1980, 1983). Thus, the argument given earlier in this section shows that, in a generalized linear
model with canonical link function, the modified profile likelihood based on treating  has a

fixed effect is also valid if -y is modeled as a random effect.

3. RELATIONSHIP BETWEEN THE CONDITIONAL AND INTEGRATED LIKELIHOODS

Let £.(53) denote the conditional loglikelihood for 3 and let £(3,n) = log B(y; 8,7) denote
the integrated loglikelihood based on a particular choice for the random effects distribution.
Since £(5,7) depends on 7 and 3, for inference about 3, we may consider the profile integrated
loglikelihood, £,(8) = £(B,7); for instance, B may be estimated by maximizing £:¢8).

In general,

plutn . =
g

so that Z,(B) — £.(8) = £,(B; s) where £(j3,7; s) denotes the integrated loglikelihood function
based on the marginal distribution of s and £,(8; s) is the corresponding profile loglikelihood
function. Hence, the difference between £.(3) and £,(3) depends on how £,(B; s) varies with
B. Since £, does not depend on the choice of h, the sensitivity of £,(8) to choice of h is
measured by the sensitivity of £,(5;s) to the choice of h.

If £,(B; s) does not depend on 3, then £,(8) = £:(B). This occurs, e.g., if the statistic s
is S-ancillary for 3 based on the density p(s; 3,n) (Severini, 2000, Section 9.2). Recall that s

is S-ancillary for 3 if, for each 1, B2, m1 there exists 12 such that

/p(SW; Ba)h(y; m2)dy = /p(sl’y;ﬁﬂh(’y;nl)d'y.

Hence, this condition depends on the properties of p(s|y;3) as well as on those of h(v;n).
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Example 2. Matched pairs of Poisson random variables
Consider the following special case of the Poisson regression model in which n; = 2 for all
iand z;; = 1if j =1and z;; = 0 if j = 2. In this model, s = (y1,...,ym) where y1,...,ym

are independent Poisson random variables such that y; has mean w;T(8), w; = exp(7;) and
T(B) = ) _exp(zi;8) = exp(B) + 1.
J

Assume that wq, . ..,w,, are independent identically distributed random variables and let

g(+;n) denote the density of w;. Then

a6 ,1) = [] o [(T(0))" exp{-T(B)}a(win)do.

If n is a scale parameter, then g(w;n) = g(w/n;1)/n and

3s3 8,1 = [ o [ (/T (@)} exp{~(uo/mnT (B)}a(e/m; 1) /ndes

Therefore, p(s; 3,n) depends on (3,7) only through nT'(3) and, hence s is S-ancillary. Thus,
in the two-sample model, any integrated likelihood function based on a scale model for the
exp(7;) yields the same estimate of 3 and that estimate is identical to the one based on £.(8).

This same result holds in a general Poisson regression model provided that the design is

balanced in the sense that z;;, j = 1,...,n; are the same for each :. 1

Exact agreement between £.(3) and £,(53) occurs only in exceptional cases. It is straight-
forward to show that the Laplace approximation to the integrated likelihood function is given

by

o &
(3 2Tk (@3B + z70) s} |  exp{ Y lyssmesB + viszis s = klwigB + 21598)]}h(3)
0,3 1,J
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so that £,() may be approximated by
0c(B) — log ’{2 2k (4B + 2ij9p) i3 }| + 1og h(3p: 7ip)
12}

where ZC(,B) denotes the saddlepoint approximation to the conditional loglikelihood given in
section 2 and 7jg maximizes h(%s;n) with respect to 7 for fixed 3. When the dimension of vy
is fixed, the relative error of this approximation is O(n‘l). In this case,

&
Vn

Al

ToHUB)+ 070,

£,(6) =
That is, £.(8) provides a first-order approximation to é_p(,B) based on any non-degenerate
random effects distribution. It is important to note that the O, term in this expression refers
to the distribution of the data corresponding to the random effects distribution h.
The analysis above is based on the assumption that m, the dimension of  remains fixed
as n — oo and the conclusions do not necessarily hold when m increases with n. For instance,

the saddlepoint approximation and Laplace approximation used are valid only when m grows

very slowly with n, specifically when m = o(n3) (Shun and McCullagh, 1995; Sartori, 2001).

Example 3. Poisson regression (continued)

Suppose £(,7) is based on the assumption that exp(71),...,exp(ym) are independent

exponential random variables with mean 7. It follows that

— g Zj exp(zi;) Zj x;j exp(zi;8)
Zj exp(zi;8) uk; Zj exp(zi;8) + 1

- Yi
58— &8)=>_
Foreachi=1,...,m,

yi — g 225 exp(@i58)
Dui eX}J’.)(a?ij,B) = 0,(1) as n;— 0.
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Hence, under the assumption that each n; — oo while m stays fixed,

| S L

in agreement with the general result given above.

Lre-= )

n'?
Now suppose the n; remain fixed while m — co. Since 7jg = n + Op(n~3),

yi — g 2o, exp(@ish) _ yi —n 3, exp(iih)
Z_j exp(zi; ) Zj exp(zi;3)

+0p(n_1),

and, hence,
yi — g 3_; exp(xi;B)

= 0y(v/m).

m
It follows that, in this case,

-

26 =7

Tl £(8) + 0(1),

as described above. §

For cases in which ¢, and Zp lead to different estimators of 3, an important question is
the relative efficiency of those estimators. It has been shown that, if the set of possible random
effects distributions is sufficiently broad, then 3, the maximizer of £, is asymptotically efficient
(Pfanzagl 1982, ch. 14; Lindsay 1980). However, when there is a parametric family of random
effects distributions, 3 is not necessarily asymptotically efficient (Pfanzagl 1982, ch. 14).

Godambe (1976) shows that the estimating function based on £. is optimal if either the
conditioning statistic s is S-ancillary or the set of possible distribution of s is complete for
fixed 3. More generally, B is asymptotically efficient provided that the information for 3 in
the distribution of s, as a proportion of the total information, approaches 0 as n — oo (Liang,

1983). Hence, this condition is satisfied if m is considered fixed as n — oo, but is not necessarily
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satisfied if m — 0o as n — co. If the dimension of -y is large relative to n, there may be some
sacrifice of efficiency associated with the use of B. However, the estimator of 3 is valid under

any random effects distribution and any loss of efficiency must be viewed in that context.

4. INFERENCE FOR THE FIXED EFFECTS BASED ON THE CONDITIONAL LIKELIHOOD

Since £, is also a conditional loglikelihood in the model with parameters (3,7), under
standard regularity conditions, B is asymptotically distributed according to a multivariate normal
distribution (Andersen 1970). The asymptotic covariance matrix ofB may be estimated using
Jer the observed information based on £, evaluated at j. Furthermore, Andersen (1970) shows
that the convergence of the normalized B to a normal distribution holds conditionally on ~.
Hence, the asymptotic normality of 3 is valid for any random effects distribution.

A confidence region for 3 may be based on W = 2{¢.(8) — £c(8)}. Under standard
conditions, W is asymptotically distributed according to a chi-squared distribution with p
degrees-of-freedom (Andersen 1971). As with the asymptotic normality of B this result holds
conditionally on v and, hence, the result is valid for any random effects distribution.

Confidence limits for a scalar component of 3 may be based on the signed likelihood ratio
statistic based on /. or, on the modified signed likelihood ratio statistic based on /.. See
Pierce and Peters (1992) and Sartori et al. (1999) for discussion of the properties of the signed

likelihood ratio statistic in models with many nuisance parameters.

5. MODELS WITH A DISPERSION PARAMETER

Generalized linear models often have an unknown dispersion parameter as well, so that,

conditional on -, the loglikelihood function is of the form

;i3 B + YiiziiyY — k(8 + 2ij
Zy” B + iy — k(236 ]7)-1-20(%‘]’,0')

a(o)

1,5 %,J
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where ¢ > 0 is an unknown parameter and c and a are known functions. The conditional
likelihood given ) y;;z2;; is still independent of -, although it now depends on o.

Inference about 3 may be based on the profile conditional loglikelihood, £.(3,53) where
Gp is the value of o that maximizes £.(B, o) for fixed 3. Note that 63 is valid estimator of o
for fixed 3 for any random effects distribution.

Now consider inference about o. For fixed o and 7, the statistics ¢,s, t = Zi’j YiiTij
g Zi’j yi;2ij are sufficient; hence, we may form a conditional likelihood for o by conditioning
on these statistics. The argument given in section 2 showing that the conditional likelihood
function given s is valid in the random effects model, for any random effects distribution, is
valid for the conditional likelihood given s,t as well. Hence, the conditional likelihood estimator

of o is a valid estimator of o in the random effects model for any random effects distribution.

Example 4. Normal distribution

Let yi;, j = 1,...,n4, @ = 1,...,m denote independent normal random variables such
that y;; has mean z;;3 + z;;7v and variance o2. The conditional loglikelihood function given
Di; YiiTijs D4 YijZij is given by

1

202 £
ij

(yij — ©i;B — zj7)2 — (n—p—q)logo (2)

where B and 4 are the least-squares estimators of 3 and 7y respectively.

Hence, the conditional maximum likelihood estimator of o2 is the usual unbiased estimator:

s? = Zi,j(yij = xijB i Zij:/)z/(n ol e U1

6. AN EXAMPLE
Consider the data in Table 1 of Booth and Hobert (1992, p. 263). These data describe

the effectiveness of two treatments administered at eight different clinics. For clinic 7 and
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treatment j, n;; patients are treated and y;; patients respond favorably. Following Beitler and
Landis (1985), we model the clinic effects as random effects. Given the random effects, the y;;

are taken to be independent binomial random variables such that y;; has index n;; and mean

o exp(vi + Bo + B1)
M1+ exp(yi + Bo + B1)

and y;2 has index n;2 and mean

exp(vi + Bo)
Nni2 5
1+ exp(: + Bo)

Let y; = yi1 + ys2. The conditional loglikelihood for 3; is given by

G5} ;yil - 2;108{%: (n:) (yiniz u) exp(B1u)}

where the summation with respect to u is from max(0, y; — n;2) to min(y;, n41).

The random effects 71, ...,7s are taken to be independent and identically distributed,
each with density h(-;7). Several choices were considered for the random effects distribution:
a normal distribution, a logistic distribution, and an extreme value distribution for 7; and a
gamma distribution for exp(7;). In each case, ; has mean 0 and standard deviation 1.

Table 2 contains parameter estimates based on the conditional likelihood as well as on the
integrated likelihood for each of the four random effects distributions. In addition, estimates
based on the saddlepoint approximation to the conditional likelihood function are given. The
integrated likelihood functions were computed numerically using Hardy quadrature. Standard
errors of the estimates are given in parentheses. Inferences for 3; based on the conditional
likelihood are essentially the same as those based on the integrated likelihood for each choice
of the random effects distribution: note, however, that the conditional likelihood eliminates the

need for numerical integration.
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Table 1
Parameter Estimates in the Example

Parameter
Likelihood Bo B, .

Conditional Exact 0.756 (.303)
Saddlepoint 0.755 (.303)

Integrated Normal -1.20 (.549) 0.739 (.300) 1.40 (.430)

Logistic (122 (.582)  0.738(.300)  1.52 (.510)

Extreme value -1.15 (.580) 0.743 (.301) 1.49 (.526)

Gamma 123 (643)  0.720(299)  1.67 (.653)
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