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SUMMARY. The aim of this paper is to investigate the robustness properties of likelihood
inference with respect to rounding effects. Attention is focused on exponential families
and on inference about a scalar parameter of interest, also in the presence of nuisance
parameters. A summary value of the influence function of a given statistic, the local-
shift sensitivity, is considered. It accounts for small fluctuations in the observations. The
main result is that the local-shift sensitivity is bounded for the usual likelihood-based
statistics, i.e. the directed likelihood, the Wald and score statistics. It is bounded also
for the modified directed likelihood, which is a higher-order adjustment of the directed
likelihood. The practical implication is that likelihood inference is expected to be robust
with respect to rounding effects. Theoretical analysis is supplemented and confirmed by a
number of Monte Carlo studies, performed to assess the coverage probabilities of confidence

intervals based on likelihood procedures when data are rounded. In addition, simulations
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indicate that the directed likelihood is less sensitive to rounding effects than the Wald and
score statistics. This provides another criterion for choosing among first-order equivalent
likelihood procedures. The modified directed likelihood shows the same robustness as the
directed likelihood, so that its gain in inferential accuracy does not come at the price of

an increase in instability with respect to rounding.

Key words: Directed likelihood; Exponential family; Higher-order asymptotics; Influence
function; Maximum likelihood estimator; Modified directed likelihood; Robustness; Score

test; Wald test.

1 Introduction

In many practical situations, data are subject to rounding. This operation consists in
changing the values of the observations slightly, as happens in rounding to a fixed number
of decimal places, or grouping or due to some local inaccuracies, e.g., of the measuring
instrument. The question arises of how this reduced precision in the recorded data may
affect classical likelihood based procedures for testing and interval estimation.

So far, studies on the effects of the reduced precision of recorded data on statistical
inference have concentrated largely on point estimation and inference in Gaussian models.
Heitjan (1989) provided a survey of the current state of the art regarding grouped data.
Tricker (1984, 1990, 1992, 1995) presents the results of several simulation studies to assess

the effects of rounding on some classical statistical techniques. The results indicate that



less precision of the recorded data is required than the precision which is usually available.
No general results seem however to be available concerning likelihood procedures for testing
and interval estimation. Some natural tools for tackling this issue are provided by robust
statistics (Hampel et al., 1986).

Although in the last two decades the amount of statistical research devoted to ro-
bustness has increased considerably, the issue of rounding the observed data has been
somewhat neglected. Most of the reasearch effort has focused on robust estimation and on
robust testing procedures; for recent reviews see Markatou, Stahel and Ronchetti (1991),
Markatou and Ronchetti (1997), and Ronchetti (1997). A basic tool used to formalize
the robustness properties is the influence function (IF), which can be used to investigate
the local stability of a statistic, such as an estimator or a test statistic. Whereas there
exists a large body of literature on the use of the IF to assess the effect of small deviations
from the assumed parametric model on the performance of classical estimation and testing
procedures (see, e.g., Hampel et al., 1986), the issue of "wiggle around” with the obser-
vations has received very little attention. One exception is the paper of Victoria-Feser
and Ronchetti (1997), that studies the sensitivity of a class of minimum power divergence
estimators for grouped data to grouping effects.

Here we address the effects of rounding on likelihood procedures from a robust statistics
point of view. We restrict attention to exponential families when inference on a scalar
parameter of interest, also in the presence of nuisance parameters, is desired. We use the
local-shift sensitivity derived from the IF (see Hampel, 1974; Hampel et al., 1986, chap.

2) as a basic tool to assess the robustness properties of the classical likelihood inference



procedures. In particular, we focus on the directed likelihood, the Wald and score statistics.
Moreover, we also consider the modified directed likelihood (see e.g. Barndorff-Nielsen and
Cox, 1994, chap. 6, and Severini, 2000, chap. 7), which is a higher-order adjustment of the
directed likelihood, having standard normal, N(0,1), null distribution with third-order
accuracy.

The IFs of the above mentioned statistics are unbounded, and therefore small devi-
ations from the assumed model can have drastic effects on likelihood based procedures.
The main theoretical result of this paper is that, on the contrary, their local-shift sen-
sitivities are bounded. Likelihood based procedures are therefore expected to be robust
with respect to rounding. Theoretical analysis is supplemented and confirmed by a num-
ber of Monte Carlo studies. They indicate that the directed likelihood is less sensitive
to rounding effects than the Wald and score statistics. This provides another criterion
for choosing among first-order equivalent likelihood procedures. Moreover, the modified
directed likelihood shows the same robustness as the directed likelihood, so that the gain
in inferential accuracy does not come at the price of an increase in instability with respect
to rounding.

The paper is organized as follows. In Section 2 the IF and the local-shift sensitivity
are briefly discussed. In Section 3 we calculate the local-shift sensitivity of likelihood pro-
cedures in the context of one-parameter exponential families. Multiparameter exponential
families are considered in Section 4. Section 5 is devoted to the higher-order modification
of the directed likelihood, i.e. the modified directed likelihood. Section 6 illustrates the

results of a number of Monte Carlo studies performed to assess the stability of the coverage




levels of confidence intervals based on likelihood procedures when data are rounded to a

fixed number of decimal places. Some final remarks are given in Section 7.

2 Robustness concepts

There are at least two basic operations which occur in discussing the robustness properties
of any statistic. The first one consists in "adding” (or "deducting”) a small mass of
arbitrary contamination at a point z to assess the effect of outliers, gross errors, bad values
or whatever one wants to call them. The second basic operation consists in ”wiggling”
around with the observations, i.e. to change their values slightly, as happens in rounding
or grc;uping. As noted by Hampel (1974), this second operation can be reduced to the first
one, since to shift an observation slightly from the point z to some neighboring point y is
the same as to add an observation at y and to remove one at z. Therefore, the effect of
wiggling is about the difference of the effects of adding and deducting at two peighboring
points. Since the normalized effect of adding a small contamination at some point z is
described by the value of the IF, the normalized effect of wiggling somewhere is described
by a normalized difference or simply the slope of the IF at that point. This explains the
central role of the IF in the study of local robustness problems.

Consider the following basic model. Let y = (y1,...,yn) be a random sample of size
n such that, for each 4 = 1,...,n, y; has a continuous distribution Fy = F(-;0), with
€ © CIRP, p> 1. Let us denote by F, = F,(z) the empirical distribution function.

In the following, we focus on statistics T, = Ty, (y) which can be represented (at least

asymptotically) as functionals of the empirical distribution function, i.e. T, = T(F},).



One way of assessing the robustness properties of a statistic is by means of the IF
(see Hampel, 1974; Hampel et al., 1986). Let J; be a point mass at = and let F, denote

mixtures of Fy and d, i.e. F. = (1 — €)Fy + €dz, with 0 < € < 1. The IF of T at Fj is

defined by

IFr(z) = 5T(F) - )

Equation (1) describes the effect of a small contamination at the point z on T, standardized
by the mass of the contamination. A desiderable robustness property for a statistic is a
bounded IF. Accordingly, the most important summary value of the IF is the supremum
of its absolute value, i.e. the gross-error sensitivity 7v* = sup, [[Fr(z)|. It measures the
worst.approximate influence which an infinitesimal amount of contamination can have on
the value of T'.

Having defined a measure for the worst possible effect of "adding” contamination, we
also need a measure for the worst effect of ”wiggling” the observations. An important

summary value of the IF which accounts for small fluctuations in the observations is

provided by the local-shift sensitivity defined as

\* = sup |IFT(x) - IFT(y)I ) (2)
TH#Y ’III - yl

This measure is particularly relevant when one considers the local effects of rounding or
grouping.

When attention is focused on testing hypotheses in a general parametric model, robust
statistics introduces a level influence function and a power influence function that describe

the influence af a small amount of contamination at some point z on the asymptotic level




and power of the test statistic. However, it turns out that the level influence function
and the power influence function are proportional to the IF of the test statistic (see e.g.
Hampel et al., 1986, chap. 3, and Ronchetti, 1997). Therefore the robustness properties

of a testing procedure depend on the properties of the IF of the test statistic.

3 Results for one-parameter exponential families

Suppose that, possibly after a sufficiency reduction, the reference model is a one-parameter

exponential fa.mily with density

p(t;0) = po(t) exp{6t — nK(0)} , 3)

where 6 € ©, with © C IR the natural parameter space, py(t) a function depending on the
canonical statistic ¢ = ¢(y) only, and K(6) the cumulant function.

The log-likelihood function based on model (3) is £(0) = £(6;t) = 6t — nK(6). We will
write § for the maximum likelihood estimator (MLE) of  and we assume that it exists
with probability one. The MLE is then the unique solution of the likelihood equation
nK'(f) = t. In the following, a hat over a likelihood quantity will denote evaluation at
6. In view of the likelihood equation, the log-likelihood function for @ can be written as
¢(0) = £(6;6) = OnK'() — nK (6). For setting confidence regions (;r for testing hypotheses

about 60, the directed likelithood

r = r(6p;0) =sgn(d— 6) 2{3(9) —£(60)}

= sgn(® - 0)Van {K'0)(6 - 60) + K(60) ~ K(O)} @)

may be used. For instance, confidence regions with nominal coverage 1 — « for 6 can be



constructed as {0 : —21_q/2 < 7(0) < 21_q/2}, Where 2;_,/; is the (1 — @/2)-quantile of
the N(0,1) distribution. Two statistics closely related to the directed likelihood are the

Wald statistic

re = r¢(00;0) = (6 — 80)i(0)/% = (6 — 6o) {nK"(@)}l/2 ’ (5)

where i(6) = nK"(6) is Fisher information, and the score statistic
= rul60i6) = £(80)i(00) 2 = Vi { K'(0) — K'(60) } (K" (00)} ™2

where £'(6) = (8/00)¢(6) = n{K'(6) — K'(0)} is the score function. Both r. and r,
have the same asy’mptotic null distribution as r, i.e. they are asymptotically distributed
accor:iing to a N(0,1) distribution.

Observe that the MLE can be written as a functional of the form § = T'(F,). Moreover,
r, e and 1, are functionals too, since they depend on ¢ only through the MLE 6. Therefore,
their IFs can easily be computed using definition (1) and some basic differentiation rules.
Let us denote by # the true parameter value, that is § = T'(Fp). The following expressions

for the IF of the statistics r, . and 7, can be derived:

IF(0) = Sr@uT(R)|  =Clz-K0),
IP(0) = Gr(T(R)| =Cule-K6),

IF, (z) = ggru(GO;T(Fe)) =Cu{z — K'(0)},

e=0




where C, C, and C, are three terms that do not depend on z, given by

0 = \[p0- 6l (K06 -a0) + K(ow) - KO
C, = \/1_1K”(0)—1 {KII(0)1/2 +(0- 00)K"(0)_1/2K’”(0)} ,

Cu = Vn{K"(60)}™'*.

When 6 approaches 6y, we see that C = C, = C,, = \/E{K”(Oo)}‘l/?. The IFs of the
three statistics are all linear functions of z. Therefore, they are unbounded. This means
that a small deviation from the assumed model F' can have a drastic effect on r, r. and
Ty.

The local-shift sensitivity A\* for r, r. and r, is simply given by
C, |Ce| and C, , (6)

respectively. Therefore, for the three statistics under consideration A* is bounded. Its
value, however, can be large: for a given 6, it depends on 6y and on n. To illustrate
this, Figure 1 gives the plots (;f the local-shift sensitivities (6) computed for the gamma
distribution (with fixed shape) and the inverse Gaussian distribution (with fixed shape).
From Figure 1, it may be noted that the local-shift sensitivity associated with the statistic
r, C, is less dependent on 6y than |C,| and C,. Moreover, it can be noted that the
Wald statistic 7. appears to be more sensitive with respect to rounding effects than the
directed likelihood and the score test. The same behaviour for the the local-shift sensitivity
associated to the statistics r, r, and r, has been observed also for other one-parameter
exponential families not reported here. This provides anothef criterion for choosing among

first-order equivalent likelihood procedures.
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(Figure 1 about here)

4 Results for multiparameter exponential families
Consider an exponential family of order p with density
p(t7 U; 9) = pO(ta U’) exp{Tt + C U - TLK(T, C)} ) (7)

where 6 = (1,(¢) € © C IR?, with © the natural parameter space. The component ¢ = ¢(y)
of the natural observation (¢,u) = (£(y),u(y)) as well as the component 7 of the natural
parameter are assumed to be scalars.

Consider 7 as the parameter of interest a.nd ¢ as a nuisance parameter. In the following,
for partial derivatives of the cumulant function K (7,{) we will use the succinct notations
K, = 8K(r,()/0r, K¢ = 0K(1,)/9, Krr = 0K(1,()/07%, K¢ = 3*K(7,()/078(",
K¢ = 0%K(1,{)/8¢O¢T, and so on, where the superscript T denotes transposition.

Let us denote by £(7,{) = ¢(,(; t,u) = 7t+(-u—nK(7,() the log-likelihood based on
model (7). We will write (7, ¢) for the unconstrained MLE of (7,(), given as the solution

of the likelihood equations
t:nKT(?,f) , u=nKC(7",f) . (8)

We will write fT for the partial MLE of { for a given value of 7, defined as the solution of

the likelihood equation u = nK¢ (7, ¢) which, in view of (8), can be written as
K¢(1,6) = K((7,0) - 9)

The profile log-likelihood for 7 is £p(T) = £(7, &) =nrK, +néy - R’C —nK, where a tilde

10




over a likelihood quantity is used when the quantity is evaluated at (7, f,), while a hat

denotes evaluation at (7,().

Under model (7), the profile directed likelihood

rp = rp(10;#,{) = sgn(# — 10)v/2{lp() — £p(m0)}
2 i . e 2 s e
= sga(f —0)Van {(* - )k + ({ - {n) K — K+ K} (10)
may be used as in the scalar case for setting confidence regions or for testing hypotheses

on the scalar parameter of interest 7. A statistic closely related to the profile directed

likelihood is the Wald statistic

? rpe = rpe(10;7,{) = (+ — 10)V/7p(7)
i St
= ) {nKTT = nKTCKC"CIKCT} , (11)

where jp(7) = —0%p(1)/07% = nK,r — nK, (K C_(lf{@ is the profile information. Another

statistic of interest is the score statistic

rea = Tpu(10;7,{) = €p(10)/ /5P (T0)
3 3 3% G ~ 1 -1/2
— n(KT - K’r) {NK—,-T o nKTCKCC KCT} ) (12)

where £,(7) = (8/87)¢p(1) = n(K, — K,) is the profile score function. Under regular-
ity conditions, the statistics (11) and (12) both have the same asymptotic N(0,1) null
distribution as the profile directed likelihood (10).

As in the scalar case, 7 and é can be written as a functionals of the empirical distri-
bution function, of the form 7 = Tl(ﬁ’n) and ¢ = Tg(ﬁ’n). Moreover, from equation (9), it

may be noted that also f, can be written as a functional, since for a fixed 7 it is a function

11



of 7 and f . Finally, also rp, rpe and rp, can be written as functionals, since they depend
on the observations only through the MLE (7, f ). Therefore, their IFs can be computed
using definition (1) and some basic differentiation rules. Let us denote by (7,() the true
parameter value, i.e. 7 = T1(Fy) and ( = Tp(Fp), and let us denote by (r, the limit in
probability of CTO, when (7,() is the true parameter value. Moreover, let us denote by
IFr,(z) and IFr,(z) the IFs of the MLEs of 7 and (, respectively. It can be shown that
IFr (z) = Iz + I and that IFr,(z) = I3z + I3, where the scalar terms I; and Iy and
the vectors I3 and Iy do not depend on z (their expressions are given in the Appendix).

Moreover, it can be shown that the IFs of the statistics rp, rpe and rp, are of the form:

- 0
IF"P (:1:) = &"'P(To;Tl(Fe)a T2(Fe)) = A1IFT1 (:L‘) + Ay - IFTZ(:E)
=0
0
IF, (z) = gzrpe(fo; Ti(F.), Ta(F.))| = BilFp(z)+ By - IFr,(z)
e=0
9]
IF,,(z) = &"'Pu(TO§Tl(Fe)aT2(Fe)) = D\IFr,(z) + Dy - IFpy () ,
e=0

where the scalar terms A;, By, D; and the vectors Ag, By, and Dy do not depend on z
(their expressions are given in the Appendix). Note that the IFs of the three statistics
depend linearly on z, since both I Fr, (z) and I Fr,(z) are linear functions of z. Therefore,
the IFs are unbounded for all the three statistics under consideration.

It is easy to see that the local-shift sensitivity \* for rp, rp. and rp, is given by
|A1[1 + As - Igl . |Blf1 + By - Ig‘ and |D111 + Dy - 13, ,

respectively. Therefore, as in the scalar case, for the three statistics rp, rpe and rp, the
local-shift sensitivity A\* is bounded. Figure 2 gives the plot of the local-shift sensitivity for

rp, Tpe and Tp, computed for the gamma distribution with shape parameter of interest

12



and with scale nuisance parameter. From Figure 2, it may be noted that the A* has a
similar behaviour as in the scalar case. Moreover, it can also be noted that the profile
directed likelihood statistic rp appears less sensitive to rounding effects than rp, and
rpy. The same behaviour for the the local-shift sensitivity associated to the statistics rp,
rpe and rp, has been observed also for other multidimensional exponential families not

reported here.

(Figure 2 about here)

5 Results for higher-order approximate pivots

In many cases, the accuracy of the usual first-order normal approximation for the distri-
butions of r or rp is questionable. It is, however, possible to consider modified versions of
r or rp, that have a null N(0,1) distribution to a high order of approximation, while still
retaining the essential character of the directed likelihood.

Consider first an exponential family model with scalar parameter §. A modified version

of r for model (3) is given by (see e.g. Pierce and Peters, 1992, or Severini, 2000, Sec. 7.3)
* __ % ) A 1 T_e.
r —r(00,6’)—r+rlog(r) , (13)

where r and 7. are defined by (4) and (5), respectively. Consider now a model param-
eterised by a scalar parameter of interest 7 together with a nuisance parameter { (as in
Section 4). The modified directed likelihood based on model (7) is then (see e.g. Pierce

and Peters, 1992, or Severini, 2000, Sec. 7.4)

p 1
rp =rp(10;7,() =P+ —log (u—P) : (14)
rp rp

13



where up(7o; 7, ¢) = v(T0; #,8)rpe(10; 7, ), with v(7o; 7, €) = [ice|/?/lic¢|'/?. The modified
directed likelihoods (13) and (14) are higher-order pivotal quantities, having a null N(0, 1)
distribution with error of order O(n=%/2).

The statistics 7* and 7} can be written as functionals, since they depend on the
observations only through the MLEs. They assume simple expressions in the context of

exponential families, so that their IF can easily be computed. For a one-parameter model,

we obtain that the IF of r* is

[Fe@) = 2006 T(R))|  =C{o-K(0)}, (15)

*
—r
Oe

e=0

where C* does not depend on z, and is given by

B 1 1 re(00;0)_ 1 Cu
r(60; 0)? & 7 (60;0)  7(60;0)? re(00; 0)r(60; 0)

cr=C { 1
Note that the IF of r* has a form similar to the IFs of the statistics r, r. and r,, since it
depends linearly on z. It is important to note that the IF (15) is unbounded. This finding
is in agreement with Ronchetti and Ventura (2001), who show that small deviations from
the assumed model can wipe out the improvements of the accuracy obtained by second-
order approximations to the distribution of classical statistics.

The local-shift sensitivity for 7* in this case is simply given by |C*|. Therefore A\* is
bounded. Figure 3 gives the plots of the local-shift sensitivity of » and r* for the same
scalar exponential families as those considered in Figure 1. From Figure 3, it may be
noted that the local-shift sensitivities associated with 7* and with r are almost equal.

This means that 7* improves on r maintaining its robustness with respect to rounding.

The same behaviour for the the local-shift sensitivity associated to the statistics 7 and r*

14



has been observed also for other one-parameter exponential families not reported here.
(Figure 3 about here)

Consider now the case in which there is a scalar parameter of interest 7 and a nuisance

parameter ¢. Then, the IF of r} is of the form

IFy(e) = —orp(miTa(F),Ta(F)

Oe e=0
= UAIBR () 4 e I L~ e ST
1 } E\IFr,(z) + E; - IFpy(z)
rp(70;7,¢)? v(70; 7, {)rp(70; 7, )
B\IFr, (z) + B - IFr, (:E)
rp(70; T, {)rpe(10; 7, €)

(16)

where the scalar term F; and 1I;he vector E» do not depend on z (see the Appendix for
their expression). Note that the IF of 7} has a form similar to the IFs of rp, rp, and rp,.
In fact, (16) depends linearly on z, since both I Fr, (z) and I Fr,(z) are linear functions of
z. It is important to note that the IF (16) is unbounded, while, as in the scalar case, it is
easy to show that the local-shift sensitivity A* for 7} is bounded. For several examples not
reported here, our experience suggests that the local-shift sensitivities associated with r}
and with rp are almost indistinguishable, paralleling what has been seen in Section 4 (see
Figure 3). Therefore, rp improves on the first order pivot rp maintaining its robustness

with respect to rounding.

6 Monte Carlo evidence

Some Monte Carlo studies have been performed to assess the stability of coverage levels of

confidence intervals based on likelihood procedures with respect to rounding effects. Each

15



simulation study is based on 100000 Monte Carlo trials. We assume that the recorded

data z is

z=¢e<yle>,

where < z > is the nearest integer to z and ¢ is the length of the rounding interval. Then,
if £ = 1 the observation is discretised, while if ¢ = 10~¢, then z is y rounded to d decimal
places. In the simulation studies, we consider the following situations: T when z = y,
i.e. we use the true data y; R when d = 1, i.e. when y is rounded to the first decimal
place; I when d = 0, i.e. y is rounded to the nearest integer. In our study, the true data T
have six decimal places, i.e. d = 6. Values 1 < d < 6 are not reported, since preliminary
simulations have shown the same results as under T.

Other simulation experiments have been carried out using ¢ = 2% (with d = 1,2, 3), in
order to represent data which are recorded with a precision which is intermediate between
R and I. The results were found to be very similar to the ones discussed in this section and
are not reported here. In particular, 273 produces the same results as T, 272 produces
the same results as R, and 2! produces results quite similar to I.

Subsection 6.1 illustrates examples both with one-parameter models and with models
having a scalar parameter of interest 7 and a nuisance parameter ¢, for small or moderate
sample sizes. The main conclusion is that, for such values of n, the reduced precision of
the recorded data scarcely affects likelihood based procedures, particularly r (and rp) and
r* (and rp). This finding indicates that we can use less precision in the recorded data
‘tha.n has been realised and still apply standard likelihood procedures, as pointed out also

by Tricker (1990, 1992, 1995) for particular inferential procedures. However, the effects

16




of rounding on likelihood procedures depend on the number of classes after grouping. In
particular, the number of classes decreases as the ratio between the lenght of the rounding

interval and the standard deviation of the population, i.e.
P= =

increases. The quantity p is a natural measure of the severity of rounding (see e.g. Tricker,
1984, 1990, 1992). For small or moderate sample sizes, the simulation results described
in Subsection 6.1 below indicate that when the number of classes after grouping is very
small, such as 2 or 3, and accordingly p is greater than 1.5, results are unsatisfactory. On
the other hand, when the number of classes is greater than 7, and accordingly p is smaller
than .0.5, the results based on I are quite similar to those based on R.

We have to recall, however, that when continuous data are grouped inference should
be based on the multinomial distribution with cell probabilities expressed in terms of Fjy.
If not, MLEs are no more consistent and likelihood based procedures lose their usual

first-order asymptotic behaviour. Hence, the effects of rounding on likelihood procedures

depend on the sample size. This point is illustrated in Subsection 6.2.

6.1 Small or moderate sample sizes

Tables 1-3 report the simulation results for various one-parameter exponential families.
In particular, random samples ¥y = (yi,...,y,) have been generated with: y; having an
exponential distribution with mean 1/), for A = 1 and A = 4; exp(y;) having a gamma
distribution with scale parameter A = 1 and shape parameter £k = 0.2 and £k = 1.5

(log-gamma distribution for y;); y; having a Gaussian distribution with mean y = 0 and

17



variance o2 = 1 and 02 = 16. For each distribution, coverage probabilities of confidence
intervals based on r, 7, 7y, and r* have been estimated.

From Tables 1-3 the following general comments emerge. In all the situations con-
sidered r is preferable to r. and r,, and r* improves on r. The scenario R gives always
results very similar to those given by T. This is not surprising since A* is bounded for
all the statistics considered. Moreover, the difference between results with data T and
I is smaller for r and r* than for r, and r,. Finally, as expected, when the number of
classes after grouping is very restricted (e.g. exponential distribution with A = 4), and
accordingly p is about 2 or larger, operation I gives rise to unsatisfactory results for all

the test statistics considered.
(Table 1 about here)
(Table 2 about here)
(Table 3 about here)

Tables 4-5 give the simulation results when the reference model is a multiparameter
exponential family and inference procedures about a scalar component of the canonical pa-
rameter are considered. In particular, two multiparameter exponential families have been
considered: independent observations y;,7 = 1,...,n, having a log-gamma distribution,
and independent observations y;,« = 1,...,n, with exp(y;) having an inverse Gaussian
distribution (log-inverse Gaussian distribution for y;).

The results for data T and R are very similar both for rp and for r}. This is not

true for the two other test statistics. Moreover, the difference between results for data T
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and I is always smaller for rp and rp than for rp, and rp,. When the number of classes
after grouping is very restricted (e.g. inverse Gaussian with A\ = 1), and accordingly p is
about 2 or larger, operation I gives rise to unsatisfactory results for all the test statistics

considered. In this case it would be necessary to use the multinomial distribution.
(Table 4 about here)
(Table 5 about here)

It is important noticing that the results discussed here, and other simulations experi-
ments not reported , indicate that the effects of rounding on likelihood procedures depend
both on the severity of rounding p and on the skewness of the distribution. Generally as
p decreases, so does the effect of rounding. On the other hand, for a given value of p, the
effect of rounding increases as the skewness of the distribution increases. As an example,
for the log-gamma distribution, asymmetry increases as k approaches zero, and thus the
rounding process causes more effects on likelihood procedures as the distribution becomes
more asymmetrical. The same result holds also for the exponential and the log-inverse
gaussian distribution. This was not unexpected since Tricker (1984, 1992) showed that the
effects on rounding on some classical inferential procedures decrease as the distribution

becomes less skewed.

6.2 Large sample sizes

In order to assess how the effects of discretising depend on the sample size, Table 6 gives

the results of simulation studies using the same distributions as in Section 6.1 with larger
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values of n when data are discretized. The results allow us to see how fast coverage levels
of confidence intervals based on likelihood procedures decrease as n increases.

It is important to note that this behaviour was also anticipated by the local-shift
sensitivity derived from the IF. In fact, the expressions of A\* obtained in Sections 3-5
depend on the sample size. In particular, in all the situations considered, the local-shift
sensitivity increases as n increases and therefore likelihood based procedures become more

sensitive to discretising effects when the sample size is large.

(Table 6 about here)

7 Final Remarks

Likelihood procedures are robust to rounding, as has been shown both by analytic tools
and by Monte Carlo studies. The main result is that, for the usual likelihood-based
statistics, the local-shift sensitivity is bounded, while the IF is unbounded. This means
that these statistics are not robust with respect to small model deviations, outliers and
influent observations, but are robust with respect to rounding to a fixed number of decimal
places. In view of this, especially when n is small or moderate, we can use far less precision
in the recorded data than has been realised and still apply the likelihood based analyses
holding for continuous data. Moreover, inference based on the directed likelihood and on
its higher-order modification appears more robust than inference based on the Wald or on
the score statistic.

Although this paper focuses on exponential families, which allow a simple computation

of the local-shift sensitivity, the results obtained are expected to maintain outside this class
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of models. Some simulation results in the context of scale and regression models are in

accordance with our conjecture.

Appendix

It can be shown that (see Hampel et al., 1986, chap. 4) the IF of (7, () is (I Fy, (z), I Fp, (z)) =
i(1,¢) " (z — Kr,z — K¢), where i(7,() is the Fisher information with blocks i,, = K,
ir¢ = Ky¢, i¢¢ = K¢¢ and i¢r = ’:C‘ In the following, to give the expressions of the terms
involved in the IF's discussed in Section 4 and 5, it is convenient to use index notation
and the Einstein summation convention (Barndorff-Nielsen and Cox, 1989, Sec. 5.3). The
components of the nuisance parameter ¢ are denoted by (?, the corresponding components
of K¢ are K, and the derivatives of K; and K, with respect to 7 or to the components of

¢ are denoted by

0K, 0K, 0K
Kabz_a"('.‘b_aKra = —6'47, T'rza_TT'a
PK, K, 0K,
Ky = 912 ! Kira = BT—BCO‘_ y Dgab = W )
and so on, where the indices a,b,... range over 1,...,p — 1. Then we write i, = K,,,

ira = Kra = tar and i = Kgp. In addition, i"", i7® % and %" = i@ denote the
components of the blocks of i(7,{)™!. The symbol V over a likelihood quantity is used
when the quantity is evaluated at (7,(,). Finally, I F7, (z) denote the components of
IFr,(z).

Using index notation, the terms I;, ¢ = 1,2, 3,4, involved in the IF of the MLEs of 7
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and ¢ can be written as
p—1
L =i +Zi7a , L=—i"K, —i"K, ,
a=1
p—1
Ig — ira+ziba , I‘(tl = —i"K, _iabe )
b=1
The terms involved in the IF of the statistic rp are

A = Ag{(r — 1)K+ (¢* — () Kar — KKir Ko} |
43 = {(r—m)Kra+ ("~ %) Koy — K*Kaaks | |

1/2

where A3 = \/n/2sgn(t — 1) {(T — 70)Kr + (¢* — (&) K, + K — K} . The terms in-

volved in the IF of the statistic rp, are

B, = (":-”-)_1/2 + Bj {K‘rr‘r o 2I{T‘raK'ab-Kb'r + K-raKabchKchbd'r} ’

B = Bs{Krra—2KspK"Ker + KreK KKy Kot }
where Bs = (n/2)(r — 70)(i"")'/2. The terms involved in the IF of the statistic rp, are
Dy = Dy{Kr; — KraR®Kyr | — Da { KrraK™ Ky
— 2Ky0 K Kir KKy + Kra KK ® KosoKor KKy |
D§ = Dy {Kn— KrcK®Kia} — Da{KrrcK® Kin

— ZKTecKCbeT KCdea + KTngckdeCdef{bTKefoa} ’
where

Dy = Va{ker - Kruk®R )

n

“f$ %

. . ... y-3/2
(K, — K.) {KTT - KmK“”KbT} .
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Finally, the two terms involved in the IF of the statistic rp are

1 el L
B = ;{K"Kur - K®KuscK?Kar}

1 T
B = 5{I{c'ur{d,,,—Ke"Ke,,cKmur(,,,,}.
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Figure 1: Local-shift sensitivity A* for r (solid line), r. (dotted line) and r, (dashed line)
for two well-known one-parameter exponential families for n = 10. The three curves

intersect at 6y = 0.

lambda*

tau0

Figure 2: Local-shift sensitivity for rp (solid line), rpe (dotted line) and rp,, (dashed line)
for the gamma distribution, with shape parameter of interest, scale parameter unknown,

and n = 10. The three curves intersect at 6y = 6.
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Figure 3: Local-shift sensitivity A* for r (solid line) and r* (dotted line) for two well-known

multiparameter exponential families for n = 10.
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=02 k=15
n data test 0.900 0.950 0.990 0.900 0.950 0.990
T 2 0.891 0.945 0.988 0.898 0.948 0.990
R * 0.891 0.945 0.988 0.898 0.948 0.991
I * 0.890 0.943 0.989 0.888 0.925 0.980
T Te 0.905 0.947 0.982 0.894 0.944 0.984
R Te 0.905 0.948 0.982 0.894 0.943 0.985
I Te 0.907 0.945 0.980 0.880 0.911 0.978
5
P Tu 0.911 0.952 0.982 0.898 0.950 0.986
R Tu 0.911 0.952 0.982 0.899 0.948 0.986
I Ty 0.914 0.950 0.984 0.881 0.916 0.979
b ) r* 0.897 0.949 0.989 0.898 0.949 0.989
R r* 0.897 0.949 0.989 0.898 0.949 0.989
I r* 0.896 0.947 0.990 0.888 0.928 0.982
T r 0.894 0.948 0.990 0.901 0.951 0.990
R r 0.894 0.948 0.990 0.903 0.951 0.991
I r 0.892 0.949 0.990 0.891 0.938 0.987
T Te 0.903 0.949 0.985 0.898 0.949 0.987
R Te 0.904 0.950 0.985 0.898 0.947 0.986
L ¥ Te 0.900 0.940 0.982 0.883 0.932 0.976
10
T Tu 0.906 0.951 0.985 0.901 0.951 0.988
R Tu 0.905 0.951 0.986 0.899 0.951 0.989
I Tu 0.901 0.945 0.982 0.883 0.934 0.982
4 r* 0.899 0.949 0.990 0.900 0.950 0.990
R r* 0.899 0.949 0.990 0.901 0.950 0.990
I r* 0.895 0.950 0.990 0.893 0.940 0.987
4L r 0.901 0.948 0.990 0.900 0.950 0.990
R r 0.901 0.948 0.990 0.900 0.950 0.990
I P 0.899 0.950 0.990 0.883 0.939 0.985
) Te 0.905 0.950 0.989 0.899 0.949 0.988
R Te 0.905 0.950 0.989 0.897 0.949 0.988
1 re 0.900 0.945 0.987 0.878 0.937 0.983
20
N Tu 0.906 0.951 0.989 0.901 0.949 0.989
R Tu 0.905 0.951 0.989 0.900 0.949 0.989
E Tu 0.901 0.945 0.987 0.881 0.937 0.983
4 2 s 0.900 0.950 0.990 0.900 0.950 0.990
R r* 0.900 0.950 0.990 0.900 0.950 0.990
I r* 0.899 0.951 0.990 0.885 0.940 0.985

Table 2: Coverage levels of confidence intervals for the shape parameter k£ of the (log-)
gamma distribution (scale parameter known and fixed to 1). In situation I, the average
number of classes after grouping is about 10 when k = 0.2 (p = 0.2) and about 4 when
k=15 (p=11).
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o=1 oc=4
n data test 0.900 0.950 0.990 0.900 0.950 0.990
T r 0.888 0.944 0.987 0.887 0.943 0.987
R r 0.889 0.942 0.987 0.887 0.942 0.988
I r 0.905 0.926 0.994 0.887 0.944 0.986
T Te 0.826 0.862 0.911 0.825 0.864 0.913
R Te 0.828 0.862 0.911 0.825 0.863 0.913
I Te 0.811 0.946 0.946 0.829 0.860 0.910
5
T Tu 0.932 0.954 0.978 0.931 0.952 0.976
R Tu 0.931 0.954 0.978 0.931 0.952 0.976
I Tu 0.919 0.916 0.969 0.929 0.950 0.971
T r* 0.889 0.947 0.989 0.886 0.942 0.988
R r* 0.889 0.947 0.989 0.886 0.942 0.988
I r* 0.903 0.925 0.994 0.885 0.941 0.987
T r 0.894 0.945 0.988 0.892 0.945 0.986
R T 0.895 0.944 0.988 0.891 0.945 0.988
I r 0.884 0.945 0.987 0.890 0.945 0.988
T Te 0.853 0.900 0.945 0.862 0.903 0.947
R Te 0.855 0.900 0.945 0.861 0.904 0.947
- I Te 0.865 0.936 0.937 0.864 0.901 0.945
10
T Ty 0.920 0.957 0.981 0.919 0.953 0.981
R Ty 0.921 0.957 0.981 0.920 0.953 0.981
I Tu 0.899 0.927 0.971 0.918 0.950 0.980
T r* 0.895 0.948 0.989 0.894 0.946 0.989
R r* 0.895 0.948 0.989 0.894 0.946 0.989
I r* 0.885 0.947 0.989 0.892 0.945 0.989
T T 0.896 0.947 0.988 0.893 0.946 0.988
R T 0.896 0.947 0.988 0.894 0.946 0.988
I T 0.887 0.936 0.989 0.894 0.946 0.988
T Te 0.880 0.926 0.965 0.881 0.922 0.964
R Te 0.882 0.925 0.965 0.881 0.922 0.964
I Te 0.904 0.949 0.972 0.882 0.924 0.964
20
T Tu 0.909 0.954 0.985 0.907 0.954 0.987
R Tu 0.909 0.954 0.986 0.908 0.954 0.987
I Ty 0.877 0.927 0.971 0.907 0.953 0.986
T r* 0.899 0.950 0.990 0.900 0.950 0.990
R r 0.899 0.950 0.989 0.900 0.950 0.990
I r* 0.889 0.940 0.989 0.901 0.951 0.989

Table 3: Coverage levels of confidence intervals for the scale parameter of the Gaussian
distribution (4 known and fixed to 0). In situation I, the average number of classes after

grouping is about 4 when 0 =1 (p = 1) and about 10 when o = 4 (p = 0.25).
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= 0.5 k=5

n data test 0.900 0.950 0.990 0.900 0.950 0.990
4 rp 0.825 0.896 0.968 0.833 0.904 0.969

R rp 0.824 0.896 0.968 0.832 0.903 0.969

I rp 0.818 0.888 0.972 0.837 0.908 0.971

T TPe 0.958 0.978 0.987 0.965 0.976 0.994

R TPe 0.957 0.972 0.986 0.966 0.979 0.994

5 I TPe 0.945 0.962 0.980 0.953 0.970 0.986
P 0.958 0.971 0.986 0.965 0.976 0.994

R TPu 0.957 0.972 0.986 0.966 0.979 0.994

 § rPu 0.945 0.967 0.980 0.953 0.970 0.986

4 g TP 0.896 0.947 0.989 0.893 0.940 0.990

R rp 0.896 0.947 0.989 0.892 0.939 0.989

1 rp 0.888 0.938 0.996 0.887 0.935 0.987

T rp 0.867 0.927 0.984 0.868 0.925 0.976

R rp 0.867 0.928 0.983 0.870 0.925 0.976

I rp 0.874 0.938 0.988 0.856 0.920 0.983

4 13 TPe 0.932 0.970 0.989 0.932 0.978 0.995

R TPe 0.932 0.969 0.989 0.932 0.973 0.995

10 I TPe 0.923 0.960 0.983 0.920 0.959 0.985
T, TPu 0.931 0.969 0.988 0.932 0.978 0.995

R TPu 0.931 0.969 0.988 0.932 0.973 0.995

I TPu 0.920 0.959 0.983 0.920 0.959 0.985

T rh 0.897 0.948 0.990 0.900 0.941 0.990

R rp 0.898 0.948 0.989 0.900 0.941 0.990

I rp 0.895 0.940 0.988 0.891 0.937 0.987

T rp 0.882 0.935 0.986 0.885 0.949 0.991

R rp 0.884 0.934 0.986 0.882 0.946 0.991

I rp 0.882 0.940 0.986 0.868 0.952 0.991

T TPe 0.908 0.959 0.988 0.916 0.967 0.991

TPe 0.908 0.959 0.988 0.919 0.967 0.991

20 I TpPe 0.896 0.941 0.979 0.934 0.950 0.989
T TPu 0.907 0.958 0.987 0.916 0.967 0.991

R TPu 0.907 0.958 0.988 0.919 0.967 0.991

I TPu 0.924 0.943 0.979 0.934 0.950 0.989

T rp 0.900 0.950 0.990 0.900 0.950 0.990

R rp 0.900 0.950 0.990 0.900 0.950 0.990

I rh 0.897 0.945 0.988 0.907 0.953 0.988

Table 4: Coverage levels of confidence intervals for the shape parameter k of the log-
gamma distribution. The scale parameter is unknown (fixed to 1 in the simulations). In
situation I, the average number of classes after grouping is about 8 when k = 0.5 (p = 0.5)

and about 3 when k£ =5 (p = 2).
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A=1 A=10

n data test 0.900 0.950 0.990 0.900 0.950 0.990
T rp 0.829 0.893 0.971 0.825 0.894 0.965

R rp 0.832 0.890 0.971 0.828 0.892 0.967

I rp 0.877 0.902 0.984 0.875 0.925 0.990

T TPe 0.961 0.979 0.989 0.958 0.974 0.988

R TPe 0.955 0.968 0.985 0.955 0.974 0.988

5 I TPe 0.903 0.944 0.974 0.879 0.879 0.951
T TPu 0.961 0.979 0.989 0.958 0.974 0.988

R TPu 0.955 0.968 0.986 0.955 0.974 0.988

I TPu 0.904 0.944 0.974 0.879 0.879 0.951

T rp 0.898 0.949 0.988 0.898 0.949 0.989

R rp 0.896 0.946 0.988 0.896 0.948 0.988

I rp 0.877 0.956 0.994 0.923 0.962 0.995

T rp 0.860 0.920 0.980 0.869 0.929 0.985

R rp 0.860 0.921 0.980 0.870 0.929 0.985

I rp 0.852 0.918 0.984 0.850 0.906 0.980

T TPe 0.931  0.973 0.989 0.928 0.970 0.988

TPe 0.930 0.972 0.989 0.929 0.967 0.988

10 I TPe 0.906 0.943 0.970 0.853 0.863 0.938
T TPu 0.931 0.973 0.989 0.928 0.970 0.988

R TPu 0.930 0.972 0.989 0.929 0.967 0.988

I TPu 0.906 0.943 0.970 0.853 0.864 0.939

T TP 0.901 0.950 0.991 0.898 0.951 0.990

R rp 0.899 0.949 0.991 0.899 0.950 0.990

I rp 0.880 0.948 0.993 0.878 0.932 0.984

T rp 0.873 0.931 0.985 0.882 0.939 0.984

R rp 0.870 0.931 0.985 0.883 0.939 0.985

I rp 0.859 0.915 0.979 0.781 0.844 0.957

T TPe 0.906 0.956 0.988 0.914 0.958 0.989

R TPe 0.906 0.955 0.988 0.913 0.959 0.989

20 I TPe 0.860 0.912 0.959 0.707 0.821 0.902
‘T TPu 0.906 0.956 0.988 0.914 0.958 0.989
R TPu 0.906 0.955 0.988 0.913 0.959 0.989
I TPu 0.860 0.912 0.959 0.707 0.821 0.902
T rp 0.900 0.950 0.990 0.900 0.950 0.990
R Tp 0.899 0.950 0.990 0.899 0.950 0.990
)} rp 0.879 0.946 0.882 0.798 0.862 0.971

Table 5: Coverage levels of confidence intervals for the parameter A of the log- inverse
Gaussian distribution (¢ unknown and fixed to 1 in the simulations). In situation I, the
average number of classes after grouping is about 5 when A =1 (p = 1.1) and about 3

when A =10 (p = 1.9).
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n=100 | n=500 [ n=1000 |
Exponential (A = 1) rr* 0.844 0.748 0.624
TeyTu 0.829 0.736 0.613
Gamma (k = 1.5) .ot 0.891 0.886 0.789
TeyTu 0.890 0.886 0.785
Gaussian (o = 1) rr* 0.867 0.672 0.460
- TeyTu 0.830 0.617 0.429
Gaussian (ux = 0) Y, re, Ty 0.882 0.873 0.865
Gamma (k = 5) rp, r;-_. 0.684 0.584 0.217
TPe»TPu 0.576 0.474 0.172
Inv.Gaussian (A = 10) rP,Th 0.821 0.492 0.257
TPe)»TPu 0.799 0.468 0.249

Table 6: Coverage levels of confidence intervals when data are discretised for large values
of n and 1 — a = 0.90. Only the results for 7 (and rp) and r, (and rp,) are given since
r* (and r}) and r, (and rpe) give results quite similar to r (and rp) and r, (and rp,),

respectively.
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