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Abstract: The aim of this contribution is to derive a robust approximate conditional proce-
dure used to eliminate nuisance parameters in regression and scale models. Unlike the approx-
imations to exact condtional solutions based on the likelihood function and on the maximum
likelihood estimator, the robust conditional approximation of marginal tail probabilities does
not suffer from lack of robustness to model misspecification. To assess the performance of the
proposed robust conditional procedure the results of sensitivity analyses are discussed.
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1 Introduction

Conditioning is a very natural concept, and most statisticians, theoretical and
applied, use it in their everyday work. With a few exceptions, all analyses
condition on the observed sample size. Regression analyses in observational
studies are almost always performed conditionally on the observed values of the
covariates. Conditioning arguments are present in all paradigms of statistical
inference. Bayesians condition on the observed data. The Neyman-Pearson
approach uses conditioning to retrieve optimality of some test criteria. It is
almost impossible to cover all the roles of conditioning in inference. An excellent
review is given in Reid (1995).

As first outlined by Fisher (1934), the conditioning argument provides an
elegant way to make inference in regression and scale models, that is, in models
characterized by a linear predictor and not necessarily normal errors. Condi-
tioning on the sample configuration reduces the dimension of the original data
to the dimension of the parameter. Nuisance parameters are then eliminated
by integrating, that is, by finding the marginal density related to the compo-
nent of interest. Applications of regression and scale models are found in many
areas of statistics as, for example, survival analysis or industrial applications.
Frequent choices for the error distribution include the Gumbel or extreme value
distribution and Student’s t distribution.

Although well defined, exact conditional inference is seldom feasible in prac-
tice because of the computational burden involved in deriving the marginal
distribution of interest. Recently developed higher-order asymptotics (see Cox,
1988, and Reid, 1995, for a thorough account) provide excellent approximations
to exact conditional solutions. These methods have been found to suffer from
lack of robustness to model misspecification (Brazzale and Ventura, 2001). The



aim of our research is to derive a robust approximation of marginal tail proba-
bilities applicable when, by conditioning arguments, inference about unknown
parameters is achieved through exact pivots whose joint density is known except,
perhaps, for a normalizing constant. The robust conditional approximation con-
sidered here is based on the results of DiCiccio et al. (1990).

The paper organizes as follows. Sections 2 and 3 give a short review of
exact and approximate conditional inference in regression and scale models.
Our research is discussed in Section 4. Sections 5 gives the results of sensitivity
analyses carried out to assess the performance of the proposed robust conditional
approximation.

2 Regression and scale models

Regression and scale models belong to the wider class of transformation models,
which represent an important class of statistical models to which the principles
of model and data reduction apply. A regression and scale model has the form

y=XpB+oe, (1)

where X is a fixed n x p matrix, 3 € IR? an unknown regression coefficient, o > 0
a scale parameter, and ¢ represents an n-dimensional vector of errors that are
independent and identically distributed according to a known density po(-) on IR.
For the ith response we write y; = x, 3+0¢;, where z; is the ith row of X. Given
a sample y = (y1,..-,Yn), the sample configuration a = (ai,...,a,), with
a; = (yi — =, B)/&, where (3, 6) is the maximum likelihood (or any equivariant)
estimate of the parameters 3 and o, is an ancillary for 8 and o (Fraser, 1979).
Given a, the pivot
).

plar, a2la) = c(a)gy ™ [ po { (=i @1 + ai)aa} (2)

i=1

(Ql) Q2) = (g;—ﬂv

Qe

has exact conditional density

where ¢(a) is a normalizing constant. Several authors, among whom are Fisher
(1934) and Fraser (1979), suggest that inference on the parameters (3, o) should
be made conditionally on the observed value a. Exact conditional confidence
intervals for any single parameter, say 8., r = 1,...,p, or o, are based on the
marginal density of the related pivot obtained by integrating out the remaining
components in (2). Examples thereof are given in Lawless (1972, 1973, 1978)
for applications to Cauchy, logistic, Weibull and extreme value distributions
and Kappenman (1975) for the Laplace distribution, in the case of a scale and
location model, and Fraser (1979) for linear models.



Exact calculation of the marginal distribution for the pivots of interest in
general involves multidimensional numerical integration, and can be hard to do
in practice. For instance, the normalizing constant c(a) is given by

n

+oo +oo
c(a)™ / / / 1HP0 T q1 + ai)q2} dqr1 ... dgipdgs |

where g1, = (Br - B-)/6, r =1,...,p. Otherwise, if only a subset of the pa-
rameters is of interest, it is straighforward to eliminate the remaining ones by
integrating (2) with respect to the components of Q; and @, that depend on the
nuisance parameters, leading to a marginal conditional distribution that only
depends on the parameters of interest. Yet, though well defined, exact marginal
inference for linear regression models is seldom feasible in practice. The com-
putational efforts required grow rapidly beyond what is feasible in a reasonable
amount of time and with acceptable accuracy, especially if the number of pa-
rameters is large and the dimension of the parameter of interest low. One ways
to overcome this problem is by resorting to small-sample approximations.

3 Higher-order approximation of marginal dis-
tributions

Recently, several higher-order asymptotics have been developed that provide
extremely accurate approximations to exact conditional inference, hence allow-
ing us to by-pass numerical integration of (2). In the following, we focus on
the approach of DiCiccio et al. (1990). Their results are derived in a gen-
eral setting, i.e. for a real-valued vector variable X = (Xi,...,Xy) such that
X, = Op(n‘1/2), fori =1,...,d, as some parameter n increases indefinitely. In
applications, n usually represents a number of observations. Suppose that the
density of X is given by

p(z) x exp{i(z)} , z = (21,... ,24) , (3)

where function I(-) is known. It is assumed that [(z) is of order O(n) for each
fixed z and that /(z) attains its maximum at 2 = 0. We are interested in
approximating the marginal distribution function of a single component of X,
say X1, that is, in approximating integrals of the form

Pr(X, < zi) :/ / / p(z1,.-. ,24)dz1d2s .. .dzq . (4)
—oo YR R

Integrals of this form are for instance common in the analysis of the linear
regression models and show up when we derive the marginal distribution of one
of the pivots (Q1, @2), whose joint distribution is (2).

Let #(z1) be the point at which I(z) is maximized subject to the constraint
that the first component of z equals the specified value z;. Let us define the



statistic
r = r(z1) = sgn(1) {2[1(0) - 1(&(z1))]}"/?

which, as shown in DiCiccio et al. (1990), has a standard normal distribution
to the first order, that is

Pr(Xy <a1) = &(r){1+ O(n"/*)},

where ® denotes the cumulative distribution function of the standard normal.
In the same paper, an improved version is given that has error of order O(n_3/2)
and takes a form similar to the tail area approximation discussed, for instance,
in Barndorff-Nielsen and Cox (1994). The approximation involves only first and
second derivatives of I(z), and is given by

Pr(X1 < zi) =9(r) + ¢(r)(r™* —ut) +0(n73/?), (5)
where ¢ is the density of the standard normal and

L (&(z1))|[~lse (B (z1))] /2
|[~Las(0)][*/2 '

In the former expression l;(z) = dl(z)/dz1 and lop(z) = 9%l(2z)0z,0zp, with
a,b=1,...,d and s,t = 2,...,d. An asymptotically equivalent version is

u=—-

Pr(X; <o) = $(r*){1+0(n~*?)}, (6)
where
r* =r+r 'log(u/r) .

Expressions (5) and (6) remain valid even if the density cexp{l(z)} only ap-
proximates the true density p(z) with relative error O(n=3/2), and they can be
easily generalized in cases where the joint density of the variables is maximized
at a point other than 0; see DiCiccio et al. (1990, formula (16)).

DiCiccio et al. (1990) have also computed (5) in the specific context of linear
regression models (1), using the parameterisation (83, 8), where § = logo (see
also DiCiccio and Field, 1991). Let Q1 = (B —pB)/e? and Q, = 6 — 0 be the
associated pivots based on the maximum likelihood estimate for (3,6). They
are of the order O,(n~/2). In this case, the joint conditional distribution of
the pivots satisfies (3), with

n
a1,q2) =ng2 — Y _ g {(z;@ +a;)e™} | (7)
i=1
where g(z) = —logpo(z). Straightforward calculation shows that (7) is maxi-

mized at 0, that is if 3 = [ and 6 — 6. Note that this would not hold if we
decided not to work on a logarithmic scale for the parameter o.



Let us now fix Q; = Q15 = (B] —B;)/€%, i.e. one of the components of Q, or
Q;=0Q2 = 6—8. The constrained estimates of the remaining components in (7)
are equivalent to replacing 8 and € with the constrained maximum likelihood
estimates obtained by maximizing the loglikelihood function subject to the con-
straint that ); = g;. Approximations to the marginal conditional distribution
of the pivot of interest can be obtained from the tail area approximation (5) or,
equivalently, by the corresponding r*-type version (6). In this case the errors in
(5) and (6) are of order O(n~3/2) conditionally on a and unconditionally. For
computational aspects of (5) and (6) in regression and scale models see DiCiccio
et al. (1990, Sec. 4), DiCiccio and Field (1991) and also Brazzale (2000, Sec.
3.2.2).

4 A robust conditional tail area approximation

Recent research pointed out that some higher-order approximations suffer lack
of robustness to model misspecification. For instance, Ronchetti and Ventura
(2001) discuss the effects of model misspecification on higher-order asymptotic
approximations of the distribution of classical statistics. They show that small
deviations from the assumed model can wipe out the improvements of the accu-
racy obtained by second-order approximations. Moreover, Brazzale and Ventura
(2001) investigate the stability with respect to single point contamination of the
p-values based on (5) and (6) in the context of linear regression models by means
of a sensitivity analysis. They show that even a small change of one single in-
fluential observation can have a strong impact on the test results based on (5)
and (6). These findings concern the marginal performance of the approximate
procedures and not the conditional behaviour given the configuration statistic
a. On the contrary, the conditional simulation study performed in Brazzale and
Ventura (2001) by means of MCMC techniques suggests that higher-order so-
lutions are less infuenced by contamination of the error distribution if only the
conditional sample space is taken into account and that robustness properties
of (5) and (6) depend on the nature of the contaminating distribution.

The aim of this contribution is to discuss a robust version of the approximate
marginal distribution (5) or, equivalently, of (6), that presents robustness prop-
erties both from a marginal point of view and also conditionally on an ancillary
a. The approximation is based on the results given in DiCiccio et al. (1990).
Robustness of the proposed approximation is investigated in Sections 4 and 5
by means of sensitivity analyses and also by simulation studies.

Expression (2) for the exact conditional density holds for any equivariant
estimate of the parameters 3 and o used to define the configuration ancillary a.
In the following, to achieve robustness, we focus on robust equivariant estimators
of 8 and ¢. In particular, we consider the general class of robust M-stimators
for linear regression models (see Hampel et al., 1986, chap. 4). An M-estimator
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is defined as the solution of the unbiased estimating function

n

> ¥ B,0) =0, (8)

i=1

where 1 (-) is a given function. Under broad conditions, M-estimators are con-
sistent and asymptotically normal. Moreover, M-estimators are B-robust if and
only if the corresponding 9(-) function is bounded.

Let us consider the parameterisation (5,0) and let @)1 = (3 - B) /eé and
Q2 = § — @ be the associated pivots, based on the M-estimates for 3 and 6.
They are still of order Op (n~1/2) and their joint exact conditional distribution
still satisfies (3), with (g1, g2) given in (7). In this case, function (7), unlike the
standard case based on maximum likelihood estimates discussed in the former
section, does not attain its maximum value at 0. Indeed, differentiation of (7)
with respect to (g1, g2) gives

n
l,, = —e% Zg(l) [(z] @ +a:)e”] zir ,r=1,...,p, (9)
i=1
n
lyy =n—e? Y g [(z} g1 + ai)e®] (ziqr +ai) (10)
i=1

where ¢ (z) = dg(z)/dz. If (Q1,Q2) is based on the maximum likelihood
estimate of (3,6), then (9) and (10) are the usual likelihood score equations and
(7) attains its maximum at 0. But if (@1, Q2) is based on an M-estimate for
(8,8), then the solution of l;, =0, 7 =1,...,p, and l;, = 0 must be computed
numerically. In the following, we denote by & the maximum of (7) and, since
the maximum likelihood estimate is a particular case of (8), we continue to use
the parameterisation (83,6).

Let Q; be the component of (Q1,Q2) that is of interest and of which we
want to compute the approximate marginal distribution. Let ) (g;) be the point
at which (7) attains its maximum value subject to the constraint that the com-
ponent Q; equals the specific value g;. Then, provided g; —; is O(n~1/?), the
robust approximation of the marginal conditional tail probability of @; given
the ancillary a, is given by

Pr(Q; < gjla) = &(ry) + ¢(re)(ry — ;) + O(n /%), (11)

where

s = ryla5) = sgnla; — &) [20(8) — 16(a))]

and




and a,b vary over 1,...,p,p+ 1 and s,¢ vary over 1,... ,p,p+ 1 # j. The
second derivatives of (7) are given by

n
ly.q. = —€°® ng [(z] g1 + a:)e®] zipmis , 1,8 = 1,...,p,
i=1
n
lgpga = —€7 Z!](l) [(50: @ + a;)e®] T —
=1

n
- Y ¢ (g} @1 + a:)e®] (g} @1 + @i)zir ;7 =1,...,p,
i1
n
lgaga = —e?® 29(2) [(115: a1+ ai)eqz] (93: q1 + ai)2 -
i=1

n
— oY g0 [@Far +a)e®] (2l +ai)
i=1

where g(?) = d?g(z)/dz?.
An asymptotically equivalent version of (11) is given by

Pr(Q; < gjla) = 3(r;){1+0(n~*?)}, (12)
where
Ty =Ty + rb_l log(up/Tp) -

The errors in (11) and (12) are of order O(n~3/2) conditionally on a and un-
conditionally.

For the univariate case, i.e. in the simple location model or in the simple
scale model, (11) reduces to

12 (5)]/2
10 (q)

where 7, is now defined as r, = ry(q) = sgn(q — 6)[2(1(8) — I(g))]*/? and IV =
~3gW(g + ai), I® = =3 gD (g + a;) in the location model, or 1) =p -
e?S gW(ase?), I®) = —e? 3" gW(a;e?) — 2y g (a;e?) in the scale model.

Note that the only difficulty in implementing (11) rather than the usual
expression based on the maximum likelihood estimators (5) is the calculation
of the maximizing point § and of 6(g;). In fact, the determination of the first
two derivatives of (7) is the same in the two cases. On the other hand, it
must be noted that the higher-order conditional approximation (11) is much
easier to compute than the approximation for the marginal distribution function
for M-estimators discussed in Field and Ronchetti (1990, chap. 6), based on
saddleponit techniques.

Pr(Q < la) = ®(ry) + 6(rs) }b + Lom Yy, (1)



5 Sensitivity analyses

Procedures that are not overly influenced by clearly outlying observations are
of practical interest. The theory of robust statistics is concerned with statis-
tical procedures that are stable even under small deviations from the assumed
statistical model.

To assess the robustness properties of a method, a useful tool is the empirical
influence function (Hampel et al., 1982). A natural way to study the stability of
a method is to move a single observation z of the observed data and then explore
the effect of changing z. Formally, choose a fixed sample, either a real data set, a
simulated sample, or made-up values. Choose the observation z of the observed
sample (in a linear regreggion model z is typically an influential observation),
move z over a grid of values, find the values of a quantity of interest (for instance
a p-value) and plot them as a function of the position of z. This will typically
show whether the procedure does qualitatively what it is expected to do. If it
fails, it may become clear what part of the procedure should be improved. A
related tool is Tukey’s (1977) sensitivity curve. It is simply the normalized effect
of the observation z on the quantity of interest, i.e. the normalized version of the
empirical influence function. It can be shown that in many situations forn — oo
the limit of the sensitivity curve is the influence function. The influence curve is
a fundamental tool to assess the robustness properties of a method (Hampel et
al., 1986). However, although the definition of the influence function is natural
in the case of marginal inference, its definition is not clear in the case of the
conditioning on the configuration ancillary and further research is required on
the appropriate definition in this case. This difficulty also arises in the context of
time series (see Hampel et al., 1986, Section 8.3) or in the context of mixed linear
models (see Welsh and Richardson, 1997) where there is no entirely satisfactory
definition of the influence function. For this reason, in the following we focus on
the empirical influence function to investigate the stability of (11) with respect
to single point contaminations.

Example 1: Sea Levels in Venice

To compare (5) and (11), we perform an empirical sensitivity analysis of the
associated p-values for testing problems. This study is illustrated by an appli-
cation to the data discussed in Smith (1986), which concern the maximum sea
levels measured in Venice; see also Pirazzoli (1982). It should be made clear
that the main purpose of what follows is to illustrate the application of our sta-
tistical technique, not to provide a substantial reappraisal of the flood danger
in Venice. Thus we shall take no account of physical effects such as geological
subsidence, the pumping of water from underground sources or the construction
of new channels. On the other hand, the problems which we do discuss (stability
with respect to single point contamination) arise in many statistical analyses of
this kind, so our discussion of these problems is relevant in a broader context.
Venice data consist in the ten largest values (with a few exceptions) of sea
levels for the years 1887-1981. Following Smith (1986), the data should be



divided into two halves: roughly constant sea level with irregular fluctuations
up to 1930, steadily increasing thereafter. More detailed analysis of the maxima
confirms this impression, and it was therefore decided to analyse only the data
from 1931-1981. Smith (1986) shows that a good reference model is a linear
regression model with extreme value distributed error, i.e. with density function
po(z) = exp(—z — exp(—z)), with z € IR. The linear predictor includes a
quadratic trend in the years (Smith, 1986, model 3.1) plus a 19-year seasonal
component due to periodic tidal fluctuations. Maximum likelihood estimation
is discussed in Smith (1986). Interest focuses on the quadratic term.

We investigate the robustness of tests based on (5) and on (11), with respect
to single point contaminations. This corresponds to a contaminatione = 1/(n—
1) = 0.02, that is of around 2% of the data. In particular, the analysis is run
with respect to the most influential observation, corresponding to year 1932.
The corresponding observed sea level in Venice is 78cm. This observation is
perturbed and allowed to vary in the range 40cm to 120cm. At each time (5)
and (11) are recomputed. The resulting p-values for assessing the significance
of the scalar parameter of interest are shown in Figure 1. The M-estimators
considered are the well-known robust Huber estimators for linear regression
models (see Hampel et al., 1986, Section 6.2).

A general inspection of Figure 1 shows steep p-values curves for (5), and
almost constant p-values for (11). Therefore, for the standard higher-order
approximation (5) the most striking feature is that even a small change in the
observed sea level has a strong impact on the observed significance level. This
finding is in agreement with Ronchetti and Ventura (2001). On the contrary,
for the robust conditional approximation (11) a small change of the sea level
does not imply a substantial change of the p-values.

This analysis confirms that when testing contaminated models by (5) even
small changes of a single observations can have a strong impact on the test
results. This is a valid reason to justify the use of the robust approximation
(11)

Example 2: Further evidence with House price data

Sen and Srivastava (1990, page 32) consider a data set (26 observations) on
house prices. Among the variables examined are the selling price in thousands
of dollars (y), the number of bedrooms (z,), the floor space in square feet (),
the total number of rooms (z3) and the front footage of lot in feet (z4). The
model can be written as

yi = Bo + B1x1i + Boxai + Psxsi + Paxa; +oeg; i =1,...,26, (14)

where ¢; is taken to be standard Student’s t with 5 degrees of freedom, to allow
for longer tails and for extreme values.

Again, the main purpose of what follows is to illustrate the application of
our statistical technique, not to provide a substantial reappraisal of the house
prices. We investigate the robustness of tests based on (5) and on (11), with
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Figure 1: Sensitivity analysis for the Sea Level Data in Venice. The year 1932
observation was contaminated.

respect to single point contaminations (observation 8). For the observation 8
the observed price is 70 thousands of dollars. We vary this observation between
30 to 90, and recompute each time the p-values based on (5) and on (11) for
assessing the significance of the scalar parameter f4 of model (14) associated
with the variable of interest z4. Also for this example, a general inspection
of Figure 2 shows varying p-values for (5) and more stable p-values for (11).
Therefore, for the standard higher-order approximation (5) a small change of
the price on the z-axis implies a significant change of the p-values on the y-axis.
On the contrary, for the robust conditional approximation (11) a small change
of the price does not imply a substantial change of the p-values.
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