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1 Introduction

Let x = x1, . . . , xn be a random sample of size n from a random vector X having distribution
function F0 supported on X ⊆ Rq and let θ = θ(F ) ∈ Θ ⊆ Rd be a functional of interest defined
on arbitrary distributions F , q, d ≥ 1. Define θ(·) to be the solution of an unbiased estimating
equation, i.e. θ satisfies

EF [h(X; θ)] = 0, (1)

where h : X × Θ → C is a known function and EF [·] indicates that expectation is taken with
respect to F , C ⊆ Rd. Following Camponovo and Otsu (2014), the generalised power divergence
family for θ is defined as the class {∆γ,φ(θ)} of functions

∆γ,φ(θ) =
2

γ(γ + 1)

n∑
i=1

{
[wi(θ)n]γ+1 − 1

}
, (2)
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where

wi(θ) =

{
n−1

{
1 + λ(θ) + β(θ)>h(xi; θ)

}1/φ
if φ 6= 0

λ(θ) exp
{
β(θ)>h(xi; θ)

}
if φ = 0

(3)

and λ(θ) ∈ R, β(θ) ∈ Rd are determined by the equations

n∑
i=1

wi(θ) = 1,
n∑
i=1

wi(θ)h(xi; θ) = 0,

as long as θ ensures that the null vector belongs to the convex hull of {h(x1; θ), . . . , h(xn; θ)}.
The real parameters γ, φ in (2) and (3) are the tuning parameters of the family. The special
case γ ∈ {−1, 0} is handled by taking the appropriate limit.

The generalised power divergence family extends the Read and Cressie (1988) power diver-
gence family, which can be recovered by imposing the restriction γ = φ, and includes several well
known empirical discrepancy statistics as the Owen (1988, 1990) empirical likelihood statistic
(γ = φ = −1), the maximum entropy statistic (γ = φ = 0), the Euclidean likelihood statistic
(γ = φ = 1), the Freeman-Tukey statistic (γ = φ = −1/2), and the exponential empirical
likelihood statistic (γ = −1, φ = 0) (Jing and Wood, 1996; Corcoran, 1998, among others).

The family (2) can be deployed to draw inferences about θ by means of either approximate
pivots or tests for which the usual chi-squared asymptotics apply. A straightforward extension of
the limiting result provided by Baggerly (1998) for the Read-Cressie family shows that, for each
pair (γ, φ), ∆γ,φ(θ0) is asymptotically chi-squared with d degrees of freedom, being θ0 = θ(F0)
the true parameter value. Typically, confidence sets obtained through the chi-squared calibration
have coverage error of size O(n−1). DiCiccio et al. (1991) show that this rate can be enhanced
to O(n−2) for empirical likelihood confidence sets through the Bartlett correction. The check of
this result within both the Read-Cressie power divergence family and its generalisation reveals
that the empirical likelihood is one of a kind since it is the only member admitting the Bartlett
correction (Baggerly, 1998; Camponovo and Otsu, 2014). Despite the practical effectiveness
of the Bartlett correction has been questioned (Corcoran et al., 1995), the promise to achieve
improved inference from the empirical likelihood has contributed to place the latter in a leading
position with respect to the members in family (2).

A conceptual pitfall in the definition of the family is the so called convex hull problem: any
member ∆γ,φ(θ) is well defined in θ only if θ ensures that the null vector belongs to the convex
hull of {h(x1; θ), . . . , h(xn; θ)}; conversely, the common practice is to set ∆γ,φ(θ) = ∞ (for the
case of the empirical likelihood ∆−1,−1(θ), see e.g. Owen, 2001, Sect. 10.4). This convention,
however, comes along with two drawbacks because the check of the convex hull condition is
not straightforward in general, and because the relative plausibility of parameters not satisfying
such condition can be stated at all. Recent advances provided by Chen et al. (2008) and Liu
and Chen (2010) have demonstrated that for the empirical likelihood it is possible to link the
resolution of the convex hull problem to high-order asymptotics. These authors demonstrate
that an effective answer to the convex hull challenge is to compute an adjusted version of the
empirical likelihood obtained by adding suitable pseudo-observations to h(x1; θ), . . . , h(xn; θ).
Surprisingly, if the pseudo-observations are well-tuned, then the resulting adjusted empirical
likelihood is also automatically Bartlett-corrected. Li et al. (2011) show that the method applies
also to the exponential empirical likelihood.

As soon as this solution was conceived, Emerson and Owen (2009) highlighted that, when
inference focuses on the population mean, the adjusted empirical likelihood is always bounded
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above and that the magnitude of the bound depends on the added pseudo-observations. In some
cases the bound can be tight enough to force the derived confidence regions to degenerate up to
the trivial 100% confidence set.

In this paper we extend the approach by Liu and Chen (2010) and Li et al. (2011) to the entire
generalised power divergence family. Specifically, we show that suitable pseudo-observations
added to h(x1; θ), . . . , h(xn; θ) make each element of the family Bartlett-correctable and released
from the convex hull constraint. Unlike the existing proposals, our approach is conceived to
achieve this goal by means of two distinct sets of pseudo-observations with different roles and
tasks. An important effect of our formulation is to provide a solution that, in practice, avoids
the problem of the upper bound highlighted by Emerson and Owen (2009).

The rest of the paper is organised as follows. In Section 2, we set up the notation and
provide an essential background about the Bartlett correction for the empirical likelihood and
the methodology proposed by Liu and Chen (2010) that leads to the adjusted Bartlett-corrected
empirical likelihood. In Section 3, we state our main results and give the proposed adjustment
working for every element of the generalised power divergence family. In Section 4, we provide
empirical evidence, through Monte Carlo simulations, about the effectiveness of our approach.
In particular, we apply our technique to some members of the family and make a comparison, in
terms of coverage accuracy of confidence regions, with the original Bartlett-corrected empirical
likelihood and the adjusted Bartlett-corrected empirical likelihood considered in Liu and Chen
(2010). Finally, a brief discussion is given in Section 5. Proofs are deferred to the Appendix.

2 Preliminaries

2.1 Notation setup and definitions

In the sequel we make use of index notation, whereby any set of positive integers {l1, . . . , lm},
m ∈ {1, . . . , d}, is intended to index components of an m-dimensional array rather than to denote
powers, e.g. hl1···lm(X; θ) = hl1(X; θ) · · ·hlm(X; θ). The usual power notation is best avoided
and continue to do so until further notice. The reader may refer to McCullagh (1987) for more
details on index notation. Assume that the true parameter value θ0 is the unique solution of
EF0 [h(X; θ)] = 0 and let

αl1···lm = EF0

[
hl1(X; θ0) · · ·hlm(X; θ0)

]
,

Al1···lm(θ) = n−1
n∑
i=1

hl1(xi; θ) · · ·hlm(xi; θ)− αl1···lm .

Further, denote with

κl1,··· ,lm(W ) = cum(W l1 , · · · ,W lm),

the m-th generalised joint cumulant of a d-dimensional random vector W .

When population moments need to be estimated, we consider θ̂ = θ0 + Op(n
−1/2), where θ̂

solves the empirical version of (1), i.e. n−1
∑n

i=1 h(xi; θ̂) = 0, and define the following root-n
consistent estimates

α̂l1···lm = n−1
n∑
i=1

hl1(xi; θ̂) · · ·hlm(xi; θ̂). (4)
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In the same guise, we define the empirical counterpart of the term Al1···lm(θ) that involves
estimation of the embedded population moment, i.e.

Âl1···lm(θ) = n−1
n∑
i=1

hl1(xi; θ) · · ·hlm(xi; θ)− α̂l1···lm .

Note that for m = 1 we just index the components of h(X; θ), therefore Âl1(θ) = Al1(θ) since
αl1 = 0.

For the sake of clarity, we will adopt the following conventions throughout the review of the
literature and the presentation of our developments. We denote by E[·] expectation with respect
to F0 and reserve the symbols Al1···lm and Âl1···lm for the special cases Al1···lm(θ0) and Âl1···lm(θ0),
respectively. The latter shorthand will be often recycled for some other functions of θ and its
use will shine through the context. We follow the summation convention, that is whenever an
index is repeated in an expression the sum with respect to such index is understood, and split
free and dummy indexes into the disjoint sets {r, s, t, u, v, w} and {a, b, . . . , j}, respectively. To
summarise, for instance, ArsabAaAb is equal to

∑d
a=1

∑d
b=1A

rsabAaAb , each r, s ∈ {1, . . . , d}.
Finally, without any loss of generality, we display simplified expansions by assuming that the
covariance matrix of h(X; θ0) satisfies αrs = δrs, with δrs the Kronecker delta. Whenever
the formulae involved will be of any practical relevance, we will supply directly their ready-to-
compute versions for the general case αrs 6= δrs.

2.2 Bartlett correction and empirical likelihood

The investigation about second-order properties of empirical discrepancy statistics, such as the
empirical likelihood, is typically based on the study of the associated signed squared root. In our
setting we consider the signed root of ∆γ,φ(θ0), denoted with n1/2Rγ,φ(θ0) = n1/2Rγ,φ, which is
a d-dimensional random vector chosen to fulfil n−1∆γ,φ(θ0) = Raγ,φR

a
γ,φ + Op(n

−5/2). By using
the technique in DiCiccio et al. (1991) for the derivation of the signed root of ∆−1,−1(θ0), it is
possible to write Rrγ,φ = Rr1;γ,φ +Rr2;γ,φ +Rr3;γ,φ +Op(n

−2), where

Rr1;γ,φ = Ar,

Rr2;γ,φ = −1

2
AraAa +

1

6
(1− γ)αrabAaAb,

Rr3;γ,φ =
3

8
AraAabAb +

1

8
(1 + φ)(1− φ+ 2γ)ArAaAa +

1

6
(1− γ)ArabAaAb +

+
1

72
[9(1− φ)(1 + φ− 2γ)− (1− γ)2]αrabαbcdAaAcAd − 5

24
(1− γ)αrabAbcAaAc +

− 5

24
(1− γ)αabcArbAaAc +

1

24
(3φ2 + γ2 − 6γφ+ 3γ − 1)αrabcAaAbAc, (5)

so that Rrj;γ,φ = Op(n
−j/2), j = 1, 2, 3.

The steps required to check if a member ∆γ,φ(θ) of the family is Bartlett-correctable entail
the computation of the cumulants of n1/2Rγ,φ and the subsequent verification of the following
conditions

κr,s,t(n1/2Rγ,φ) = O(n−3/2), κr,s,t,u(n1/2Rγ,φ) = O(n−2),

κr,s,t,u,v(n1/2Rγ,φ) = o(n−2), κr,s,t,u,v,w(n1/2Rγ,φ) = o(n−2).
(6)

If (6) is satisfied, then the first two cumulants determine an Edgeworth series for the dis-
tribution function of n1/2Rγ,φ and the peculiar structure of such an approximation reveals that



Section 2 Preliminaries 5

the signed root is distributed as a d-variate standard normal up to O(n−3/2). Consequently, the
k-th cumulant of ∆γ,φ(θ0) is

2k−1(k − 1)!d
{
d−1E[∆γ,φ(θ0)]

}k
+O(n−3/2), (7)

where 2k−1(k − 1)d! is the k-th cumulant of a chi-squared random variable with d degrees of
freedom (DiCiccio et al., 1991, Sect. 4). Expression (7) encloses the essence of the Bartlett
correction: division of ∆γ,φ(θ) by d−1E[∆γ,φ(θ0)] yields a statistic whose distribution is closer
to the one of a chi-squared variate with d degrees of freedom.

Exceedingly tedious calculations, not reported, show that cumulants of Rγ,φ are of the correct
size only for the pair (γ, φ) = (−1,−1), i.e the only member belonging to the family (2) that
admits the Bartlett correction is the empirical likelihood function ∆−1,−1(θ). The Bartlett-
corrected version of the empirical likelihood is

∆B
−1,−1(θ) = d∆−1,−1(θ)E [∆−1,−1(θ0)]

−1 = ∆−1,−1(θ)
[
1− (nd)−1b

]
,

and the second equality follows from the expression

E [∆−1,−1(θ0)] = κa,a(n1/2R−1,−1) + κa(n1/2R−1,−1)κ
a(n1/2R−1,−1) = d+ n−1b+O(n−2).

The term b = b(θ0), known as the Bartlett factor, is

b =
1

2
αabcdαabαcd −

1

3
αabcαdefαadαbeαcf , (8)

with αrs the inverse of αrs. The Bartlett correction has the effect of reducing the coverage error
of empirical likelihood confidence sets by one order of magnitude, i.e.

Pr
{

∆B
−1,−1(θ0) ≤ cν

}
= ν +O(n−2), (9)

where cν is the ν-quantile of a chi-squared random variable with d degrees of freedom.
It should be noted that ∆B

−1,−1(θ) depends on unknown population moments through the
Bartlett factor b. In practice these moments can be replaced by their root-n consistent esti-
mates in (4) without affecting the error in approximation (9), since the corresponding estimated
Bartlett factor

b̂ =
1

2
α̂abcdα̂abα̂cd −

1

3
α̂abcα̂def α̂adα̂beα̂cf (10)

is root-n consistent for b.

2.3 Adjusted Bartlett-corrected empirical likelihood

The adjusted empirical likelihood (Chen et al., 2008) originally stemmed from the need to tackle
the possible failure of the convex hull condition for ∆−1,−1(θ). Suppose we are willing to compute
∆−1,−1 at a generic value θ; then, ∆−1,−1(θ) is finite only if θ is such that the convex hull of
{h(x1; θ), . . . , h(xn; θ)} contains the null vector. However, when n or the ratio n/d is moderate to
small the convex hull may fail to contain the origin. The key idea to make ∆−1,−1(θ) well defined
is to add a pseudo-observation to h(x1; θ), . . . , h(xn; θ), of the form hr(xn+1; θ) = −anAr(θ), so
that the null vector is always an interior point of the convex hull of {h(x1; θ), . . . , h(xn+1; θ)}.
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This approach is successful as long as an > 0, because the quantities −Ar(θ) and hr(xn+1; θ)
are on opposite sides of the origin.

Chen et al. (2008) show that if an = op(n
2/3), then first-order asymptotic properties of the

empirical likelihood are retained. This recipe has been then refined by Liu and Chen (2010) by
setting

hr(xn+1; θ) = −bAr(θ)/2d, (11)

which both overcomes the possible failure of convex hull condition and makes the resulting
empirical likelihood Bartlett-corrected at a stroke. Actually, when d > 1 there is still a chance
that the convex hull of {h(x1; θ), . . . , h(xn+1; θ)} will not contain the null vector, since b might
be negative. The solution is to add a further pseudo-observation, h(xn+2; θ), and to suitably
split the Bartlett factor into the sum of two non-negative terms satisfying b = b1 − b2. This
formulation leads to the following allocation of the pseudo-observations

hr(xn+1; θ) = −b1Ar(θ)/2d and hr(xn+2; θ) = b2A
r(θ)/2d. (12)

According to Liu and Chen (2010, Sect. 3.3) a possible representation of the components of the
Bartlett factor is (summation convention does not apply)

b1 =
1

2

∑
a,b

αaabbαabαab −
1

3

∑
a,b,c

αabbαbccαabαacαbc +
∑
a,b,d,e

αadbeαadαbe −
∑

a,b,c,d,e

αabcαdeeαadαbeαce

b2 =
∑

a,b,c,d,e

αabcαdeeαadαbeαce + 2
∑

a,b,c,d,e,f

αabcαdefαadαbeαcf ,

where, only in this formula and whenever we deal with b1 and b2, we impose the restriction
d < e < f .

If we denote with ∆̃B
−1,−1(θ0) the adjusted Bartlett-corrected empirical likelihood based on

h(x1; θ0), . . . , h(xn+1; θ0), h(xn+2; θ0), with h(xn+1; θ0) = −b1Ar/2d and h(xn+2; θ0) = b2A
r/2d,

then, as in (9), Pr
{

∆̃B
−1,−1(θ0) ≤ cν

}
= ν + O(n−2). In analogy with the canonical Bartlett-

corrected empirical likelihood ∆B
−1,−1(θ), the coverage error of the adjusted Bartlett-corrected

empirical likelihood confidence sets is still O(n−2) whenever the unknown Bartlett factor in (11)
is estimated by (10) as well as b1 and b2 in (12) are replaced by

b̂1 =
1

2

∑
a,b

α̂aabbα̂abα̂ab −
1

3

∑
a,b,c

α̂abbα̂bccα̂abα̂acα̂bc +
∑
a,b,d,e

α̂adbeα̂adα̂be −
∑

a,b,c,d,e

α̂abcα̂deeα̂adα̂beα̂ce

b̂2 =
∑

a,b,c,d,e

α̂abcα̂deeα̂adα̂beα̂ce + 2
∑

a,b,c,d,e,f

α̂abcα̂def α̂adα̂beα̂cf ,

respectively. Li et al. (2011) extended this approach to the exponential empirical likelihood
∆−1,0(θ).

3 Adjusted Bartlett-corrected generalised power divergence family

3.1 Theoretical adjustment

By exploiting the idea that adding a perturbation to h(x1; θ), . . . , h(xn; θ) can affect the high-
order behaviour of the empirical likelihood, in Theorem 1 below we argue that it suffices to
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augment the sample with at most three pseudo-observations to make each member of family
(2) both adjusted and Bartlett-correctable. Specifically, the term adjusted refers, in the same
guise as for the adjusted empirical likelihood, to the fact that each member is released from the
convex hull constraint.

Henceforth, quantities computed on an augmented pseudo-sample h(x1; θ), . . . , h(xn+k; θ) of
arbitrary size n + k are denoted with an upper bar, k ≥ 1. Therefore, in particular, for each
pair (γ, φ), ∆̄γ,φ(θ0) and R̄γ,φ stand for ∆γ,φ(θ0) and Rγ,φ based on h(x1; θ0), . . . , h(xn+k; θ0),
respectively.

To establish our results we will need the following assumptions:

A1 αrs is finite and of full rank d;

A2 E[‖h(X; θ0)‖18] <∞;

A3 lim sup‖ζ‖→∞E [exp {iζaha(X; θ0)}] < 1, i = −11/2, ζ ∈ Rd.

Assumption A1 is the essential requirement to establish Wilk’s theorem for statistics derived
from the generalised power divergence family. Assumption A2 ensures that the 6-th moment
of n1/2R̄γ,φ is finite and together with Cramr’s condition A3 are needed to develop a valid
Edgeworth series for the distribution function of n1/2R̄γ,φ up to O(n−3/2) (Bhattacharya and
Ghosh, 1978; Skovgaard, 1981; Liu and Chen, 2010).

Before presenting our main theorem, in the following lemma we provide the size of the
pseudo-observations and quantify their impact on the signed root n1/2R̄γ,φ.

Lemma 1 Denote with Ω(θ) = h(xn+1; θ), Γ(θ) = h(xn+2; θ), and Ξ(θ) = h(xn+3; θ) pseudo-
observations whose sizes are assumed to be Op(1), Op(n

−1/2), and Op(n
−1), respectively. Let

Ω = Ω(θ0), Γ = Γ(θ0), and Ξ = Ξ(θ0). Then, under assumptions A1 and A2,

n−1∆̄γ,φ(θ0) = R̄a1;γ,φR̄
a
1;γ,φ + R̄a2;γ,φR̄

a
2;γ,φ + 2R̄a1;γ,φR̄

a
2;γ,φ + 2R̄a1;γ,φR̄

a
3;γ,φ +Op(n

−5/2),

where

R̄r1;γ,φ = Rr1;γ,φ,

R̄r2;γ,φ = Rr2;γ,φ +
1

n
Ωr,

R̄r3;γ,φ = Rr3;γ,φ +
1

n
Γr − 1

2n
AraΩa +

1

3n
(1− γ)αrabAaΩb +

1

2n
ΩrAaΩa,

with Rrj;γ,φ, j = 1, 2, 3, defined in (5). Thus, R̄rj;γ,φ = Op(n
−j/2).

Lemma 1 states that only pseudo-observations of size Op(1) and Op(n
−1/2) can affect the

signed squared root of ∆̄γ,φ(θ0) up to Op(n
−3/2). Specifically, these observations enter in the

expansion at second and third order, respectively. This behaviour is the key to turn each member
of family (2) into an adjusted Bartlett-correctable one, as stated in the following theorem.
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Theorem 1 Under assumptions A1, A2, and A3, for every δ ≥ 1/2, if we set

Ωr(θ) =
n

6
(1 + γ)αrabαacαbdA

c(θ)Ad(θ), (13)

Γr(θ) =
n

6

{
−6

8
(1 + φ)(1− φ+ 2γ)αabA

r(θ)Aa(θ)Ab(θ)− (1 + γ)αacαbdA
rab(θ)Ac(θ)Ad(θ)+

− (1 + γ)αrabαafαbcαdeA
cd(θ)Ae(θ)Af (θ)− (1 + γ)αabcαafαbeαcdA

rd(θ)Af (θ)Ae(θ) +

+
1

12
(9φ2 + 5γ2 − 18γφ+ 16γ + 20)αrabαcdeαafαbcαdgαehA

f (θ)Ag(θ)Ah(θ) +

− 1

4
(3φ2 + γ2 − 6γφ+ 3γ + 5)αrabcαadαbeαcfA

d(θ)Ae(θ)Af (θ)+

− 1

12
n(1 + γ)2αrbcαadeαafαbgαchαdiαejA

f (θ)Ag(θ)Ah(θ)Ai(θ)Aj(θ)

}
, (14)

Ξr(θ) = −n−δ
{
n(n+ 2)−1[Ar(θ) + n−1Ωr(θ) + n−1Γr(θ)]

}
, (15)

then
R̄γ,φ = R−1,−1 +Op(n

−2),

which implies, for every pair (γ, φ),

κr,s,t(n1/2R̄γ,φ) = O(n−3/2), κr,s,t,u(n1/2R̄γ,φ) = O(n−2),

κr,s,t,u,v(n1/2R̄γ,φ) = o(n−2), κr,s,t,u,v,w(n1/2R̄γ,φ) = o(n−2).

Therefore, each member of the family
{

∆̄γ,φ(θ)
}

based on the pseudo-observations Ω(θ), Γ(θ),
and Ξ(θ) is adjusted and Bartlett-correctable.

The result in Theorem 1 yields an adjusted Bartlett-correctable generalised power divergence
family by forcing the signed squared root of each element of the family to behave like the
one of the empirical likelihood up to Op(n

−3/2), and by further accounting for the convex hull
constraint. To better understand the definition of ∆̄γ,φ(θ), we can conceptually split the pseudo-
observations into two groups consistently with their intervention: Ω(θ) and Γ(θ) enable each
element of the family to be Bartlett-correctable, instead Ξ(θ) generates a slight perturbation,
not appreciable up to Op(n

−3/2), that allow the family to overcome the possibility that the
convex hull of {h(x1; θ), . . . , h(xn; θ),Ω(θ),Γ(θ)} does not contain the null vector.

Note that if one of the theoretical pseudo-observations Ω(θ) or Γ(θ) is null, then it is unnec-
essary to include it in the pseudo-sample. Inspection of formulae (13), (14), and (15), reveals
that γ may contribute to cancel Ω(θ) and Γ(θ), whereas φ may act likewise on Γ(θ) only, i.e. γ
is accountable for the matching of R2;−1,−1 and R3;−1,−1, whereas φ for the latter only. It turns
out that for some specific pairs (γ, φ) we would need less than three artificial observations to
compute ∆̄γ,φ(θ). In Table 1 we provide a comprehensive list of the possible combinations of
tuning parameters, along with the resulting pseudo-sample size, the pseudo-observations needed,
and the current expression of pseudo-observation Ξ(θ) in each case. For instance, when the em-
pirical likelihood is considered, we need to accommodate for the convex hull constraint only,
implying that ∆̄−1,−1(θ) need to be computed on a pseudo-sample of size n + 1, where the
pseudo-observation Ξ(θ) reduces to −n−δA(θ).

The guidelines for the allocation of the artificial observations in Theorem 1 tacitly imply that
the Bartlett factor for each member ∆̄γ,φ(θ) of the new adjusted Bartlett-correctable generalised
power divergence family is the one derived for the empirical likelihood. In the following corollary,
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Table 1: Combination of tuning parameters and associated pseudo-observations for Theorem
1. In the fourth and fifth columns the symbol “-” indicates that the corresponding pseudo-
observation is not needed. Whenever the pseudo-observations Ω(θ) and Γ(θ) are present we
report the corresponding reference in the text, whereas the expression for Ξ(θ) is indicated case
by case.

Tuning parameters Pseudo-sample Ω(θ) Γ(θ) Ξ(θ)
size

γ 6= −1 each φ n+ 3 (13) (14) −n−δ
{
n(n+ 2)−1[A(θ) + n−1Ω(θ) + n−1Γ(θ)]

}
γ = −1 φ 6= −1 n+ 2 - (14) −n−δ

{
n(n+ 1)−1[A(θ) + n−1Γ(θ)]

}
γ = −1 φ = −1 n+ 1 - - −n−δA(θ)

we state that Bartlett-corrected statistics are derived from
{

∆̄γ,φ(θ)
}

in the traditional way, i.e.
by affine transformation.

Corollary 1 Under assumptions of Theorem 1, consider ∆̄γ,φ(θ) which is computed on the
following pseudo-sample

h(x1; θ), . . . , h(xn; θ), Ω(θ), Γ(θ), Ξ(θ),

where Ω(θ), Γ(θ), and Ξ(θ) are as in Table 1 according to the specific pair (γ, φ). Then

Pr
{

∆̄B
γ,φ(θ0) ≤ cν

}
= ν +O(n−2),

with
∆̄B
γ,φ(θ0) = ∆̄γ,φ(θ0)[1− (dn)−1b],

The quantity b is the Bartlett factor provided in (8) and cν is defined in (9).

Empirical likelihood as well as other (standard) empirical discrepancy statistics are bounded
above when n or the ratio n/d is moderate to small, implying that the derived confidence
regions may attain only confidence levels restricted in the interval (0, υ), υ � 1 (Tsao, 2004).
The artificial observations Ξ(θ) and −b1A(θ)/2d, b2A(θ)/2d may act likewise on ∆̄γ,φ(θ) and
∆̃B
−1,−1(θ), respectively, meaning that, in the worst case scenario, they may reinstate an upper

bound which is relevant for practical purposes. Nevertheless, Ξ(θ) depends the positive scaling
factor n−δ, and δ may be tuned to regulate the upper bound for the members of

{
∆̄γ,φ(θ)

}
.

By generalising the result in Emerson and Owen (2009, Sect. 3.1), it can be easily seen that
the quantity

2

γ(γ + 1)

{
n

[(
a(n+ j)

n(a+ j)

)γ+1

− 1

]
+ j

[(
(n+ j)

(a+ j)

)γ+1

− 1

]}

represents the upper bound for members of
{

∆̄γ,φ(θ)
}

once we set a = n−δ and j = 1. The
special cases γ ∈ {−1, 0} are elicited by taking limits. For γ = −1 we have

− 2

[
n log

(
a(n+ j)

n(a+ j)

)
+ j log

(
n+ j

a+ j

)]
, (16)
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whereas for γ = 0

2

[
n+ j

a+ j

] [
a log

(
a(n+ j)

n(a+ j)

)
+ j log

(
n+ j

a+ j

)]
.

The bound for ∆̃B
−1,−1(θ) is recovered by plugging a = b/2d = (b1 − b2)/2d and j = 2 in (16).

As n diverges, bounds for ∆̄γ,φ(θ) and ∆̃B
−1,−1(θ) tend to infinity; however, for fixed n their

value is shown to be inversely proportional in a. The bound on members of
{

∆̄γ,φ(θ)
}

can be

appreciably less narrow than that on ∆̃B
−1,−1(θ), because the former depends on a = n−δ = o(1)

rather than on a = b/2d = O(1). As an example, we consider inference on the mean vector of
a standard d-variate normal distribution when n = 40 and q = d = 10 (see Section 4.1). Then
b1 = q2/2, b2 = 0, whereby a = q/4, j = 1, and the upper bound for ∆̃B

−1,−1(θ) is about 20, i.e.
confidence sets for the mean can attain at most the nominal level 0.97. On the other hand, if
we consider the members ∆̄−1,φ(θ) and set δ = 1/2, which is the minimum admissible value for
δ imposed by Lemma 1, the upper bound is about 150, thus irrelevant for practical purposes.

The example above provides a clear-cut view of the effects of pseudo observations Ξ(θ) and
−b1A(θ)/2d, b2A(θ)/2d on the induced upper bounds for ∆̄γ,φ(θ) and ∆̃B

−1,−1(θ). Specifically, if
we tie the resolution of the convex hull problem to high-order asymptotics as in Liu and Chen
(2010), then the resulting pseudo-observations cannot be tuned to alleviate the side effects of
the upper bound as their manipulation would invalidate the Bartlett correction for ∆̃B

−1,−1(θ).

As opposed to ∆̃B
−1,−1(θ), the upper bound for ∆̄γ,φ(θ) can be readily calculated as it does not

depend on unknown population moments in the Bartlett factor. Consequently, the user has the
opportunity to select δ in order to be sure that the inference function is allowed to attain the
desired confidence level.

In Section 4, we run our numerical investigations for the value δ = 1/2 and the results
highlight that this value is appropriate for our examples which deal with a fairly selection of
values of n and d.

3.2 Empirical adjustment

The adjusted Bartlett-correctable generalised power divergence family
{

∆̄γ,φ(θ)
}

depends on
unknown population moments in the pseudo-observations Ω(θ), Γ(θ), and Ξ(θ), and whenever
they are replaced by their root-n consistent estimates (4), the result in Theorem 1 may be
struck down. Recall that Ω = Ω(θ0), Γ = Γ(θ0), and Ξ = Ξ(θ0). On the one hand, the empirical
counterpart of Ω satisfies

Ω̂ =
n

6
(1 + γ)α̂rabα̂acα̂bdÂ

cÂd = Ω +Op(n
−1/2),

and once such expression is plugged back in R̄2;γ,φ the estimation error produces a disturbance of
the same size of Γ that affects the actual expression of R̄3;γ,φ. On the other hand, estimation of Γ
involves estimation of population moments in the terms Ars and Arst and this process generates
a reminder of size Op(n

−1/2), again of the same magnitude of Γ, which in turn modifies the
expression of R̄3;γ,φ. As an aside, the pseudo-observation Ξ leaves the conclusions of Theorem

1 always unchanged as its estimate Ξ̂ is Op(n
−1/2−δ), δ ≥ 1/2, and by Lemma 1 we are aware

that terms of such size do not enter into the expression of R̄γ,φ up to Op(n
−3/2).

Note that for the pairs (−1, φ), each φ, the adjusted Bartlett-correctable generalised power
divergence family based on the empirical versions of the pseudo-observations in Theorem 1 is



Section 3 Adjusted Bartlett-corrected generalised power divergence family 11

still Bartlett-correctable, because for γ = −1 we have Ω = 0 and the terms Ars and Arst in Γ
vanish. This happy chance leads to an estimation error for Γ whose size is Op(n

−1), i.e. smaller
than the size of Γ.

In the following we provide a revised version of Theorem 1 which is valid for every pair
of (γ, φ) as it takes into an account the disturbance induced on the expression of R̄γ,φ by the
estimation of population moments in Ω and Γ.

Theorem 2 Under assumptions A1, A2, A3, for every δ ≥ 1/2, if

(i) γ = −1 and,

Γ̂r(θ) =
n

8
(1 + φ)2

{
α̂abÂ

r(θ)Âa(θ)Âb(θ)− α̂rabcα̂adα̂beα̂cf Âd(θ)Âe(θ)Âf (θ) +

+ α̂rabα̂cdeα̂bcα̂af α̂dgα̂ehÂ
f (θ)Âg(θ)Âh(θ)

}
, (17)

Ξ̂r(θ) = −n−δ[n(n+ 1)−1][Âr(θ) + n−1Γ̂r(θ)];

(ii) γ 6= −1 and,

Ω̂r(θ) =
n

6
(1 + γ)α̂rabα̂acα̂bdÂ

c(θ)Âd(θ), (18)

Γ̂r(θ) =
n

6

{
6

8
(φ2 − 2γφ+ 2γ + 3)α̂abÂ

r(θ)Âa(θ)Âb(θ)+

− 1

4
(3φ2 + γ2 − 6γφ+ 3γ + 5)α̂rabcα̂adα̂beα̂cf Â

d(θ)Âe(θ)Âf (θ)+

+
1

12
n(1 + γ)2α̂rbcα̂adeα̂af α̂bgα̂chα̂diα̂elÂ

f (θ)Âg(θ)Âh(θ)Âi(θ)Âl(θ)+ (19)

+
1

12
(9φ2 + 5γ2 − 18γφ+ 16γ + 20)α̂rabα̂cdeα̂bcα̂af α̂dgα̂ehÂ

f (θ)Âg(θ)Âh(θ)

}
,

Ξ̂r(θ) = −n−δ[n(n+ 2)−1][Âr(θ) + n−1Ω̂r(θ) + n−1Γ̂r(θ)],

by further assuming that

α̂rs − n−1
n∑
i=1

[hr(xi; θ0)− Âr][hs(xi; θ0)− Âs] = Op(n
−1)

α̂rst − n−1
n∑
i=1

[hr(xi; θ0)− Âr][hs(xi; θ0)− Âs][ht(xi; θ0)− Ât] = Op(n
−1),

then for each pair (γ, φ)
R̄γ,φ = R−1,−1 +Op(n

−2).

Therefore each member of the family
{

∆̄γ,φ(θ)
}

based on the pseudo-observations Ω̂(θ), Γ̂(θ),

and Ξ̂(θ) given either in part (i) or (ii) is adjusted and Bartlett-correctable.

Surprisingly, when γ 6= −1 a straightforward transition from the theoretical adjustment
Ω to its empirical counterpart Ω̂ entails a reminder that modifies the expression of R̄3;γ,φ so
that the difference R̄3;γ,φ − R3;−1,−1 is free of the terms involving Ars and Arst. This leads
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to a theoretical adjustment Γ whose estimation does not alter the expression of R̄3;γ,φ up to

Op(n
−3/2). In this connection, we claim that it is possible to replace Ω̂(θ) with alternatives

root-n consistent estimates, say Ω̂(θ), as long as Ω̂(θ)− Ω̂(θ) = Op(n
−1), because the aforesaid

cancellations occur for the specific Op(n
−1/2) error term induced by Ω̂(θ).

In Table 2 are summarised the possible outcomes of Theorem 2 according to each pair (γ, φ).
The first row of the table, γ 6= −1, is relevant for part (ii), whereas the last ones, γ = −1, for
part (i).

Table 2: Combination of tuning parameters and associated pseudo-observations for Theorem
2. In the fourth and fifth columns the symbol “-” indicates that the corresponding pseudo-
observation is not needed. Whenever the pseudo-observations Ω̂(θ) and Γ̂(θ) are present we
report the reference in the text, whereas the expression for Ξ̂(θ) is indicated case by case.

Tuning parameters Pseudo-sample Ω̂(θ) Γ̂(θ) Ξ̂(θ)
size

γ 6= −1 each φ n+ 3 (18) (19) −n−δ
{
n(n+ 2)−1[Â(θ) + n−1Ω̂(θ) + n−1Γ̂(θ)]

}
γ = −1 φ 6= −1 n+ 2 - (17) −n−δ

{
n(n+ 1)−1[Â(θ) + n−1Γ̂(θ)]

}
γ = −1 φ = −1 n+ 1 - - −n−δÂ(θ)

To close this section, we provide the revised version of Corollary 1.

Corollary 2 Under assumptions of Theorem 2, consider ∆̄γ,φ(θ) computed with the estimated

pseudo-observations Ω̂(θ), Γ̂(θ), and Ξ̂(θ) given in Table 2 according to the specific pair (γ, φ).
Then the same result stated in Corollary 1 applies for

∆̄B
γ,φ(θ0) = ∆̄γ,φ(θ0)[1− (dn)−1b̂],

where b̂ is the estimated Bartlett factor given in (10).

4 Simulation study

In the present section we provide empirical evidence, through a simulation study, about the
effectiveness of the Bartlett correction in reducing the coverage error of confidence sets derived
from some elements of the generalised power divergence family. Hence, we will compare actual
accuarcy of confidence sets based of some adjusted empirical discrepancies ∆̄γ,φ(θ) and their
Bartlett-corrected versions ∆̄B

γ,φ(θ). We further aim to make a comparison to the accuracy of

confidence sets based on the adjusted Bartlett-corrected empirical likelihood, ∆̃B
−1,−1(θ).

We consider four popular members within the generalised power divergence family, namely
the empirical likelihood ∆−1,−1(θ), the exponential empirical likelihood ∆−1,0(θ), the maximum
entropy ∆0,0(θ), and the Euclidean likelihood ∆1,1(θ) as well as two additional members, namely
∆−1,−2(θ) and ∆−1,−1/2(θ). This choice is meant to deal with a small yet representative number
of instances in family (2): a member which is already Bartlett-correctable, ∆−1,−1(θ), and
members ∆0,0(θ), ∆1,1(θ), ∆−1,0(θ), ∆−1,−1/2(θ), and ∆−1,−2(θ) whose distributional behaviour
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is respectively gradually closer to the one of the empirical likelihood. Effectively this means that
∆0,0(θ) and ∆1,1(θ) need both pseudo-observations Ω(θ) and Γ(θ) to be Bartlett-correctable,
whereas the remaining ones need Γ(θ) only.

For the sake of comparison with the existing literature, we firstly consider inference about
both a scalar and vector-valued population mean. Later on, we broaden our investigation to
encompass more general vector-valued parameters by considering examples in the regression and
pairwise likelihood contexts. Without attempting a full discussion on pairwise likelihoods we
defer the reader to Lindsay (1988) and Varin et al. (2011) and provide the essential details about
the usefulness of empirical discrepancies in such setting in Section 4.3.

Adjusted Bartlett-corrected versions of the considered statistics are computed by resorting
to the estimated adjustments in Table 2, with δ = 1/2, and to the estimated Bartlett factor (10).
For the sake of comparison, the Bartlett factor is estimated by replacing unknowns moments
with the enhanced moment estimates suggested in Liu and Chen (2010, Sect. 3.3) rather than
to the ones in (4); this is also the case for the estimation of the components of the Bartlett
factor b1 and b2 for the computation of the adjusted Bartlett-corrected empirical likelihood
∆̃B
−1,−1(θ). Adjusted Bartlett-corrected maximum entropy and Euclidean likelihood have been

considered only for the population mean examples because the function h(x; θ) = x− θ satisfies
the requirements in part (ii) of Theorem 2.

The number of Monte Carlo trials in our simulations is 100.000.

4.1 Population mean

Simulations for the scalar mean are conducted by generating samples of size 15 and 30. Uni-
variate distributions are chosen with increasing values of both skewness and kurtosis: standard
normal (d1), exponential with unit mean (d2), chi-squared with one degree of freedom (d3), and
standard log-normal (d4). The results are summarised in Table 3. Empirical coverage proba-
bilities for standard empirical likelihood ∆−1,−1(θ) are far away from the nominal levels and
the situation worsens as the underlying distributions become markedly skewed and leptokur-
tic. The adjusted and Bartlett-corrected versions, ∆̃B

−1,−1(θ) and ∆̄B
−1,−1(θ), are equivalent and

provide a satisfactory improvement for normal data, whereas in the remaining cases there is
still room for further improvement, even when the sample size is 30. The original versions of
the remaining statistics mimic the results of the standard empirical likelihood. Their adjusted
Bartlett-corrected versions, instead, uniformly outperform both ∆̃B

−1,−1(θ) and ∆̄B
−1,−1(θ) and

provide empirical coverages quite close to the nominal levels.

For the multivariate mean we consider five multivariate distributions, each of them having
the following components

d5 : X1 ∼ N(0, D2), X2 ∼ Gamma(D−1, 1), X3 ∼ χ2
D;

d6 : X1 ∼ Gamma(D, 1), X2 ∼ Gamma(D−1, 1), X3 ∼ Gamma(4−D, 1);

d7 : X1 ∼ 0.2N(5, D2) + 0.8N(−1.25, D−2), X2 ∼ 0.2N(5, D−2) + 0.8N(−1.25, D2), X3 ∼
N(0, D2);

d8 : Xj ∼ N(0, 1), j = 1, . . . , 10;

d9 : Xj = exp {Yj} with Yj ∼ N(0, 1), j = 1, . . . , 10;
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where D is a given value generated from U(1, 2) (see, Liu and Chen, 2010).
We generate samples of size {30, 50} for distributions (d5), (d6), (d7) and {40, 70} for (d8),

(d9) in order to accommodate for the higher dimension of the mean. The resulting empirical
coverages are reported in Table 4. On the one hand, when lower dimensional distributions are
considered, we have quite the same picture as for the scalar mean, with the standard versions of
the statistics providing almost all the same outcomes, regardless of the underlying distribution.
We observe again that the adjusted and Bartlett-corrected empirical likelihoods ∆̃B

−1,−1(θ) and

∆̄B
−1,−1(θ) lead to fairly good improvements that however are not as outstanding as the ones

exhibited by ∆̄B
−1,−2(θ), ∆̄B

−1,−1/2(θ), ∆̄B
−1,0(θ), ∆̄B

0,0(θ), and ∆̄B
1,1(θ). On the other hand, when

the focus moves on the higher dimensional distributions we have the opportunity to appreciate
the effects of the boundedness of ∆̃B

−1,−1(θ) and how our proposed ∆̄B
−1,−1(θ) is able to circumvent

the side effects. For n = 40 the empirical coverages for ∆̃B
−1,−1(θ) degenerate to 100%, whereas

the ones for ∆̄B
−1,−1(θ) are still meaningful. The upper bound effect for ∆̃B

−1,−1(θ) almost vanishes
at n = 70 for distribution (d8) whereas is it still persistent for (d9).

In Figure 1 we display the Q-Q plots of the results for scalar and vector-valued mean when
the underlying distribution is the exponential with unit mean (d2) and the multivariate normal
(d8). In both scenarios we picked the smallest sample sizes, i.e. 15 and 40, respectively. These
plots give us a flavour of how the adjustment and the Bartlett correction act on ∆̄B

−1,−2(θ),

∆̄B
−1,−1/2(θ), ∆̄B

−1,0(θ), ∆̄B
0,0(θ), and ∆̄B

1,1(θ) by improving the raw approximation. The plots
for empirical likelihood are markedly curved and we highlight that for the multivariate normal
distribution the behaviour of ∆̃−1,−1(θ) is dictated by its upper bound. Simulations results not
reported, reveal a similar behaviour for the adjusted Bartlett-corrected exponential empirical
likelihood considered in Li et al. (2011).

4.2 Linear and generalised linear models

Let Xi be independent realisations from DE1(µi, σ
2V (µi)) which is a dispersion exponential

family of order 1 with mean µi and variance which depends on the dispersion parameter σ2 > 0
and on the variance function V (µi) (Jørgensen, 1983). Here µi is supposed to be a function of a
d-dimensional vector of explanatory variables Zi through the link function g(·), i.e. E[Xi|Zi =
zi] = µi = g(θazai ) where θ is a d-dimensional regression parameter. By adopting the canonical
link function, inference on θ is based on the following estimating function

1

σ2

n∑
i=1

(xi − µi)zri , (20)

r = 1, . . . , d.
We consider examples when the elements picked from DE1(·, ·) are the normal, N(µi, σ

2), and
exponential distribution, Exp(µ−1i ). In each model the triad

{
g(µi), σ

2, V (µi)
}

is {µi, 1, 1} and{
−µ−1i , 1, µ2i

}
, respectively, i.e. σ2 is known. The true parameter value is θ0 = (1/2, 1, 1, 1/2, 3)

and the explanatory variables zri corresponding to each θr0, but the for intercept θ10, are randomly
generated from U(1, 2), N(5, 1), Gamma(1, 2), and Bi(n, 1/2), respectively. The considered sam-
ple sizes are {50, 70}.

Simulation results are displayed in Table 5. Once again we have that the adjusted Bartlett-
corrected ∆̄B

−1,0(θ) and ∆̄B
−1,−2(θ) are superior to ∆̄B

−1,−1/2(θ), the original Bartlett corrected

empirical likelihood ∆B
−1,−1(θ) as well as to its adjusted versions ∆̃B

−1,−1(θ) and ∆̄B
−1,−1(θ). In
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Table 3: Empirical coverage probabilities for scalar population mean. Monte Carlo standard
errors for nominal levels ν = {90, 95, 99} are respectively 0.067, 0.048, and 0.022. Columns
corresponding to the symbols “O”, “B”, “B̄” and “B̃” report the values of the following statistics:
original version, canonical Bartlett corrected version, adjusted and Bartlett corrected version,
and ∆̃−1,−1(θ), respectively.

n ν ∆−1,−1 ∆−1,−2 ∆−1,−1/2 ∆−1,0 ∆0,0 ∆1,1

O B B̃ B̄ O B̄ O B̄ O B̄ O B̄ O B̄
d1 15 90 87.0 88.6 88.8 89.1 86.4 89.5 86.8 88.8 86.1 89.6 86.6 89.7 86.9 89.2

95 92.5 93.5 93.7 94.0 91.9 94.8 92.3 93.7 91.5 94.8 92.1 94.6 92.4 94.1
99 97.5 97.9 98.0 98.0 97.1 99.1 97.3 98.0 96.7 99.1 97.2 98.4 97.5 98.2

30 90 88.9 89.7 89.7 89.9 88.3 89.8 88.7 89.7 88.3 90.0 88.4 90.0 88.6 89.9
95 94.0 94.6 94.7 94.8 93.4 94.8 93.9 94.7 93.4 94.9 93.7 95.0 93.7 94.9
99 98.5 98.7 98.7 98.7 98.1 99.0 98.4 98.7 98.1 99.0 98.3 99.0 98.3 98.8

d2 15 90 84.3 86.0 86.4 86.5 83.8 87.8 84.2 86.2 83.4 87.9 83.7 87.0 83.5 89.9
95 89.7 91.0 91.3 91.3 89.3 93.3 89.6 91.2 88.9 93.4 89.1 92.5 88.5 95.0
99 95.5 96.1 96.4 96.3 95.1 98.7 95.3 96.5 94.7 98.7 94.5 98.0 93.7 98.8

30 90 87.3 88.4 88.5 88.5 86.9 88.8 87.2 88.4 86.8 88.7 86.6 88.6 86.2 89.9
95 92.6 93.4 93.4 93.5 92.2 93.9 92.5 93.4 92.0 93.9 92.0 93.8 91.5 95.2
99 97.8 98.1 98.1 98.1 97.4 98.7 97.7 98.1 97.3 98.7 97.0 98.6 96.3 99.3

d3 15 90 81.4 83.5 84.1 83.9 81.3 86.2 81.7 83.8 80.7 86.2 81.2 85.4 80.7 92.0
95 87.3 88.9 89.4 89.3 87.1 92.7 87.4 89.3 86.4 92.8 86.6 92.3 85.6 96.6
99 93.8 94.4 94.8 94.6 93.7 98.4 93.8 95.1 93.1 98.4 92.4 98.4 90.9 99.5

30 90 85.8 87.3 87.6 87.5 85.3 88.0 85.7 87.4 85.2 88.0 85.1 87.7 84.7 91.6
95 91.4 92.5 92.7 92.6 91.0 93.6 91.3 92.6 90.8 93.5 90.5 93.4 89.6 96.9
99 96.7 97.2 97.3 97.2 96.4 98.4 96.6 97.3 96.2 98.4 95.7 98.7 94.6 99.7

d4 15 90 78.8 81.0 82.0 81.6 78.5 85.1 78.9 81.4 77.8 85.1 78.6 83.0 78.3 89.4
95 84.9 86.6 87.3 87.0 84.7 91.7 85.1 87.1 83.9 91.6 84.0 89.7 82.8 94.8
99 91.9 92.9 93.3 93.2 91.8 98.4 92.0 94.1 90.8 98.3 90.4 96.9 88.7 98.7

30 90 82.7 84.5 85.1 84.6 82.1 85.5 82.5 84.5 81.9 85.4 82.3 85.0 82.2 89.3
95 88.6 90.0 90.4 90.1 87.9 91.5 88.4 90.1 87.6 91.3 87.7 91.0 86.8 95.3
99 95.3 95.9 96.0 95.9 94.9 97.8 95.1 96.1 94.5 97.7 93.8 97.6 92.3 99.4

the uppermost panels of Figure 2 we report the Q-Q plot of the results for the generalised linear
model when n = 50. The inspection of this picture reveals an unusual downward curvature for
∆̃B
−1,−1(θ), not exhibited by ∆̄B

−1,−1(θ), which can be likely ascribed to the upper bound effect.

4.3 Marginal pairwise likelihoods

Composite likelihoods are a likelihood-like class of functions that allow to carry out approximate
inference for complex statistical models when the full likelihood is either impossible to specify
or infeasible to compute. One drawback of this approach is that inference based on the com-
posite log likelihood ratio is compromised since it obeys to the rules of misspecified likelihood
ratios (Kent, 1982), i.e. its asymptotic null distribution is neither chi-squared nor asymptoti-
cally pivotal. Some strategies are available to modify the composite log likelihood ratio in order
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Figure 1: Q-Q plots for statistics when the underlying distribution is d2 (uppermost panels) and
d8 (bottommost panels) for samples of size n = 15 and n = 40, respectively. On the left hand-
side the plots are for the original statistics whereas on the right-hand side for the corresponding
Bartlett-corrected/adjusted Bartlett-corrected versions. In particular: ∆−1,−1 and ∆̃B

−1,−1 (blue

solid line), ∆̄B
−1,−1 (green solid line), ∆−1,−2 and ∆̄B

−1,−2 (blue dash-dotted line), ∆−1,−1/2 and

∆̄B
−1,−1/2 (gray dashed line), ∆−1,0 and ∆̄B

−1,0 (gray dotted line), ∆0,0 and ∆̄B
0,0 (orange long-

dashed line), ∆1,1 and ∆̄B
1,1 (orange long/short-dashed line). Tick marks on the bisector indicate

the 90%, 95%, and 99% quantiles of the reference distribution.

to recover the usual chi-squared reference (Chandler and Bate, 2007; Pace et al., 2011). An
alternative proposal is to use the empirical log likelihood ratio based on the composite score
function (Lunardon et al., 2013). Although this approach is appealing and theoretically sound
its potential is dimmed as it inherits the well known and persistent undercoverage problem
of the empirical likelihood-based confidence sets. In the sequel, we focus on a particular sub-
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Table 4: Empirical coverage probabilities for vector-valued population mean. Monte Carlo
standard errors for nominal levels ν = {90, 95, 99} are respectively 0.067, 0.048, and 0.022.
Columns corresponding to the symbols “O”, “B”, “B̄” and “B̃” report the values of the following
statistics: original version, canonical Bartlett corrected version, adjusted and Bartlett corrected
version, and ∆̃−1,−1(θ), respectively.

n ν ∆−1,−1 ∆−1,−2 ∆−1,−1/2 ∆−1,0 ∆0,0 ∆1,1

O B B̃ B̄ O B̄ O B̄ O B̄ O B̄ O B̄
d5 30 90 81.2 84.8 86.6 85.2 79.7 89.8 80.7 85.6 79.0 89.3 79.6 88.0 78.9 89.8

95 88.0 90.4 91.9 90.6 86.7 95.2 87.5 91.0 85.9 94.7 86.2 93.2 85.2 94.3
99 94.7 96.0 97.1 96.2 94.1 99.1 94.4 96.6 93.3 98.9 93.5 97.9 92.5 98.3

50 90 85.0 87.2 87.7 87.3 83.6 88.6 84.6 87.4 83.3 88.4 83.3 88.2 82.7 89.9
95 91.1 92.7 93.2 92.8 90.1 94.3 90.9 92.9 89.7 94.2 89.6 93.8 88.7 95.2
99 97.1 97.8 98.0 97.9 96.6 99.1 97.0 98.0 96.3 98.9 96.1 98.6 95.3 99.0

d6 30 90 81.6 84.9 86.4 85.2 80.2 89.4 81.0 85.5 79.5 88.8 80.0 87.6 79.5 88.9
95 87.7 90.2 91.6 90.4 86.6 95.1 87.3 90.7 85.8 94.6 86.1 92.8 85.3 93.7
99 94.6 95.9 97.0 96.1 93.9 99.3 94.2 96.5 93.1 99.1 93.4 97.9 92.5 98.1

50 90 84.8 87.2 87.7 87.4 83.5 88.6 84.4 87.5 83.2 88.4 83.3 88.3 82.5 89.9
95 91.1 92.5 92.9 92.6 90.0 94.2 90.7 92.8 89.6 94.1 89.6 93.8 88.6 94.9
99 97.1 97.7 97.9 97.8 96.5 99.1 96.9 97.9 96.2 99.0 96.0 98.6 95.1 98.9

d7 30 90 84.8 87.5 88.5 87.9 83.6 90.8 84.8 88.4 82.9 90.4 83.3 90.2 82.6 90.5
95 90.9 92.7 93.6 92.9 90.1 96.0 90.9 93.4 89.4 95.6 89.5 95.0 88.8 95.0
99 96.9 97.6 98.3 97.7 96.5 99.4 96.8 98.1 96.0 99.2 96.0 98.7 95.2 98.5

50 90 87.6 89.0 89.1 89.1 86.4 89.4 87.3 89.1 86.2 89.4 86.1 89.8 85.7 90.5
95 93.2 94.0 94.1 94.1 92.1 94.7 92.9 94.1 91.9 94.6 91.9 94.9 91.4 95.3
99 98.2 98.6 98.6 98.6 97.8 99.1 98.1 98.6 97.6 99.0 97.5 99.0 97.1 99.0

d8 40 90 62.9 71.4 100.0 72.0 59.7 88.2 60.8 72.3 55.7 85.6 63.2 78.1 66.5 78.4
95 71.2 79.1 100.0 79.5 68.3 92.3 69.3 80.3 64.0 90.4 71.9 84.9 75.6 85.9
99 83.7 88.8 100.0 89.2 81.2 96.4 81.7 91.0 76.7 95.2 84.6 92.6 88.1 94.2

70 90 80.0 84.7 88.8 84.9 76.7 90.8 78.4 84.6 74.5 89.2 78.7 87.8 78.4 86.3
95 87.5 90.8 94.5 90.9 84.7 95.7 86.2 90.8 82.6 94.7 85.8 93.0 86.3 92.1
99 95.3 96.8 99.4 96.9 93.9 98.8 94.6 96.9 92.3 98.3 94.3 97.8 95.0 97.6

d9 40 90 41.2 54.2 100.0 54.6 39.8 80.0 40.6 56.7 35.0 76.2 42.3 64.0 39.4 66.0
95 48.8 61.2 100.0 61.7 47.6 84.8 48.1 65.5 42.3 81.6 49.4 70.9 46.9 72.9
99 61.5 72.2 100.0 72.5 60.3 90.5 60.7 80.0 54.1 87.9 61.8 81.1 60.1 83.1

70 90 63.0 73.7 96.6 74.0 58.1 86.3 60.1 73.1 55.8 84.2 64.6 81.1 55.9 80.7
95 72.0 80.8 99.2 81.0 67.7 92.3 69.4 80.7 64.8 90.6 71.7 87.1 64.2 86.8
99 84.2 89.9 100.0 90.0 81.2 96.8 82.3 90.7 78.4 96.1 82.6 93.9 76.9 94.0

class of composite likelihoods, namely the marginal pairwise likelihoods (Cox and Reid, 2004;
Varin et al., 2011), and investigate whether the Bartlett calibration and in particular ∆B

−1,−1(θ),

∆̃B
−1,−1(θ), ∆̄B

−1,−1(θ), ∆̄B
−1,0(θ), ∆̄B

−1,−2(θ), and ∆̄B
−1,−1/2(θ) may prove useful in this context.

We will define our simulation models by imposing suitable restrictions to the mean vector ξ
and the covariance matrix Σ of a normally distributed q-dimensional random vector X.

The first model we consider (Model 1) has mean vector ξ = (µ, . . . , µ) ∈ Rq and compound
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Table 5: Linear and generalised linear model; empirical coverage probabilities for θ ∈ R5. Monte
Carlo standard errors for nominal levels 90, 95, and 99 are respectively 0.067, 0.048, and 0.022.
Columns corresponding to the symbols “O”, “B”, “B̄” and “B̃” report the values of the following
statistics: original version, canonical Bartlett corrected version, adjusted and Bartlett corrected
version, and ∆̃−1,−1(θ), respectively.

n ν ∆−1,−1 ∆−1,−2 ∆−1,−1/2 ∆−1,0

O B B̃ B̄ O B̄ O B̄ O B̄
LM 50 90 74.2 79.2 84.4 79.4 70.7 85.7 72.7 79.4 68.2 83.2

95 81.9 86.0 91.9 86.2 78.7 93.2 80.5 86.3 76.0 90.9
99 91.8 94.2 99.1 94.3 89.6 99.1 90.9 94.6 86.6 98.3

70 90 79.4 83.4 85.8 83.5 76.4 87.3 78.3 83.5 74.7 85.7
95 87.0 90.1 92.2 90.2 84.1 94.2 86.0 90.2 82.2 93.1
99 95.2 96.6 98.2 96.7 93.6 99.3 94.6 96.8 91.9 98.8

GLM 50 90 65.3 71.9 81.5 72.2 73.1 91.2 64.3 80.2 59.1 88.4
95 74.0 79.9 90.6 80.1 80.3 95.4 73.0 87.9 67.4 93.9
99 86.3 90.1 98.6 90.3 89.8 98.9 85.3 96.3 79.7 98.2

70 90 72.1 77.4 82.2 77.6 78.2 90.8 71.4 81.5 67.1 88.1
95 80.2 84.5 89.7 84.7 84.6 95.4 79.5 88.6 75.1 94.1
99 90.6 93.4 97.6 93.5 92.9 99.1 90.0 96.5 86.1 98.5

covariance matrix whose diagonal and off-diagonal elements are Σrr = σ2 and Σrs = σ2ρ,
respectively, with σ2 > 0 and ρ ∈ (−(q − 1)−1, 1). This model has been widely studied in the
composite likelihood framework (see, e.g., Pace et al., 2011; Lunardon et al., 2013) and inference
focuses on the three-dimensional parameter θ = (µ, σ2, ρ). The pairwise log likelihood for θ is
defined by summing all the log likelihood contributions arising from the q(q−1)/2 distinct pairs
(Xr, Xs). For each pair it is specified a bivariate normal distribution with mean vector (µ, µ)>

and covariance matrix whose diagonal and off-diagonal elements are σ2 and σ2ρ, respectively.
Under these assumptions the pairwise log likelihood for θ is

p`(θ) = −nq(q − 1)

2

[
log σ2 +

log(1− ρ2)
2

]
− 1

2σ2(1− ρ2)

n∑
i=1

Λab(xi − µ)a(xi − µ)b,

Λrr = (q− 1) and Λrs = −ρ. The associated pairwise score function pU(θ) = ∂p`(θ)/∂θ has the
following components

pU1(x; θ) = −(q − 1)ρ+ σ2

σ2(1− ρ2)

n∑
i=1

q∑
j=1

(xij − µ),

pU2(x; θ) = −nq(q − 1)

2σ2
+

1

2(1− ρ2)(σ2)2
n∑
i=1

Λab(xi − µ)a(xi − µ)b,

pU3(x; θ) =
nq(q − 1)ρ

2(1− ρ2)
− 1

2σ2(1− ρ2)2
n∑
i=1

Υab(xi − µ)a(xi − µ)b,
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Figure 2: Q-Q plots for statistics for the generalized linear model (uppermost panels) and Model
2 (bottommost panels) for samples of size n = 50 and n = 85, respectively. On the left hand-
side the plots are for the original statistics whereas on the right-hand side for the corresponding
Bartlett-corrected/adjusted Bartlett-corrected versions. In particular: ∆−1,−1 and ∆̃B

−1,−1 (blue

solid line), ∆̄B
−1,−1 (green solid line), ∆−1,−2 and ∆̄B

−1,−2 (blue dash-dotted line), ∆−1,−1/2 and

∆̄B
−1,−1/2 (gray dashed line), ∆−1,0 and ∆̄B

−1,0 (gray dotted line). Tick marks on the bisector

indicate the 90%, 95%, and 99% quantiles of the reference distribution.

where the diagonal and off-diagonal elements of the matrix Υ are Υrr = 2ρ(q − 1) and Υrs =
−(1 + ρ2), respectively.

In the second model (Model 2), the mean vector ξ and the elements Σrr are treated as known
and, without loss of generality, they are set equal to 0 and to 1, respectively. The parameter θ
has dimension q − 1 and its components are the correlations between pairs of X. We have only
q − 1 correlations since we work under the restriction θ|r−s| = cor(XrXs) = Σrs, r 6= s, i.e. all
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components at the same distance are equally correlated. By specifying for each pair (Xr, Xs) a
standard bivariate normal distribution with correlation coefficient θ|r−s| and by considering all
the possible pairs, we have that the resulting pairwise score function is

pU r(x; θ) =
1

2

n∑
i=1

q−r∑
j=1

1

1− (θr)2

{
θr − 1

1− (θr)2

[
(xji )

2 + (xj+ri )2 − 2(θr)(xji )(x
j+r
i )

]}
,

r = 1, . . . , q − 1. To avoid any ambiguity we make a slight abuse of notation and indicate by
(·)s the s-th power of the quantity enclosed in brackets, e.g. (θr)2 is the square of the r-th
component of θ and (θr)(xji )(x

j+r
i ) is the product among the r-th component of θ and the j-th

and j+r-th components of x, respectively. Summation convention does not apply for the indices
r, j.

The definition of functions in classes {∆γ,φ(θ)} and
{

∆̄γ,φ(θ)
}

is based on h(x; θ) = pU(x; θ).
Note that pairwise score functions satisfy (1) (see, e.g., Molenberghs and Verbeke, 2005).

The simulation settings are as follows. For Model 1, we consider samples of size {30, 50},
dimension q = 50, and assign to the true parameter θ0 = (µ0, σ

2
0, ρ0) the values µ0 = 0, σ20 = 1,

and ρ0 = {0.2, 0.5, 0.9}. For Model 2, we explore high-dimensional settings, which in turn
increase the dimension of θ, by setting q = {9, 11}. The sample sizes corresponding to each q are
{70, 90} and {85, 100}, respectively. The correlations in θ are considered stored in decreasing
order. The true parameter value is set by fixing the highest value of correlation θ10 and by
subsequently determining the remaining components according to the relation θj0 = (θ10)j , i.e.
the correlation between pairs decays exponentially with the distance, j = 2, . . . , q − 1. In all
settings θ10 = 0.9.

For the two models, it is easy to check the validity of assumptions A1 and A3, however this
easiness does not apply to such an extent for A2. We avoid exceedingly lengthy calculations by
resorting to the moment generating function of the random vector h(X; θ) in each model. These
functions are available in closed form for both models and allow to verify that assumption A2
holds for the considered θ0.

Simulation results for Model 1 and Model 2 are reported in Table 6 and Table 7, respectively.
On the one hand, empirical coverages for the empirical likelihood, ∆−1,−1, and exponential
empirical likelihood, ∆−1,0, ∆−1,−2, and ∆−1,−1/2 are below the nominal levels regardless the
sample size. In particular, if in Model 1 we almost double the sample size, we are still not
able to get close to the nominal levels. On the other hand, the Bartlett and adjusted Bartlett
corrected empirical likelihoods ∆B

−1,−1(θ) and ∆̄B
−1,−1 provide little improvements and we note

that at higher sample sizes their outcomes tend to be equivalent. Overall, the adjusted Bartlett
corrected empirical and exponential empirical likelihood ∆̃B

−1,−1 and ∆̄B
−1,0 as well as ∆̄B

−1,−2
outperform ∆B

−1,−1, ∆̄B
−1,−1, and ∆̄B

−1,−1/2, and provide empirical coverages close to the nominal
levels.

In the bottommost panels of Figure 2 we display the Q-Q plots of the results for Model 2
when n = 85 and q = 11. The adjusted Bartlett-corrected exponential empirical likelihood ∆̄B

−1,0
and ∆̄B

−1,−2 provide an excellent agreement with the χ2
10 reference. The downward curvature of

∆̃B
−1,−1(θ) indicates a unusual behaviour, still presumably due to the upper bound effect.
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Table 6: Model 1, empirical coverage probabilities for θ = (µ, σ2, ρ). Monte Carlo standard
errors for nominal levels ν = {90, 95, 99} are respectively 0.067, 0.048, and 0.022. Columns
corresponding to the symbols “O”, “B”, “B̄” and “B̃” report the values of the following statistics:
original version, canonical Bartlett corrected version, adjusted and Bartlett corrected version,
and ∆̃−1,−1(θ), respectively.

n ρ ν ∆−1,−1 ∆−1,−2 ∆−1,−1/2 ∆−1,0

O B B̃ B̄ O B̄ O B̄ O B̄
30 0.2 90 80.2 83.7 80.0 84.0 82.6 90.4 79.9 84.5 78.5 88.5

95 86.3 88.9 86.2 89.1 88.2 95.0 86.1 89.6 84.8 93.6
99 93.5 95.0 93.4 95.1 94.5 98.8 93.2 95.5 92.3 98.3

0.5 90 80.4 83.8 80.2 84.1 83.5 90.3 80.1 85.0 78.6 88.0
95 86.4 89.2 86.2 89.5 88.7 94.9 86.1 90.1 84.8 92.5
99 93.6 94.9 93.5 95.0 94.8 98.1 93.2 95.3 92.4 97.1

0.9 90 80.5 84.1 80.3 84.4 86.6 90.2 80.2 85.4 78.9 88.3
95 86.7 89.3 86.5 89.5 91.0 94.9 86.3 90.2 85.0 92.4
99 93.1 94.6 93.1 94.8 95.5 98.7 92.9 95.2 92.0 96.5

50 0.2 90 85.0 87.2 84.9 87.3 85.9 90.2 84.7 87.5 83.7 88.5
95 90.6 92.2 90.6 92.4 91.3 94.8 90.5 92.6 89.6 93.8
99 96.8 97.5 96.8 97.5 96.9 98.8 96.6 97.6 96.0 98.4

0.5 90 84.9 87.3 84.9 87.5 86.7 90.2 84.8 87.8 83.7 89.0
95 90.9 92.5 90.8 92.6 92.1 95.4 90.8 92.9 89.8 94.0
99 96.6 97.3 96.6 97.3 97.2 98.7 96.4 97.5 95.9 98.0

0.9 90 85.0 87.1 84.9 87.2 89.5 90.5 84.7 87.6 83.6 89.3
95 90.8 92.4 90.8 92.5 93.9 95.4 90.6 92.9 89.7 94.1
99 96.7 97.4 96.7 97.5 98.0 98.9 96.5 97.6 96.0 97.9

5 Final remarks

The methodology, originally introduced by Liu and Chen (2010), based on pseudo-observations,
has been shown to be effective in solving the convex hull problem and in getting the Bartlett
correction for the empirical likelihood and the exponential empirical likelihood (Li et al., 2011).
In this paper we have extended the method to the entire generalised power divergence family,
identifying an appropriate adjustment for every member of the family. The proposed refinement
gives back attractiveness to a broad class of statistics that potentially contains good alternatives
to the empirical likelihood. Moreover, unlike the original proposal, our formulation allows, in
practice, to overcome the problem of the upper bound highlighted by Emerson and Owen (2009).

Simulation results seem to confirm the effectiveness of our approach. For the considered
statistics, the effect of the adjustment (and the Bartlett correction) in reducing the coverage error
of confidence regions is not homogeneous and the better results are obtained for items other than
empirical likelihood. This in turn gives importance to members of the family other than empirical
likelihood. Further, our solution to the “upper bound problem” via the tuning parameter δ seems
to be effective and reasonable because, even for δ = 1/2, in all the considered cases, ∆̄B

−1,−1(θ)

resembles the results of the original Bartlett-corrected empirical likelihood ∆B
−1,−1(θ). This lead
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Table 7: Model 2, empirical coverage probabilities for vector-valued θ. Monte Carlo standard
errors for nominal levels ν = {90, 95, 99} are respectively 0.067, 0.048, and 0.022. Columns
corresponding to the symbols “O”, “B”, “B̄” and “B̃” report the values of the following statistics:
original version, canonical Bartlett corrected version, adjusted and Bartlett corrected version,
and ∆̃−1,−1(θ), respectively.

q n ν ∆−1,−1 ∆−1,−2 ∆−1,−1/2 ∆−1,0

O B B̃ B̄ O B̄ O B̄ O B̄
9 70 90 76.7 82.1 87.2 82.2 73.2 89.5 74.9 82.9 71.4 88.5

95 84.4 88.4 93.6 88.5 81.4 93.7 82.7 89.2 79.7 92.9
99 93.3 95.2 99.1 95.3 91.4 98.0 92.2 95.7 89.9 97.5

90 90 80.6 84.6 86.9 84.7 77.3 90.0 79.2 85.0 76.3 89.5
95 87.5 90.5 92.7 90.6 84.9 94.4 86.2 91.0 83.9 93.9
99 95.2 96.7 98.4 96.8 93.8 98.4 94.5 97.0 92.9 98.1

11 85 90 76.2 82.2 89.5 82.4 71.2 89.8 73.2 82.0 69.4 88.8
95 84.2 88.7 95.7 88.9 79.9 94.4 81.7 88.7 78.0 93.5
99 93.4 95.9 99.8 96.0 90.9 98.4 91.9 95.9 89.2 97.9

100 90 79.3 84.5 88.6 84.5 74.6 90.2 76.7 84.0 73.3 89.4
95 87.1 90.6 94.5 90.6 83.2 94.9 85.1 90.5 81.7 94.2
99 95.3 96.8 99.2 96.9 93.1 98.7 94.1 96.9 91.9 98.4

us to conclude that the intervention of pseudo-observation Ξ(θ) on ∆̄B
−1,−1(θ), as well as on any

other member in
{

∆̄B
γ,φ(θ)

}
, is negligible when the convex hull condition is satisfied and, at the

same time, is effective when the latter need to be accounted for.

Appendix

Basic expansions

As outlined in Section 2.1, recall that the covariance matrix of h(X; θ0) is assumed to satisfy
αrs = δrs.

The Lagrange multipliers λ(θ) ∈ R and β(θ) ∈ Rd appearing in (3) solve the equations∑n
i=1wi(θ) = 1 and

∑n
i=1wi(θ)h(xi; θ) = 0. For our developments it is convenient to set

z(λ(θ);β(θ)) =
∑n

i=1wi(θ) − 1 = 0 and f(λ(θ);β(θ)) =
∑n

i=1wi(θ)h(xi; θ) = 0. If we evaluate
these expressions at θ = θ0, then wi = wi(θ0), λ = λ(θ0), and β = β(θ0). Note that expression
for λ and β are developed for the case φ 6= 0, only, and analogue calculations can be carried out
to obtain the corresponding expressions for φ = 0. Nevertheless, the expansion for ∆γ,φ given
in (21) is valid for each pair (λ, φ).

After plugging-in the expression of the wi
′s in functions z(·; ·) and f(·; ·) we obtain the
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following McLaurin series expansions

z(λ;β) = n−1
n∑
i=1

[1 + λ+ βaha(xi; θ0)]
1/φ − 1 = 0

=
λ

φ
+

1

φ
βaAa +

1

2φ2
(1− φ)

[
λλ+ 2λβaAa + βaβb(Aab + δab)

]
+

+
1

6φ3
(1− φ)(1− 2φ)

[
3λβaβbδab + βaβbβc(Aabc + αabc)

]
+

+
1

24φ4
(1− φ)(1− 2φ)(1− 3φ)αabcdβaβbβcβd +Op(n

−5/2) = 0,

and

f r(λ;β) = n−1
n∑
i=1

[1 + λ+ βaha(xi; θ0)]
1/φhr(xi; θ0) = 0

= Ar +
1

φ
λAr +

1

φ
βa (Ara + δra) +

1

2φ2
(1− φ)

[
2λβa(Ara + δra) + βaβb(Arab + αrab)

]
+

+
1

6φ3
(1− φ)(1− 2φ)αrabcβaβbβc +Op(n

−2) = 0.

Inversion of these series leads to the following expression for λ (in the first line Op(n
−1) terms,

in the second line Op(n
−3/2) terms, and in the subsequent lines Op(n

−2) terms)

λ =
1

2
φ(1 + φ)AaAa +

− 1

2
φ(1 + φ)AabAaAb +

1

6
φ(1− φ2)αabcAaAbAc +

+
1

2
φ(1 + φ)AabAbcAaAc +

1

8
φ(1 + φ)3AaAaAbAb +

1

6
φ(1− φ2)AabcAaAbAc +

− −1

2
φ(1− φ2)αabcAcdAaAbAd +

1

8
φ(1 + φ)(1− φ)2αabcαcdeAaAbAdAe +

+
1

24
(1− φ2)(1− 2φ)αabcdAaAbAcAd +Op(n

−5/2),

and for β (in the first line Op(n
−1/2) terms, in the second line Op(n

−1) terms, and in the
subsequent lines Op(n

−3/2) terms)

βr = −φAr +

+ φAraAa − 1

2
φ(1− φ)αrabAaAb +

− φAraAabAb − 1

2
φ2(1 + φ)ArAaAa +

1

2
φ(1− φ)αabcAraAbAc + φ(1− φ)αrabAbcAaAc +

− 1

2
φ(1− φ)ArabAaAb − 1

2
φ(1− φ)2αrabαbcdAaAcAd +

1

6
φ(1− φ)(1− 2φ)αrabcAaAbAc +

+ Op(n
−2).
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Once the wi
′s are substituted in the expression of ∆γφ(θ0), a McLaurin series expansion gives

n−1∆γ,φ =
2

nγ(γ + 1)

n∑
i=1

{
[1 + λ+ βaha(xi; θ0)]

(γ+1)/φ − 1
}

=

=
2

γ

{
λ

φ
+

1

φ
βaAa +

1

2φ2
(γ + 1− φ)

[
λλ+ 2λβaAa + βaβb(Aab + δab)

]
+

+
1

6φ3
(γ + 1− φ)(γ + 1− 2φ)

[
βaβbβc(Aabc + αabc) + 3λβaβbδab

]
+

+
1

24φ4
(γ + 1− φ)(γ + 1− 2φ)(γ + 1− 3φ)αabcdβaβbβcβd

}
+Op(n

−5/2).

Finally, plugging in the above expansion the expressions of λ and β leads to (in the first line
Op(n

−1) terms, in the second line Op(n
−3/2) terms, and in the subsequent lines Op(n

−2) terms)

n−1∆γ,φ = AaAa + (21)

− AabAaAb +
1

3
(1− γ)αabcAaAbAc +

+ AabAbcAaAc +
1

4
(1 + φ)(1− φ+ 2γ)AaAaAbAb +

1

3
(1− γ)AabcAaAbAc +

− (1− γ)αabcAcdAaAbAd +
1

4
(1− φ)(1 + φ− 2γ)αabcαcdeAaAbAdAe +

+
1

12
(−1 + 3γ + γ2 − 6γφ+ 3φ2)αabcdAaAbAcAd +Op(n

−5/2).

The signed square root n1/2Rγ,φ = n1/2Rγ,φ(θ0) presented in Section 2.2 is developed by match-
ing the expansion of n−1∆γ,φ(θ0) order by order, keeping in mind both that the size of each
term in Rrγ,φ is Rrj;γ,φ = Op(n

−j/2), j = 1, 2, 3, and that

n−1∆γ,φ(θ0) = Ra1;γ,φR
a
1;γ,φ +Ra2;γ,φR

a
2;γ,φ + 2Ra1;γ,φR

a
2;γ,φ + 2Ra1;γ,φR

a
3;γ,φ +Op(n

−5/2).

More details about the derivation of the signed root are given in the proof of Lemma 1.

Proof of Lemma 1

When the function defined in (2) is computed on a pseudo-sample h(x1; θ0), . . . , h(xn+3; θ0), with
h(xn+1; θ0) = Ω = Op(1), h(xn+2; θ0) = Γ = Op(n

−1/2), and h(xn+3; θ0) = Ξ = Op(n
−1/2−δ), δ ≥

1/2, we need to develop new expressions for the Lagrange multipliers λ and β in order to accom-
modate for the pseudo-observations. Recall that quantities computed on an augmented pseudo-
sample are denoted with an upper bar and that we provide computations for φ 6= 0. Let z̄(λ̄; β̄)
and f̄ r(λ̄; β̄) be the analogues of z(λ;β) and f r(λ;β) computed on h(x1; θ0), . . . , h(xn; θ0),Ω,Γ,Ξ,
then

λ̄ =
n

n+ 3

[
λ+

1

n
φ(1 + φ)AaΩa +

1

n
φ(1 + φ)AaΓa − 1

n
φ(1 + φ)AabAaΩb +

− 1

2n
φ(1 + φ)AaΩaAbΩb +

1

2n
φ(1− φ2)αabcAaAbΩc +

1

2n2
φ(1 + φ)ΩaΩa

]
+Op(n

−5/2),
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and

β̄r = βr − 1

n
φ
[
Ωr + Γr +AraΩa + ΩrAaΩa − (1− φ)αrabAaΩb

]
+Op(n

−2).

These expressions do not contain the pseudo-observation Ξ as a straightforward check of z̄(λ̄; β̄)
and f̄ r(λ̄; β̄) highlights that the size of the terms involving Ξ are far beyond Op(n

−5/2) and
Op(n

−2), i.e. the size of the remainder terms considered in the expansions of z̄(·; ·) and f̄(·; ·),
respectively. The expansion of n−1∆̄γ,φ for each pair (γ, φ) is then

n−1∆̄γ,φ = n−1∆γ,φ(θ0) +
2

n
AaΩa +

2

n
AaΓa − 2

n
AabAaΩb +

+
1

n
(1− γ)αabcAaAbΩc +

1

n
AaΩaAbΩb +

1

n2
ΩaΩa +Op(n

−5/2).

Since the difference n−1∆̄γ,φ−n−1∆γ,φ is of size Op(n
−3/2), we must have R̄r1;γ,φ = Rr1;γ,φ = Ar.

The expression of R̄r2;γ,φ is obtained by matching 2R̄a1;γ,φR̄
a
2;γ,φ with the terms of size Op(n

−3/2)

appearing in n−1∆̄γ,φ. Therefore the solution to the equation

2R̄a1;γ,φR̄
a
2;γ,φ = −AabAaAb +

1

3
(1− γ)αabcAaAbAc +

2

n
AaΩa,

leads to

R̄r2;γ,φ = Rr2;γ,φ +
1

n
Ωr.

Finally, by an analogous argument, the last element of R̄rγ,φ, R̄r3;γ,φ, is determined according to
the following relation

2R̄a1;γ,φR̄
a
3;γ,φ = AabAbcAaAc +

1

4
(1 + φ)(1− φ+ 2γ)AaAaAbAb +

1

3
(1− γ)AabcAaAbAc +

− (1− γ)αabcAcdAaAbAd +
1

4
(1− φ)(1 + φ− 2γ)αabcαcdeAaAbAdAe +

+
1

12
(−1 + 3γ + γ2 − 6γφ+ 3φ2)αabcdAaAbAcAd +

2

n
AaΓa − 2

n
AabAaΩb

+
1

n
(1− γ)αabcAaAbΩc +

1

n
AaΩaAbΩb +

1

n2
ΩaΩa − R̄a2;γ,φR̄a2;γ,φ.

After some painstaking work we get

R̄r3;γ,φ = Rr3;γ,φ +
1

n
Γr − 1

2n
AraΩa +

1

3n
(1− γ)αrabAaΩb +

1

2n
ΩrAaΩa.

This completes the proof.

Proof of Theorem 1

To enable Bartlett correctability of ∆̄γ,φ it suffices to match order by order the expansions of
R̄γ,φ and R̄−1,−1. Since the differences of these expansions arise at Op(n

−1) and Op(n
−3/2), we

firstly need to determine Ωr according to

R̄r2;γ,φ −Rr2;−1,−1 =
1

6
(1− γ)αrabAaAb +

1

n
Ωr − 1

3
αrabAaAb = 0,
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which leads to

Ωr =
n

6
(1 + γ)αrabAaAb.

Once the expression of Ω is plugged into R̄3;γ,φ, we get

R̄r3;γ,φ = Rr3;γ,φ −
1

24
(1 + γ)αabcAraAbAc − 1

24
(1 + γ)αrabAcaAbAc +

+
1

18
(1− γ2)αrabαbcdAaAcAd +

1

72
n(1 + γ)2αrabαcdeAaAbAcAdAe +

1

n
Γr.

Finally, we proceed to match the expression of Rr3;−1,−1 by solving for Γr the equation

R̄r3;γ,φ −Rr3;−1,−1 = 0.

After some lengthy but routine algebraic work we obtain

Γr =
n

6

{
−6

8
(1 + φ)(1− φ+ 2γ)ArAaAa − (1 + γ)ArabAaAb − (1 + γ)αrabAbcAaAc+

− (1 + γ)αabcArbAaAc +
1

12
(9φ2 + 5γ2 − 18γφ+ 16γ + 20)αrabαbcdAaAcAd +

− 1

4
(3φ2 + γ2 − 6γφ+ 3γ + 5)αrabcAaAbAc − 1

12
n(1 + γ)2αrabαcdeAaAbAcAdAe

}
.

The expressions for Ω and Γ provided above are suitable for the case αrs = δrs. To re-
store the scale we need to apply the following substitutions: αrst → ηraηsbηtcα

abc, αrstu →
ηraηsbηtcηudα

abcd, Ar → ηraA
a, Ars → ηraηsbA

ab, and Arst → ηraηsbηtcA
abc, where ηrs is a ma-

trix satisfying αrs = ηarηas. Once we evaluate the adjustments at a generic value of θ we obtain
the expressions provided in Theorem 1. This completes the proof.

Proof of Theorem 2

In order to prove the part (i) of the theorem we only need to observe that the empirical coun-
terpart of theoretical adjustment Γr = Γr(θ0) satisfies Γ̂r = Γr +Op(n

−1) (see the discussion at
the beginning of Section 3.2).

The part (ii) of the theorem is simple to deal with once h(·; θ) satisfies the conditions required
in the statement since

α̂rs = n−1
n∑
i=1

[hr(xi; θ0)− h̄r(x; θ0)][h
s(xi; θ0)− h̄s(x; θ0)] +Op(n

−1) =

= αrs +Ars +Op(n
−1)

α̂rst = n−1
n∑
i=1

[hr(xi; θ0)− h̄r(x; θ0)][h
s(xi; θ0)− h̄s(x; θ0)][h

t(xi; θ0)− h̄t(x; θ0)] +Op(n
−1) =

= αrst +Arst − δrsAt − δrtAs − δstAr +Op(n
−1),

where h̄r(x; θ0) = Ar, and with these relations it is easy to verify the following

Ω̂r = Ωr +
n

6
(1 + γ)(ArabAaAb − 3ArAaAa − αrabAbcAaAc − αabcArbAaAc) +Op(n

−1). (22)
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When Ω̂r is plugged in R̄2;γ,φ, the second term in the right hand side of (22) enters in the
expression R̄3;γ,φ so that the difference R̄3;γ,φ−R3;−1,−1 is free of terms involving Ars and Arst.

Finally, as remarked in the proof of Theorem 1, the expressions for Ω̂ and Γ̂ suitable for the
case αrs 6= δrs are obtained by applying the following substitutions: α̂rst → η̂raη̂sbη̂tcα̂

abc, α̂rstu →
η̂raη̂sbη̂tcη̂udα̂

abcd, Âr → η̂raÂ
a, where η̂rs satisfies α̂rs = η̂arη̂as. This proves the theorem.

Proof of Corollary 1 and Corollary 2

The proof of Theorem 2 in Chen and Cui (2007), when the situation of just-identified moment
restrictions is considered, can be reproduced verbatim for ∆̄B

γ,φ either in the case of Corollary 1

or Corollary 2. It suffices to observe that after the adjustment ∆̄γ,φ = ∆−1,−1 +Op(n
−3/2) each

pair (γ, φ). Therefore, the proofs of our corollaries are omitted.
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