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1 Introduction and notations

In this paper, we consider the following problems : two-sample test for comparing
two populations and estimation of the parameters for some semiparametric density
ratio models. We dispose of two samples: X1, . . . , Xn0

with distribution P and
Y1, . . . , Yn1

with distribution Q. We consider the following semiparametric density
ratio model

dQ

dP
(x) := exp

{

αT + βT
T r(x)

}

, (1.1)

where θT
T := (αT , βT

T ) is the true unknown value of the parameter which we suppose
to belong to some open set Θ ⊂ R

1+d. For simplicity, we sometimes write m(θ, x)
instead of exp

{

α + βT r(x)
}

. r(·) is a known function with values in R
d. It often

takes the form r(x) = (x, x2, . . . , xd)T , and the model (1.1) is sometimes called “log-
linear model” in this case. The supports of the two laws Q and P may be known
or unknown, discrete or continuous. We now give some statistical examples and
motivations for model (1.1).
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1.1 Comparison of two populations

In applications, we often come across with the problem of comparing two laws. The
use of the well known t−test requires to assume that both samples are normally dis-
tributed with unknown means and common known or unknown variance. The t−test
enjoys several optimal properties, for example it is the uniformly most powerful un-
biased test (see e.g. Lehmann (1986)). If both Q and P are normally distributed
with equal variance

Q = N (µ1, σ
2) and P = N (µ2, σ

2),

then, the ratio dQ
dP takes the form

dQ

dP
(x) = exp {α + βx} , where α =

µ2
1 − µ2

2

2σ2
and β =

µ2 − µ1

σ2
. (1.2)

It follows that testing the hypothesis H0 : Q = P is equivalent to testing the
parametric hypothesis H0 : β = 0. We underline that β = 0 implies α = 0.
Kay and Little (1987) and Fokianos (2002) observed that there are cases in which
the choice

dQ

dP
(x) = exp {α + βr(x)} , (1.3)

where r(.) is an arbitrary but known function, is more appropriate.
When the two samples X1, . . . , Xn0

and Y1, . . . , Yn1
are independent, Fokianos

et al. (2001) present a statistical test, for the null hypothesis H0 : Q = P or equiv-
alently H0 : βT = 0, where the test statistic is based on a “constrained” empirical
likelihood estimate of the parameter βT (see Qin (1998)) and an empirical estimate
of the limit variance.
In the case when the semiparametric assumption (1.1) fails, the test commonly used
is the non parametric Wilcoxon rank-sum (see e.g Randles and Wolfe (1979) and
Hollander and Wolfe (1999)). We expect it not to be powerful, since it does not use
the model (1.1).

For the model (1.1), the empirical likelihood ratio statistic is not well defined
under the null hypothesis H0 : Q = P (see Section 1.3 below). This problem has
been observed also by Zou et al. (2002) in the context of a semiparametric mix-
ture models with known weights (see Zou et al. (2002) Theorem 1). We propose to
use, instead of the empirical likelihood ratio statistic, its “dual” form (see (2.11))
(to perform a test of the null hypothesis H0 : Q = P ) which is well defined re-
gardless of the null hypothesis. Simulation results, presented in Section 4 below,
show that the observed level of the test based on the statistic (2.11) converges (to
the nominal level) better than the observed level of the test proposed by Fokianos
et al. (2001). Using φ-divergences and “duality” technique, we give an interpretation
for the statistic (2.11), the dual form of the empirical likelihood ratio statistic; see
(2.21). This interpretation allows us to give the asymptotic law of the proposed test
statistic under the alternative hypothesis. We apply this result to give an approx-
imation to the power function in a similar way to Morales and Pardo (2001) who
gave some approximations to power functions of φ-divergences tests in parametric
models. Duality technique has been used by Broniatowski (2003) in order to esti-
mate the Kullback-Leibler divergence without making use of any partitioning nor
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smoothing. It has been used also by Keziou (2003) and Broniatowski and Keziou
(2003) in order to estimate φ-divergences between probability measures (without
smoothing), and to introduce a new class of estimates and test statistics for discrete
or continuous parametric models extending maximum likelihood approach; the use
of the duality technique in the context of φ-divergences allows also to study the
asymptotic properties of the test statistics (including the likelihood ratio one) both
under the null and the alternative hypotheses. Recall that a φ-divergence between
two probability measures Q and P , when Q is absolutely continuous with respect to
P , is defined by

φ(Q, P ) :=

∫

ϕ (dQ/dP ) dP, (1.4)

where ϕ is a real nonnegative convex function satisfying ϕ(1) = 0. Note that φ(Q, P )
is nonnegative, φ(Q, P ) = 0 when Q = P . Further, if ϕ is strictly convex on a
neighborhood of one, then φ(Q, P ) = 0 if and only if Q = P ; we refer to Liese and
Vajda (1987) for a systematic theory of φ-divergences.

1.2 Logistic model and multiplicative-intercept risk model

Consider the logistic model which has been widely used in statistical applications for
the analysis of binary data (see e.g. Agresti (1990), Hosmer and Lemeshow (1999)
and Hosmer and Lemeshow (2000)). Suppose that y is a binary response variable
and that x is the associate covariate vector. The logistic model has the form

Pr(y = 1|x) =
exp(γ + βT x)

1 + exp(γ + βT x)
, γ ∈ R, β ∈ R

d. (1.5)

Note that the marginal density of x, noted f(x), is left completely unspecified.
One of the major reasons of the logistic regression model has seen such a wide use,
especially in epidemiologic research, is the ease of obtaining adjusted odds ratios
from the estimated slope coefficients when sampling is performed conditional on the
outcome variables, as in a case-control study. In a case-control study the binary
outcome variable is fixed by stratification. In this type of study design, two random
samples of sizes n0 and n1 are chosen from the two strata defined by the outcome
variable, i.e, from the subsets of the population with y = 0 and y = 1, respectively.
Assume that x1, . . . , xn0

are the observed covariates from the control group and let
xn0+1, . . . , xn (n = n0 + n1) be those from the case group. We aim to estimate
the parameters γ and β using the two samples X1, . . . , Xn0

and Xn0+1, . . . , Xn. We
show that the logistic model (1.5) writes in the form of the model (1.1). So, let f
denote the density function of the covariates x, and put

π = Pr(y = 1) =

∫

Pr(y = 1|x)f(x) dx,

and assume that

fi(x) = f(x|y = i) = dF (x|y = i)/dx i = 0, 1

exist and represent the conditional density function of x given y = i. It is not diffi-
cult to manipulate the case-control likelihood function to obtain a logistic regression
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model in which the dependent variable is the outcome variable of interest to the in-
vestigator. The key step in this development is an application of the Bayes theorem,
that yields

f1(x) =
exp(γ + βT x)

(1 + exp(γ + βT x))π
f(x) and f0(x) =

exp(γ + βT x)

(1 + exp(γ + βT x))(1 − π)
f(x).

So,

f1(x)

f0(x)
=

1 − π

π
exp(γ + βT x) = exp

{

γ + log

(

1 − π

π

)

+ βT x

}

=: exp(α + βT x),

where α := γ+log
(

1−π
π

)

. Thus, model (1.5) is equivalent to the following two-sample
semiparametric model

x1, . . . , xn0
∼ f(x|y = 0) = f0(x),

xn0+1, . . . , xn ∼ f(x|y = 1) = f1(x) = exp(α + βT x)f0(x). (1.6)

More generally, we can consider the multiplicative-intercept risk model, i.e,

Pr(y = 1|x) =
exp(γ + βT r(x))

1 + exp(γ + βT r(x))
, γ ∈ R, β ∈ R

d,

where r(.) is a given function. In this case, as above, we obtain the following two-
sample semiparametric model

x1, . . . , xn0
∼ f0(x)

xn0+1, . . . , xn ∼ f1(x) = exp(α + βT r(x))f0(x). (1.7)

Models (1.6) and (1.7) are particular cases of models (1.1) by taking dP
dx = f0 and

dQ
dx = f1. For models (1.1), when the two samples X1, . . . , Xn0

and Y1, . . . , Yn1
are

independent, Qin (1998) presents an estimation procedure of θT based on the em-
pirical likelihood approach (see Owen (1988), Owen (1990) and Owen (2001)), using
the likelihood of the independent variables X1, . . . , Xn0

, Y1, . . . , Yn1
. However, an

important special case of the case-control study is the matched (or paired) study.
In this design, subjects are stratified on the basis of variables believed to be associ-
ated with the outcome (an example of stratification variable is the age for each of
the individuals in the survey). Within each stratum, samples of cases (y = 1) and
controls (y = 0) are chosen; the most common matched design includes one case and
one control per stratum and is thus referred as 1-1 matched study.
The rest of the paper is organized as follows: we end this Section recalling the esti-
mation method proposed by Qin (1998). In Section 2, we show that the irregularity
problem of the profile empirical likelihood can be adjusted in the context of model
(1.1). We next give a regularized version of the profile empirical likelihood using
duality techniques. A statistical test, for the null hypothesis H0 : Q = P , is then
proposed. An other point of view at the test statistic is given using φ-divergences
and “duality” technique. In Section 3, we study the asymptotic behavior of the
proposed test statistic under the null and the alternative hypotheses with indepen-
dent samples, and we give an approximation to the power function which leads to
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an approximation to the sample sizes n0 and n1 guaranteeing a desired power for a
given alternative. In Section 4, we present simulation results. Concluding remarks
and possible developments are presented in Section 5. All proofs are in Section 6.
In the sequel, we sometimes write Pf instead of

∫

f(x) dP (x) for any function f
and any measure P .

1.3 The profile empirical likelihood (EL) and its irregularity under the
null hypothesis H0 : Q = P

In the present setting, the estimation method proposed by Qin (1998), which is based
on the empirical likelihood approach (see Owen (1988), Owen (1990) and Owen
(2001)), can be summarized as follows. For any θ ∈ Θ, the empirical likelihood of
the two samples X1, . . . , Xn0

and Y1, . . . , Yn1
, if they are independent, is

L(θ) :=

n0
∏

i=1

p(Xi)

n1
∏

j=1

q(Yj).

For simplicity, denote (t1, . . . , tn) the combined sample (X1, . . . , Xn0
, Y1, . . . , Yn1

),
where n := n0 + n1. Since q(x) = m(θ, x)p(x), then L(θ) writes

L(θ) =
n

∏

i=1

p(ti)
n

∏

i=n0+1

m(θ, ti).

For convenience we write pi instead of p(ti). Hence, the log-likelihood writes

l(θ, p) :=
n

∑

i=1

log pi +
n

∑

i=n0+1

log [m(θ, ti)] .

The profile log-likelihood (in θ) is then

l(θ) := sup
p∈Cθ

l(θ, p), (1.8)

where p is constrained to the set

Cθ :=

{

p ∈ R
n
+ such that

n
∑

i=1

pi = 1 and
n

∑

i=1

pi [m(θ, ti) − 1] = 0

}

.

The EL estimate of θT , proposed by Qin (1998), is then

θ̃ := arg sup
θ∈Θ

l(θ). (1.9)

Qin (1998) has proved that the estimate θ̃ is optimal (in the sense of Godambe
(1960)), in the class of all estimates obtained by unbiased estimating functions,
when m(θ, x) takes the form exp{α + βT r(x)} and α is unknown (see Qin (1998)
Theorem 3).
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For a given θ ∈ Θ, the profile log-likelihood l(θ) is well defined (and finite) if and
only if

there exists p ∈ Cθ such that l(θ, p) < ∞. (1.10)

This condition means that 0 is inside the convex hull generated by the points
[m(θ, t1) − 1] , . . . , [m(θ, tn) − 1], i.e,

min
1≤i≤n

[m(θ, ti) − 1] < 0 < max
1≤i≤n

[m(θ, ti) − 1] . (1.11)

So, when βT 6= 0 and if P is not degenerate, using similar arguments to those in Zou
et al. (2002) Theorem 1, we can show that there exists a neighborhood of θT , say
N(θT ), such that for all θ ∈ N(θT ), the assumption (1.10) holds as n0 → ∞. Hence,
θ ∈ N(θT ) 7→ l(θ) is well defined for n0 sufficiently large. However, when Q = P
(i.e, when βT = 0), then obviously the set Cθ is empty for all θ = (α, βT )T ∈ Θ with
α 6= 0 and β = 0. So, when Q = P (i.e, when θT = 0), there exists no neighborhood
N(θT ) of θT such that the profile empirical log-likelihood function θ 7→ l(θ) is well
defined on all N(θT ). Consequently the estimate θ̃ is not well defined also in this
case. In the following Section, we will show, using some arguments of duality theory,
that this problem can be adjusted in the context of the model (1.1).

2 Adjustment of the profile empirical likelihood

If the assumption (1.10) holds, then l(θ) is finite, and the unique “optimal solution”
(i.e, the value of p which yields the supremum in (1.8)), as an explicit expression of
(1.8) can be derived by a Lagrange multiplier argument and the Khun-Tucher The-
orem (see e.g Rockafellar (1970) Section 28). In fact, the “dual” problem associated
to the “primal” problem (i.e, the optimization problem (1.8)) writes as follows

inf
λ0,λ1∈R

{

λ0 − n −
n

∑

i=1

log (λ0 + λ1 [m(θ, ti) − 1]) (2.1)

+
n

∑

i=n0+1

log [m(θ, ti)]

}

.

So, by the Khun-Tucher Theorem, under condition (1.10), the infimum in (2.1) is
attained, and the following equality

sup
p∈Cθ

l(θ, p) = inf
λ0,λ1∈R

{

λ0 − n −
n

∑

i=1

log (λ0 + λ1 [m(θ, ti) − 1])

+
n

∑

i=n0+1

log [m(θ, ti)]

}

(2.2)

holds. The “dual” optimal solution, say (λ0, λ1), (i.e, the argument infimum in (2.1))
can be derived by differentiation. Hence, we obtain λ0 = n and λ1 is the solution
(in λ1) of the equality

n
∑

i=1

m(θ, ti) − 1

n + λ1[m(θ, ti) − 1]
= 0.
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Finally, under condition (1.10), the equality

l(θ) := sup
p∈Cθ

l(θ, p) = inf
λ∈R

{

−
n

∑

i=1

log [n (1 + λ [m(θ, ti) − 1])]

+
n

∑

i=n0+1

log [m(θ, ti)]

}

(2.3)

holds with finite values, and the unique optimal solution (p1, . . . , pn) exists and it is
given by

pi =
1

n

1

1 + λ[m(θ, ti) − 1]
for all i = 1, . . . , n, (2.4)

where λ is the unique dual optimal solution in (2.3). It is the solution (in λ) of the
equation

−
n

∑

i=1

1

n

m(θ, ti) − 1

1 + λ [m(θ, ti) − 1]
= 0. (2.5)

Hence, the EL estimate θ̃ of θT writes

θ̃ := arg sup
θ∈Θ

inf
λ∈R

{

−
n

∑

i=1

log [n (1 + λ [m(θ, ti) − 1])]

+

n
∑

i=n0+1

log [m(θ, ti)]

}

. (2.6)

By differentiation with respect to α and λ, we can see by simple calculus that the
Lagrange multiplier λ in (2.6) has the explicit solution λ(θ̃) = n1

n which does not

depend on the data. Hence, the value of the log-likelihood (2.3) in θ̃ is

l(θ̃) = −n log n −
n

∑

i=1

log
(

1 +
n1

n

[

m(θ̃, ti) − 1
])

+
n

∑

i=n0+1

log
[

m(θ̃, ti)
]

, (2.7)

and the EL estimate θ̃ can be written as

θ̃ = arg sup
θ∈Θ

{

−n log n −
n

∑

i=1

log
(

1 +
n1

n
[m(θ, ti) − 1]

)

+
n

∑

i=n0+1

log [m(θ, ti)]

}

. (2.8)

Under the null hypothesis H0 : Q = P , i.e, when βT = 0, the profile log-likelihood
l(θ) is not defined for some θ (see Section 1.3). So, in view of (2.7) and (2.8), we
propose to consider, instead of l(θ), the “dual form”:

ld(θ) := −n log n −
n

∑

i=1

log
(

1 +
n1

n
[m(θ, ti) − 1]

)

+
n

∑

i=n0+1

log [m(θ, ti)] , (2.9)
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which is well defined for all θ ∈ Θ regardless of the null hypothesis H0 : Q = P , and
to redefine the EL estimate as

θ̂ := arg sup
θ∈Θ

ld(θ), (2.10)

Note that, under condition (1.10), we have θ̂ = θ̃ and ld(θ̂) = l(θ̃). Now, we give an
interpretation to the “dual form”

Sn := 2Wd(θ̂) := 2

[

sup
θ∈Θ

ld(θ) + n log n

]

(2.11)

of the empirical likelihood ratio statistic

2W (θ̃) := 2

[

sup
θ∈Θ

l(θ) + n log n

]

(2.12)

(associated to the null hypothesis H0 : Q = P ). First, denote ρn := n1/n0, an :=
nρn(1 + ρn)−2, and let Qn1

and Pn0
to be, respectively, the empirical measures

associated to the samples Y1, . . . , Yn1
and X1, . . . , Xn0

, namely

Qn1
:=

1

n1

n1
∑

i=1

δYi
and Pn0

:=
1

n0

n0
∑

i=1

δXi
,

with δx denotes the Dirac measure at point x, for all x. By simple calculus, we can
show that the statistic (2.11) writes as follows:

Sn = 2an sup
θ∈θ

{
∫

fρn
(θ, x) dQn1

(x) −
∫

gρn
(θ, x) dPn0

(x)

}

, (2.13)

where

fρn
(θ, x) := (1+ ρn) log [m(θ, x)]− (1+ ρn) log [1 + ρnm(θ, x)]+ (1+ ρn) log (1 + ρn)

(2.14)
and

gρn
(θ, x) :=

1 + ρn

ρn
log [1 + ρnm(θ, x)] − 1 + ρn

ρn
log (1 + ρn) . (2.15)

In (2.13), the sequence an is a normalizing term and the second term can be seen as
an empirical estimate of

sup
θ∈Θ

{
∫

fρ(θ, x) dQ(x) −
∫

gρ(θ, x) dP (x)

}

, (2.16)

where ρ := limn→∞ ρn (which we suppose to be positive),

fρ(θ, x) := (1+ρ) log [m(θ, x)]−(1+ρ) log [1 + ρm(θ, x)]+(1+ρ) log (1 + ρ) (2.17)

and

gρ(θ, x) :=
1 + ρ

ρ
log [1 + ρm(θ, x)] − 1 + ρ

ρ
log (1 + ρ) . (2.18)
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On the other hand, using the so-called “dual representation of φ-divergences” (see
Theorem 2.1 in Keziou (2003) or Theorem 4.4 in Broniatowski and Keziou (2004))
and choosing the class of functions F :=

{

x 7→ ϕ⋆
ρ
′ (m(θ, x)) ; θ ∈ Θ

}

, we can prove
the equality

sup
θ∈Θ

{
∫

fρ(θ, x) dQ(x) −
∫

gρ(θ, x) dP (x)

}

=

∫

ϕ⋆
ρ

(

dQ

dP

)

dP =: φ⋆(Q, P ),

(2.19)
where ϕ⋆

ρ is the nonnegative real strictly convex function defined on R+ by

ϕ⋆
ρ(x) := (1 + ρ)

[

x log x − 1 + ρx

ρ
log(1 + ρx) +

1

ρ
log(1 + ρ) + x log(1 + ρ)

]

,

(2.20)
which is a member of the class of φ−divergences (1.4). In other words, by (2.13),

(2.16) and (2.19), a−1
n Wd

(

θ̂
)

can be seen as an empirical estimate (which we de-

note φ̂⋆(Q, P )) of φ⋆(Q, P ), the φ⋆-divergence between Q and P , i.e, φ̂⋆(Q, P ) :=
(2an)−1Sn. Since φ⋆(Q, P ) is nonnegative and takes value 0 only when Q = P , it is
reasonable to perform a test that rejects the null hypothesis H0 : Q = P when the
statistic

Sn = 2anφ̂⋆(Q, P ) = 2an sup
θ∈θ

{
∫

fρn
(θ, x) dQn1

(x) −
∫

gρn
(θ, x) dPn0

(x)

}

(2.21)

(see (2.11) and (2.13)) takes large values.
The estimate θ̂ of θT (see (2.10)), writes

θ̂ = arg sup
θ∈Θ

{
∫

fρn
(θ, x) dQn1

(x) −
∫

gρn
(θ, x) dPn0

(x)

}

. (2.22)

On the other hand, by Theorem 2.1 in Keziou (2003) or Theorem 4.4 in Broniatowski
and Keziou (2004), we can prove that the supremum in (2.16) is unique and reached
at θ = θT . This indicates that the estimate θ̂ of θT may converge (as M-estimate)
to θT even when the samples are paired.

3 Asymptotic behavior of the estimate and test statistic
under the null and the alternative hypotheses, and ap-

proximation of the power function

In this Section, for independent samples, we give the asymptotic properties of the
estimate θ̂ (of the parameter θT ) and the test statistic (2.21) both under the null
and the alternative hypotheses. As an application, we obtain an approximation to
the power function for a given alternative. In all the sequel, f ′(θ, x) and f ′′(θ, x)
denote respectively the gradient and the Hessian of f at the point θ, for all x and
any function f . |.| denotes the Euclidean norm. Let ρn1

:= n1/n and ρn0
:= n0/n,

and assume that ρn1
→ ρ1 > 0 and ρn0

→ ρ0 > 0 when n = n0 + n1 → ∞. Denote
also lφ⋆(θ) := an [Qn1

fρn
(θ) − Pn0

gρn
(θ)]. In all the sequel, for simplicity, we write

f and g instead of fρ and gρ defined in (2.17) and (2.18). We give our results under
the following assumptions
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(A.1) There exists a neighborhood N(θT ) of θT such that the third order partial
derivative functions

{

x 7→ (∂3/∂θi∂θj∂θk)f(θ, x); θ ∈ N(θT )
}

(resp.
{

x 7→ (∂3/∂θi∂θj∂θk)g(θ, x); θ ∈ N(θT )
}

) are dominated by some function Q-
integrable (resp. some function P -integrable);

(A.2) The integrals Q |f ′(θT )|2, P |g′(θT )|2, Q |f ′′(θT )| and P |g′′(θT )| are finite, and
the matrix [Qf ′′(θT ) − Pg′′(θT )] is non singular.

Theorem 3.1 Assume that assumptions (A.1-2) hold.

(a) Let B(θT , n−1/3) :=
{

θ ∈ Θ; |θ − θT | ≤ n−1/3
}

. Then as n → ∞, with proba-

bility one, lφ⋆(θ) attains its maximum value at some point θ̂ in the interior of

the ball B(θT , n−1/3), and the estimate θ̂ satisfies l′φ⋆(θ̂) = 0.

(b)
√

n
(

θ̂ − θT

)

converges in distribution to a centered multivariate normal vari-

able with covariance matrix

LCM =
[

−Qf ′′(θT ) + Pg′′(θT )
]−1 ·

[

ρ−1
1

(

Qf ′(θT )f ′(θT )T−
−Qf ′(θT )Qf ′(θT )T

)

+ ρ−1
0

(

Pg′(θT )g′(θT )T−
− Pg′(θT )Pg′(θT )T

)]

·
[

−Qf ′′(θT ) + Pg′′(θT )
]−1

. (3.1)

If Q = P , then the limit covariance matrix is

LCM =
(1 + ρ)2

ρ

[

1 PrT

Pr P (rrT )

]−1

. (3.2)

(c) Under the null hypothesis H0 : Q = P , the statistic Sn converges in distribution
to a χ2 variable with d degrees of freedom.

In order to give the asymptotic properties of the test statistic Sn under the alterna-
tive hypothesis H1 : Q 6= P , we need the following additional assumption pertaining
to the function f and g defined in (2.17) and (2.18).

(A.3) The integrals Q
(

f(θT )2
)

and P
(

g(θT )2
)

are finite.

Theorem 3.2 Assume that assumptions (A.1-3) hold. Then, under the alternative
hypothesis H1 : Q 6= P , we have

√
an

[

(2an)−1Sn − φ⋆(Q, P )
]

(3.3)

converges in distribution to a centered normal variable with variance

σ2(θT ) = ρ0

[

Q(f2) − (Qf)2
]

+ ρ1

[

P (g2) − (Pg)2
]

. (3.4)

Remark 3.1 Using Theorem 3.1 part (c), we propose to reject the null hypothesis
H0 : Q = P if Sn > χ2

ǫ (d), where χ2
ǫ (d) is the (1 − ǫ)-quantile of the χ2 distribu-

tion with d degrees of freedom. This leads to a test asymptotically of level ǫ. The
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asymptotic result in Theorem 3.2 allows to give an approximation to the power func-
tion for a given alternative: for a given βT 6= 0, we obtain for the power function
β(θT ) := PθT

{

Sn > χ2
ǫ (d)

}

the following approximation

β(θT ) ≈ 1 − FN

( √
an

σ̂(θT )

[

(2an)−1χ2
ǫ (d) − Hn(θT )

]

)

, (3.5)

where FN (.) is the cumulative distribution function of a normal variable with mean
zero and variance one,

σ̂(θT )2 := ρn0

[

Qn1
(f(θT )2) − (Qn1

f(θT ))2
]

+ ρn1

[

Pn0
(g(θT )2) − (Pn0

g(θT ))2
]

,

and Hn(θT ) := Qn1
f(θT )−Pn0

g(θT ). Note also that the power β(θT ), by the asymp-
totic result in Theorem 3.2, tends to one, as n → ∞, under the alternative hypothesis
H1 : Q 6= P .

4 Simulation results

In this Section, we present some simulation results concerning the testing problem
of the null hypothesis of homogeneity (see Example 1 below). Various examples of
the choices of m(θ, x) can be founded in the papers by Qin (1998), Kay and Little
(1987) and Cox and Ferry (1991). In all examples, we consider the nominal level
5%; it is represented, in all figures, by an horizontal dotted line. The value of βT

corresponding to H0 in all cases is represented by a vertical dotted line. The power
is plotted as a function of β; note that for any test, the power associated to the
value of β corresponding to the null hypothesis H0 is the observed level of the test.
Example 2 concerns the power approximation discussed in Remark 3.1.

4.1 Example 1- Comparison of two populations

We compare the power function of the ELR test (ELRT), defined in (2.21), with
the power function of the two-sample t-test, Wilcoxon rank-sum test and Fokianos
et al. (2001) test. We recall that Fokianos et al. (2001) test statistic is based on
a constrained empirical likelihood estimate of the parameter (see Qin (1998)) and
an empirical estimate of its limit variance. Three cases are considered. In the first
case, we have X ∼ N (β, 1), Y ∼ N (0, 1) and m(θ, x) = exp{α + βx}. In the
second case, we have two lognormal populations, X ∼ LN(β, 1), Y ∼ LN(0, 1) and
m(θ, x) = exp{α + β log x}. In the third case, we have two gamma populations
X ∼ Ga(3 + β, 1), Y ∼ Ga(3, 1) and m(θ, x) = exp{α + β log x}. The power
function is plotted for sample sizes n0 = n1 = 50. Each power entry was obtained
from 1000 independent runs. Under normal and variance equality assumptions,
we observe (see Fig. 1) that the four tests are very similar. The fact that our
test displays more power than the t-test in the cases of lognormal (see Fig. 2) and
gamma populations (see Fig. 3) shows that a departure from the classical normal
and variance equality assumptions can considerably weaken the t-test. Note that
the ELRT is not dominated by the t-test in the present normal example with equal
variances. Apparently, the Wilcoxon rank-sum test has less power than the test
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Figure 1: Example 1.a - Two normal populations.

provided here in all the three cases considered. Finally, note that in the gamma case
(see Fig. 3) the observed level of the test proposed by Fokianos et al. (2001) is far
from the nominal level 5%. We conclude that the ELRT (2.21) is more convenient.

4.2 Example 2- Power approximation

In the context of the model m(θ, x) = exp{α + βx} we consider the problem of
testing

H0 : Q = P versus H1 : Q 6= P

or equivalently
H0 : βT = 0 versus H1 : βT 6= 0

based on the test statistic Sn (2.21). In this example, we consider X ∼ N (β, 1),
Y ∼ N (0, 1). We study numerically the accuracy of the power approximation given
in Remark 3.1. We recall that the approximation (given in Remark 3.1) for the
power function β(θT ) = PθT

(

Sn ≥ χ2
0.05(1)

)

is

approx(θT ) = 1 − FN

( √
an

σ̂(θT )

[

(2an)−1χ2
0.05(1) − Hn(θT )

]

)

, (4.1)

where FN (.) is the cumulative distribution function of a normal variable with mean
zero and variance one,

σ̂(θT )2 := ρn0

[

Qn1
(f(θT )2) − (Qn1

f(θT ))2
]

+ ρn1

[

Pn0
(g(θT )2) − (Pn0

g(θT ))2
]

,
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Figure 2: Example 1.b - Two lognormal populations.

and Hn(θT ) := Qn1
f(θT ) − Pn0

g(θT ). The power β(θT ) is plotted for sample sizes
n0 = n1 = 30, n0 = n1 = 50 and n0 = n1 = 100, and for different values of β. Each
power entry was obtained from 1000 independent runs. The approximation (4.1) is
plotted as a function of β by a dotted line; Hn and σ̂, in (4.1), are calculated (from
1000 simulations) with sample sizes n0 = n1 = 30, n0 = n1 = 50 and n0 = n1 = 100.
We observe (see Fig. 4) that the approximation is accurate for alternatives which
are not very “near” to the null hypothesis even for moderate sample sizes.

5 Concluding remarks and possible developments

We have addressed the problems of estimation and test of homogeneity in semi-
parametric two-sample density ratio models. The profile EL poses an irregularity
problem under the null hypothesis H0 that the two laws of the two samples are
equal. We have showed that the dual form of the profile EL is well defined even
under the null hypothesis, then we have proposed a test of homogeneity based on the
dual form of the EL ratio statistic. We have showed, using the dual representation
of φ-divergences, that the test statistic can be seen as an estimate of the particular
divergence φ⋆ between the two laws, and that the EL estimate θ̂ of θT can be seen
as the dual optimal solution in the dual representation of the φ⋆-divergence. The
advantage of this interpretation is twice:

- It permits to obtain the limit law of the test statistic under the alternative
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Figure 3: Example 1.c - Two gamma populations.

hypothesis which we use to give an approximation to the power function.

- It suggests to generalize the test and the estimate of the parameter to a class
of tests and to a class of estimates using other divergences, and it would be
interesting in this case to give how to choose the divergence which leads to an
“optimal” (in some sense) estimate or test in term of efficiency and robustness.

In the important case of paired samples, the asymptotic results presented in Section
4 hold with some modifications. The method can be generalized to corresponding
problems involving more than two samples. Simple and composite tests on the
parameter and approximations to the corresponding power functions can be obtained
in a similar way. It would be worthwhile also to involve the problem of Bartlett
correctability of the test statistic Sn. These developments will be reported in future
communications.

6 Proofs

Proof of Theorem 3.1. (a) We prove this part using some similar arguments to
those in Qin and Lawless (1994) and Zou et al. (2002). Simple calculus give

Qf ′(θT ) − Pg′(θT ) = 0 (6.1)
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Figure 4: Example 2- Approximation of power function.

and

Qf ′′(θT ) − Pg′′(θT ) = −P
(

m′(θT )m′(θT )T ϕ⋆
ρ
′′(m(θT ))

)

=: −V1(θT ). (6.2)

Observe that the matrix (6.2) is symmetric. Let Un(θT ) := Qn1
f ′(θT ) − Pn0

g′(θT )
and use (6.1) and condition (A.2) in connection with the Central Limit Theorem to
see that √

nUn(θT ) → N (0, V2(θT )) , (6.3)

with V2(θT ) := ρ−1
1

[

Q
(

f ′f ′T
)

− Qf ′Qf ′T
]

+ ρ−1
0

[

P
(

g′g′T
)

− Pg′Pg′T
]

. Also, let

Vn(θT ) := Qn1
f ′′(θT ) − Pn0

g′′(θT ) and use (A.2) and (6.2) in connection with the
Law of Large Numbers to conclude that

Vn(θT ) → −V1(θT ) (a.s). (6.4)

Now for θ = θT + un−1/3 with |u| ≤ 1 consider a Taylor expansion of lφ⋆(θ) around
θT , and use (A.1) and the fact that l′φ⋆(θ) = nρn(1 + ρn)−2Un(θ) with ρn → ρ > 0,



16 Amor KEZIOU, Samuela LEONI-AUBIN

to see that (a.s)

lφ⋆(θ) − lφ⋆(θT ) = n2/3ρ(1 + ρ)−2uT Un + 2−1n1/3ρ(1 + ρ)−2uT Vnu + O(1) (6.5)

uniformly on u with |u| ≤ 1. Now, using (6.4) and the fact that
Un = O

(

n−1/2(log log n)1/2
)

(a.s) to conclude that

lφ⋆(θ) − lφ⋆(θT ) = O
(

n1/6(log log n)1/2
)

− 2−1ρ(1 + ρ)−2uT V1un1/3 + O(1) (a.s).

Hence, uniformly on the surface of the ball B(θT , n−1/3) (i.e, uniformly on u with
|u| = 1), we have

lφ⋆(θ) − lφ⋆(θT ) ≤ O
(

n1/6(log log n)1/2
)

− 2−1ρ(1 + ρ)−2cn1/3 + O(1) (a.s), (6.6)

where c is the smallest eigenvalue of the matrix V1. Note that c is positive since
the matrix V1 defined in (6.2) is positive definite (it is symmetric, and non singular
by assumption). In view of (6.6), by the continuity of θ 7→ lφ⋆(θ), it holds that as

n → ∞, with probability one, lφ⋆(θ) attains its maximum value at some point θ̂ in

the interior of the ball B(θT , n−1/3), and therefore the estimate θ̂ satisfies l′φ⋆(θ̂) = 0

and θ̂ − θT = O(n−1/3).
(b) Using the fact that l′φ⋆(θ̂) = 0 and a Taylor expansion of l′φ⋆(θ̂) around θT , we
obtain

0 = a−1
n l′φ⋆(θ̂) = a−1

n l′φ⋆(θT ) + a−1
n l′′φ⋆(θT )

(

θ̂ − θT

)

+ o(n−1/2).

Hence, √
n

(

θ̂ − θT

)

= −V −1
n (θT )

√
nUn(θT ) + o(1) (6.7)

where Un and Vn are defined as in the proof of part (a). Using (6.3) and (6.4), by

application of Slutsky Theorem, we may conclude then
√

n
(

θ̂ − θT

)

→ N (0, LCM)

where LCM is given by (3.1). When Q = P , simple calculus leads to (3.2).

(c) First, recall that Q = P implies that θT = 0. Hence, from (6.7) using the
convergence (6.4), we get

θ̂ = V −1
1 (0)Un(0) + o(n−1/2), (6.8)

where V1(0) = P
[

(1, rT )T (1, rT )
]

, Un(0) =
(

0, Wn(0)T
)T

and
Wn(0) := Qn1

(∂/∂β)f(0) − Pn0
(∂/∂β)g(0). On the other hand, a Taylor expansion

of 2lφ⋆(θ̂) in θ̂ around θT = 0, using the fact that lφ⋆(0) = 0, gives

2lφ⋆(θ̂) = 2l′φ⋆(0)T θ̂ + θ̂T l′′φ⋆(0)θ̂ + o(1)

= 2anUn(0)T θ̂ + anθ̂T Vn(0)θ̂ + o(1)

= 2anUn(0)T θ̂ − anθ̂T V1(0)θ̂ + o(1).

Combining this with (6.8) to conclude that

2lφ⋆(θ̂) = anWn(0)T VP
−1Wn(0) + o(1) where VP := P (rrT ) − (Pr)(Pr)T .
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It follows that 2lφ⋆(θ̂) converges in distribution to a χ2 variable with d degrees of
freedom, since

√
anWn(0) → N (0, VP ) in distribution.

Proof of Theorem 3.2. First, observe that when Q 6= P , then βT 6= 0 and
θT = (αT , βT

T )T 6= 0. Furthermore,

φ⋆(Q, P ) =

∫

ϕ⋆
ρ(dQ/dP ) dP =

∫

ϕ⋆
ρ(m(θT )) dP = Qf(θT ) − Pg(θT ) (6.9)

which is finite (by assumption (A.3)) and positive. A Taylor expansion, of
(2an)−1Sn = a−1

n lφ⋆(θ̂) in θ̂ around θT , gives

(2an)−1Sn = Qn1
f(θT ) − Pn0

g(θT ) + o(n−1/2). (6.10)

Combining this with (6.9) to conclude that

√
an

[

(2an)−1Sn − φ⋆(Q, P )
]

=
√

an [Qn1
f(θT ) − Qf(θT )] −

√
an [Pn0

g(θT ) − Pf(θT )] + o(1)

which converges in distribution to a centered normal variable with variance

σ2(θT ) = ρ0

[

Q(f2) − (Qf)2
]

+ ρ1

[

P (g2) − (Pg)2
]

.

References

Agresti, A. (1990). Categorical data analysis. Wiley Series in Probability and Math-
ematical Statistics: Applied Probability and Statistics. John Wiley & Sons Inc.,
New York. A Wiley-Interscience Publication.

Broniatowski, M. (2003). Estimation of the Kullback-Leibler divergence. Math.
Methods Statist., 12(4), 391–409 (2004).

Broniatowski, M. and Keziou, A. (2003). Parametric estimation and testing through
divergences. Preprint 2004-1, L.S.T.A - Université Paris 6.
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