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1 Introduction

The ability to model and predict the diffusion of innovations is particularly impor-
tant for firms that develop and launch new products and services in increasingly
complex and competitive markets. Diffusion research is aimed at describing the
spread of an innovation by modelling its entire life–cycle. There is a quite long
tradition in this field: wide research has been produced in order to capture several
phenomena visible in sales data. A particular effort has always been devoted to
extending the structure of the basic and most known Bass model, [1], by taking into
account price dynamics, competition, network externalities, consumer heterogene-
ity, technological generations (for a review, see for instance [8]), arguing that these
may help explain turning points in life-cycle such as take-off, saddle, technological
substitution. Indeed, a specific focus of these models is to provide an efficient de-
scription and interpretation of the mean trajectory of the life-cycle, and probably
for this reason, the presence of a seasonal pattern in sales data has not been much
investigated, although many products are clearly characterized by it.
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A general definition of seasonality is provided by [6] stating that it is the system-
atic, although not necessarily regular, intra-year movement caused by the changes
of weather, the calendar, and timing of decisions, directly or indirectly through the
production and consumption decisions made by the agents of the economy. While
seasonality is considered less relevant for long-term evaluations, it is much more
important in medium-short periods. A seasonal behaviour is typically visible when
data are collected with monthly or quarterly frequency and some works on diffu-
sion concentrated on the issue of temporal aggregation of data: in [9] quarterly or
monthly seasonally adjusted data are compared with annual ones, finding that the
former perform better in terms of parameter estimates, and in [7] it has been no-
ticed that the smooth development of sales typical of the Bass model matches better
with data at yearly frequency than at higher frequency. Indeed, the aggregation of
monthly or quarterly data to obtain a smoother shape of sales would result in a
loss of information to avoid. Moreover, since product life–cycles are increasingly
shortening due to high competition, it becomes more and more necessary to have
short term projections, by analyzing accurately not only the trend of sales but also
their oscillations within the year. Following [11], typical methods developed in time
series analysis for seasonality modelling are: a) the Regression method, which as-
sumes that the seasonal component is deterministic and may be described as a linear
combination of seasonal dummy variables or as a linear combination of sine-cosine
functions of various frequencies; b) the Moving Average method, which estimates
the nonseasonal component of a series, N(t), by using a symmetric moving average
operator. The seasonal component, S(t), is obtained by subtracting the estimated
nonseasonal component N(t) from the original series Y (t). The series with seasonal
component removed, Y (t)− S(t) is referred to as the seasonally adjusted series; c)
the Autoregressive method, which extends stochastic ARIMA models with the sea-
sonal ARIMA models, SARIMA, developed by [3], assuming a stochastic nature of
seasonality. In this work we follow the regression method and consider the seasonal
component as deterministic. Such assumption makes it possible to develop a diffu-
sion model where both trend and seasonality may be estimated with NLS techniques
(see [10]). In Section 2 we start from the classical additive decomposition of time
series and propose a modification of it in order to take into account the influence
that the evolution of sales may have on the seasonal pattern. On the basis of this
new decomposition we develop two diffusion models with seasonality, that extend
the basic Bass and Guseo–Guidolin models. In Section 3 we discuss the application
of the new models to the life–cycle of a pharmaceutical drug, highlighting their bet-
ter performance in terms of global fitting and short-term forecasts. For comparison
purposes we also provide the results obtained by applying a SARMA model to the
residuals of a Guseo–Guidolin model. By comparing the two methods we see that
considering seasonality as a deterministic component produces a more parsimonious
model. Section 4 is left for concluding remarks.
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2 A diffusion model with seasonal component

Let us consider a classical decomposition of a time series (see [11]) based on an
additive structure

y(t) = T (t) + S(t) + "(t) (1)

where y(t) are instantaneous observed data, T (t) is the trend, S(t) the seasonality,
and "(t) the accidental component.
In a product life-cycle, the trend of sales T (t), which is not stationary and charac-
terized by phases of introduction, growth, maturity and decline, is represented by a
nonlinear growth model, describing the evolution of sales. It is reasonable to imagine
that such evolution also has an influence on the effect of seasonality: in particular
seasonality may be stronger around the peak of sales and weaker during product
launch and decline. To account for this aspect we propose to rewrite equation (1)
as

y(t) = T (t) + S(t) + "(t) = ℎ(t)[M +A(t)] + "(t). (2)

In equation (2) T (t) = Mℎ(t), where ℎ(t) is a probability density function describing
the evolution of sales and M is a constant acting as scale parameter of the process,
while S(t) = ℎ(t)A(t), with A(t) describing the seasonal effect, modulated by ℎ(t).
The error term "(t) is commonly assumed as a stochastic stationary process, typically
with zero mean, M("(t)) = 0, constant variance, Var("(t)) = ¾2 and different error
terms incorrelated, Cov("(t), "(t′)) = 0, t ∕= t′.

A better specification of T (t) and S(t) needs to define functions ℎ(t) and A(t).
A basic option in order to describe the evolution of sales ℎ(t) in a product life–cycle
is to start from the simple Bass model,

z(t) = m F (t; p, q) (3)

where cumulative sales at time t, z(t), are given by the product between the constant
market potential m and a cumulative distribution function F (t; p, q),

F (t; p, q) =
1− e−(p+q)t

1 + q
pe

−(p+q)t
. (4)

The corresponding instantaneous process, z′(t), is given by

z′(t) = m F ′(t; p, q) = m f(t; p, q) (5)

where f(t; p, q) is a probability density function.
For the purposes of the paper we will work on instantaneous data, so that it is useful
to observe that F ′(t; p, q) = f(t; p, q) may be efficiently approximated by

f(t; p, q) ≃ [F (t+ 0.5; p, q)− F (t− 0.5; p, q)]. (6)

In particular, we will assume that

ℎ(t) = [F (t+ 0.5; p, q)− F (t− 0.5; p, q)] (7)
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so that, by setting m = M , the trend may be described as follows

T (t) = Mℎ(t) = m[F (t+ 0.5; p, q)− F (t− 0.5; p, q)]. (8)

An alternative option to the simple Bass model is to consider a diffusion model
where the market potential is no longer constant but has a dynamic structure, which
depends on the diffusion of information about the new product. This model, pre-
sented in [4], has the following cumulative structure,

z(t) = K W (t; pc, qc, ps, qs) = K
√

F (t; pc, qc) F (t; ps, qs), (9)

where z(t) are cumulative adoptions, W (t; pc, qc, ps, qs) is a distribution function,
product of two c.d.f,

√
F (t; pc, qc) and F (t; ps, qs), respectively describing communi-

cation and adoption processes. The constant term K is a scale parameter such that
limt→+∞KW (t) = K.
In explicit form

W (t; pc, qc, ps, qs) =

√
1− e−(pc+qc)t

1 + qc
pc
e−(pc+qc)t

1− e−(ps+qs)t

1 + qs
ps
e−(ps+qs)t

. (10)

Instantaneous adoptions, z′(t), are given by

z′(t) = K W ′(t; pc, qc, ps, qs) = K w(t; pc, qc, ps, qs) (11)

Also in this case w(t; pc, qc, ps, qs) may be approximated by

w(t; pc, qc, ps, qs) ≃ [W (t+ 0.5; pc, qc, ps, qs)−W (t− 0.5; pc, qc, ps, qs)] (12)

and we may assume

ℎ(t) = [W (t+ 0.5; pc, qc, ps, qs)−W (t− 0.5; pc, qc, ps, qs)]. (13)

By setting M = K, the instantaneous trend T (t) will be

T (t) = Mℎ(t) = K [W (t+ 0.5; pc, qc, ps, qs)−W (t− 0.5; pc, qc, ps, qs)]. (14)

Depending on the shape of ℎ(t) the seasonal behaviour S(t) = ℎ(t)A(t) will be
described accordingly,

S(t) = ℎ(t)A(t) = [F (t+ 0.5; p, q)− F (t− 0.5; p, q)] A(t) (15)

following the Bass framework, or by

S(t) = ℎ(t)A(t) = [W (t+ 0.5; pc, qc, ps, qs)−W (t− 0.5; pc, qc, ps, qs)] A(t). (16)

if the dynamic model presented in [4] determines the basic trend component. By
combining T (t) and S(t) we will obtain

T (t) + S(t) = [m+A(t)][F (t+ 0.5; p, q)− F (t− 0.5; p, q)]. (17)
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or, alternatively

T (t) + S(t) = [K +A(t)][W (t+ 0.5; pc, qc, ps, qs)−W (t− 0.5; pc, qc, ps, qs)]. (18)

According to the regression method, the seasonal effect may be modelled as a linear
combination of trigonometric functions (see for instance [2] and [11])

A(t) =

[ s2 ]∑

j=1

[
aj cos

(
2¼jt

s

)
+ bj sin

(
2¼jt

s

)]
(19)

where aj and bj are parameters to be estimated with standard regressive techniques,
s is the period, and [s/2] is the integer part of s/2. A simplified version of equation
(19) just considers one harmonic function,

A(t) =

[
a cos

(
2¼t

s

)
+ b sin

(
2¼t

s

)]
. (20)

Moreover, a translation parameter c may be included in order to add flexibility to
the harmonic function,

A(t) =

[
a cos

(
2¼(t− c)

s

)
+ b sin

(
2¼(t− c)

s

)]
. (21)

3 The diffusion of a pharmaceutical drug in the Italian mar-
ket

We discuss here the application of the models developed in section 2 to the life–cycle
of a pharmaceutical drug launched in the Italian market in September 2004. The
product, that we label “Itm”, is a patch containing a non-steroidal anti-inflammatory
drug for the topical treatment of acute pain due to minor strains, sprains and con-
tusions. Figure 1 displays monthly non cumulative sales data of the two versions
available, the package with 5 patches and the more recent with 10, although in our
analysis we will just focus on sales of the first, that we label “Itm5”. We observe
that the earlier version with 5 patches experienced a quite fast growth in the first
three months of its life–cycle and, after the peak, reached in March 2007 (t = 31),
the decline has begun, probably accelerated by the competing effect of the newer
version with 10 patches launched in October 2006 (t = 26). We may also record
the presence of a quite clear seasonal pattern, with a period of about 12 months,
which appears stronger during the growing phase of the life-cycle. Such seasonal
behaviour is understandable in the case of this drug, which is mostly used in winter
time, when joint inflammations are more frequent.

We begin our analysis by applying a simple Bass model on instantaneous data
as described in equation (8), in order to confirm the hypothesis of a finite life–cycle
for this drug. From the results of this first application, obtained under a standard
nonlinear least squares approach (Levemberg-Marquardt, see [10]), and presented in
Table 1 and Figure 2a, we see that the Bass model identifies quite well the mean
trajectory of the series, as confirmed by the acceptable R2. The Durbin-Watson
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Figure 1: “Itm”: number of monthly sold packages in the two available versions.

Table 1: Parameter estimates of a Bass model on instantaneous data. ( ): marginal
linearized asymptotic 95% confidence limits

m p q R2

1816.61 0.00886 0.03299 0.619892
(1703.62) (0.00792) (0.02704) SSE: 1137.4
(1929.6) (0.00981) (0.03894) (D-W: 0.703545)

statistic highlights the presence of autocorrelated residuals, although we believe
that part of the strong variability still visible in data is due to seasonal effects.

We therefore extend the analysis following the structure proposed in equation
(16), where A(t) has the form described in equation (20), so that in this case c = 0,
and apply to our series a Bass model with a seasonal component of period 12, s = 12,
namely

y(t) =

{
m+

[
a cos

(
2¼t

12

)
+ b sin

(
2¼t

12

)]}
[F (t+ 0.5)− F (t− 0.5)] + "(t). (22)

The results obtained with this second methodology are significantly better and
highlight the role of function A(t) in improving forecasts. From Table 2 we see that
parameter estimates of m, p and q are essentially stable, but the model global fitting
has notably increased, R2 = 0.802401, and the SSE has been halved with respect to
the standard Bass model. Moreover, the modulation of the seasonal effect according
to the phase of the life–cycle appears very accurate, since this tends to fade as long
as sales decline. A clear advantage of using the model with seasonal component is
the ability to provide better forecasts in the short period.

Although the analysis performed so far seems enough satisfactory, we also de-
cide to apply a Guseo–Guidolin model with seasonal component to our series. By
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Table 2: Parameter estimates of a Bass model with seasonal component. ( ):
marginal linearized asymptotic 95% confidence limits

m p q a b R2

1815.61 0.00887 0.03289 -308.174 140.060 0.802401
(1732.57) (0.00819) (0.02858) (-387.168) (61.849) SSE: 591.277
(1898.65) (0.00954) (0.03720) (-229.180) (218.272) (D-W: 1.05691)

(a) (b)

Figure 2: Itm5: (a) standard Bass model and monthly non cumulative data, (b)
Bass model with seasonal component and monthly non cumulative sales data

assuming a dynamic market potential, this model has shown a greater efficiency in
describing the first part of the life–cycle (see [4], which is typically over-estimated
by the Bass model (as one may distinctly observe in Figure 2a).
The applied model is

y(t) =

{
K +

[
a cos

(
2¼t

12

)
+ b sin

(
2¼t

12

)]}
[W (t+0.5)−W (t− 0.5)] + "(t). (23)

From Table 3 we may observe that parameter estimates, obtained with standard
NLS techniques, are quite unstable, but we may see in Figure 3 that model (23)
indeed produces a better description of the first part of the series. In order to
test the global significance of this model with respect to the simpler Bass model
with seasonal component, we may compute a squared multiple partial correlation
coefficient, R̃2 = (R2

GuGuS −R2
BMS)/(1−R2

BMS), normalized in the interval [0, 1],

and the corresponding F-ratio, F = R̃2(N − k)/[(1− R̃2)s] where N is the number
of observations, k the parameter cardinality of the extended model, and k− s is the
number of parameters of the nested model (a typical critical value for F is 4). In
this case R̃2 = 0.229980 and F = 11.648, which indicate a not minor significance of
the extended model.

The Durbin-Watson statistic still diagnoses the presence of autocorrelated resid-
uals, so that we complete the analysis by applying an ARMA(p, q) to the series of
residuals, "̂(t) = y(t)− ŷ(t), (as proposed for instance in [5]). The results obtained
after the ARMA refinement, and presented in Table 4, appear enough satisfactory:
R2 = 0.899546. Figure 3b displays the final forecasts, obtained by summing up a
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Table 3: Parameter estimates of a Guseo–Guidolin model with seasonal component.
( ) marginal linearized asymptotic 95% confidence limits

K pc qc ps qs a b R2

2262.58 0.00634 0.04065 0.03505 -0.03490 -366.242 207.083 0.847845
(-211454) (0.00273) (0.01851) (-3.23216) (-3.23216) (-34953.600) (-19341.200) SSE: 455.295
(215979) (0.00994) (0.06279) (3.30227) (3.18670) (34221.100) (19755.300) D-W: 1.24932

Table 4: ARMA (3,2) on autocorrelated residuals; ( ) t-statistic, [ ] p value

AR(1) AR(2) AR(3) MA(1) MA(2) R2

1.44332 -1.41704 0.49632 1.04727 -0.80375 0.899546
(11.2463) (-12.5819) (4.37409) (10.24270) (-9.16953) SSE: 3.75736
[0.00000] [0.00000] [0.00003] [0.00000] [0.00000] d.f. 80

Guseo–Guidolin model with seasonal component and an ARMA (3,2) on autocorre-
lated residuals.

(a) (b)

Figure 3: Itm5: (a) Guseo–Guidolin model with seasonal component and monthly
non cumulative sales data, (b) Guseo–Guidolin model with seasonal component +
ARMA (3,2) on autocorrelated residuals, and monthly non cumulative sales data

For comparative purposes we propose here the results of an alternative analysis
which assumes that seasonality is a stochastic component correlated with nonsea-
sonal ones. In this case, its effect may be studied under a seasonal autoregressive
approach within residual analysis, once the trend has been estimated. ARMA pro-
cesses have been extended by Box and Jenkins (see [3]) in order to include a periodic
behaviour due to seasonality, giving rise to seasonal ARMA models, SARMA, that
have the following structure

Á(B)Φ(BS)y(t) = #(B)Θ(BS)at. (24)

The underlying feature of SARMA models is the ability to describe simultaneously
two types of correlation: the first one, among successive observations called within
period correlation and the second, among observations delayed of a multiple of the
period, called between period correlation.
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In particular, we estimated the trend with a simple Guseo–Guidolin model on in-
stantaneous data (see equation (14)) and subsequently we applied a SARMA model
to the series of residuals. Results of this alternative procedure are presented in Ta-
ble 5, Table 6 and Figure 4. It is not surprising that this methodology produces a
higher fitting, R2 = 0.945809, since the model used has a larger set of parameters.
Indeed, the choice to model the seasonal component according to a deterministic
view results in a more parsimonious structure.

Table 5: Parameter estimates of a Guseo–Guidolin model. ( ) marginal linearized
asymptotic 95% confidence limits

K pc qc ps qs R2

2152.29 0.00526 0.04409 0.04361 -0.04314 0.66568
(-63364) (0.00166) (0.01637) (-1.28522) (-1.44758) SSE: 1000.39
(67668) (0.00887) (0.07180) (1.37245) (1.36128) D-W: 0.71311

Table 6: SARMA (3,2)x(3,1) on autocorrelated residuals; ( ) t-statistic, [ ] p value

AR(1) AR(2) AR(3) MA(1) MA(2)
-0.60577 -0.23148 0.62984 -1.22715 -0.98628

(-19.73200) (-5.60227) (33.17000) (-18.99980) (-21.05570)
[0.00000] [0.00000] [0.00003] [0.00000] [0.00000]
SAR(1) SAR(2) SAR(3) SMA(1) R2

-0.48916 0.50621 0.82765 -0.83824 0.945809
(-7.56970) (7.46820) (19.89580) (-13.58180) SSE: 2.1336
[0.00000] [0.00000] [0.00003] [0.00000] d.f. 76

(a) (b)

Figure 4: Itm5: (a) Guseo–Guidolin model and monthly non cumulative sales data,
(b) Guseo–Guidolin model + SARMA (3,2)x(3,1) on autocorrelated residuals, and
monthly non cumulative sales data

4 Conclusion

In this paper we have proposed two diffusion models that extend the basic Bass
and Guseo–Guidolin structures by taking into account the presence of a seasonal
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pattern in sales. In particular, both trend and seasonality are assumed as deter-
ministic components to be estimated with standard nonlinear regression techniques,
and the seasonal effect is made proportional to the trend, in order to account for
the effect that life–cycle evolution may exert. An application to the monthly sales
of a pharmaceutical drug has confirmed the better performance of such models in
describing the intra-year oscillations, suggesting their possible use for short-term
forecasts. Indeed, this is just one possible option to deal with seasonality: an al-
ternative path may be applying SARMA models to the series of residuals, having
assumed a stochastic nature of seasonality.
Our choice for a deterministic structure is inspired by the aim of creating new ex-
tensions of basic diffusion models and those proposed in this paper are just a first
step for further developments. In particular, future research should focus on a model
where the seasonal pattern contributes to the formation of demand and is therefore
included in the structure describing the latent market potential. This model, which
would represent an extension of the Guseo–Guidolin one, should ideally be able to
take into account the presence of different regimes in the level of potential demand
during a product life–cycle.
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