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Summary

One of the main concerns in air pollution is excessive tropospheric
ozone concentration. The aim of this work is to develop statistical
models giving short-term prediction of future ground-level ozone con-
centrations. Since there are few physical insights about the dynamic
relationship between ozone, precursor emissions and/or meteorological
factors, a nonparametric and nonlinear approach seems promising in
order to specify the prediction models. First, we apply four nonpara-
metric procedures to forecast daily maximum 1l-hour and maximum
8-hours averages of ozone concentrations in an urban area. Then, in
order to improve the prediction performances, we combine the time
series of the forecasts. This idea seems to give promising results.

Keywords: Ground-level ozone forecasting, Nonlinear time-series models,
Combination of forecasts.

1 Introduction

Ground-level ozone is the primary constituent of photooxidative smog. It is
recognized that ozone concentrations are increasing steadily on larger part of
the northern hemisphere and that high concentrations of ozone have negative
effects on vegetation, human health and various materials. The importance
of ozone as an air quality parameter has induced most countries to adopt
legislative measures establishing national air quality standards. Some of
these include mandatory public warnings and traffic restrictions.

The institution of public information systems and of possible sanctions in
case where ozone limits are exceeded has increased the demand for effective
prediction models for maximum ozone concentrations.

More explicitly the goals of forecasting are to provide information in
order:

1. to satisfy needs of public information;

[ ¥

PO,
«



2. to further reduce and prevent exposure;

3. to alert authorities, industries and the public to take short-term mea-
sures for emission reduction during smog-episodes;

4. to increase public support for structural measures for emission reduc-
tions.

These goals require reliable information and forecasts on a timely basis.
Typically a forecast should be available at least for one-day in advance,
since the time required to prepare emission reduction measures is at least
one day and preferentially a few days, depending on the logistics.

Forecasting models for ozone concentrations could be based on deter-
ministic equations derived from theories related to physical and chemical
processes in the atmosphere (Seinfeld, 1986). However, such models are un-
suitable in many operational settings because they require significant com-
puter and staffing commitments as well as many complex chemical inputs.
When these inputs are not known, the transfer and application of a model
from one region to another is problematic. Further, reliable emission inven-
tories are indispensable for these kind of models, but they are only partly
existent and are limited in their regional validity. In addition, due to the
influence of meteorological conditions on ozone concentrations and large un-
certainty associated with input weather data, it is very difficult to obtain a
good agreement between the prediction model and the observed data.

Because of these inherent difficulties, stochastic models mainly based on
regression methods that include past values of ozone and ozone precursor,
such as NOz and NO, and meteorological conditions as inputs have been
widely employed as an alternative to deterministic models to forecast the
ozone concentrations.

In early regression models a linear specification was often adopted (Mil-
ionis and Davies, 1994; Ryan 1995), and for this reason such models have
not been proved always satisfactory, specially in providing accurate predic-
tion in situations of forthcoming pollution episodes. Nowadays it is widely
recognized that the relationship among ground-level ozone concentrations,
ozone precursor and meteorological conditions, may be complex and highly
nonlinear.

Some recent examples report results from nonlinear multiple regression
(Coburn and Hubbard, 1999), artificial neural networks (Comrie, 1997),
(Prybutok et al., 2000), additive models (Niu, 1996), (Davis and Speckman,
1999), CART model (Burrows al., 1995) and even fuzzy-logic-based models
(Jorquera et al., 1998).

Thus, according to this recent trend in the literature, in this paper we
adopt a nonlinear point of view for modelling and predicting ozone concen-
tration. However, rather than searching for specific nonlinear parametric
models, for which the number and the importance of parameters can vary



significantly with the specific site considered, or concentrating on a sin-
gle nonlinear procedure, we explore various approaches based on nonlinear
black-box modelling (Sjoberg et al., 1995).

In particular, we construct nonparametric predictive models for ozone
directly from time series data using some recent methods that combine broad
approximation abilities and few specific assumptions according to a theory-
poor and data-rich perspective.

The main features of our approach that distinguish it from previous
studies on modelling and forecasting ozone concentrations are: (i) the de-
velopment and application of different statistical nonparametric procedures
to the same data sets (still quite infrequent in the literature); (ii) improve-
ment of the forecasting results through combination of forecasts obtained
from different models; (iii) the particular attention given to specification
strategies in nonparametric modelling; (iv) the use, besides the classical cri-
teria for evaluating predictive performances, of criteria specifically developed
for evaluation of ozone forecasts.

The paper is organized as follows: the next section introduces the differ-
ent nonparametric strategies used for obtaining ozone forecasts; in section
3 the main characteristics of the data uses for the forecasting exercise are
briefly described; section 4 provides the results, while section 5 contains the
conclusions and some indications for further developments.

2 Nonlinear and nonparametric models

Let Y represent a single response variable that depends on a vector of p
predictor variables X = (Xi,...,X,)".

In our setup Y is either the daily maximum 1-hour average or the daily
maximum 8-hour average of ozone concentrations, X contain current and
lagged values of meteorological variables and precursors as well as lagged
values of pollutants.

We assume that T sample units of Y and X, namely {Y(¢), X (¢)}L;,
are given and that Y (¢) can be described by the nonlinear regression model

Y(¢) = g(X(2)) +&(b). (1)

The function g reflects the ‘true’ but unknown relationship between Y
and X. The random additive error variable £(¢) is assumed to have mean
zero and variance 2. We suppose also that ¢(t) is independent of X () so the
optimal Mean Square Error (MSE) forecast Y (), given X (t), is g(X(t)). In
the literature model (1) is known as NonLinear Autoregressive model with
eXogenous variables (NLARX).

Unless the dimension p is very small, the general nonparametric ap-
proach suffers from the ‘curse of dimensionality’. Briefly, because the non-
linear function in (1) is multidimensional, the analysis of such a model often
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requires multivariate smoothing. The virtue of nonparametric smoothing
is that of making use of ‘local properties’ of the data; for a multivariate
problem, a large sample is needed to obtain reliable local estimates. Con-
sequently, for the sample size and the number of predictor involved in our
problem, nonparametric estimates of model (1) can be associated with large
variations (for more details, see Hastie and Tibshirani, 1990).

To avoid this problem, various parsimonious modelling strategies have
been proposed (Sjoberg et al., 1995; Hirdle et al., 1997).

From a general point of view we can assume that the function g can be
written as

9(X) =) ongi(X), )
k=1

where {gx} is a basis for g.
In this framework, the (true) relationship (2) can be approximated by a
finite number of basis functions

h(X) = orgr(X). 3)
k=1

This setup covers various modelling procedures and some of these will be
considered in the sequel.

2.1 Additive Models

The simplest case of a basis function is given by the Additive Model (AM)
(Hastie and Tibshirani, 1990)

14
hX) = gr(Xx)- (4)
k=1

The gis are assumed to be unknown and are estimated nonparametri-
cally using only univariate smoothing splines. Note that the additive model
encompasses linear models (for example the AutoRegressive with eXogenous
variables model) and many interesting nonlinear models as special cases.

In order to estimate the model (4) we can use the back-fitting algorithm.
The main idea of back-fitting is that if the additive model (4) is correct,
then, for all k, E(Y — 22k 9i(X5)|1Xk) = ge(Xg). Consequently, we can
treat Y —3 ., 9;(X;) as the conditional response variable and use univariate
smoothers to estimate gj.

Since the gis are unknown, a starting value for all gk is given and the
estimates are iterated until the convergence is reached. The estimation
procedure can be coupled with the selection of the smoothing parameters
for each gy using a generalized cross-validation criterion (for more details see
Hastie and Tibshiran, 1990). Chen and Tsay (1993) have showed that this
adaptive back-fitting, called BRUTO, is particularly useful in lag selection
for AM.



2.2 Regression Trees and Multivariate Additive Regression
Splines

Although in the additive modeling framework Hastie and Tibshirani (1990)
suggest a number of ways of modeling interactions among predictors vari-
ables, other models, Regression Trees (RT) (Breiman et al., 1984) and
Multivariate Adaptive Regression Splines (MARS) (Friedman, 1991), build
these interactions directly.

A simple way to approximate g over D is splitting D into a (large)
number M of disjoint hyper-rectangles {R,}M_, and for each R,, using a
constant o, to estimate the value of g in R,,. A natural estimate for a,, is
the average of those y values whose X values fall into R,,. In the recursive
partitioning procedure (Breiman et al., 1984) the hyper-rectangles R,, are
determined starting with a single region R; = D, recursively splitting exist-
ing sub-regions into two halves and discharging parent sub-regions, until a
large tree is developed with each terminal sub-region containing only a few
observations. The over-sized tree is then pruned according to a cost com-
plexity measure (Breiman et al., 1984). In this work we use the prune.tree
procedure, as described in Vanables and Ripley (1997, pag. 425).

If we consider n of these sub-regions, the approximating function looks
like

n
h(X) = 3 e By(X), (5)
k=1

where Bg(-) is the indicator function of Ri. It is easy to see that this
indicator function can be represented by a product of step functions

Ty =185l T(z)=0, ifz<0.

While recursive partitioning is computationally fast and suitable to explore
high dimensional approximation problems, there are some drawbacks. First
the approximating function is necessarily discontinuous on the boundaries
of the adjacent sub-regions. This is disconcerting if we believe g continuous.
Further, recursive partitioning has an innate inability to adequately esti-
mate functions that are linear or additive. To overcome these difficulties,
Friedman (1991) proposed two important variants. The first is to replace
step functions by truncated power splines of the first order s,(z) = (z—u),
where u denotes a real number called knot. In the second variant the par-
ent region Ry is not automatically eliminated for creating sub-regions but
in subsequent iterations both the parent region and its corresponding sub-
regions are eligible for further splitting. The final form of the MARS model
is

h(X) =) opSi(X), (6)
k=1

where Sy, is the product basis function associated with the sub-region Ry.
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Since for a given set of {Bi} or {Si}, the values of partition points
or knots are fixed, MARS model is substantially a linear model where the
parameters oy may be determined by straightforward application of least
squares algorithms. Similar to the recursive partitioning procedure, the
process to build a MARS model consists of a first step in which a quite large
number of product basis functions is used, followed by a selection step in
which a generalized cross-validation criterion is used (Friedman, 1991).

2.3 Neural Networks

If we choose gx(X) = o(BxX + &), where o is an activation function and
Br is parameter vector of size p, we obtain

h(X) =) aro(BeX + ). (7)
k=1

This model is referred to as a feed-forward Neural Networks (NN) with
p input units, one hidden layer and one output unit. The most common
choice in the NN literature (Hertz et al., 1993) is o(2) = 1/(1 + e7%). NN
are universal approximators (Hornik et al., 1989) in the sense that (7) can
approximate any continuous function on compact sets, by increasing the
number n of the units in the hidden layer. The approximation results are
non-constructive, and the parameters (o, Bk, k) have to be chosen using
the observed data (training phase). A common choice is to minimize the
error function

N
E=Y (Y(t) - h(X()®.
t=1
In general the NN model is over parameterized and some reguralization
technique should be used in order to restrict model complexity. In our work

we have chosen
E + A\C(h),

where A is a real positive number and
0%h(z)
e = [ pIRFLLS

2.4 Model identification

Let us give now some remarks about the identification procedure for the pre-
vious models. We have noted that for each model the estimation phase can
be coupled with a model selection step following to an automatic criterion.
But model validation forms the final stage of any model identification. This
point has not been frequently considered in the environmental literature.



On the other hand, Billings and Voon (1986) have remarked that classical
tests (Box and Jenkins, 1976) based on the autocorrelation function (ACF)
of the residuals € and on the cross-correlation function (CCF) between é and
the input variable X; can provide incorrect information whenever nonlinear
effects are present in the data. For this reason, Billings and Voon have
proposed to inspect the estimated ACF and CCF

p(é), p(éaXi) p(éinz)’ p(é2), p(é’éXi)’ (8)

in order to find possible model inadequacies. For instance, significative cross-
correlation at lag 7 indicate that the variable X;(¢ — 7) should be included
in the model.

The model identification procedure we have adopted can be summarized
in the following steps.

1. Perform a preliminary analysis of scatterplots between ozone concen-
trations and meteorological as well as precursors variables. Such anal-
ysis suggests which variables should be included in the model.

2. Estimate the suggested model.

3. We look for possible inclusions of omitted lags by estimating (8). If
the model seems adequate, go to the next step, else return to step 2.

4. Try to simplify the model using the opportune selection criterion until
the estimated (8) do not suggest any inadequacy.

2.5 Combined forecasts

In the previous subsections we have mentioned that the optimal MSE pre-
dictor for the model (1) is g. For nonparametric estimation of g via approx-
imating models, various results (Yang and Barron, 1998) have shown that
with appropriate model selection criteria, the resulting predictor converges
in optimal fashions without knowledge of which approximating model is the
best at the given sample size. However, when several forecasting procedures
are available, a difficulty in applications is the choice of the right one for
the data at hand. Combining forecasts (Clemen, 1989) is a well-established
procedure to improve forecasting accuracy, which takes advantage of the
availability of multiple resources for data intensive forecasting. Among var-
ious combining formulations of m forecasts Yj(t), i = 1,...,m, we have
chosen to adopt the following

Ye(t) = wo + Y _ wii(t).

i=1

The weights w; are determined by least squares regression with the inclu-
sion of a constant. Granger and Ramanthan (1984) have shown that if the



individual forecasts, Y; are biased, then the method will be superior to the
optimal one which minimizes the error variance of the combination. This
conclusion is supported also by empirical findings over large sample data-
sets.

3 Data and preliminary analysis

The data used in this study come from the air quality monitoring network
of the Padova district, located in the Veneto region in the Northeast Italy.
In particular, given our primary interest toward urban air pollution, we
considered ground-level ozone measures taken from only three monitoring
sites situated in the town of Padova.

Of the three monitoring stations, one, denoted S1, is placed in an area
of the town characterized by high population density and intense vehicular
traffic; the second station, S2, is located near the hospital in an area mainly
affected by vehicular traffic; finally, the third monitoring site, $3, is situated
in the industrial area of the town.

The considered monitoring stations provide also measures relative to
other pollutants, usually considered as ozone precursors, like the various
oxides of nitrogen (NO;). Furthermore, from the same stations, with the
exception of 52, we get the data relative to the meteorological variables.

Among these variables, the most relevant ones, and thus employed in
the ozone modelling procedure, turned out to be, after some preliminary
analysis, temperature (T'), solar radiation (R) and wind speed (V).

The data have been placed at our disposal from ARPAV (Agenzia Re-
gionale per la Protezione dell’Ambiente del Veneto) as hourly averages over
the period 1 April 1992 - 30 September 1999. However, since high levels
of ozone concentrations occur mainly in worm periods, only the so-called
‘ozone season’ for each year, running from 1 April to 30 September, was
considered.

The EEC Directive on air pollution by ozone, which is currently in force
in Italy, defines the threshold value for the ozone concentration. The thresh-
old for human health protection has been set at 110 ug/m? for 8-h average
measures. The relevant threshold values in the context of the Directive are
the population information threshold value of 180 pg /m3 and the population
warning threshold value of 360 pg/m? as an hourly average.

Thus, according to these guidelines, we considered for each station two
daily summary ozone series, the daily maximum 1-h average and the daily
maximum 8-h average respectively.

Some descriptive statistics of the ozone time series are given in Table 9
while Figures 1 show the plots of the series relatively to the period consid-
ered.

From the examination of the Table 1 and Figure 1, one can observe
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Figure 1: Time series plots of the ozone concentration in the three monitor-

ing stations.



n Max Mean Med S.D.
S1-1lh 1099 275 110.0 107.0 45.8
S1-8h 1099 241 936 91.1 40.7
S2-1h 1464 284 97.0 90.0 47.7
S2-8h 1464 256 81.2 747 41.6
S3-1h 1464 233 78.6 71.0 36.3
S3-8h 1464 201 68.4 62.1 32.9

Table 1: Summary statistics for daily ozone concentration.

that: (i) the ozone mean level turns out to be higher in the monitoring
sites located in areas with dense population and/or with intense vehicular
traffic (S1 and S2). In the industrial area, S3, the ozone mean level is
relatively low, although there is evidence of an increasing trend for the last
year of the considered period, where more frequent exceedances over the
threshold 110ug/m? for the 8-h series are observed; (ii) as S1 and S2 are
concerned, many exceedances over both the thresholds 110 ug/m3 and 180
pg/m?3 are signaled by the 8-h and 1-h series respectively; the exceedances
are concentrated mainly in the warmest months (July and August) of the
ozone season.

Finally, in order to obtain from the data further useful information for
the subsequent modelling procedure, we have examined the scatterplots be-
tween ozone and its potential inputs. The main results lead toward an in-
effective relationship between ozone and its precursors (specially NO;) and
significant and probably nonlinear relationships between ozone and meteo-
rological variables, in particular T', R and V (see, for example, Figure 2).

4 Results

To compare the forecasting ability of the mentioned models, the period
1/4/1992-30/9/1998 has been used as training set for model identification
and estimation, while the period 1/4/1999-30/9/1999 has been left as testing
set for the comparison between observed and predicted values.

The forecasting ability in the testing set has been evaluated estimating
the models every month and predicting the values for the next month. As the
objectives of a forecast may widely differ, and there is not a single evaluation
procedure, several performance indicators have been considered. A first set
is intended to evaluate the numerical information. This includes classical
measures as (i) the mean error (ME), that indicates how much observed
concentrations are over or under-predicted; (ii) the root mean squared error
(RMSE); (iii) the mean absolute error (MAE), which has the benefit of being
not sensitive to outliers; (iv) the correlation coefficient between observed and
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Figure 2: Scatterplots between ozone 1-h average concentration and meteo-
rological variables (S1 monitoring station).

11



predicted values (CORR).

A second set of indicators has been considered, designed for evaluating
qualitative information such as if forecasts/measurements are above/below
a threshold value. In fact, in evaluating an environmental warning system,
there are two key points to consider: (i) the proportion of exceedances or
events correctly predicted by the model; (ii) the number of false alarms.
Large percentage of successful forecasts jointly with a percentage of false
alarms as small as possible are desirable.

Denoting f the total number of forecasted events, m the total number
of observed exceedances and a the correctly forecasted events, the following
criteria are suggested (De Leeuwe, 2000):

1. the percentage of correct forecast events
a
SP = 100%,
m
2. the percentage of realized forecast events

SR:%-IOO%,

3. the skill of correctly forecasting non exceedances

N+a—-m-—f
N-—-m

CN = - 100%,

4. the ratio of correct forecast events and total potential risk events

ST - 100%,

B a
- (m+f—a)
5. the ability of a correct forecast of the exceedances

_et+t(N+a-—m-f)

SI N

- 100%.

Prediction horizons of 1, 2 and 3 days ahead are considered, both for
daily maximum 1-hour and 8-hours mean ozone concentrations. However,
since conclusions for different horizons are basically the same, here only
one-day ahead results are reported.

Models identification has been carried out in a step sequence using the
procedure described in subsection 2.4. This means to analyze pictures like
Figure 3.

The whole procedure led to identify the models in Table 2, specified
for the different classes of models, both for the daily maxima 1-hour and
8-hours mean ozone concentrations. In Table 2, for example, the expression
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Si-1h
ARX T 03(1,6,12,23), t(0,1), £(0,1), v(0,1)
AM 03(1,6,11,23), t(0,1), r(0), v(0)
MARS | 03(1,6,11,23), (0,1), r(0,1), v(0)
NN 03(1,6,23), t(0,1), £(0,1), v(0)
RT 03(1), t(0,1), £(0), v(0)
ARX+AM

S1-8h

ARX | 03(1,6), t(0,1), £(0,1,7), v(0)

AM 03(1,6), £(0,1), r(0,7), v(0)

MARS | 03(1,6), t(0,1), £(0,1,7), v(0)

NN 03(1,6), t(0,1), £(0,1,7), v(0)

RT 03(1,6), t(0,1), r(0,1,7), v(0)

COMB | ARX+AM+NN+RT

S2-1h

ARX | 03(1,2,6,7,19), t(0,1,7), r(0,1,6,7), v(0,1)
AM 03(1,2,6,7,14), £(0,1,8), r(0,1,8), v(0,1)
MARS | 03(1,2,3,6,7,13,14), t(0,1,6), r(0,1,6), v(0)
NN 03(1,2,3,6,7,14), £(0,1,8), £(0,1,6,8), v(0,1)
RT 03(1,2,6,7), t(0,1,3), £(0,7), v(0)

COMB | ARX+AM+MARS

S2-8h

ARX [ 03(1,3,6,7,19), t(0,1,8), 1(0,8), v(0,5)
AM 03(1,3,4,5,6,7,13), t(0,1,6), 1(0,8), v(0,1)
MARS | 03(1,3,7), t(0,1,7), r(0), v(0)

NN 03(1,3,4,6,7), t(0,1), r(0), v(0,1)

RT 03(1,3,4,7), t(0,1,3), £(0), v(0)

COMB | ARX+AM+RT

S3-1h

ARX [ 03(1,2,6,7,11,14), t(0,1,7), £(0,1,2,5,7), v(0)
AM 03(1,2,6,7,14), t(0,1,7), r(0,1,6), v(0)
MARS | 03(1,3,6,14), t(0,1,12), r(0,1,6), v(0)

NN 03(1,2,3,4,6,14), £(0,1,8), £(0,1,6), v(0,1)

RT 03(1,7,14), £(0,1,4), £(0,1), v(0)
COMB | ARX+AM+RT
S3-8h

ARX [ 03(1,2,6,7,14), t(0,1,7), £(0,1,6,7), v(0,1)
AM 03(1,2,6,7,14), £(0,1,8), r(0,1,8), v(0,1)
MARS | 03(1,2,3,6,7,13,14), t(0,1,6), r(0,1,8), v(0)
NN 03(1,2,3,6,7,14), £(0,1,8), r(0,1,6,8), v(0,1)
RT 03(1,2,6,7), t(0,1,3), £(0,7), v(0)

COMB | ARX+AM

Table 2: Identified models with predictors variables.
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03(1,6,12,23) means that the delays 1, 6, 12 and 23 of the ozone variable
enter the model as predictors.

In the training set these models resulted, in the whole, sufficiently suit-
able to describe the data. The only unsatisfactory point is the permanence
of some slight significative autocorrelations for squared residuals, pointing
out a probable heteroskedasticity in the data.

Concerning the predictive abilities of these models, a summary of the
results provided by the indicators, referred to the entire 1999, is contained
in Table 3. It shows that, in general and except for RT, nonlinear predic-
tors behave better than the linear one and that, among nonlinear predic-
tors, AM gives relatively better results. These findings are consistent with
other recent work referred to the Italian context (for example Finzi et al.,
1999) and confirm the effectiveness of nonlinear modelling for ozone fore-
casting. Furthermore, if we compare these results with those obtained from
the benchmark persistent model, as suggested by De Leeuwe, (2000), it is
manifest that all models behave clearly better.

However, it must also be noted that there is not a unique model that def-
initely outperforms the others with respect to all indicators. For this reason,
and to further improve the forecasts, a linear combination of the different
predictors (denoted by COMB) has been considered. The results are given
in Table 3 together with the models that entered the best combination. In
the whole, the combined forecasts produced good results.

Let us consider, for example, the S3 station, which is interesting because
in 1999 it shows high levels of ozone concentrations and several threshold
excedancees. For this station the best model resulted to be a linear com-
bination of ARX, AM e RT for the daily maximum 1-hour average ozone
concentrations, and of ARX e AM for daily maximum 8-hours average. It is
worth noting that the models entering the combination giving the best pre-
diction are not those who perform better separately. Further, the combined
forecasts give for most of indicators the best performance or a performance
very near to the best.

If we consider again the S3 station, the human health protection level
has been exceeded several times. Vice versa, the attention level has never
been reached. For this reason, in our experiments, the threshold has been
put at 140 pg/m3, which is a value close to the mean of the whole series
plus twice its standard deviation.

The results of qualitative information, related to S1 and S3, are given in
Table 4. The lack of results for S2 is due to the absence of exceedances for
this station during 1999. Table 4 shows that, also with respect to threshold
exceedances, the best performances are those related to the combinations
previously described. Individually, instead, the models giving the best re-
sults are MARS e AM.
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Si-1h ME | MSE | MAE | CORR
RW -0.142 | 28.611 | 22.472 | 0.615
ARX 1.984 | 19.994 | 15.624 | 0.794
AM 0.816 | 18.788 | 14.994 | 0.822
MARS 1.027 | 19.271 | 15.534 | 0.812
NN 1.763 | 20.645 | 15.978 | 0.789
RT 1.112 | 21.276 | 17.027 | 0.774
: COMB=ARX+AM 0.869 | 18.964 | 15.076 | 0.814
‘ S1-8h ME | MSE | MAE | CORR
RW -0.644 | 25.942 | 20.673 | 0.623
: ARX 1.717 | 17.931 | 13.807 | 0.819
AM 1.537 | 17.394 | 13.414 | 0.831
MARS 1.668 | 17.317 | 13.134 | 0.834
NN 1.105 | 17.664 | 13.862 | 0.837
! RT 1.144 | 17.826 | 13.798 | 0.837
! COMB=ARX+AM+NN+RT | 0.724 | 16.700 | 13.008 | 0.855
S2-1h ME | MSE | MAE | CORR
| RW -0.493 | 21.043 | 16.363 | 0.613
| ARX -1.662 | 13.851 | 10.769 | 0.767
AM -3.276 | 13.930 | 11.225 | 0.799
MARS -2.278 | 13.934 | 11.315 | 0.790
NN -2.712 | 13.967 | 11.300 | 0.772
, RT -4.924 | 16.826 | 12.628 | 0.687
COMB=ARX+AM+MARS | -3.221 | 14.180 | 11.407 | 0.803
S2-8h ME | MSE | MAE | CORR
RW -0.558 | 16.780 | 12.963 | 0.630
ARX -0.151 | 10.430 | 8.099 | 0.788
AM -0.512 | 9.411 | 7.464 | 0.841
‘ MARS -1.162 | 11.306 | 8.627 | 0.767
‘ NN -1.868 | 11.540 | 8.589 | 0.740
RT -3.285 | 11.602 | 8.822 | 0.798
COMB=ARX+AM-+RT -1.158 | 9.487 | 7.235 | 0.844
S3-1h ME | MSE | MAE | CORR
RW 0.115 | 27.224 | 21.961 | 0.544
ARX 2.473 | 18.441 | 14.674 | 0.774
AM 2.697 | 16.659 | 13.334 | 0.822
MARS 3.381 | 17.108 | 13.826 | 0.813
. NN 2.452 | 17.958 | 14.367 | 0.790
RT 4.048 | 18.043 | 14.050 | 0.803
COMB=ARX+AM-+RT 2.211 | 15.155 | 11.986 | 0.855
S3-8h ME | MSE | MAE | CORR
RW -0.143 | 25.057 | 20.184 | 0.550
ARX 2.919 | 14.778 | 12.071 | 0.845
AM 2.290 | 13.917 | 11.409 | 0.857
MARS 2.302 | 14.535 | 11.961 | 0.847
NN 3.141 | 15.425 | 12.931 | 0.829
RT 5.073 | 15.504 | 12.063 | 0.847
COMB=ARX+AM 2.187 | 13.146 | 10.353 | 0.874

Table 3: Prediction results for daily maximum 1-hour and 8-hours mean
ozone concentrations. 16



S1-1h SP/ 'SR | CN BT 18I

ARX 58.6 | 89.5 | 97.4 | 54.8 | 86.6
AM 62.1 | 90 | 974 | 58.1 | 87.7
MARS | 656 | 95 | 98.7 | 63.3 | 89.6
NN 60 | 90 |97.6 | 56.2 | 87.6
RT 77.1 | 65.8 | 86.9 | 55.1 | 84.5
COMB | 62.1 | 90 |97.3 | 58.1 | 87.5
S1-8h SR |SR"| CN' | ST | SI

ARX 58.6 | 89.5 | 97.4 | 54.8 | 86.6
AM 62.1 | 90 | 97.4 | 58.1 | 87.7
MARS | 65.6 | 95 | 98.7 | 63.3 | 89.6
NN 60 | 90 |97.6 | 56.2 | 87.6
RT 77.1 | 65.8 | 86.9 | 55.1 | 84.5
COMB | 62.1 | 90 |97.3 |58.1 875
S3-1h SP 1SR ['ON.| BT [ BI

ARX 52 | 86.7 | 98.1 | 48.1 | 89.0
AM 96 | 87.5|98.1 518 | 89.8
MARS | 64 |94.1|99.0 | 61.5 | 92.1
NN 62.5 | 93.7 1 99.0 | 60 | 92.0
RT 51.8 | 100 | 100 | 51.8 | 90.2
COMB | 68 |94.4]99.0 | 65.4 | 92.9
S3-8h szi SR | CN7 BE (" BI

ARX 64.4 | 82.9 | 92.5 | 56.9 | 82.4
AM 65.2 | 76.9 | 88.9 | 54.5 | 80.3
MARS | 63.0 | 78.4 | 90.9 | 53.7 | 81.3
NN 98.7 | 77.1 1 90.9 | 50 | 79.8
il 68.9 | 86.1 | 94.2 | 62 | 854
COMB | 71.1 | 82.1 | 91.0 | 61.5 | 83.7

Table 4: Prediction results of qualitative indicators.
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5 Concluding remarks

In this work we have been concerned with the problem of short-term predic-
tion of ground-level ozone concentration in an urban environment. Given the
complexity of the dynamic relationship between ozone, meteorological vari-
ables and/or precursor emissions, nonparametric and nonlinear approaches,
that combine broad approximation abilities and few specific assumptions,
have been preferred. In particular, rather than concentrating on a single
procedure, the predictive performances of several nonparametric statistical
procedures are compared . To improve the forecasting results also the com-
bination of the individual forecasts obtained from the different models has
been considered.

The forecasting abilities of the mentioned procedures have been evalu-
ated through several performance indicators, which include classical sum-
mary measures of the numerical information provided by the forecasts (such
as ME, RMSE, MAE and the correlation coefficient between observed and
predicted values) and other measures specifically designed for evaluating the
qualitative information of an air pollution warning system.

The main results obtained applying the previous procedures to the same
data sets, consisting of the daily maximum 1-h and maximum 8-h aver-
ages drawn from the monitoring network of the Padova district, are briefly
summarized as follows.

Generally nonlinear procedures provide better forecasting performances
when compared with the benchmark persistence model and a properly spec-
ified linear regression model. These findings align with the recent trend in
the literature and confirm the effectiveness of nonlinear modelling for ozone
forecasting. Turning now to the comparison among the nonlinear proce-
dures, there is no evidence of a unique model definitely outperforming the
others with respect to all indicators. As a whole, it seems that the nonlinear
additive model provides slightly better forecasting performances. Signifi-
cant improvements with respect to the whole set of indicators are however
obtained when considering the forecasts combination procedure.

This encouraging result shows that a sensible way to construct an effec-
tive ozone forecasting system could be based on the combination of forecast-
ing procedures.

In this connection, further extensions should be explored and we are cur-
rently undertaking this task turning our efforts toward the experimentation
of more recent ways to combine forecasts, based on boosting procedures
(see Freund and Schapire, 1997) and artificial neural networks.
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