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the function. Borrowing of information is crucial when observations are sparse
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Fast Bayesian Functional Data Analysis: Application to
basal body temperature data

James M. Ciera1, Bruno Scarpa1 and David B. Dunson2

1Department of Statistical Science, University of Padua,
Via Cesare Battisti 241, 35121 Padova, Italy.

2Department of Statistical Science, Duke University,
Box 90251, Durham, NC 27708-0251 USA.

Abstract: In many clinical settings, it is of interest to monitor a bio-marker over time for
a patient in order to estimate that patient’s trajectory and to ident

ify or predict clinically important features. For example, these features may correspond
to a low or high point in the trajectory or to a sudden change. There is a need for fast
algorithms for estimating functional trajectories while borrowing information from other
patients about the shape and location of features in the function. Borrowing of information
is crucial when observations are sparse and the interest is in prediction. In this paper,
we presents an application of a fast approximate Bayes functional data analysis relying on
spareness-favoring hierarchical priors for P-spline basis coefficients. The proposed method
is used to rapidly estimate individual-specific functions. We present an application to basal
body temperature (bbt) data.

Keywords: Bio-marker, MAP estimation, Ovulation, Relevance vector machine, Sparsity;
Splines.

1 Introduction

In the recent years, there has been an increased interest on researches involving
data that is characterized with high dimension. This results from experimental and
observational studies where data are collected repeatedly from many subjects over
a period of time. In such studies, data for different subjects are commonly char-
acterized with similar patterns in trajectories. This characteristic can be used to
study clinically important features. By observing patterns for measurements from
a particular bio-maker over time, an investigator can easily identify or predict the
occurrence of an event or identify unusual patterns. For example in reproductive
studies, tracking measurement patterns of hormonal level or daily basal body tem-
perature among women can help to identify or predict early pregnancy loss and
occurrence of the ovulation day (Collins, 1996; Dunson, et al, 1999; Bigelow and
Dunson, 2008).
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In many studies it might be convenient to rapidly predict features of interest
based on data extracted from large database that involve many subjects. Unfortu-
nately, due to heterogeneity among subjects, data collection problems, data entry
and storage errors, it is common to have subjects that have sparse and unequally
spaced measurements. Therefore, raising a motivation to adopt a fast method that
can accommodate those data problems while estimating or predicting curve features.
We target to use a fast Bayesian methodology based on functional data analysis
(FDA) that is commonly used to analyze longitudinal and highly dimensional data
(Ramsay and Silverman, 2005).

Our research is motivated by the basal body temperature (bbt) data from the
European fecundability study (Colombo and Masarotto, 2000). The study consists
of daily bbt measurements from 880 women that contributed temperature measure-
ments from at least one menstrual cycle. The data are characterized by missing
temperature measurements in some days and there is variability in cycle lengths
among women such that, majority have cycles that ranges between 20 to 40 days.
Besides measurement errors which is a common problem with many longitudinal
data, unequal cycle lengths and data sparsity pose a great hindrance to analyze the
data using most available standard software.

A standard bbt curve from a healthy ovulating female has a biphasic pattern.
This is characterized by a low plateau during the follicular phase, a temperature dip
that occur prior to ovulation, and a sharp rise immediately after ovulation which is
subsequently followed by a luteal phase plateau (Scarpa and Dunson, 2006). Several
studies have suggested that ovulation day corresponds to the low point prior to the
rise in basal body temperature (Marshall, 1979; Colombo and Masarotto, 2000). It is
important to identify the ovulation day, since there is less probability of conception
if an intercourse occurs outside of the six-day fertile interval ending on the ovulation
day (Dunson et al., 1999). Therefore, to identify these features it is of interest to
estimate a smooth trajectory in bbt over the menstrual cycle based on the available
cycles data, while borrowing information flexibly across cycles in the data base.

Functional data analysis (FDA) is an ideal tool to use in estimation of smooth
trajectories resulting from the bbt data characterized with sparseness and unequal
cycle lengths (Ramsay and Silverman, 2005). The main aim of FDA is to explore and
highlight important features of a curve. A trajectory may consist of one or several
segments weighted using functional coefficients (Ramsay and Silverman, 2005). Un-
fortunately, FDA relies on relatively large number of basis functions and estimation
of functional coefficients becomes time consuming activity using standard software.
A common approximation procedure in FDA is to consider only a subset of carefully
chosen basis functions that can be used for approximation purpose. However, it can
be difficult to choose the basis functions in advance, motivating the use of adaptive
methods that allow uncertainty in basis function selection (Bigelow and Dunson,
2007; Johnson and Rosen, 2008).

A lots of literature exist in selection of basis functions, for example the use of Mul-
tivariate adaptive regression spline (MARS) proposed by Friedman (1991). Bayesian
methods can accommodate uncertainty in selection of basis functions. For exam-
ple, recent approaches in Bayesian that incorporated MARS have been proposed by
Denison et al, (2002). The method has good prediction performance but the poste-
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rior sampling is based on reversible jump Markov Chain Monte Carlo (RJMCMC).
The use of RJMCMC involves MCMC which is an extremely computer intensive
method and involves hours to implement in data sets involving thousands of sub-
jects. Hence, raising a practical motivation for fast approximate Bayes approaches
that bypass MCMC while maintaining some of the benefits of a Bayesian analysis.
Recent MARS extensions that bypasses the MCMC algorithms involves the use of
an empirical Bayes approach for selecting basis functions and knots and is based on
frequentist model selection methods and Bayesian approach Sakamoto (2007).

The article seeks to approximate the bbt projectiles using Multi-Task Relevant
Vector machine (MT-RVM) method an extension of Relevant Vector machine (RVM)
method (Tipping, 2001; Ji, et al, 2009). RVM is a fast Bayesian method based on
Empirical Bayes methodology and has featured mostly in Machine Learning espe-
cially in signal reconstruction and compressive sensing. Relevant Vector machine
is one among several methods that promote sparseness in estimation of functional
coefficients. Other similar methods include; Least Absolute Shrinkage and Selec-
tion Operator (LASSO), Support Vector Machine (SVM) (Tibshirani, 1996; Burges,
1998). Sparseness is a property where the fitted model retains the least number of
basis functions (by having non-zero coefficients), while all the other basis functions
are pruned by setting their corresponding coefficients to zero (Tzikas, et al, 2005).
This property provides a natural mechanism in variable selection leading to a sparse
model that is fast to compute.

The subsequent sections are as follows; Section 2 introduces a simple functional
model. Section 3 provides an implementation of the MCMC and MT-RVM estima-
tion procedures and presents results based on comparison between the two methods
using simulated and the bbt data from European fecundability study. Section 4
contains a discussion.

2 Methods

2.1 A functional data analysis model

We consider observations from the ith woman with response vector yi = (yi1, . . . , yiTi)
′

consisting of bbt measurements and covariate vector zi = (zi1, . . . , ziTi)
′
representing

observation day. A functional model is represented as,

yit = fi(zit) + εit, εit ∼ N(0, σ2
ε ), t = 1, . . . , Ti, i = 1, . . . , N. (1)

where fi(.) is a smooth function for subject i, εit is a measurement error and N is the
number of women. The smoothing function can be described as a linear combination
of M basis functions fi(zit) =

∑M
j=1 βijϕj(zit) = xit′βi where xit = (xit1, · · · , xitM )

′

are the values of the basis functions at zit, parameter βij is the coefficient for the jth

basis function ϕj(.) and βi = (βi1, · · · , βiM )
′
. The basis functions ϕ = {ϕj}Mj=1 can

be generated using numerous methods that have been discussed in the literature
(e.g. Hastie, et al. 2001; Ruppert, et al. 2003). Conditionally on the basis ϕ,
expression (1) can be expressed in the form of linear random effects model.

The priors are βij ∼ N(0, α−1
j ), σ−2

ε ∼ Gamma(a, b) and αj ∼ Gamma(c, d)
where α = (α1, · · · , αM )

′
and σ−2

ε are shared among the subjects. The hyper-
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parameters α and σ−2
ε are computed from the data as maximum a posteriori (MAP)

estimates. Since these parameters are shared among the subjects, all the subjects
contribute to estimation of α and σ−2

ε leading to borrowing of strength across sub-
jects in estimating subject-specific functions. To promote sparseness over the model
coefficients βi, the hyper-parameters c and d are set close to zero leading to a dis-
tribution with a large spike concentrated at zero and a heavy right tail. The basis
functions for which αj is in the right tail have coefficients that are strongly shrunk
toward zero resulting in sparseness.

2.2 Posterior Estimates

The commonly used approach to compute the joint posterior density p(β,α, σ−2
ε |Y )

cannot be implemented since the computation of the posterior density require a
normalization that cannot be expressed analytically. An alternative approach is to
compute the posterior density based on the conditional distribution

p(β,α, σ−2
ε |Y ) = p(α, σ−2

ε |Y )
N∏
i=1

p(βi|yi,α, σ−2
ε ), (2)

where β = (β1, · · ·βN ). The density function p(βi|yi,α, σ−2
ε ) is the posterior

distribution for the random coefficients βi, while p(α, σ−2
ε |Y ) is the posterior density

for the variance components α and σ−2
ε .

The posterior density for the random coefficients βi is a multivariate normal
distribution

p(βi|Y ,α, σ−2
ε ) = N(βi; µ̂i, Σ̂i), (3)

where µ̂i = σ−2
ε Σ̂iX

′
iyi is the mean vector and Σ̂i = (A + σ−2

ε X
′
iXi)−1 is the

covariance matrix such that A = diag{α1, · · · , αM} and Xi = (xi1, · · · ,xiM )
′
.

Since it is impossible to express the posterior density for the variance com-
ponents p(α, σ−2

ε |Y ) analytically, we use an Empirical Bayes approach to com-
pute the posterior estimates for α and σ−2

ε . These estimates are computed as
MAP estimates as will be discussed in the next section. The density function
p(α, σ−2

ε |Y ) ∝ p(Y |α, σ−2
ε )p(α)p(σ−2

ε ) and both p(α) and p(σ−2
ε ) are assumed to

be Gamma density. To compute the estimates for α and σ−2
ε , we assume that the

modes for p(α, σ−2
ε |Y ) and p(Y |α, σ−2

ε )p(α) are equivalent and hence the MAP
estimates for p(α, σ−2

ε |Y ) are equivalent to the MLE estimates from p(Y |α, σ−2
ε )

(Ji et al, 2009).

2.3 Empirical Bayes method

Expressing the posterior density for the variance components p(α, σ−2
ε |Y ) is difficult

analytically and the MAP estimates for α and σ−2
ε are computed from the marginal

likelihood p(Y |α, σ−2
ε ), obtained after integrating out βi from p(Y |βi, σ−2

ε ) such
that

p(Y |α, σ−2
ε ) =

∫ N∏
i=1

p(Y |βi, σ−2
ε )p(βi|α)p(α)dβi
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This results to a normal density function p(Y |α, σ−2
ε ) = N(yi; 0,Ci) where

the covariance matrix Ci = σ2
ε ITi +

∑M
j=1 α

−1
j xijx

′
ij . The expressions for the es-

timates of α and σ−2
ε are obtained from the log-likelihood function `(α, σ−2

ε ) =∑N
i=1 logN(yi; 0,Ci). We differentiate the log-likelihood `(α, σ−2

ε ) with respect to
parameters α and σ−2

ε respectively and equating the resulting score equations to
zero. This results to

α̂j =
N∑N

i=1 µ
2
ij + Σi,jj

, j = 1, · · · ,M (4)

σ̂−2
ε =

∑N
i=1 ||yi −Xiµi||2∑N

i=1(Ti −M −α−1Σi,jj)
. (5)

The estimates for α and σ−2
ε are inserted into µ̂i and Σ̂i in equation (3) leading to an

interactive procedure alternating between estimation of the parameters in equation
(3) and (4-5) respectively.

However, two related problems arise while implementing the above empirical
Bayes approach when the number basis functions is large. These problems are:
estimability problems leading to lack of convergence and the computation process
require large amount of time especially when dealing with large data sets. Such
computation difficulties are commonly encountered when the dimension of the basis
functions is large relative to the sample size, which is a common practice in many
functional analysis work. For example, when M is large (e.g. M > 10), the inversion
of M ×M covariance matrix Σi becomes impossible leading to estimability prob-
lems resulting to lack of convergence of the procedure. Moreover, when the dataset
consists of thousands of subjects, the computation process may take days.

Potentially these problems can be solved by using a MAP estimation approach
that includes a proper prior to induce a penalty in the procedure that leads to
shrinkage towards the prior and regularization. However, such an approach will
be sensitive to hyper-parameter choice. An alternative approach is to adapt a fast
algorithm that leads to a reduced model with dimension m×m for Σ̂i where m <<
M . The RVM iterative algorithm can generate such a sparse model and will be
discussed in the next section.

2.4 A Fast Empirical Bayes method

Conditioning on the MLE estimates for σ−2
ε , a fast approach to compute the elements

of α can be done sequentially. The algorithm is based on the dependence of the kth

component of α upon the log likelihood function

`(α, σ−2
ε ) = −1/2

N∑
i=1

{Ti log(2π) + log |Ci|+ yiC−1
i yi}. (6)

However, the presence of matrix Ci in the log likelihood function `(α, σ−2
ε ) makes it

impossible to express the log-likelihood function into two parts -one containing the
kth component and the other one that does not. Hence, to allow such decomposition,
we first decompose the variance matrix Ci into two part -with and without the
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contribution of the kth basis function. This leads to Ci = Ci,−k + α−1
k xikx

′
ik where

Ci,−k is the part that does not have the contribution of the kth basis function. The
resulting decomposed log-likelihood function is

`(α, σ−2
ε ) = `(α−k, σ−2

ε ) +
1
2

N∑
i=1

(
logαk − log |αk + sik|+

q2ik
αk + sik

)
where `(α−k, σ−2

ε ) is the part without the contribution of the kth basis function,
sik = x

′
ikC

−1
i,−kxik and qik = x

′
ikC

−1
i,−kyi. Differentiating `(α, σ2

ε ) with respect to αk
and setting the result to zero yield the score equations,

`(α, σ−2
ε )

∂αk
=

N∑
i=1

s2ik/αk + sik − q2ik
2(αk + sik)2

= 0.

The solutions for the score equations are infeasible to express analytically except
for a trivial case when αk = ∞. The exact solutions require finding the zeros of a
polynomial of degree 2N − 1 which is computationally expensive. An alternative
method to avoid such computation complexities is to assume that αk << sik, leading
to the approximate estimate

α̂k ∼=

{
N∑N

i=1(q2ik−sik)/s2ik
if
∑N

i=1
(q2ik−sik)

s2ik
> 0,

∞ otherwise.
(7)

where sik = x
′
ikC

−1
i,−kxik, qik = x

′
ikC

−1
i,−kyi and Ci,−k is the component of Ci

without the contribution of the kth basis function. The estimate for σ̂−2
ε is as

expressed in equation (3). For a justification of this type of approximation, refer to
Ji, et al. (2009).

We first start with an empty model and select the basis function that has the
largest impact on the log-likelihood `(α, σ−2

ε ). The subsequent steps on selection of
the remaining basis functions involves three operations on Xik. These are: addition,
deletion or updating µ̂ik operations. Addition occurs when

∑N
i=1

(q2ik−sik)

s2ik
> 0 and

Xik is not in the model, while an update occurs when Xik is already in the model
and

∑N
i=1

(q2ik−sik)

s2ik
> 0. We delete the basis function Xik from the model when∑N

i=1
(q2ik−sik)

s2ik
< 0. The values from the previous iteration are used to update

vectors s and q. The final sparse linear model tends to have most of the αj = ∞,
which corresponds to βij = 0 for all i and j = 1, · · · ,M .

3 Results

We present results from the bbt data and also evaluate the performance of the
MT-RVM method relative to a classical MCMC based method as the number of
observations increases. In both applications, the O’Sullivan-type penalized splines
(Wand and Ormerod, 2008) are used to generate the basis functions ϕ based on the
standardized values of time covariate (zi). In total we generated 29 columns for
matrices Xi, where the first and the second columns contained values of 1’s and zi,
respectively.
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3.1 Application to the bbt data

We considered data from 500 women and select cycles that had an identified ovula-
tion day. The study enrolled women aged between 18 and 40 years, were not taking
hormonal medications or drugs affecting fertility, and had no known impairment
of fecundity. The participants kept daily records of basal body temperature, and
recorded the days during which intercourse and menstrual bleeding occurred. For
more details about the study protocol, refer to Colombo and Masarotto (2000).

A standard bbt curve has biphasic shape and is characterized with three phases
representing the pre-ovulation, ovulation and post-ovulation periods. The ovulation
day is commonly identified using the three over six rule (Colombo and Masarotto,
2000) or by identifying the day that correspond to a dip that is followed by a sharp
rise in the bbt curve. In reality, the classic bbt pattern is difficult to replicate and
wide fluctuations in bbt, with many false nadirs and peaks, are commonly observed.
Fluctuations result from a host of factors, other than hormonal fluctuations, that
affect a woman’s bbt: amount of sleep, sleep disturbances, ambient bedroom tem-
perature, convection currents, food ingestion and emotional state (Colombo and
Masarotto, 2000).

Many methods have been proposed to estimate the shape of the bbt curves. For
example, Scarpa and Dunson (2008) proposed a Bayesian semi-parametric model
based on nonparametric contamination of a linear mixed effects model. Implemen-
tation of their approach relies on a highly computationally -intensive MCMC algo-
rithm, while our current goal is instead to obtain a fast approximate Bayes approach
that can be implemented much more rapidly, while obtaining smooth estimates of
the bbt trajectories.

We generated the basis function and estimated the curves using the MT-RVM
and the classical Bayesian method. Figure 1 presents estimated curves for one cycle
using the two methods where the continuous and dotted curves represent the curves
generated by the MT-RVM and MCMC based methods respectively. The grey region
is the credible band for the classical Bayesian method.

We note that the MCMC based curve is generated by estimating 29 non-zero basis
coefficients while the approximation by the MT-RVM method is based on estimates
for 4 non-zero basis coefficients. On time factor, the MCMC based method takes an
average of 19.35 seconds to generate a curve while the MT-RVM method takes an
average of 0.11 seconds to select the relevant basis coefficients and generate a curve.

3.2 Effects of adding more observations

It might be of interest to evaluate the performance of the RVM method with the
increase of the number of observations. Potentially, we expect that the gap between
the curves from the two methods to narrow down as the number of observations in-
creases. Similarly, the estimated non-zero random coefficients from the two methods
are also expected to be identical at after a certain number of observations. How-
ever, we do not know the threshold number of observations when the two curves or
non-zero parameter estimates look identical.

To assess the performance of the MT-RVM with the increase in the number of
observations per cycle, we generate 30 biphasic curves that mimic the shape of the
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Figure 1: Trajectories estimated using the MT-RVM and MCMC methods.

bbt curve. The curves are generated using a sine function,

yit = vi + ρizit sin(10zit − ri) + εit, t = 1, 2, . . . 27, i = 1, 2, . . . 30,

where covariate zit ∼ unif(0, 1), while vi ∼ unif(−1, 1) and ri ∼ unif(−1, 1) are
the vertical and horizontal shift parameters and ρi ∼ unif(0.5, 1.5) controls the
amplitude of the curves. Each curve had 27 observations and we generated the basis
functions using the method used in the previous section.

The computation of the basis coefficients is based on the two methods -an MCMC
based and the MT-RVM methods. To compare the estimation of the basis coeffi-
cients from the two methods as the number of observations increases, we computed
Reconstructive Error defined as

REl =
1
N

N∑
i=1

||βRVMi − βMCMC
i ||

||βRVMi ||
, l = 27, . . . 227.

Reconstructive error is a measure that captures the differences between the two sets
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Figure 2: A plot for RE against the number of observations.

of parameters estimates from the two methods. After the computation of the coef-
ficient estimates and the reconstructive error for the initial model, we subsequently
simulated additional 200 observations for each cycle. After each increment, we re-
computed the basis functions Xi for the new data, computed the basis coefficients
using the two methods and then re-computed the reconstructive error value. We
plot the REl against the number of observations (l) as shown in figure 2.

From the plots, it is evident that an increase in the number of observations leads
to a gradual decrease in the reconstructive error but the decreasing trend reaches
to a constant value after about 150 observations. However, the reconstructive error
curve remains constant at a non-zero RE value since most of the non-relevant basis
coefficients from the MCMC based method are non-zero while their corresponding
basis coefficients from the MT-RVM method are zero.
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4 Concluding note

In this paper we have demonstrated the use of Multi-task Relevant Vector Machine
(MT-RVM) -a fast Empirical Bayes method- as an alternative to computer inten-
sive methods that rely on MCMC. The method is fast and can be used to rapidly
approximate non-linear curves for massive datasets. The discussed Multi-task Rele-
vant Vector Machine approach has been used in machine learning especially in signal
reconstruction and compressive sensing applications Ji et al, (2009). However, the
application of this approach has not featured in applications that involve smoothing
non-linear curves using penalized spline basis functions. In particular, the use of
RVM procedure to smoothen non-linear bbt and hormonal data curves that feature
commonly in many reproductive studies.

Multi-task Relevant Vector Machine method allows shrinking the subject’s ran-
dom coefficients toward zero, yielding a sparse linear model where majority of the
random coefficients are zero and a few are non-zero. The method allows automatic
selection and estimation of the relevant (non-zero) random coefficients to model
functional data. The selection procedure is achieved by specifying independent pri-
ors for the random coefficients which facilitates the implementation of the MT-RVM
algorithm that aids in the selection of the relevant basis functions (Ji et al, 2009).

Similar data smoothing approaches have been used in other contexts. For exam-
ple, Brumback and Rice, (1998), used penalized smoothing spline mixed-model to
generate smooth curves for multi-level progesterone data. Ramsay and Silverman,
(2005) used Functional Principal Component Analysis (FPCA) on linear mixed mod-
els to smoothen non-linear data. However, these approaches do not allow fast com-
putation since the computation relies on slow and computational intensive MCMC
algorithms. The use of the MT-RVM method helps to bypass the use of MCMC
and effectively unites the problem of variable (basis function) selection and coeffi-
cient estimation which leads to a fast model building process that simultaneously
addresses the two problems within a single step at a less computational cost. The
approach can easily be implemented into more complex high dimensional and hier-
archical functional data to yield a sparse model that can be used to rapidly estimate
functional trajectories.

The advantage of our approach is not only on computational speed but it also
allows for better generalization performance which leads to sparse generalized linear
mixed models. This aspect can provide inference for a wide variety of models at a
moderate computational cost. For example, this approach can easily be extended
to accommodate multiple predictors, linear mixed effect models and probit models
where multiple binary categorical outcomes can be handled using data augmentation
(Albert and Chib, 1993). Currently, we are generalizing the implementation of the
MT-RVM method into linear mixed model to generate sparse LME models. Such
generalization can easily be extended into LME models that can handle hierarchical
data where a woman can have data from multiple cycles.
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