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Abstract

Various modifications of the profile likelihood have been proposed over the past
twenty years. Their main theoretical basis is higher-order approximation of some
target likelihood, defined by a suitable model reduction via conditioning or marginal-
isation, where the reduced model is indexed only by the parameter of interest. How-
ever, an exact reduced target likelihood exists only for special classes of models. In
this paper, a general target likelihood is defined through model restriction along the
least favourable curve in the parameter space. The profile likelihood can be seen as
a purely estimative counterpart of this least favourable target likelihood. We will
show that various modifications of the profile likelihood arise by refining the estima-
tion process. In particular, bias reduction of the profile loglikelihood as an estimate
of the expectation of the least favourable target loglikelihood gives adjustments that

coincide to second order and agree with the available adjustments.



1 Introduction

Consider inference about a g-dimensional parameter of interest ¢ in the presence of
a nuisance parameter \. Data y are the observation of an n-dimensional random
variable Y with independent components and joint density p, (y;6), where 6 =
(1, \) € © C IR%. Standard first-order methods for inference about ¢ are based on
the profile likelihood. They can be seriously inaccurate when the dimension of A is
substantial relative to n. Various modifications of the profile likelihood have been
proposed starting from Barndorff-Nielsen (1980, 1983), see Barndorff-Nielsen & Cox
(1994, Chapter 8) and Severini (2000, Chapter 9) for accounts. All the available
adjustments to the profile likelihood are equivalent to second order and share the
common feature of reducing the score bias to O(n~!) (DiCiccio et al, 1996).

Reduction of the score bias is the key basic motivation for adjusting the profile
likelihood in McCullagh and Tibshirani (1990) and in Stern (1997). The other
proposals, from Barndorff-Nielsen (1980, 1983) up to ‘Fraser (2003), stem from a
quite different approach. They aim to approximate some target likelihood, defined
by a suitable model reduction via conditioning or marginalisation. Correction of
the score bias is just a by-product of accurate approximation of a suitable genuine
target likelihood.

Complementary to model reduction, there is another perspective for obtaining
likelihood inference about an interest parameter. A target likelihood may also be
defined through model restriction. This amounts to calculating the original like-
lihood along a curve (1, A(¢)) in the parameter space. One must ensure that no
unrealistic information regarding v is introduced by this restriction. This leads to
use of a least favourable curve (Stein, 1956), along which the Fisher information for
1 is equal to the adjusted (or partial) information for ¢ in the original model. So
far, model restriction along a least favourable curve seems to have been exploited

mainly in the context of semiparametric and nonparametric models, leading to a



generalization of the profile likelihood, as in Severini & Wong (1992) and in Murphy
& van der Vaart (2000). But indeed the idea can be seen as lying at the basis of
profile likelihood itself, see Severini (2000, Section 4.8). Here we will refer to the
likelihood for v along the least favourable curve in the parameter space as the least
favourable target likelihood.

However, the least favourable curve depends on the true parameter value, so
that, unlike what happens with target likelihoods defined through model reduction,
the least favourable target likelihood is not directly available for inference about 1.
Hence, a further estimation step is required. The profile likelihood can be seen as a
purely estimative counterpart of the least favourable target likelihood (see Severini,
2000, Section 4.6). We will show that various modifications of the profile likelihood
arise by refining the estimation process. This new rationale for modifications of the
profile likelihood complements the results in Severini (1998a). Moreover, it suggests
a fairly natural simulation approach for adjusting the profile likelihood.

A brief review of profile likelihood and its modifications is given in Section 2.
Properties of the least favourable target likelihood are discussed in Section 3 together
with its estimation. It turns out that, in the moderate-deviation neighbourhoods,
the available adjusted profile loglikelihoods are equivalent to second order to a bias
correction of the profile loglikelihood as an estimator of the expected least favourable

target loglikelihood.

2 Profile likelihood and its modifications

Let us denote by [(8) = (¥, \) = (¥, \;y) = logp, (y;0) the full loglikelihood
function and by § = (1, A) the maximum likelihood estimate of § = (1, A). Let
5\¢ be the constrained maximum likelihood estimate of A for a given value of v
and let 6, = (1, \y). The score vector lp = —é%l(&) has blocks 1, = [,(f) and

l)\ = l)\(g) MOI‘GOVGI‘, let jd,w = jww(g), j"/’/\ = ]1/1)\(0) and j)\,\ = ],\,\(9) be blocks
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iy = tyyp(0), tyr = iypa(0) and iy, = ixx(0) blocks of the expected information
i =14(0) = Ep(j(9))-

Inference problems about i are invariant under interest respecting reparame-

of the observed information j = j(f) = — [(#). Similarly, we will denote by

terisations. An interest respecting reparameterisation is a reparameterisation w =
w() = (p,X), where ¢ = () and X = X(¢, \) and, conversely, ¥ = ¥(y) and
A= M, X).

The profile loglikelihood is I, (¢)) = [(6y). Although [, (1) is not a genuine log-
likelihood for %, it has many relevant properties as a surrogate loglikelihood. In
particular, it is invariant under interest respecting reparameterisations, it is max-
imised by 1/3 and, under mild regularity conditions, the corresponding loglikelihood
ratio statistic has asymptotic null distribution which is chi-squared with ¢ degrees
of freedom.

In small samples, the profile loglikelihood does not, however, take properly into
account sampling variability of ;\1/)- One effect of this is that the‘score computed

from the profile likelihood typically has bias of order O(1), that is

B (2230) = B (1w, ) = 0.

The same is true for the information bias:

o(3) {54 (5 o

As a practical consequence, the usual chi-squared and normal approximations for

the null distributions of the profile likelihood ratio statistic and of its signed version
for a scalar 1 may be poor. Systematically misleading inferences are to be feared in
particular when the dimension of A is large relative to n.

When a suitable reduced marginal or conditional model exists whose densities
depend only on v, inference about 1) may be based on the corresponding loglikeli-

hood (Kalbfleisch & Sprott, 1970, 1973). A single approximating formula for these

4



target loglikelihoods was obtained by Barndorff-Nielsen (1980, 1983). This is the
modified profile loglikelihood, [, (). Assume that the minimal sufficient statistic
for the model is a one-to-one function of (1/3, ;\, a), where a is an ancillary statistic,

either exactly or approximately, so that [(1, A;y) = I(¥), A; ¥, A, a). Then,

1 )
lM("/)) = lP(w) i Elog l .7,\>\(0¢') | —lOg a/{p )
where
65\1/, B | lk;;(éﬂl) I
oA U»(ew) | ,

involving the sample space derivatives I, (1, A) = &2L(h, A;1h, A, @)/ (DX OAT). The
modified profile likelihood has score bias of order O(n™!). Its information bias is of
order O(n~1) as well (DiCiccio et al., 1996). Calculation of sample space derivatives
is straightforward only in special classes of models, notably exponential and group
families.

When 1 and ) are orthogonal, i.e. iyy = 0, we have log ‘35\¢/85\‘ = Op(n?) in

the moderate-deviation neighbourhoods, that is for 1) — ¢ = O,(n~/2). Hence,

L) = 1, () — 5108 | 1, (0y) |

is an approximation of [,, (1) with error of order O,(n™') in the moderate-deviation
neighbourhoods. The pseudologlikelihood [, (1)) was proposed by Cox & Reid (1987).
A major drawback of [, (1) is its lack of invariance under interest respecting repa-
rameterisations.

Approximate calculation of sample space derivatives has been developed in Skov-
gaard (1996), Severini (1998b), Fraser, Reid & Wu (1999), Skovgaard (2001); see
Severini (2000, Section 9.5) for a review. In particular, the approximation of [, (1))

developed in Severini (1998b) is

Ly () = 1, (%) + %log lian(0y)] = log [ x(8y, 0 0)] (1)



where

V,\,A(91,92; 90) — Eoo(l/\(el)l/\(92)T) .

Analytical calculation of the adjustment term v, ,\(OA,,,, é; é) is fairly simple in a num-
ber of important models (see e.g. Bellio and Brazzale, 2003). Monte Carlo calcula-
tion of the adjustment term is easy in broad generality.

Simulation results (DiCiccio & Martin, 1993; DiCiccio & Stern, 1994; Sartori
et al., 1999) show that inference based on the modified profile likelihood is quite
accurate, even in the presence of many nuisance parameters. This seems to be true
in general and not only when a marginal or conditional target likelihood exists. Sev-
erini (1998a) provides a first theoretical justification of these empirical findings. He
shows that, according to various asymptotic criteria, the modified profile likelihood
is closer than the profile likelihood to a genuine likelihood. For a scalar parameter
of interest, a different but related justification is provided in Sartori et al. (2003).
It is shown there that the null and non-null distributions of the directed likelihood
calculated from an adjusted profile likelihood having score bias of order O(n™!) are
closer than the corresponding distributions of the directed profile likelihood to the
distributions of a directed likelihood calculated from a genuine likelihood. A theo-
retical justification for the remarkable accuracy of inference based on the modified
profile likelihood in the presence of many nuisance parameters is provided by Sartori

(2003) using a two-index asymptotics setting.

3 The least favourable target likelihood and bias

correction of the profile loglikelihood

3.1 Partial information

If A\ were known to be equal to Ag, likelihood inference about ¢ would be based

on (1, Ag). Estimation of Ay with A and use of [(1, \) as a pseudologlikelihood for

6



¥ (Gong and Samaniego, 1981) overrates information about ¢ unless ¢ and A are

orthogonal. Indeed, the partial expected information on ¢ is

ipypr(0) = gy (8) — iya(0)iar(8) "Miny (6) -

Note that iy, () is the inverse of the Cramér-Rao lower bound for estimation of
v when X is unknown. Hence [(7), 5\) usually overrates information because the
expected information on v computed from (%, ;\) is first-order equivalent to 7y, (6).

On the other hand, the profile loglikelihood preserves information about 1. The

observed information from [, () is

8—2 y ) ¥ A . fad . . A
_agz)awlp (%) = Gy (0p) = Jyr(0)iar (B) " ag (8y)

which, at the true 1, is first-order equivalent to iyy.x(6).

3.2 The least favourable target likelihood

Let 6y = (10, o) denote the true parameter value and let Ey(-) and Vp(-) denote,
respectively, expectation and variance under 6. Under regularity conditions, 5\¢ is
a consistent estimator of )y, the maximiser of Eq(l(t), X)) with respect to A for fixed

1 (Huber, 1967). The least favourable target loglikelihood is defined here as

L (¥) = 1(6y)

where 0, = (1, Ay). Note that [,(¢) is a genuine loglikelihood, but it is not available
in practice, because A, depends on 6. When needed, we will use the more explicit
notation Ay = A(¥;60) = A(¥; %0, Ao)-

The curve 6y is a least favourable curve in the parameter space, according to
the definition of Stein (1956). Indeed, Fisher information about v calculated from
(¥, \y) evaluated at 0y coincides with iyy.x(fy). See also Severini & Wong (1992,
Section 4) and Severini (2000, Sections 4.6 and 4.8).



The curve 6, is least favourable even according to the following global sense.
Let 5\¢ be a function of ¢ such that ;\,po = ) and let I, (¢) = I(%, Sw,) be a generic

loglikelihood for 1) obtained through model restriction. Then

Eo{l,(t0) = 1, ()} 2 Eo{l; (%) = 1 (¥)} -

Hence, for any given 1 # 1, the curve 6, minimises Kullback-Leibler divergence
between p,, (y; 6) and p, (y; 1, 5\¢) among all possible curves (1, 5\,,,) with 5\1/,0 = Ao.

Finally, )\, is related to a locally orthogonal reparameterisation. Any 5\¢ can
be thought of as obtained from a reparameterisation (1, X(¢, A)), by equating X to
Xo = X (%o, Ao). Fisher information about 1 calculated from (%, X,,) and evaluated
at 6y coincides with dyy.5(6p) if and only if the reparameterisation (¢, X(¢, A)) is

locally orthogonal at 6.

3.3 Bias correction of the profile loglikelihood

A desirable property for a pseudologlikelihood [, (%) is that it be an unbiased
estimate of Ey(l,(1)). Indeed, suppose that for every 6 € © we have Ey(l,s(¥)) =
Eo(l,(1)). Then, as a first consequence, I,;(%) has some properties of a genuine
likelihood. In particular, it satisfies Wald inequality Eo(l,(%0)) > Eo(lps(%)), for
Y # 1y, and (0/0%)l,, () is an unbiased estimating function for 1. Moreover,
at the true v, the expected curvature of such a pseudologlikelihood gives the right
information. In other words, minus the expected Hessian matrix from [,.(¢) at
1) = 1y coincides with iyy.»(6o), the partial expected information on .

It is clear that [,(¢) is the estimative, or plug-in, counterpart of /.(¢) and has
a bias of order O(1) as an estimate of Ey(l,(¢)). Therefore we aim at an adjusted

estimative counterpart of [,.(1), ,, (1), which has to be of the form

bas ("/)) =1, (Z/)) - a(¢) ) (2)



where the adjustment a(%)) is an estimate of the bias term

b(; 60) = Eo (I, (¥) = 1(¥)) -

Various asymptotically equivalent approximations may be obtained for the bias
term and its estimate, leading to asymptotically equivalent versions of [, (). In

particular, we will show that three asymptotically equivalent versions of [, (1) are

1 a 1 N

o) = lp(d))—510g|jA,\(9¢)|—510g|Vé()\¢)|, (3)
1 A 1 " Ao

U(y) = lp(¢)+§10g |7ax(0y)] — 5108|VA,/\(0¢,9¢;9)|, (4)
1 A PN

) = lp(¢)+§10g |7ax(0y)| — log |[vax(6y, 0;0)] . (5)

Many available adjustments to the profile loglikelihood may be seen as connected
to the above versions of [, ().

When ¢ and A are orthogonal, Ay = A + O(n™!) so that IL_(v) = I,(¢) +
Op(n71). Thus, the term —3log |V9(5\¢)| accounts for nonorthogonality of ¢ and
A. However, like I, (), If_(¢) is clearly not invariant under interest respecting
reparameterisations.

Versions (4) and (5) are invariant under interest respecting reparameterisations.
In a multiparameter exponential family with loglikelihood I(),\) = ¢ -t + A - u —
nK (1, \), we have ja(0,) = nKx(0y) and vy A(8y, 0,;0) = van(8,8y;0) = nKy\(6),
so that IIL (v) = 11T (y) =1, (4).

An empirical analogue of vy (8, 0,;8) was used by DiCiccio & Stern (1993,
Stanford Technical Report) for a modification of [, (1) closely related to 'L ().

Finally, notice that [!I(1) coincides with Severini (1998b) approximation (1)
of 1,,(¢). This is the main result of the paper, showing that bias reduction of the
profile loglikelihood as an estimate of the expected target loglikelihood is a useful
perspective for adjustments of the profile loglikelihood.

We sketch below the derivation of (3)-(5). For simplicity, we assume in the

following that both 1 and \ are scalars. Moreover, we let ixx(0y; 00) = Eo(jar(6y)) -
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Various asymptotically equivalent approximations may be obtained for the bias

term. Standard asymptotic expansions (see Appendix A) give
b(1h;60) = b (¥;00) +O(n™")

= b"(1;00) + O(n™")
= b (1h;0p) + O(n™ 1),

where
1. -
b (;00) = —2‘,\A(9¢;9o)‘/()()\w), (6)
1. _
bl (1;60) = §A,\(9¢;90) A (Oy, 0y; 00) (7)
1 . 1. _
b (1p;00) = §V,\,A(9¢,90;90)22,\,\(90) Lian(6y;00) " (8)

While it is clear that b!(1); 6) is not invariant under interest respecting reparam-
eterisations, b'7(1); y) and b1 (); 6,) are invariant under such reparameterisations.

Consistent estimates of b (1);6o), b’ (v;6p) and b’ (1);0,) are obtained by re-
placing ixx(0y; 6o) with ja(6y), 0y with 9¢ and , with 0 in (6)—(8). Therefore, we
have the estimates of the bias term

1

a'(¢) = §ij(é¢)Vo‘(5‘w) ; 9)
L
a'(y) = 3 (0y) 'van(8y,0y;0)
T s g A 1. ghath
() = §V,\,A(9w79;9)2h,\(9) Lia(0y) ™

The adjusted estimative loglikelihoods (3)-(5) are obtained by considering the

following local versions of a’(¢), a'!(¥) and a’!! (1), with error of order O(n™") for

w s ’(/A} = O(nalﬂ)?

L 1 LA 1 N
a'(y) = 510gJM(9w)+§log%(Aw),

N 1 o 1 JERE P
all(y) = ~3 log jxx(6y) + 3 logva (0, 0y;0),
i T L
all (y) = —3 log jan(0y) + logva (0, 0;0) .

10



The local version a’(¢) is obtained from a’(1)) using the expansion

%J’AA(%)V};(%) - % (1 + i (0y) V(M) — 1)

= % {1 + log (1 + 3 (09)Vi(hg) — 1)} +0(n™)

1 .
= log V3(\y) + constant + O(n™").

i ~
= -] )
) Og],\,\(Od,) I 9

The local versions a'’(¢) and a’’(1)) are obtained in a similar way.

As a final remark, thinking of adjusted profile loglikelihood as a bias correction of
the profile loglikelihood suggests a fairly natural simulation approach for adjusting
the profile likelihood.

Parametric bootstrap samples y*(r), generated from the model with density
p, (y;6), are used to calculate constrained maximum likelihood estimates 5\;‘& fr}, r=

., R. The bootstrap adjusted estimative loglikelihood is defined as

R
BAE & Z 1/)7 )‘d;

Note that [, (¢) is invariant under interest respecting reparameterisations. More-
over, involving only constrained maximisation, it does not require an explicit nui-
sance parameterisation. It is straightforward to check through expansions that
l,.-(®¥) is asymptotically of the form (2) with a(y)) given by (9). Indeed, in a

moderate-deviation region,

LW, X5 ()5 y) = L, Ags ) (A3 (1) = Ag) I (3, 5‘¢§y)+%(5‘:})(r)_5‘¢)21>\>\(¢> Ay y)+0,(n7Y),

where [y (v, 5\¢;y) =0, so that

lBAE(w) =1, (1/}) T 1.7)\/\ %Z 24+ 0 ( )

r=1

where % Zle(j\;(r) — A\y)? is the empirical analogue of V;(},).

11



Appendix A

We show first that
b(w; 00) = Eq (1, () — L.(¥)) = b' (%3 60) + O(n™"),

with b7(¢); 6) given by (6).
Let [\ (0) = (0%/0A?)1(0) and Iy (60) = (8°/0X?)I(6). Consider the expansion

1

L) = 1) + 50 = )b (B) = 500 = M)l @s) + O™,

2

which gives, after further expansions,

L) = L)+ 50 — A (Ouib0)

1 - 1 - _
—‘2‘()\11) — Ag)2Hyn (0y; 60) — 5()\11; — )3 vaan (03 00) + Op(n"), (10)

where HA,\(Q,,,; 9()) . _‘].A,\(H,p) + i,\)(@/ﬂ 90) and I/)\)\,\(ew; 90) = E'o(l)\)\)\(gw)). Hence,

B, (6)) = Boll, () + 5 (B; 0)Vo(y) + O ™). ()

We now show that
b(;00) = Eo (1, (1) — L.(1)) = " (¥;60) + O(n™"),

with b1 (3; 6y) given by (7).
From lA(éw) = 0, in a standard way, the following expansion for 5\¢ — Ay is
obtained:

Ao — Ay = ian(0y;00) T Ha(0y) + iax(By; 00) "2 Hax(8y; 00)1x(0y)

1. B i
513 (03 6o) 3w (03 00)Ix(04)% + O, (n*7?).

Notice that Ey(Ix(fy)) = 0 due to the maximising property of Ay. The above
expansion for ;\w — Ay gives \/0(;\1/,) = i (0p;00) 2vax (0, 0y; 00) + O(n=2).
Finally, we show that
b(1;00) = Eo (1, () — 1,(¥)) = b"" (13 60) + O(n™")

12



with b7 (1); 6y) given by (8). In particular, we will show that b'/7(; 5) = b’ (; 60)+
O(n™1) for ¢ — g = O(n~1/2).

For v — 1y = O(n~%/2), consider the expansion

l)\(9¢) = l,\(e()) + l,\,/,(go)(’l/) T wo) + l,\,\(00)(/\¢ — )\0) + Op(l) .

Hence,

a0y, 00;00) = ixx(00) + vaag (B0) (¥ — o) + vaaa(60)(Ay — Ao) + O(1) .

Similarly,

(0, 0y; 00) = ixx(60) + 20a 0y (60) (¥ — o) + 2vaan(00) (Ay — Xo) + O(1) .

As a consequence,

i (00) 2vax By, 00;00)% = iax(60) " a0y, 03 60) + O(n 1) .
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