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Abstract: In this paper we propose a sequential Monte Carlo algorithm to estimate a
stochastic volatility model with leverage effects and non constant conditional mean and
jumps. We are interested in estimating the time invariant parameters and the non-observable
dynamics involved in the model. Our idea relies on the auxiliary particle filter algorithm
mixed together with Markov Chain Monte Carlo (MCMC) methodology. Adding an MCMC
step to the auxiliary particle filter prevents numerical degeneracies in the sequential algo-
rithm and allows sequential evaluation of the fixed parameters and the latent processes.
Empirical evaluation on simulated and real data is presented to assess the performance of
the algorithm.

Keywords: Stochastic volatility with jumps, leverage, return’s predictability, Bayesian
estimation, auxiliary particle filters, MCMC.

1 Introduction

In this paper we propose a methodology to analyze the sequential parameter learning
problem for a stochastic volatility model with jumps and a predictable component,
i.e., the conditional mean. We aim at updating the estimates of the parameters
of interest together with the states continuously, following the flow of information
arriving in the markets. There are various reasons why we think sequential methods
are appealing, both from a practical and a theoretical point of view. Sequential
procedures seem suitable when we are interested in real time applications, where
we need to update our estimates regularly. For example, economic agents need to
produce estimates and forecasts in real time, meaning that we need to adapt our
estimates every time a new observation is available. One of the most compelling ad-
vantages of sequential Monte Carlo methods is their reduced computational burden
compared with other Monte Carlo procedures such as MCMC, which require that
for each new observation we have to restart the inferential procedure from scratch.
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Our procedure builds on the particle filtering algorithm of Liu and West (Liu
& West 2001) in which we include an MCMC step to prevent the algorithm de-
generating after a number of iterations. The use of MCMC together with particle
filters has been proposed in Gilks & Berzuini (2001) and Berzuini & Gilks (2001)
and has been proved to be an effective combination between the computational ad-
vantages of sequential algorithms and the statistical efficiency of MCMC methods.
The introduction of the MCMC step is particularly useful when dealing with long
time series, since it sensibly reduces the degeneration difficulties connected with
sequential Monte Carlo methods.

We apply our methodology in a stochastic volatility context. Time varying con-
ditional variance modelling represents an important topic for financial applications,
and a large literature has grown up on describing financial time series using stochastic
volatility models (see Ghysels et al. 1996 for a review). Furthermore, the introduc-
tion of a jump component has been proved to give an improved fit to data, both in
relation to the model’s ability to describe the return’s behavior (Eraker et al. 2003),
as well as for the pricing of financial derivatives (see Bakshi et al. 1997, Pan 2002
and Eraker 2004 amongst other).

Several variants of ARCH and SV models have been proposed so far to account
for the empirical regularities of financial time series. In particular, in this paper
we deal with three such regularities within a stochastic volatility framework. First,
we consider the leverage effect between returns and conditional variances; second,
we model the conditional mean, that is the predictable component of the returns;
finally, we take into account a jump’s dynamics to describe extreme and rare events
such as crashes on the market. The leverage effect has been thoroughly investigated
in the GARCH setting in Nelson (1991), whereas in a stochastic volatility frame-
work this issue has been tackled in Yu (2005). This characteristic describes the
relationship between returns and conditional variances. It is in fact reasonable to
think that bad news in the markets, (e.g., the price decreases), leads to a boost on
the variance, which is a measure of the financial risks. On the other hand, episodes
of high volatility induce expectations of lower future returns, hence, the negative
correlation between these shocks. Furthermore, Hull & White (1987) noted how
financial leverage is also important for option pricing inference.

In financial applications there is substantial evidence of some predictability on
the returns. This finding has been noticed since the early works of Merton (1971),
that gave a theoretical justification for this behavior. In applications related to opti-
mal portfolio choices, it is important to take into account this predictable component.
In fact, economic theory shows that an investor gains from market predictability and
volatility timing, even if the impact of these benefits is difficult to quantify. This is
why it is interesting to explicitly model the conditional expected value of the returns
together with the dynamics of the volatilities.

Finally, in the recent literature, there is also evidence in favor of jumps on returns
and volatilities. In fact, a diffusive behavior of these two processes seems to be
inadequate to describe the underlying dynamics (Eraker et al. 2003, Raggi 2005).
Furthermore, if we consider the asset allocation problem in which the risky asset
follows a jump diffusion process, there is some evidence that an extreme and rare
event influences the conditional mean and the volatility, thus implying a modification
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on the optimal portfolio weights (Liu et al. 2003).
The remainder of the paper is organized as follows. The basic model is described

in Section 2. Our inferential solution for that class of models is outlined in Section
3. Finally, some empirical results based on simulated and real data are illustrated
in section 4.

2 The Model

A stochastic volatility model for the observable return process is usually specified as

yt+1 = µt + exp{vt/2}εt+1 + κt+1Jt+1 (1)
vt+1 = µ + φvt + σηηt+1 (2)
µt+1 = α + βµt + σµζt+1. (3)

Returns are defined as yt+1 = 100×(log pt+1− log pt), where pt is the asset price.
In this framework we assume that the error term εt+1 is standardized Gaussian white
noise. The conditional mean µt+1 and the logarithm of the conditional variance or
volatility vt+1 are described by two non observable processes. The autoregressive
specification of the conditional variance is an approximation of the Euler discretiza-
tion of the continuous time dynamics proposed in Hull & White (1987) and in Heston
(1993). We assume that the initial state v0 is distributed according to

N

(
µ

1− φ
;

σ2
η

1− φ2

)
,

which is the invariant law of the autoregressive model, identified by the first two
marginal moments of the log-volatility process. The parameter φ is the persistence
of the volatility that describes the volatility clustering. In empirical applications this
parameter is close to 1 even though it is assumed that |φ| < 1. This condition implies
the stationarity of returns and volatilites. The parameter µ is the drift component
and ση can be interpreted as the volatility of the volatility. We assume that the
error ηt+1 is a Gaussian white noise. In order to describe the leverage effect, we
assume Cov(εt+1, ηt+1) = ρ. This parameter in general describes a negative relation
between returns and risks even though, in some application such as in the analysis
of exchange rates data, its estimate is usually close to zero.

In order to properly describe extreme events such as crashes in the markets, a use-
ful extension is to introduce a jump component in the returns and in the volatilities.
Duffie et al. (2000) for instance propose a model based on a stochastic differential
equation with jumps driven by a marked point process. In the discrete time model,
these discontinuities are governed by a sequence of independent Bernoulli random
variables Jt+1 with fixed intensity1 λ. A Gaussian random variable κt+1 with mean
µy and variance σ2

y describes the size or mark associated to each jump.
We also directly model the conditional mean via an unobservable autoregressive

process µt+1. Chernov et al. (2003) suggest that some serial dependence on µt+1 can
be motivated by the effect of non-synchronous trading and unexpected stochastic
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dividends. This dependence is assumed to be mean reverting. Similar dynamics for
the conditional mean have been studied recently in Johannes et al. (2002b). The
conditional mean at time 0 is distributed as

µ0 ∼ N

(
α

1− β
;

σ2
µ

1− β2

)
.

In this paper we assume that the noise ζt+1 is uncorrelated with εt+1 and ηt+1

even if there are no theoretical reasons to impose this constraint.
We need also to define the prior distribution for the parameters vector θ. Our

choice is consistent with Kim et al. (1998) and with Eraker et al. (2003). We
thus hypothesize the following prior distributions: µ ∼ N(0; 10), φ ∼ Beta(25; 2),
σ2

η ∼ IG(2.5, 0.05), ρ ∼ U(0,1), α ∼ N(0; 4), β ∼ Beta(25; 2), σ2
ζ ∼ IG(2.5; 0.05),

λ ∼ Beta(2; 100), µy ∼ N(0; 20), σ2
y ∼ IG(2.5; 0.05), where, in particular, IG denotes

the inverse of a Gamma distribution.

3 Sequential Parameter and States Learning

Since their introduction, stochastic volatility models have been an interesting bench-
mark for many estimation techniques. Some of these rely on the Efficient Method
of Moments of Gallant & Tauchen (1996), others on the Implied-State Generalized
Method of Moments (IS-GMM) of Pan (2002). Estimation through Maximum Like-
lihood has been carried out in Aı̈t-Sahalia (2002), by approximating analytically the
transition density through Hermite polynomials. Recently, many simulation based
methods have been implemented in order to approximate the likelihood. Simulated
maximum likelihood methods have been proposed in Brandt & Santa-Clara (2002),
Durham & Gallant (2002) and Koopman & Hol-Uspensky (2002) among others. Fil-
tering techniques to evaluate the likelihood have been implemented in Johannes et
al. (2002a) and in Pitt (2002).

In the recent literature, Monte Carlo algorithms have provided a flexible yet
powerful tool for inference on complex models possibly with non observable compo-
nents. MCMC methods have been introduced in Jacquier et al. (1994) and in Kim
et al. (1998). Applications to models with jumps have been developed in Chib et
al. (2002) and in Eraker et al. (2003). Furthermore, MCMC methods for inference
on continuous time models have been implemented in Eraker (2001) and in Elerian
et al. (2001). MCMC methods provide efficient and accurate estimates when ap-
plied to off-line applications, but seem to be inadequate when dealing with real time
applications where we need to update regularly our estimates at each time step.

Particle filter algorithms, introduced in Gordon et al. (1993), have been success-
fully used in a variety of fields such as engineering, econometrics and biology. They
provide a sub-optimal but feasible solution to the Bayesian filtering problem. A
detailed review on adaptive sequential algorithms is given in Liu & Chen (1998) and
in Doucet et al. (2001), whereas an useful tutorial is Arulampalam et al. (2002).

We first describe the mechanics of these algorithms when the parameters are
known. We then extend our solution to the parameter learning problem. Consider,



Section 3 Sequential Parameter and States Learning 5

for example, the general state-space model

yt+1 = hm(xt+1, εt+1) (4)
xt+1 = hs(xt, ηt+1) (5)

where (4) and (5) are respectively the measurement and the state equations. Here
xt+1 is the so called state sequence, yt+1 is the observed process, (εt+1, ηt+1) is a
white noise and hs(·) and hm(·) are possibly nonlinear functions. Our goal is to
estimate the distribution p(xt+1|y1:t+1) given p(xt|y1:t) in which y1:t = (y1, . . . , yt)
is the past history of the observable process up to time t.

To implement the filter, we require the knowledge of the initial distribution
p(x0), of the transition distribution p(xt+1|xt), t ≥ 0 and of the measurement
distribution p(yt+1|xt+1), t ≥ 1. The key idea is to approximate the filtering density
p(xt+1|y1:t+1) by a discrete cloud of points called particles xj

t+1, j = 1, . . . N , and a
set of weights ωj

t+1 as follows

p̂(xt+1|y1:t+1) =
N∑

j=1

ωj
t+1δ(xt+1 − xj

t+1), (6)

where δ(·) is an indicator function. The cloud of points at time t+1 can be generated
from a proposal distribution q(xt+1|xi

t, yt) and then weighted according to

ωi
t+1 ∝ ωi

t

p(yt+1|xt+1)p(xi
t+1|xi

t)
q(xi

t+1|xi
t, yt)

i = 1, . . . N (7)

With this setup, it can be proved that the variance of the weights increases
systematically over t with the consequence that we eventually associate unit weight
to one particle and zero to the others. For this reason a resampling step is added
to this simple scheme in order to avoid numerical degeneracies by getting rid of the
points with low probability.

An important variant of the basic filter is the auxiliary particle filter suggested
by Pitt & Shephard (1999) in which the proposal depends on the whole stream of
particles through an auxiliary variable J that is an index for the past trajectories
(more details on this method are provided in Liu & Chen 1998 and in Godsill
& Clapp 2001). In practice, the probability ωt+1 is corrected by an adjustment
multiplier that should diversify the particles. In general this factor is taken to be
dependent on a likely value of p(xt+1|xj

t ) such as the mean or the mode. In many
applications this extension helps to generate particles that are likely to be close to
the filtering distribution.

Monte Carlo filtering techniques provide a viable and efficient solution to the
filtering problem when the parameters are known. However, inference for the pa-
rameters is a challenging question. Recently a number of papers have tackled the
problem of estimating the fixed parameters in a sequential context. For example
Storvik (2002) proposes a filter in which the parameters are sequentially updated by
simulating from their conditional distribution p(θ|y1:t+1) through MCMC. A differ-
ent approach, named the practical filter by Johannes et al. (2006), is based on the
idea that p(xt+1, θ|y1:t+1) can be expressed as a mixture of lag-filtering distributions.
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The estimate is then based on a rolling-window MCMC algorithm. In the context
of stochastic volatility models, however, these methods seem to provide unstable re-
sults for some parameters2. Furthermore, a common practice is to artificially define
an autoregressive dynamics for the parameters, say θt+1, and then include it in an
augmented state vector (xt+1, θt+1) (see Gordon et al. 1993 and Kitagawa 1998 for
example). The main point against this approach is that it leads to time varying
and not to fixed parameter estimates. To correct for this artificial evolution, West
(1993) and Liu & West (2001) propose to approximate the posterior distribution
p(θ|y1:t+1) by a smooth kernel density, leading to

p(θ|y1:t+1) ≈
N∑

i=1

ωi
tN(mi

t+1; h
2Σt+1). (8)

The quantity mi
t+1 = aθi

t+1 +(1−a)θ̄t+1 is the kernel location for the i-th com-
ponent of the mixture whereas the matrix Σt+1 and the vector θ̄t+1 are respectively
estimates of the variance-covariance matrix and of the mean of the posterior distri-
bution at time t + 1. Furthermore, θi

t+1, i = 1, . . . , N is a sample from p(θ|y1:t+1).
The constants h and a, which measure the extent of the shrinkage and the degree of
overdispersion of the mixture, are given by h2 = 1−((2δ−1)/2δ)2 and a =

√
1− h2,

whereas the discount factor δ ranges between 0.95-0.99. It can be proved that the
variance of the mixture approximation in (8) is Σt+1 and the mean is obviously θ̄t+1.
According to this setup, at time t+1, a reasonable proposal for the posterior is then

θt+1|θt ∼ N
(
aθt + (1− a)θ̄t, h

2Σt

)
. (9)

This methodology has been successfully used in Liu & West (2001) in a dynamic
factor stochastic volatility context and in Carvalho & Lopes (2006) in a switching
regime stochastic volatility framework.

For the stochastic volatility model with jumps defined in eq (1)-(3) we found
that the basic setup described above perform poorly. The major drawback with this
algorithm is that the estimated posterior variance-covariance matrix Σt+1 collapses
to zero after a few hundred iterations. This problem is probably due to the sample
impoverishment phenomenon caused by the resampling procedure and also by the
discontinuous nature of the jump process. In fact, particles with high probability
are selected many times causing a loss of diversity in the cloud of points. This effect
is severe when the noise of the latent process is small3. A possible remedy is to
choose an efficient resampling scheme that keeps low the Monte Carlo variance. The
residual sampling proposed in Liu & Chen (1995) is a useful alternative. Instead of
resampling N particles with replacement, this strategy first takes bNωj

t+1c copies
of xj

t+1 and then samples the remaining according to a probability proportional to
Nωj

t+1 − bNωj
t+1c, where the symbol bzc refers to the greatest integer less or equal

to z. The procedure can be synthesized as follows

Residual Sampling

• Retain kj = bNωj
t+1c copies of xt+1;



Section 3 Sequential Parameter and States Learning 7

• Sample the remaining N −∑N
i=1 ki with probability proportional to

Nωj
t+1 − bNωj

t+1c;

• Reset the weights to
1
N

.

Another approach to increase the sample variability is to resort to MCMC moves.
This should also help to reduce the correlation between particles after resampling.
This idea has been recently developed in Gilks & Berzuini (2001) and in Berzuini &
Gilks (2001). In practice, calling x̃t+1 = (xt+1, θ), the particles x̃i

t+1 approximating
p(θ, xt+1|y1:t+1), can be moved to a different location x̃′it+1 according to a Markov
transition kernel T (x̃t+1, x̃

′
t+1), that is invariant with respect to the same filtering

distribution. For this reason, a burn-in period for the MCMC step is not necessary.
More formally, given the posterior distribution p(x̃t+1|y1:t+1), the importance

weights ωt+1(x̃t+1) and the proposal q(x̃t+1|x̃t+1, yt), it is easy to check that

p(x̃t+1|y1:t+1) =
∫

ωt+1(x̃t+1)q(x̃t+1|x̃t, yt)T (x̃t+1, x̃
′
t+1) dx̃t+1

= p(x̃′t+1|y1:t+1). (10)

In other words, we move all the particles (xi
t+1, θ

i), that approximate the pos-
terior, through T (·, ·) thus obtaining a further approximation of the filtering distri-
bution based on the weighted sample (θ′i,x′it+1, ω

i
t+1).

Our proposal is to apply the MCMC correction to the parameter learning method-
ology proposed in Liu & West (2001). We now provide the details of the algo-
rithm considering the version we implement for the model described in eq. (1)-(3).
Using the notation introduced in Johannes et al. (2002a), we write the vector of
the states as xt+1 = (vt, µt, Jt+1, κt+1) and we estimate the posterior distribution
p(vt, µt, Jt+1, κt+1, θ|y1:t+1).
In order to perform the MCMC step we need to keep track of the whole trajectory
of each particle. A useful way to store all of these information is through a set of
sufficient statistics St (Fearnhead 2002). For our model, the sufficient statistics up
to time t are

St =

(
v0,

t∑

i=1

vi,

t∑

i=1

vi−1,

t∑

i=1

v2
i−1,

t∑

i=1

v2
i ,

t∑

i=1

vivi−1,

t∑

i=1

aibi,

t∑

i=1

aibivi−1,

t∑

i=1

aibivi,

t∑

i=1

a2
i b

2
i , µ0,

t∑

i=1

µi,

t∑

i=1

µi−1,

t∑

i=1

µ2
i ,

t∑

i=1

µ2
i−1,

t∑

i=1

Ji,

t∑

i=1

κi,

t∑

i=1

κ2
i

)
.

where ai = yi − µi−1 − κiJi and bi = exp {−vi−1/2}. It can be noticed that the
sufficient statistics may depend on vt and µt that belong to xt+1. In this case we
estimate these quantities by simulating them from their dynamics. The amount of
computer memory required is, thus, sensibly reduced. The resulting algorithm is
summarized as follows

Parameter learning algorithm
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0. Simulate N particles from the prior p(θ), from p(v0) and from p(µ0), J0 = 0
and κ0 = 0 with equal weights;

For t = 1 to T :

1. Given xj
t = (vj

t−1, µ
j
t−1, J

j
t , κj

t , θ
j
t ) and ωj

t , j = 1, . . . , N , compute

v̄j
t = E[vt|vj

t−1, θ
j
t ]

µ̄j
t = E[µt|µj

t−1, θ
j
t ]

mj
t = aθj

t + (1− a)θ̄t

J̄ j
t+1 = 0

2. Draw an integer τ from τ ∈ {1, . . . , N} using residual sampling with probabil-
ities

gj
t+1 ∝ ωj

t p(yt+1|v̄j
t , µ̄

j
t , J̄t+1, m

j
t )

3. Update θt+1 from N(mτ
t , h

2Σt)

4. Update vt from p(vt|vτ
t−1, θ

τ
t+1)

5. Update µt from p(µt|µτ
t−1, θ

τ
t+1)

6. Update Jt+1 from p(Jt+1|θτ
t+1)

7. Update κt+1 from p(κt+1|θτ
t+1)

8. Update the sufficient statistics according to the draws in step 3 to 7.

9. Compute ωτ
t+1 ∝

p(yt+1|vτ
t ,µτ

t θτ
t+1)

p(yt+1|µ̄τ
t ,v̄τ

t ,mτ
t )

10. Repeat step (2)-(9) N times. Record xj
t+1 = (vj

t , µ
j
t , J

j
t+1, κ

j
t+1, θ

j
t+1) .

11. (Optional) Move the former particles according to MCMC with invariant dis-
tribution equal to the posterior and update the sufficient statistics according
to the former MCMC move.

We perform the MCMC step through a Gibbs sampler. In this way, we update
the parameters θ every 50 iteration of the algorithm, whereas Jt+1 and κt+1 are
updated systematically. This choice provides a reasonable compromise between
statistical precision and computational burden. It is also convenient to use some
transformation of the parameters θ in order to extend their support to the real
line. In fact the posterior is approximated by a mixture of Normals, and then a
convenient reparameterization of the model is in terms of parameters lying on the
real line. This is important in order to perform step 3 of the algorithm. We then
consider the transformed parameter φ∗ = log φ−log(1−φ) and β∗ = log β−log(1−β).
We also define ρ∗ = log(1 + ρ) − log(1 − ρ). For the same reason we consider the
logarithm of ση, σµ, σζ and of the intensity λ.
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4 Empirical Results

In this section we provide some illustrative examples to show the performance of the
algorithm. More precisely we apply our parameter learning procedure to simulated
and real data, i.e., daily Standard’s & Poor 500 index returns and daily 3-months
Treasury bill. All the calculations are based on software written using the Ox c©3.2
language of Doornik (2001).

4.1 Simulated Data

We simulate a time series of length T = 2000 from the model described by equations
(1)-(3). The true parameters, consistent with empirical findings on similar stochastic
volatility models with jumps, are the following

• Volatility process: µ = 0.06, φ = 0.95, ση = 0.15, ρ = −0.5;

• Conditional mean: α = 0.001, β = 0.90, σµ = 0.1;

• Jump Process: λ = 0.01, µy = −4, σy = 2.

We approximate the posterior distributions of interest through a cloud of 25,000
particles. Figure 1 reports the sequential learning process for the parameters, i.e.,
the evolution of the posterior mean together with the 2.5 and the 97.5 percent
posterior quantiles.

Our algorithm provides accurate estimates for the parameters of the log-volatility
process and, in fact, the posterior means of φ, ση and ρ quickly converge to their true
values. In particular, the algorithm provides very precise estimates of the leverage
ρ and of the persistence φ. It is also interesting to note the accuracy obtained for
the volatility of volatilities parameter ση. This is surprising since, in the sequential
literature, this parameter seems really sensitive to outliers, (see Johannes et al. 2006
for further comments on this point). The top panel of Figure 3 shows that the
estimated log-volatility closely follows the true process.

More difficulties arise with the conditional mean parameters. Even though Figure
3 suggests that the true trajectory of µt is well approximated by its estimate, we find
that the persistence parameter β is slightly under-estimated, while the estimate of
σµ is slightly bigger than its true value. However, we note that these estimates are
of a similar magnitude as the true values. We think that this effect can be reduced
by introducing a non null correlation between yt+1 and µt+1 in order to strengthen
the bonds between the observable and the latent processes. This adjustment should
make the observed data more informative for the conditional mean’s parameters.

It is interesting to note that the algorithm detects the jumps accurately. This
feature is displayed in Figure 2. In a few other cases we have noted an occasional
inability of the algorithm to distinguish between outliers and actual jumps. This is
especially evident when an extreme return is observed at the beginning of the series
and when the jump size is small. However, Figure 2 suggests that the algorithm is
very accurate in detecting expected size and timing. In some occasions difficulties
arise when estimating the parameters related to the jump process, in which case
some care has to be taken in the empirical analysis. The reason for these occasional
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Figure 1: Estimated parameters together with the 2.5 and the 97.5 percent posterior
quantiles

pitfalls is most likely due to the rare nature of the jumps. It is thus difficult to
identify the parameters describing κt, i.e., µy and σy. Difficulties related to the
lack of identification of jump models are however a common problem in this field
and have also been noticed in Chib et al. (2002) and in Eraker et al. (2003). The
algorithm, however, provides a precise estimate for λ.

As a final experiment, we consider a simulated time series with T = 2500, the
same true parameters as before, but in which we add some positive jumps in order
to check whether the algorithm is able to detect extreme observations with het-
erogeneous sizes. More precisely we add jumps of size +5% at t = 1150 and at
t = 2095. The jump at t = 1150 corresponds to a positive jump in a period of
quiet (no jumps immediately before that observation) whereas the second follows a
sequence of negative jumps. The results are reported in Figure 4.

It is evident that the algorithm still detects all of the major jumps, including
the two with positive size. For the first one we also obtain an accurate estimate
of its expected size. We estimate the jump at t = 1150 with probability 1 and
size 5.85%. We detect the second jump with a probability of about 96% although
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Figure 2: The simulated data are in the top left panel; in the bottom left panel the
estimated probabilities of jumps; on the right the true and estimated impact of a
jump event.

the expected size is lower than the true value at around 3.56%. It is worth noting
that the parameter estimates are in line with the results of the first Monte Carlo
experiment.

4.2 S&P 500 Index

In this section we report some empirical results based on the S&P 500 index observed
daily from January 1985 to July 2003. The data set has been downloaded from
Datastream. As usual, the returns are defined as yt+1 = 100 × (log pt+1 − log pt).
We estimate the model by approximating the distributions of interest through 50,000
particles, though, halving this number leads to an analysis with similar results. The
output is summarized in Figures from 5 to 8.

Figure 5 provides the plot of the observed time series together with the estimates
of the latent processes. For the log-volatility and the conditional mean we also give
95% confidence bands. It is remarkable to note that associated with each spike on
the original data set is an estimated high probability of jump. This is particularly
evident for the crash observed during October 1987. Furthermore, it seems that
other jumps observed in the last six years are properly estimated. Together with
the jumps, it is easy to note that the log-volatility bursts every time a jump is
detected, which is a reasonable feature since an extreme and negative event leads to
a sudden and huge increase on the variability of the financial asset. The impact of
the jump process on explaining the total marginal variance is about 20.4 percent.
This estimate provides further evidence on the importance of the jumps to explain
the variability of the returns.
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Figure 3: True vs. Estimated log-Volatilities (upper panel) and conditional means
(lower panel)

In Figure 6 we show the sequential evolution of the parameters involved in equa-
tion 2. The estimate of ρ is approximately -0.33 and confirms a marked leverage
effect, since it is negative and substantially different from zero. The log-volatility
process is persistent since φ is greater than 0.92. We found that φ tends to in-
crease slightly in time, but this behavior can be explained by the rising volatility
observed during the last four years. The parameter ση is approximately 0.21, which
is slightly higher than the MCMC estimate obtained with the simpler stochastic
volatility model with no jumps and no time varying conditional mean4.

The analysis of µt provides evidence about the predictability of the returns. The
intercept α is positive but close to zero and the persistence parameter β converges
to 0.76. This high estimate of β clearly implies a non null autocorrelation of µt

and suggests that the effect of a jump is persistent over time, thus influencing future
returns. We think it is important to notice this feature, since in the current literature
jumps are often taken to be independent with a transient impact on returns. This
is one of the reasons why jumps are usually added to the volatility process.

Finally, the parameter estimates related to Jt and κt are plotted in Figure 8.
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Figure 4: In the top panel we report the true data, whereas in the middle and in the
bottom there are the true expected jump’s impact and the estimated one.

The intensity λ suggests that the model detects about three extreme events per
year. However, this estimate is about 6 times larger during the 1987 crisis. During
that period, in fact, there are a number of small jumps close to the main one dated
19th of October. Concerning µy and σy, the expected size and the variability of κt,
we obtain that µy ≈ 0.33 and σy ≈ 3.63. This high value of σy implies that the
impact of jumps on the returns is heterogeneous. More precisely, it seems that the
model accurately describes the timing of the jumps, but their effect is quite variable.
The estimates reported, in fact, indicate that κt likely ranges between ±7 percent.

This analysis suggests that the model can be generalized to allow for a time
dependent intensity λt. On closer inspection, Figure 5 suggests that jumps arrive
in clusters. For example, we estimate many jumps between 1986 and 1991, none
in the subsequent five years and then several jumps again in the final period. It is
also easy to note that jumps with high size are more frequent in periods with high
volatility, thus suggesting that the intensity λ and the jump’s size κt may be time
varying and dependent on the volatility.
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Figure 5: On the top left panel we report the original dataset. Filtered estimates
of the unobservable processes are reported on the other panels. For volatility and
conditional means, the figures display the 2.5% and the 97.5% confidence bands.
For the jump times and sizes we report posterior means.

4.3 Short-term interest rates

We now apply the stochastic volatility model with jumps to short-term interest rates
data. Recently, Johannes (2004) and Andersen et al. (2004) argued that the intro-
duction of jumps on the interest rates dynamics should provide a better description
of the statistical characteristic of the data and of the term structure of interest rates.
Johannes (2004) also develops a test to detect the presence of the jumps dynamics
based on the ability of a model that describes the kurtosis of the data. It is clear
from that framework that pure diffusive models are unable to properly describe
higher moments of the data.

From an economic point of view, Johannes (2004) suggests that large movements
on interest rates are motivated by the need to describe the impact of some unex-
pected macroeconomic announcement. In fact, interest rates are not influenced by
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Figure 6: Estimated parameters of the volatility dynamic µ, φ, ση, ρ (solid line) and
the 95% confidence bounds (dotted line).

macroeconomic news, but rather by the surprise effect induced by the news them-
selves. We perform our analysis on the daily series of the 3-months Treasury bill
(T-bill) rt, from January 1990 to the 22nd of February 2007, downloaded from the
H.15 release of the Federal Reserve System. In this analysis we consider the move-
ments of the interest rates in basis point, that is, yt = 100× (rt+1− rt). The results
are displayed in Figure 9 and in Figure 10.

There is strong evidence that the conditional means and conditional variances
are persistent. In fact both the parameter estimates φ and β are greater than 0.93.
It is interesting to compute the half-life of the two autoregressive processes, defined
as the number of periods required for the impulse response to a unit shock to a time
series to dissipate by half. In practice, if the persistence parameter is φ, the half-

life is defined as
log 0.5
log φ

. The half-life for the log-volatility process is about 10.57

whereas for the conditional mean it is 10.64. These quantities imply that it takes
about two weeks for the two processes to absorb 50% of a shock.
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Figure 7: Estimated parameters of the conditional mean process, α, β, σζ (solid line)
and the 95% confidence bounds (dotted line).

In this application we find that ρ is significantly negative and is about −0.42.
This is quite different from the results of Andersen et al. (2004) in which this pa-
rameter is set to 0. This difference is probably due to the different choice of the
drift term of yt. Similar findings have been reported in Raggi (2005) on a study of
equity returns through affine models.

The parameter λ describes the intensity of the jump process. According to its
estimate at time T we expect 0.08363 × 250 ≈ 21 jumps per year. The expected
size of the jumps is negative (µy ≈ −1.63) and σy is approximately 4.29. These
estimates implies that a reasonable range for the jumps size lies between -10.70%
and 6.8%.

The introduction of the jump factor is also useful on explaining the second mo-

ment of the interest rates process. We compute the ratio
Var[(Jtκt)]

Var[yt]
that expresses

the percentage of the total variance due to jumps. In our analysis we find that jumps
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explain 15.89% of the total variance. This result is consistent with the findings re-
ported Eraker et al. (2003) for their analysis on equity indexes.
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Figure 9: Interest rates data. Estimated parameters together with the 2.5 and 97.5
percent posterior quantiles

5 Conclusions and Further Developments

Monte Carlo sequential methods represent a valuable and reliable methodology to
estimate non linear and non gaussian state-space models. Their application also
seem to be useful to the analysis of stochastic volatility models. In this paper we
have proposed an algorithm based on the kernel smoothing approximation of the
posterior suggested in Liu & West (2001) in which an MCMC step is incorporated
in order to reduce sampling impoverishment problems related to sequential Monte
Carlo strategies. Furthermore, in our empirical applications, we noticed that the
algorithm also provides consistent and stable results with longer time series that are
typical in financial econometrics.

An interesting economic issue to explore is to quantify how an extreme event
has an impact on the optimal portfolio weights. In an affine jump diffusive frame-
work (see Duffie et al. 2000 for a theoretical treatment for these models), Liu et al.
(2003) prove that these optimal weights can be computed through the solution of
an ordinary differential equation. We believe it would be interesting to estimate se-



Section 5 Conclusions and Further Developments 19

1990 1995 2000 2005

2.5

5.0

7.5
3−Months Treasury Bill

1990 1995 2000 2005

−50

0

50 Daily Changes in basis points in the 3−Month Treasury Bill
 

1990 1995 2000 2005

−5

0

5

Estimated log−volatility

1990 1995 2000 2005

−10

0

10

20

Estimated Conditional Mean

1990 1995 2000 2005

0.5

1.0 Estimated Jump’s Probability

1990 1995 2000 2005

−10

0

Estimated Jump’s Size

1990 1995 2000 2005

−10

0

Estimated Jump × Size

Figure 10: Interest rates data. Real data and estimated processes

quentially these quantities immediately before and after a crash, taking into account
the parameters and states uncertainty related to the inferential procedure.
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