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Abstract: Several studies have found that occasional-break processes may produce realizations
with slowly decaying autocorrelations, which is hardly distinguished from the long memory phe-
nomenon. In this paper we suggest the use of the Box-Pierce statistics to discriminate long memory
and occasional-break processes. We conduct an extensive Monte Carlo experiment to examine the
finite sample properties of the Box-Pierce and other simple tests statistics in this framework. The
results allow us to infer important guidelines for applied statistics in practice.
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1 Introduction

Recently there has been an increasing interest in the possibility of confusing long memory
and occasional-break processes. If a stationary short memory process is affected by occa-
sional breaks, its realizations give the impression of persistence and the estimate of the long
memory parameter is biased away from zero. In such a case, the appearance of long mem-
ory is not a genuine feature of the time series, but it occurs because occasional structural
breaks are present (Granger and Hyung, 2004, Diebold and Inoue, 2001). Formal statistical
tests to decide if a real time series is better described as a realization of a long memory
process or a process with structural breaks are therefore of value. Notwithstanding, to our
knowledge, in literature, there are not so many proposals to distinguish the long memory
from the occasional breaks effects. Ohanissian et al. (2004) propose a test based on the
invariance of the long memory parameter for temporal aggregates of the process under the
null hypothesis of true long memory. Dolado et al. (2004) develop a test, conceived as an
extension of the well-known Dickey and Fuller test, for the null hypothesis of long memory
versus the alternative of short memory with deterministic components, subject to structural
breaks. Perron and Qu (2004) propose a test for long memory, based on the difference in the
log-periodogram estimate, computed using different numbers of frequencies. Hsu (2005)
presents a modified local Whittle method for testing long memory when the data have a
single change in mean at a know date. Shimotsu (2005) proposes a pair of tests based, the
first, on the comparison among the estimates of the long memory parameter d, computed
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for b subsamples and the second on the KPSS test after taking the d-th difference of the
sample. Berkes et al. (2006) develop a testing procedure to discriminate between a long
memory dependent process and a weakly dependent process with one change in mean at an
unknown point.
In this paper we propose to use the well-known Box-Pierce (Box and Pierce, 1970) and
Ljiung-Box (Ljiung and Box, 1979) statistics to distinguish between long memory and
occasional-breaks data generating process (DGP) when more than one break in mean is
present at unknown dates. The BP and LB statistics have the big advantage of being very
easy to compute and they are also implemented in several softwares. To describe the idea,
suppose that a time series is generated from a process with occasional breaks and its autocor-
relation function (ACF) decreases very slowly to zero, giving the impression of persistence.
Then we could estimate the date of breaks and filter the series to obtain a break-free series
which should not present spurious dependence anymore. This can be tested using the Box-
Pierce (BP) and Ljiung-Box (LB) statistics.
Via an extensive Monte Carlo experiment we investigate the finite sample performance of
the BP and LB test and it with Hsu’s modified local Whittle test (hereafter mLW) oppor-
tunely generalized to multiple breaks at unknown dates. We do not consider in the Monte
Carlo experiment all the tests previously mentioned because either their null hypothesis is
long memory (whereas we are focussed on the null hypothesis of occasional breaks) or they
assume the occurrance of only one change possibly at known date (whereas we assume
multiple breaks at unknown dates).
Moreover we present an application to the Italian inflation rate monthly series.
The paper is organized as follows. Section 2 gives some basics on the long memory and
occasional-break models considered in the paper. Section 3 describes Hsu’s modified local
Whittle test and the BP and LB test. Section 4 is devoted to the Monte Carlo experiment.
Section 5 presents an empirical example using the Italian inflation rate monthly data. Sec-
tion 6 concludes.

2 Long memory and occasional-break processes

In the time domain, a stationary discrete time series is said to be long memory if its auto-
correlation function decays to zero like a power function, that is

ρ(k) ≈ Ck2d−1 as k →∞, (1)

where C 6= 0 and d < 0.5. This definition implies that the dependence between successive
observations decays slowly as the number of lags tends to infinity. Alternatively, in the
frequency domain, a stationary discrete time series is said to be long memory if its spectral
density is unbounded at low frequencies, that is

f(λ) ≈ σ2

2π
λ−2d as λ→ 0.

In the following we will concentrate on the fractionally integrated, or I(d) processes, with
d ∈ (0, 1/2): for this range of values the process is stationary, invertible and possesses
long-range dependence (see Beran (1994) for more details on long memory processes).
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In this paper we will also consider occasional-break models, i.e. such that the number
of breaks that can occur in a specific period of time is somehow bounded. More formally,
for these models the probability of breaks, p, is assumed to converge to zero slowly as the
sample size increases, i.e. p→ 0 as T →∞, yet limT→∞Tp is a non-zero finite constant.

The first model we consider is the mean plus noise or occasional-break model (Chen
and Tiao, 1990, Engle and Smith, 1999)

yt = mt + εt, t = 1, ..., T,
mt = mt−1 + qtηt

(2)

where εt is a noise variable and occasional level shifts, mt, are controlled by two variables
qt (date of breaks) and ηt (size of jump). ηt is an i.i.d. N(0, σ2

η). In the following we
assume that ηt is N(0, 1) and qt follows an i.i.d. binomial distribution, such that qt = 0
with probability 1− p and 1 with probability p.

The binomial model (2) is characterized by sudden changes only. When the structural
changes are gradual the Markov switching model (Hamilton, 1989) is more suitable. Sup-
pose st is a latent random variable that can assume only values 0 or 1. st is assumed to be a
Markov chain with transition probability pij = Pr (st = j/st−1 = i). Then, in model (2),
it is possible to use a switching model for qt such that qt = 0 when st = 0 and qt = 1 when
st = 1. Hence st = 1 indicates a break date and this is independent of the value taken by
st−1 that might be also equal to 1. This allows graduality in the structural changes.

3 Alternative approaches to structural change testing

In this Section we consider three tests to verify the occasional breaks hypothesis vs. long
range dependence. The first test we discuss is a generalization of Hsu’s (2005) test to take
into account the instance of multiple breaks at unknown dates. Then we present two tests
based on the Box-Pierce and Ljung-Box statistics.

3.1 A generalization of the modified local Whittle test

When yt, t = 1, . . . , T is a realization of an ARFIMA (p, d, q) process, Sowell (1992) sug-
gested to estimate the parameters by the maximum likelihood method, hereafter MLE. On
the ground of the approximation proposed in Whittle (1953), maximizing the log-likelihood
function is equivalent to minimizing the spectral likelihood function:

LWT (β) =
[T/2]∑
j=1

{
I(vj)
f(vj , β)

+ logf(vj , β)
}

where f(vj , β) is the spectral density of yt and

I(vj) =
1

2πT

∣∣∣∣∣
T∑
t=1

(yt − µ)eitvj

∣∣∣∣∣
2

is the periodogram. β is a vector including the short and long memory parameters and
vj = 2πj/T, for j = 1, . . . , [T c] < [T/2], are the spectral ordinates. The resulting mini-
mizer is an approximation of the MLE and it is known as the Whittle estimator. The Whittle
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estimator is easy to compute since LWT (β) does not depend on the unknown mean µ and is
a simple function of β. However the Whittle estimator has the disadvantage of requiring the
a priori specification of a parametric form of f(vj , β).
With specific regards to the estimation of parameter d, Kunsch (1987) and Robinson (1995b)
suggested a local Whittle estimator that neither imposes the Gaussian assumption nor re-
quires the specification of the spectral density. Indeed in the neighbourhood of frequency
zero the spectral density of a long memory process is

f(v, d) = G|v|−2d

as v → 0, where G ∈ (0,∞) and d ∈ (−0.5, 0.5). Therefore replacing f(v, β) with
G|v|−2d it is possible to obain a local version of LWT (β) that depends only on G and d, but
not on the ARMA coefficients. The local analogue of LWT (β) is then

R(G, d) =
1
m

m∑
j=1

(
I(vj)v2d

j

G
+ logGvj−2d

)
(3)

where m represents the number of frequencies included in the neighbourhood of frequency
zero and is an integer smaller than [T/2], such that 1/m + m/T → 0 as T → 0. The
local Whittle estimator d̂mLW is obtained by minimazing equation (3) and, when there is
no change in mean, Robinson (1995b) proves that

m1/2(d̂mLW − d) d→ N(0, 1/4).

Hsu (2005) suggests the use of the local Whittle estimator and includes potential breaks
in the models in order to discriminate between long memory and occasional-break DGP.
In particular, Hsu considers the case of one single break at an unknown date. The idea is,
firstly, to obtain the break-free series by subtracting the sample mean from each regime,
then compute the local Whittle estimator d̂(τ̃) of each subseries, conditionally to the date
of the break [τ̃T ]. The estimated break point is τ̃ = n/T , where 1 < n ≤ T . Under
these circumstances the local Whittle estimator (hereafter called modified Local Whittle
estimator, mLW) maintains the asymptotic normality.
In our context, Hsu’s settings of a single structural break are too restrictive. Hence it is
opportune to generalize the mLW estimator to the instance of multiple breaks at unknown
dates and employ the Bai and Perron test (Bai and Perron, 1998) to detect the break points
in the series.1 On the ground of the T -consistence of the estimated break points, the test
statistics still has the asymptotic normality. Therefore a test statistics, mLW, for detecting
long memory is

mLW = 2m1/2(d̂(τ̂)− d)→ N(0, 1)

where τ̂ = (τ̂1, τ̂2, . . . , τ̂k) is the vector of the estimated break points. Under the null
hypothesis of structural breaks we have d = 0.

1Actually, in his paper, Hsu estimates jointly the long memory parameter and change points, but he supposes
the number of breaks is known.
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3.2 A pair of tests based on the Box-Pierce statistics

In this Section we propose the use of the BP and LB statistics to discriminate between
long memory and occasional-break processes. As in Hsu (2005), we work with the break
free series. More precisely, using the BP or LB statistics, we investigate whether there is
correlation in the break free series. Under the null hypothesis of occasional-break DGP, the
BP and LB tests should not find correlation in the break free series and the appearance of
persistence of the original series can be interpreted as a spurious feature, induced by the
presence of the (unaccounted) structural breaks. On the contrary, under the alternative of
long memory DGP, the BP and LB tests should find correlation in the break free series, as
filtering the original series from the (spurious) structural breaks can not destroy its (genuine)
persistence.
Given the time series yt, t = 1, ..., T and its break free version y′t, defined in the previous
section, the test statistics we consider is:

BPK = T
K∑
k=1

(ρ̂(k))2 (4)

where

ρ̂(k) =

∑T−k
j=1 (y′t − ȳ′)(y′t+k − ȳ′)∑n

t=1(y′t − ȳ′)2

is the sample autocorrelation function computed for the break-free series, T is the series
length and K is the number of lags included in the summation.
The modified version of the BP statistics proposed by Box and Ljiung (1979) is

LBK =
K∑
k=1

T (T + 2)
T − k

(ρ̂(k))2 . (5)

From the theoretical side, Hosking (1996) derive the asymptotic properties of sample
autocorrelations in case of long memory processes and proved that they differ in important
respects from the corresponding results for the short memory processes whose autocorrela-
tions are absolutely summable.
More in details, Hosking (1996) shows that when 0 < d < 1/4, ρ̂(k) has the stan-
dard normal limiting distribution and asymptotic variance of order n−1; when d = 1/4,
ρ̂(k) is asymptotically standard normal and asymptotic variance of order n−1log(n); when
1/4 < d < 1/2, ρ̂(k) has a nonstandard asymptotic behaviour (see Theorem 7 in Hosking’s
paper).
In our framework, under the null hyphotesis of structural change, the break-free series ob-
tained from the mean plus noise and the Markov switching model is a white noise, then the
BPK and LBK statistics converge to the usual chi-square distribution with K degrees of
freedom. Under the alternative hyphotesis of long memory the statistics diverge to infinity.

4 Monte Carlo study

In this Section we conduct an extensive Monte Carlo experiment to examine the size and
power properties in finite samples of the tests presented in the previous sections.
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The computational burden of this simulation experiment is considerable, especially for
what concernes the application of the Bai and Perron procedure. For this reason, we con-
sider the following three different data generating processes often considered in literature,
e.g. Granger and Hyung (2004), Diebold and Inoue (2001):

1. DGP1: mean plus noise model with p = 0.005, 0.01, 0.05, 0.1 and σ2
η = 0.1;

2. DGP2: Markov switching model, with (p, q) = (0.95, 0.95; 0.95, 0.99; 0.99, 0.95;
0.99, 0.99) and σ2

η = 0.1. In this case the initial state s1 is generated by a Bernoulli
random variable with p = 0.5;

3. DGP3: I(d) model with d = 0.1, 0.2, 0.3 and 0.4 and σ2
ε = 1.

After simulating a series, yt, from one of the DGPs, we estimate the break dates with
the Bai-Perron (1998) procedure and obtain the break-free series, that is y′t = yt − mt,
where mt is the sample mean of each regime. Series generated from DGP1 and DGP2
become white noise after filtering out the breaks, whereas series generated from DGP3 are
still I(d) series. Hence, when considering DPG1 and DGP2 the esperiment is conducted
under H0 and it is evaluated the size of the tests. On the contrary, when considering DGP3
the experiment is under H1 and an estimation of the power is provided. For all DGPs we
set the sample sizes to T = 250, 500 and 1000. The results are based on 2000 independent
replications.

The functions we use are written in R language (R Development Core Team, 2006) and
are available upon request by the authors.

Table 1 provides the empirical rejection frequencies of the three test statistics given in
the previous section. They are obtained under H0 : d = 0 and based on the 5% critical
values of the corresponding asymptotic distributions.2

We evaluate the power of theBPK , LBK and mLW for several values ofK andm tests
in [T/16, T/4].3

The Monte Carlo experiment revealed that the empirical power of the three tests depends
on K and m. On the one hand, the BPK and LBK tests tend to become too conservative
as K increases, so in (4) and (5) we have used K = T/16. On the other hand, the mLW
test becomes too conservative, decreasing the number of frequencies, so we have chosen
m = T/4.

Reading Table 1 we can observe that in terms of size (DGP1, DGP2) BP systematically
outperforms the other tests. On the other side, mLW tends to display high over -rejection
patterns, especially as the value of parameter p in DGP1 increases and for all values of
parameters p and q in DGP2. Moreover the over-rejection becomes even more serious
with the increasing of the sample size T . Turning to the tests based on the Box-Pierce
statistics, we can see that BPK works better than LBK especially in DGP2. In particular,
BP displays empirical sizes quite close to the nominal level even if the results are sligtly
worse for T = 1000. This is an important result for practitioners, as it indicates that we
have a promisingly reliable inference tool for testing structural breaks vs long memory.

In terms of power (DGP3), all tests perform well, excepted when d takes the smallest
valeus and T = 250. This is not surprising since when d is small it is considerably difficult

2Results for 1% and 10% are not included for brevity’s sake, but are available upon request.
3Once more, these results are not presented for brevity’s sake, but are available upon request.
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Table 1: Empirical power of the tests at 5% level

DGP1 T=250 T=500 T=1000

test BPK LBK mLW BPK LBK mLW BPK LBK mLW

p = 0.005 5.0 6.4 6.2 4.8 6.4 6.3 4.7 6.5 7.8
p = 0.010 4.1 5.3 6.4 4.9 6.2 7.1 4.8 6.6 8.9
p = 0.050 4.6 6.0 9.2 5.3 6.7 9.3 4.8 7.8 11.6
p = 0.100 5.5 6.2 11.2 4.8 5.7 14.8 5.9 7.6 22.5

DGP2 T=250 T=500 T=1000

test BPK LBK mLW BPK LBK mLW BPK LBK mLW

(p, q) = (0.95, 0.95) 4.4 6.7 15.9 5.6 9.2 21.8 8.6 15.3 32.1
(p, q) = (0.95, 0.99) 4.7 5.6 8.0 5.8 7.3 11.4 5.9 8.9 17.2
(p, q) = (0.99, 0.95) 6.2 7.9 19.7 6.9 9.9 26.6 7.1 10.6 37.6
(p, q) = (0.99, 0.99) 5.0 6.0 12.8 6.7 8.3 18.7 8.7 12.0 25.8

I(d) T=250 T=500 T=1000

test BPK LBK mLW BPK LBK mLW BPK LBK mLW

d = 0.10 18.0 19.5 42.0 26.9 31.2 64.8 42.7 47.4 88.4
d = 0.15 44.2 47.0 69.2 66.8 69.1 89.3 87.4 89.8 99.0
d = 0.20 73.7 75.2 86.7 91.0 92.2 97.5 99.1 99.3 99.9
d = 0.25 90.9 91.6 95.5 98.9 99.1 99.8 100 100 100
d = 0.30 97.7 98.2 98.4 99.9 99.9 99.9 100 100 100
d = 0.35 99.8 99.8 99.7 100 100 100 100 100 100
d = 0.40 99.9 99.9 99.7 100 100 100 100 100 100
d = 0.45 100 100 100 100 100 100 100 100 100

to distinguish between long and short memory, even for the most common long memory
testing procedures.

5 An example: the Italian inflation rates

As an example, we examine the time series relative to the monthly Italian inflation rates.
The sample period covers January, 1975 - August, 2006, with 379 observations (the base
years is 2000) and the inflation rate exhibits quite different behaviours. Briefly, the second
half of the Seventies is characterized by strong fluctuations as a consequence of the two
oil shocks and frequent currency rate devaluations. With the beginning of the Eighties the
inflation rate tends to vary much less than before, as the Italian Government substained
a restrictive monetary policy, that was even more needed in the Nineties, when Italy was
slowly getting ready to be part of the European Monetary Union and in this view had to
respect Maastrict parameters.
The series of inflation rates is constructed by taking 100 times the first difference of the
log-Consumer Price Index series. The series is then seasonally adjusted. Figure 1 reports
the seasonally adjusted series together with the empirical autocorrelation functions. We can



8 Bisaglia L., Gerolimetto M.

Time

ta
ss

o_
de

st

1975 1980 1985 1990 1995 2000 2005

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

Lag

P
ar

tia
l A

C
F

Figure 1: Italian inflation rates

see that the sample autocorrelation function exhibits a very slow decay indicating, perhaps,
the presence of long memory. However, bearing in mind what we discussed in the previous
sections of this paper, the appearance of strong persistence in this series might also be due
to unaccounted structural breaks.

To investigate about the dubious appearance of the sample autocorrelation function,
we begin estimating the long memory parameter d in the whole sample. With the Whittle
method we obtain d = 0.418, with the log-periodogram method the result is d = 0.933.
Then we employ the Bai and Perron procedure and find the following break points: 1975(12)
1976(11) 1979(7) 1981(3) 1983(1) 1985(5) 1996(5), reported in Figure 1.

By filtering out the estimated break points we obtain the break-free series of the Ital-
ian inflation rates that is reported in Figure 2 together with its empirical autocorrelation
functions. We can see that the ACF looks now more like the ACF of a white noise process.

Afterwards, we estimate with the Whittle method the long memory parameter in the
break-free series and obtain an estimation of d = 4.583013e− 05 very close to zero. With
the log periodogram method we obtain d = −0.0666869. This means that after removing
the break points from the series the estimated value of the long memory parameter moves
towards zero, whatever estimation method is used. In particular, with Whittle method the
estimated value is practically indistinguishable from zero. This suggests that, maybe, the
strong persistence in the Italian inflation rates is spurious and can be explained with unac-
counted structural breaks.

Finally, we apply to the break-free series the BPK , LBK and mLW tests to verify the
null hypothesis of structural breaks. The p-values of the tests are 0.0845 for test BPK ,
0.0651 for test LBK and 0.499 for test mLW. Hence, at least at the level of 5%, all tests
accept the null hypothesis of incorrelation in the break free series, i.e. the null hypothesis
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Figure 2: Break-free Italian inflation rates

of structural breaks in the original series. On the whole, we can conclude that the Italian
inflation rates series is characterized by structural breaks and not by long memory.

6 Conclusive remarks

The recent literature has given much attention to the issue of discriminating the long mem-
ory from occasional breaks phenomena since in practice it is really difficult to distinguish
series generated from the two processes.

This paper uses an extensive set of simulation experiments to explore the exact sampling
properties of alternative test statistics for the hypothesis of structural breaks vs long mem-
ory. In particular, after filtering out the break points from the original series, we propose to
use the well-known Box Pierce and Ljung Box statistics. These tests has the advantage of
being very easy to implement and also having a known asymptotic distribution.

In a Monte Carlo experiment we compare the performance of the BPK and LBK tests
with that of Hsu’s modified Local Whittle test. The results of our Monte Carlo investigation
put in evidence that the simple BPK test perform well, the LBK slightly worse, while
the behaviour of the mLW test is far poorer, especially in terms of size distortion that is
particularly severe with the increase of the series length. In terms of power all test have
almost the same the performance.

This finding is encouraging since we have characterized a very simple testing tool that
permits to discriminate the long memory from the occasional-break processes. An empirical
example with the Italian inflation rates data shows the implementation of the test.
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