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Abstract

Summary: We present NewWave, a scalable R/Bioconductor package for the dimensionality reduction and batch
effect removal of single-cell RNA sequencing data. To achieve scalability, NewWave uses mini-batch optimization
and can work with out-of-memory data, enabling users to analyze datasets with millions of cells.

Availability and implementation: NewWave is implemented as an open-source R package available through the
Bioconductor project at https://bioconductor.org/packages/NewWave/

Contact: davide.risso@unipd.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Dimensionality reduction is a key step for the analysis of single-
cell RNA-seq (scRNA-seq) data. Principal component analysis
(PCA) is a simple and efficient method that can be employed for
this step. However, it suffers from several drawbacks, e.g. it
assumes that the data are Gaussian and does not allow to correct
for technical variability and biases. While transforming the data
(e.g. by running PCA on log-normalized counts) can ameliorate
these problems, count-based factor analysis models often yield
better low-dimensional data representations (Risso et al., 2018;
Townes et al., 2019).

In particular, our recent method, ZINB-WaVE (Risso et al.,
2018), uses a zero-inflated negative binomial model to find biologic-
ally meaningful latent factors. Optionally, the model can remove
batch effects and other confounding variables (e.g. sample quality),
leading to a low-dimensional representation that focuses on bio-
logical differences among cells.

ZINB-WaVE has been shown to be among the top performing
methods in recent benchmarks (Raimundo et al., 2020; Sun et al.,
2019). However, its main drawback is the lack of scalability, due to
large memory requirements that prevent its use with more than a
few cores. To address this, we have reimplemented the model of
ZINB-WaVE in a new Bioconductor package, NewWave, which
allows users to massively parallelize computations using PSOCK
clusters. Here, we show that NewWave is able to achieve the same,
or even better, performance of ZINB-WaVE at a fraction of the
computational speed and memory usage, reducing the runtime by
90% with respect to ZINB-WaVE.

2 Software implementation

NewWave uses a factor analysis framework similar to that of ZINB-
WaVE (Risso et al., 2018), with the important difference that the
gene-level read counts are assumed to come from a negative bino-
mial distribution without zero inflation. In fact, the majority of large
scRNA-seq data use unique molecular identifiers (UMIs) and UMI
data are not zero inflated (Svensson, 2020; Townes et al., 2019).
Briefly, the log of the expected value of the read count matrix is
modeled as a regression of three terms: known cell covariates (X,
e.g. batch), known gene covariates (V, e.g. an intercept with the role
of normalization) and latent factors (W) that define a low-
dimensional space that describe the unknown biological signal
(Fig. 1A and Supplementary Information). With a high number of
cells, these matrices are large and it may not be easy to control how
many times they are copied during parallel execution.

The three main strategies that NewWave uses to limit the com-
putational problems of working with large matrices are: (i) the use
of shared memory objects in PSOCK clusters to avoid redundant
data copies, (ii) the use of mini-batch optimization algorithms to
speed-up computations and (iii) the use of out-of-memory data rep-
resentations (such as HDF5 files) to limit memory usage.

The optimization procedure can be represented as a cycle of
three steps, iterated until convergence: (i) optimization of the disper-
sion parameters (either common dispersion or gene-wise dispersion);
(ii) optimization of gene-wise parameters and (iii) optimization of
cell-wise parameters.

One of the main advantages of our model specification is that it
naturally results in an embarrassingly parallel task. In fact, except
for the optimization of the global dispersion parameter (common to
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all genes), all the steps use only one gene (cell) at a time for the opti-
mization of gene (cell) parameters. In addition to parallelization,
this setup is ideal for mini-batch optimization strategies. At any one
step, we can use a random subset of cells (genes) to estimate the
gene (cell) parameters.

On-disk datasets are managed through the DelayedArray pack-
age (Pagès et al., 2021), which allows block processing and delayed
operations on data stored in HDF5 files. While all covariates and
parameter matrices are stored in shared memory among child proc-
esses, the input data can reside either in shared memory or on-disk
as an HDF5 file (Fig. 1A).

3 Results and discussion

The application of NewWave to subsamples of large datasets, in par-
ticular when relying on mini-batches, shows a better scalability than
ZINB-WaVE without loss of accuracy (Fig. 1B; see Supplementary
Information for details on the analysis). We benchmarked the accur-
acy of NewWave against ZINB-WaVE in terms of Adjusted Rand
Index (ARI) and Akaike Information Criterion (see Supplementary
Information for details on the evaluation metrics).

Strikingly, the negative binomial model outperforms its zero-
inflated counterpart, confirming that this is a preferable model for
UMI data (Fig. 1B and Supplementary Table S1). To evaluate the
ability of NewWave to remove unwanted variation, we applied it to
two datasets with known batch effects and showed that it leads to a
good mix of batches and a good separation among putative cell
types (Supplementary Figs S1 and S2).

In addition to speed, we measured the scalability of NewWave in
terms of RAM usage (Fig. 1C and D). As expected, there is a speed-
RAM trade-off when using data in-memory or on-disk. Runtimes in-
crease when using HDF5, due to the additional I/O, but this dramat-
ically decreases the RAM consumption. This in turn allows the use

of more cores. Using 40 cores, the computational time of our HDF5
implementation is lower than that of the in-memory data with 10
cores, allowing us to analyze 1.3 M cells in 271 min using 109 GB of
RAM (Fig. 1D).

NewWave is available as an open-source package through the
Bioconductor project. The package includes a vignette with a tutor-
ial. In addition, the code to reproduce all the analyses presented here
is available at https://github.com/fedeago/NewWave-script.

Future work will be focused on leveraging sparse matrix formats,
either in-memory or on-disk, e.g. through the TileDB format, to
speed-up data access and computations.
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Data availability

All datasets used in this paper are publicly available. The BICCN
data can be downloaded from http://data.nemoarchive.org/biccn/
lab/zeng/transcriptome/. The 10X Brain data are available through
the TENxBrainData package available at https://bioconductor.org/
packages/TENxBrainData. The RNA mixture data are available at
https://github.com/LuyiTian/sc_mixology/.
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Fig. 1. Implementation and performance of NewWave. Unless otherwise noted, we used 10% of the observations as the size of the mini-batches and 10 cores.

(A) Schema of the NewWave model, indicating which matrices are in shared memory (see Supplementary Information for more details). (B) Speed (top) and ARI

(bottom) of NewWave (in-memory data) with different choices of the parameters and ZINB-WaVE applied to the BICCN dataset (Yao et al., 2021) with a maximum

of 312 000 cells and after selecting the 1000 most variable genes. The reported ARI is computed as the mean ARI of 100 k-means clustering procedures with the

number of centroids set to the known number of labels (k¼ 20). (C) Speed and RAM usage of NewWave (gene-wise dispersionþmini-batch) and ZINB-WaVE using

a subset of 100 000 cells varying the number of cores used for computation. (D) RAM usage (top) and speed (bottom) of NewWave on the 10X 1.3 M cell datasets

with 1000 most variable genes
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