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An Adaptive Exponentially Weighted Moving Average
Control Chart

Giovanna Capizzi Guido Masarotto

Abstract

The Exponentially Weighted Moving Average (EWMA) charts (Roberts, 1959) has optimal
properties in forecasting and control applications. Lucas and Saccucci (1990) showed that
an EWMA scheme can be designed to quickly detect small or large shifts in the mean of a
normally distributed process. However EWMA cannot be designed to be "optimal" for both
small and large shifts. Furthermore in the worst-case situation (Woodall, Maragah, 1990)
EWMA requires a few obsevations to overcome its initial inertia. In this article the main
goal is to take the best features of the EWMA chart and the Shewhart while diminishing
the inertia problem. We suggest an Adaptive Exponentially Weighted Moving Average
(AEWMA) that depends on a suitable function of the current prediction error. We show
the results for two weighting functions, the Huber’s function (Huber, 1981) and the Tukey’s
bisquare function (Hampel et al., 1986). The resulting AEWMA is a smooth combination of
the Shewhart’s chart and the EWMA chart. A design procedure for the AEWMA control
scheme is given. Parameter values are shown to be useful for detecting both small and large
shifts in the mean of the process. Several control schemes are also considered. We compare
the standard and worst-case ARL’s curves, of CUSUM, EWMA, CSEWMA and Shewhart’s
with supplementary rules charts (Champ and Woodall, 1987), over a wide range of shift
values. All the results show a more ’balanced’ response of the AEWMA scheme to any size
shifts between two specified shift values.

KEY WORDS: Control charts; EWMA; Average Run Length; Adaptive coefficients; One-step
forecast error.

1 Introduction

Let {w:}, ¢ = 1,2,..., be a sequence of independent random variables. Suppose that, before an
unknown change time, the mean of the process, 7, is equal to 7y and after the change the mean
is equal to 7, = 79 + p, u # 0. We want to be able to detect this single shift, in the mean of the
process, as soon as possible.

Control charts, as the Shewhart’s chart (Shewhart,1931), the CUSUM charts (Page, 1954, 1955)
and the Exponentially Weighted Moving Average (EWMA) charts (Roberts, 1959), serve the
purpose of detecting changes in the quality of a product in a process (Montgomery, 1985, Ryan,
1989, Rowlands and Whetherill, 1991, Whetherill and Brown, 1991, Yashchin, 1993).

The properties of the statistical change detection schemes can be investigated with the aid of
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the Average Run Length, ARL, that is the average number of observations required to produce
a signal. The criteria are mainly the delay for the detection, which is related to the ability of
the scheme to signal an alarm when a change actually occurs, and the mean time between false
alarms. The overall criterion consists in minimizing the delay for the detection, (out of control
ARL), for a fixed mean time between false alarms, (in control ARL).

An EWMA scheme is based on the statistic
zy = Az + (1 — A, (1)

. The quantity z, represents the starting value and is often taken to be the target value 7. The
smoothing constant A determines the rate of decay of the weights and hence the amount of
information on the historical data. This scheme signals when | z; — 7y | exceeds a specified
action limit A;.

In literature, efficiency and robustness of EWMA’s charts is investigated with respect to the
change magnitude p in the mean. The main conclusion of this comparison is that, for a fixed A,
an EWMA scheme can be constructed to give good signaling performance for small or large shifts.
Small values of A are optimal for detecting large shifts, just as in the case of the Shewhart chart,
while large values of ) are optimal for detecting small shifts, as in the case of the CUSUM scheme
(Crowder, 1987A, Lucas and Saccucci, 1987). On the other hand, because of the dependence of
(1) on the fixed value of ), it is not possible to design an EWMA scheme that is "optimal" for
small and large shifts simultaneuosly .

According to Hunter (1986) the EWMA chart may be also used as mechanism for dynamic
process control, by estimating its ’current level’ and the ’prediction’ of its next position. In fact
the control statistic (1) can be also written as the most recent observation minus A times the
one-step ahead forecast error e; = y; — z;_1, i.e.

Te = Yy — Aes. (2)

If the forecast shows a future deviations from target, that seems too large, the process operator
could control and adjust the process.

However, for some process shifts, the EWMA scheme (2) can be slow in terms of ARL. In
particular when the EWMA statistic is at or near one of its control limits and a sudden change
in the mean occurs in the opposite direction (worst-case situation), there is a large discrepancy,
between the observation and its forecasted value, giving a large residual. Gradually the forecasted
values shifts up also to reflect the fact that the observations have shifted upward and the EWMA
scheme requires a few observations to overcome this initial inertia (Woodall, Maragah, 1990).
The EWMA'’s inertia can be guarded against by using the combined Shewhart EWMA, CSEWMA,
(Lucas and Saccucci, 1987, 1990). This scheme is achieved by adding Shewhart limits to an EWMA
control scheme so that an out-of-control signal is given if the EWMA statistic is outside the control
limits or if the current observation is outside the Shewhart limits.

However the inertia also depends on the smoothing constant A and for small values of A and
moderate to large shifts, this problem can be even more pronounced. In fact for values of A
close to zero the most recent forecast error receives a little weight and the evidence of a sudden
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large shift will be weakened. On the other hand, when ) increases, a large shift could be detected
sooner, since more weight is given to more recent errors which have a higher mean, but the addition
of the Shewhart limits causes the CSEWMA to be sensitive to the occurrence of occasional outliers.

In this article the main goal is to take the best features of the EWMA chart and the Shewhart’s
chart while diminishing the inertia problem still present in the CSEWMA. The idea underlying is
to take into account the response of the forecast errors to a shift in the mean process.

This question has been already considered within several frameworks, as for example within the
dynamic Bayesian modelling (West and Harrison, 1989) or the Kalman filter estimation.

We propose an Adaptive Exponentially Weighted Moving Average (AEWMA) procedure that uses
a simpler idea of weighting the one-step forecast error, based on its magnitude. Even under worst-
case scenarios, a better performance than EWMA is attained by a modified EWMA prediction
equation that it is sensitive to a specific pattern of the decay in the forecast errors.

The AEWMA chart is shown to give improved ARL properties when both small and large shifts
are to be detected. To design the AEWMA scheme we use a design scheme different to that of
Lucas and Saccucci (1990). They suggest to choose a combination of parameters which, for a given
in control ARL, minimizes the out-of-control ARL of EWMA, for a specified shift in the mean.
Thus the optimal choise of parameters depends on the magnitude of the shift. We recommend
to design a scheme whose out-of-control ARL, for the optimal combination of parameters, also
performs well in terms of detecting other magnitudes of the shift.

In this article we show the results for two weighting functions, one based on the Huber’s
function (Huber, 1981) and the other on the Tukey’s bisquare function (Hampel et al., 1986).
These two functions have the advantages to be parsimonious in terms of parameters and give a
smooth combination of the Shewhart’s and EWMA charts.

In §2 we describe the control scheme AEWMA. In §3 we obtain the ARL of the AEWMA using
a Markov chain approach. In §4 we give the design procedure for the AEWMA scheme and in
§5 we evaluate and compare the ARL performances of some AEWMA schemes. Finally in §6 the
ARL’s profiles of the AEWMA schemes are compared to the corresponding profiles of CUSUM,
EWMA, CSEWMA and Shewhart with supplementary rules charts (Champ and Woodall, 1987).

2 The Adaptive EWMA scheme

When a shift first occurs there is a large discrepancy, between the observation and its forecasted
value, giving a large residual e;. In this situation the control statistic z; becomes small and the
EWMA results slower to produce an out-of-control signal. Thus the control statistic (2) should
be modified to accelerate its reaction to large and sudden shifts.

We suggest to use an AEWMA scheme, based on the statistic

Ty =Yt — /\¢’(€t, C), Zo = 7o, (3)

where the 1)(e;, €) is a suitable function of the current prediction error e; and of a parameter vector
¢, the elements of which are to be chosen to satisfy the run length requirements.
The function 1(-) should be such that, when e; is large, it should have a relative little value. Thus
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the predicted value z, for very small values of this weight, becomes larger and (3) should be able
to overcome the inertia under worst case scenarios. Briefly if |e;| is small then 1(-) should be ~ e,
while if the current error is large, 9(-) should be strictly less than e;.

Then the weighting function 1(-) should allow to combine the best properties of the Shewhart’s
and EWMA charts.

Actually many score functions could be used. To blend together the best features of the EWMA
and the Shewhart’s chart we recommend to use a class of monotone functions, within the envelope
of the EWMA and Shewhart’s 7(-) functions.

In this article we show the results for two weighting functions, the Huber’s function (Huber, 1981)
and the Tukey’s bisquare function (Hampel et al., 1986) given by

= € if | € IS k
aen ) = { k otherwise (4)
2 .
e k) =4 e [L= (@] if e <k 5
: 0 otherwise

Both these functions depend upon only one scalar parameter k. Moreover function (5) has the
advantage to give a smooth combination of the Shewhart’s and EWMA charts.
To understand the differences between these two charts and the AEWMA chart, we rewrite the

control statistic (3) in the form
T = Te-1 + Ps(et, C), To = 1o, (6)

where ¢,(e:, () = e: — Mps(er,(), s = hu,bs.
The Shewhart’s chart and the EWMA chart are included in the control statistic (6), as a special
case, for ¢(e;,:) = e; and ¢(e;, ) = (1 — A)e;, respectively.
Figure 1 illustrates the ¢-functions of the following schemes: (i) an AEWMA scheme, based
on ¢py(es, k) = er — Mppu(es, k), with A = 0.9 and k = 5, (ii) an AEWMA scheme, based on
Pos(es, k) = e: — Mbps(es, k), with A = 0.9 and k = 14, (iii) a Shewhart’s chart, (iv) an EWMA
scheme with A = 0.9.

The figure shows that, if e; becomes small, the ¢,(-) function, with s = hu, bs, is close to the

Gewma(+), while, if e; is large, it becomes close to the Shewhart one.

3 The ARL of the proposed scheme
Let y(n) be the ARL, given the AEWMA starts with zo = 7, where
Y =E{N —t |z, =¢and N >t}

. The function v(-) satisfies a Fredholm integral equation of the second kind (Crowder, 1987),
given by

,y(f)={ 1+/ 1€+ 8y — & O (W)dy if [€ =7 |< b, (7)

otherwise
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where f(-) is the probability density function of ;. The solution of (7) can be obtained by replacing
the equation with a system of linear algebraic equations and solve them numerically.

The scheme (6) can be also represented as a continuous state Markov process and we are able to
evaluate its run length distribution, by discretizing the infinite state transition probability matrix.
The interval between the upper and the lower control limits is divided in an odd number of
subintervals, m, of width A = 2h/m.

The process is assumed to be in-control if the control statistic z; is in a ’transient’ state i, at time
t, that is if v; — % <z L Y+ %, where v; represents the midpoint of the :—th interval, I;. The
process is assumed to be out-of-control whenever z, falls outside the control limits, that is z; is in
the ’absorbing’ state a.

The transition probability matrix, represented in partitioned matrix form, is given by

P=(R (I—-R)u),

0 i

where the submatrix R, m x m, contains the probabilities 7;; of going from one transient state i
to another j, in one step, I is the identity matrix and u is a column vector of ones. The elements
of the vector (I — R)u are the probabilities of jumping to the absorbing state, the first occurrence
of which terminates the process. The (m + 1)/2-th element of the vector (I — R)™'u gives the
average time spent by {z:} to reach the absorbing state, that is the ARL.

The probabilities r;; are approximated by assuming that the control statistic is equal to v; whenever
it is in state ¢. The Markov chain representation of the AEWMA procedure is

=4 U if [z-1 4+ #(ys — 2-1,C)] € L,
t a otherwise

with 29 = 79. Thus the elements of the R matrix are approximated by 7;; = Pr{z € I;|2;—1 = vi}.
This yelds

A
T~ij =PI‘{'U|‘+¢(yt—’U.‘,C) EIJ'} =Pl‘{’l)j - V; — -—3— <¢(yt_'U:',C) < Vj _vi+§} (8)

If ¢(y, -) is monotone in y the transition probabilities are given by
i = Pr {¢“1(vj —v;—A/2,)+vi <y < '(vj—v+A/2,()+ 'Ui} .
For the functions (4) and (5), ¢;*(-,k), s = hu, bs is given by

v— Ak ifv<—(1-Ak
G, k) =4 v/(1=X) if —(1=ANk<v<(1-Ak .
v+ Ak ifo>(1-MAk

1 _f #*(w) if |v|<k
Soa (v, K) = { v otherwise

where ¢*(v) is the unique real root, with absolute value less than k, of the polynomial

[y — My{1 - (y/k)*}? — v]



4 The design of the AEWMA scheme

The scheme (6), at observation ¢, concludes there is a lack of control, if | z; — 7 |[> h1. The design
strategy is to choose suitable values of (), h, k) so that the scheme (6) has desidered properties,
in terms of ARL.

The usual approach is to find the choice § = (h, \,¢) which, for a given in control ARL(u,6),
minimizes the out-of-control ARL(0, §), for a specified shift in the mean. Rather unfortunately, as
for the standard EWMA chart (Lucas and Saccucci, 1987), the values of # obtained following this
approach strongly depends on the specified magnitude of the shift. As a consequence, this design
criterion is unable to produce a single AEWMA scheme which performs in a nearly optimal way
for all the values of the shift. In particular, the ability of charts optimised for the detection of a
small shift to signal the occurrence of a large shift is quite poor if compared to the one of a chart
optimised for a large shifts, and vice versa. Thus it is desiderable to design a procedure which is
more sensitive at a wider range of shifts.

Chosen two shifts, of size u; and us, we recommend the following strategy

1. choose the the smallest acceptable ARL, B, when the process shift is zero;

2. fix the magnitude of shift in the process, yg, that must be detected as soon as possible, then
choose the optimal combination §* = (\*, k*, h*) which produces the minimum ARL for the

size shift y, and the in control ARL constraint.
Thus 6* is solution of the following problem

ming ARL(us,6)
subject to 9)
ARL(0,0) =B
An AEWMA chart, with an in-control ARL of B and parameters 8*, has a smaller out-of
control ARL for the specified shift;

3. choose another magnitude of shift u;, p1 < po, that must be detected quickly, and a
constant o > 0, then find the optimal § = (), k, h) as solution of

ming ARL(y,, 6)

subject to

ARL(0,0) = B (10)
and

ARL(p2,0) < (14 )ARL(p2,9)

Examples will be given to demostrate that the resulting AEWMA scheme not only is optimal for
two particular shifts of interest, but it also performs well in terms of detecting other shifts in the
interval (1, p2).

5 Results

The main example which is carried through this paper is concerned with the detection of a change
in the mean of an independent Gaussian sequence. Without loss of generality we assume that
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7o =0 and 0% = 1.

The ARL calculations are based on a Markov chain approximation with m = 151 subintervals.
To illustrate the advantage of the the design procedure (10) we also consider the design scheme
(9). The criterion (9) is applied to compare the ARL’s performances of the AEWMA schemes,
AEW(®, s = hu,bs, based on the weighting functions (4) and with (5) respectively, to that of
the standard EWMA schemes, EW,,. For an in-control ARL equal to 500 and three values of the
shifts in the process that are to be detected quickly, x = 0.5,3 and 5, Table 1 gives the EWMA’s
and AEWMA'’s parameters that will result in the minimum ARL’s, for each of the specified size
shifts.

Since the true value of x is unknown, is important to evaluate whether these schemes provide
sufficient protection against other shifts. Thus the ARL’s of the schemes EWMA and AEWMA,
optimal for 4 = 0.5,3 and 5, are evaluated for several other values of y, (Table 2).

Although, for x = 0.5, the ARLs, of the EWMA and the AEWMA schemes, are very similar,
this table shows that as the specified shift increases, the ARL’s of the AEWMA schemes become
smaller than the corresponding ARL’s of EWMA schemes, over the entire range of x. This
difference tends to be more pronounced for the weighting function (5).

Then the criterion (10) is applied to evaluate the AEWMA ability to detect size shifts between
two specified values p; and ps. For B = 100, 500, = 0.05 and for each combination of y; and p,,
Tables 3, 4a and 4b list the optimal parameters § = (), h, k) and the corresponding ARL’s of the
AEWMA schemes, AEW),., {(p1, 42)} = {(0.25,3),(0.5,3), (1,3), .. ., (0.25,6), (0.5,6), (1,6)},
s = hu, bs.

Examination of Tables 3a and 3b illustrates that 5 increases and ) decreases as the specified shift
p1 increases. On the other hand the optimal k increases as the specified shift Mg increases.

We also note that both the design procedures, (9) and (10), lead to values of A that are sligthly
larger than the optimal values tabled by Lucas and Saccucci (1990). Therefore, when the process
is in control these optimal choices of A are such that z; has smoother trajectory. Note that Tables

1,3 and 5 give a threshold, h;, equal to h [}—;A U oy, where h is obtained as solution of (9) or (10).

Our results show that the ARL’s of EWMA schemes, EW; and EWj are much larger than the
ARL’s of the six AEWMA schemes AEW, 3 and AEW,, 5, with y; = 0.25,0.5 and 1.

Table 1 Optimal parameters of EWMA and AEWMA charts
Schemes . Parameters, B = 500 - criterion(9)
EWps (A%, A1) = (0.952866, 1.442661)
AEWSS | (A, k*,h2) = (0.95278,4.30198, 0.49132)
AEWS | (O, k*, k) = (0.96577,21.03405, 0.59403)
EW, (3%, ht) = (0.32466, 1.69000)
AEW™ | (O k*, ht) = (0.99993, 3.05641, 1.10557)
AEWS) | (O k*,h3) = (0.66438,7.71461,0.69638)
EW, (A%, A1) = (0.02418,1.62994)
AEWS™ | (%, k* h2) = (0.96707,1.99929,1.67116)
AEWS) | (A% k*,h) = (0.88903,6.09421,1.21847)




Table 2 ARL’s of AEWMA charts and EWMA charts, B = 500

p | EWos AEWSY AEWS | Ews AEWSY AEWDY | Ews AEWSY  AEWS
0.00 [ 500.00  500.00  500.00 | 500.00  500.00  500.00 | 500.00  500.02  500.0
0.25 | 82.91 83.01 89.36 | 302.73 37417  289.59 | 369.53 37177  374.88
0.50 | 28.77 28.79 30.33 | 123.83  201.58  107.97 | 195.29  196.84  187.86
0.75 | 16.50 16.50 16.97 | 53.28  103.12 42.84 | 98.49 96.71 80.81
1.00 | 1151 11.51 11.50 | 25.79 54.59 20.06 | 51.64 4589 3544
150 | 7.2 7.21 6.69 | 8.56 17.89 7.10 | 16.80 13.74 10.34
2.00 | 531 5.28 449 | 415 7.26 3.80 | 6.86 6.17 4.88
250 | 4.24 4.15 324 | 258 3.60 250 | 3.46 3.33 2.89
3.00 | 356 3.37 2.45 | 1.86 2.15 1.84 | 2.10 2.09 1.96
350 | 3.09 2.74 1.94 | 147 152 - 146 | 150 1.50 1.47
400 | 275 gl 158 | 1.24 1.22 1.23 | 1.22 1.22 1.22
5.00 | 2.19 1.41 117 | 1.04 1.03 1.04 | 1.03 1.03 1.03
6.00 | 2.01 1.08 1.02 | 1.00 1.00 1.00 | 1.00 1.00 1.00

6 Comparisons

In order to discuss the properties of the AEWMA procedure respect to the more commonly used
charts, we compare the ARL’s profiles of the AEWMA chart to the ARL’s profiles of standard
EWMA charts (1), CUSUM charts, CSEWMA charts and Shewhart charts with supplementary

rules.

The parameters of these schemes are chosen so that the in-control ARL would match that of the
Shewhart chart with two supplementary runs rules, Ciz3, given by Champ and Woodall (1987).
For an in-control ARL of 132.89, the criterion (9) is applied to design EWMA, CUSUM and
CSEWMA charts optimal for shifts of size u = 0.5,3 and 5. Using the criterion (10), AEWMA
schemes are designed to detect any combination of three fixed values of y; and four of py. Thus
we tabulate the ARL’s of the following schemes

£

the AEWMA charts, AEW(®), , s = hu, bs, with weighting functions given by (4) and (5),
respectively and with y; = 0.25,0.5,1, up = 3,4,5,6 and . The optimal parameters and the
ARL’s of all these AEWMA schemes are listed in Appendix (Tables 5, 6);

three standard EWMA charts (1): EW,s with (b} = 1.2080257, \* = 0.93487), EW; with
(h = 1.51642, \* = 0.23334) and EW; with (h} = 1.51968, \* = 0.06356).

three CUSUM charts CUSUM, 5, CUSUM; and CUSU M;.

The CUSUM chart signals if S; > h* or T; < —h*, where S; = max(0,S;_; + y; — 0*)
and T; = min(0,T;_; + y; + 0*). The optimal parameters of these three CUSUM schemes
are (h* = 5.90753,6* = 0.26392), (h* = 1.38348,4* = 1.38574) and (h* = 1.159586,4* =
1.56518), respectively.

three CSEWMA schemes CSEW M Ay 5, CSEW M A3 and CSEW M As.
The CSEWMA chart signals if (1) is greater than h} or if the current observation is greater
than c. Since Lucas and Saccucci (1987) suggest choosing Shewhart limits larger than




that would be used for a standard Shewhart limits to prevent a large reduction in the in-
control ARL, c was chosen equal to 4. Thus the parameters of these three schemes are
(bt = 1.21931,X* = 0.93338,c = 4), (ht = 1.523045, \* = 0.235218,c = 4) and (h} =
1.52620, A* = 0.043469, c = 4).

5. one Shewhart chart with supplementary rules, C}a3.
This scheme was introduced by Champ and Woodall (1987), to improve the Shewhart chart’s
sentivity to small shifts in the mean of the process. The procedure is given by a combination
of rules of the form T'(g,,a,b) which signals if ¢ out of the last = values, of the control
statistic, fall in the interval (a,b), a < b.
In this article we consider the combination Cjo5 = C; U C, U C3 where

Cl = {T(17 1) —00, 3)7 T(la 1; 3, 00)}1 C2 = {T(27 37 _37 _2)1 T(27 37 27 3)}

and C3 = {T'(4,5,-3,-1),T(4,5,1,3)}.

This chart signals if the present mean is larger than 3 (or less than —3), or two of the last
three means are between —3 and —2 (or between 2 and 3), or four of the last five means are
between —3 and —1, (or between 1 and 3).

Table 7 (see Appendix) gives the ARL’s of all these procedures. Figures 2, 3 and 4 illustrate
the ARL’s for the EW,,, CUSUM,, and CSEWMA,,, optimal for 4 = 0.5 and 5, and the ARL of
a AEW‘S'I'"Q, optimal for (u,, u2) = (0.5, 5).

Figure 5 illustrates the ARL of Cig3 chart and those of the AEW{) schemes, optimal for
(11, u2) = (0.5, 3), (0.5, 5) e (0.5,6), respectively.

Lucas and Saccucci (1990) show that in the worst-case situation the EWMA requires a few
observations to overcome its initial inertia while CSEWMA shows a better performance in terms
of ARL.

We compare the worst-case ARL’s of AEWMA, EWMA, CSEWMA, and CUSUM charts. For the
first three schemes the worst-case ARL equal to the maximum of the vector (I — R)~'u. While
for the CUSUM chart the worst-case ARL is equal to the (m + 1)/2-th element. Figures 6, 7 e 8
compare the worst-case ARL’s of WCAEW,,,,,, WCEW,,, WCSEW,, and CUSUM schemes.
All the results show a more desiderable performance of the AEWMA schemes over a wide range
of shift values.

7 Summary and conclusions

In particular for small values of the shift these comparisons indicate there is a little difference
between the ARL properties of AEWMA, EWMA and CUSUM, but for larger shifts the AEWMA
charts is much more responsive than EWMA and CUSUM. So the AEWMA does not loose the
advantage of CUSUM and AEWMA for larger shifts.

This better performance of AEWMA is shown even respect to several enhancements for EWMA’s,
as the CSEWMA and the Shewhart with supplementary rule, implemented when large and small
shifts are to be detected. Finally our comparisons of the worst-case ARL’s of the EWMA,
CSEWMA and AEWMA charts (Figures 6 and 7) illustrate that the AEWMA has the advantage
to combine the best features of the EWMA chart and the Shewhart chart while diminishing the
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Table 3 Optimal parameters of AEWMA
Be 1N B =500

- Huber functi~on " <
(11, p2) A k hy A k hy
(0.25,3) | 0.94591  2.42133 0.45452 | 0.97888  2.96697 0.53300
(0.50,3) | 0.90775  2.38401 0.46996 | 0.93031 2.98113 0.54937
(1.00,3) | 0.77329  2.44727 0.47666 | 0.84054 3.30842 0.55723
(0.25,4) | 0.92344 2.54514 0.43336 | 0.98819  3.02312 0.49743
(0.50,4) | 0.90725 2.51833 0.44480 | 0.96260 2.87963 0.56812
(1.00,4) | 0.82489  2.44159 0.47163 | 0.87570  2.68917 0.60254
(0.25,5) | 0.94189  3.15888 0.37291 | 0.98344  3.39274 0.43445
(0.50,5) | 0.94911  3.23232 0.36141 | 0.94809 3.25297 0.51271
(1.00,5) | 0.83037 3.13517 0.44054 | 0.87162  3.12009 0.55583
(0.25,6) | 0.97316  3.45122 0.30570 | 0.98267 4.19948 0.42033
(0.50,6) | 0.95417 3.20660 0.35394 | 0.95436 4.10324 0.48950
(1.00,6) | 0.80762 2.62126 0.46066 | 0.86607 4.01578 0.54555
o ~ Bis~quam func~tion X
(11, p2) A k hy A k h1
(0.25,3) | 0.97781 10.24508 0.81879 | 0.94720 10.13491 0.89432
(0.50,3) | 0.95752 9.91783 0.68692 | 0.93376 10.21771 0.83014
(1.00,3) | 0.93960 9.72418 0.63763 | 0.86544 10.60466 0.69487
(0.25,4) | 0.99386 13.69501 0.92907 | 0.97060 11.42884 0.96034
(0.50,4) | 0.96526 11.58546 0.62591 | 0.91978 10.62397 0.76645
(1.00,4) | 0.91776 10.47411 0.56835 | 0.96524 11.30674 0.64545
(0.25,5) | 0.98780 16.40169 0.58174 | 0.98327 16.48632 0.80171
(0.50,5) | 0.97631 22.46813 0.40497 | 0.96243 15.05259 0.70581
(1.00,5) | 0.93899 10.22665 0.61063 | 0.89655 13.54159 0.64394
(0.25,6) | 0.99301 14.74914 0.79792 | 0.98773 31.06528 0.53521
(0.50,6) | 0.97657 23.69023 0.39362 | 0.96108 25.38781 0.55254
(1.00,6) | 0.93899 10.22665 0.61063 | 0.88145 21.56960 0.57456

inertia problem still present in the CSEWMA.
Thus the AEWMA chart not only seems optimal for the two particular shifts of interest, it also
performs well in terms of detecting any size shift in the interval (0, max(u;, y2))-
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Table 44 AEWMA’s ARL’s, B = 100, criterion (10)

shift
(p1,p2) |wh | 025 050 0.75 1.00 150 2.00 250 3.00 3.50 4.00 5.00 6.00
(0.25,3) | hu |48.09 21.32 12.60 866 4.99 320 2.17 158 127 1.11 1.01 1.00
bs | 49.85 21.89 12.52 8.32 4.56 2.90 2.03 155 1.28 1.12 1.01 1.00
(0.50,3) | hu | 49.46 20.99 11.88 7.99 4.60 3.03 212 158 1.28 1.12 1.01 1.00
bs |49.97 2145 12.05 7.97 440 284 202 155 128 1.13 1.02 1.00
(1.0,3) hu | 53.77 22.39 11.72 7.42 408 2.75 203 158 131 1.14 1.02 1.00
bs | 50.47 2140 11.85 7.79 4.31 281 201 155 1.28 1.13 1.02 1.00
(0.25,4) | hu | 45.05 19.41 11.37 7.85 4.66 3.14 222 1.66 132 1.14 1.02 1.00
bs | 46.59 21.55 12.92 8.78 4.85 3.06 2.13 161 131 1.14 1.02 1.00
(0.50,4) | hu |46.32 19.62 11.28 7.70 454 306 2.19 165 132 1.14 1.02 1.00
bs |46.48 20.18 11.69 7.90 4.46 291 208 160 131 1.14 1.02 1.00
(1.0,4) hu | 51.41 21.26 1141 741 419 283 208 160 131 1.14 1.02 1.00
bs | 49.25 20.58 11.38 7.50 4.22 2.80 203 158 1.31 1.14 1.02 1.00
(0.25,5) | hu |39.73 17.59 10.78 7.71 4.88 351 266 205 161 131 105 1.00
bs |43.32 20.02 12.20 8.45 4.84 3.14 222 169 1.37 1.18 1.03 1.00
(0.50,5) | hu |39.27 17.59 10.89 7.83 499 361 274 212 166 134 106 1.00
bs | 39.78 1828 11.35 8.06 4.89 3.35 246 191 154 130 1.06 1.01
(1.0,5) hu | 4648 19.02 1050 7.00 4.15 294 227 1.82 151 129 1.06 1.01
bs | 49.18 20.81 11.62 7.69 4.30 2.82 2.03 157 1.29 1.13 1.02 1.00
(0.25,6) | hu |38.33 18.04 11.55 848 552 4.03 3.07 235 1.82 144 108 1.01
bs | 4555 21.15 12.77 8.74 4.87 3.10 2.16 164 133 1.15 1.02 1.00
(0.50,6) | hu |39.12 17.68 11.01 7.95 5.07 3.65 2.76 2.11 1.64 1.33 1.05 1.00
bs | 39.56 18.23 11.35 8.09 4.93 3.39 250 194 157 132 1.07 1.01
(1.0,6) hu | 50.11 20.59 11.07 7.20 4.10 2.82 2.10 1.65 1.35 1.17 1.02 1.00
bs |49.18 20.81 11.62 7.69 4.30 2.82 2.03 157 129 1.13 1.02 1.00
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Table 4b AEWMA’s ARL’s, B = 500, criterion (10)

shift

(B1,p2) [wf | 025 050 0.75 1.00 150 2.00 250 3.00 3.50 4.00 5.00 6.00

(0.25,3) | hu [100.77 37.66 22.22 1543 8.94 557 349 226 1.60 1.27 1.04 1.00
bs | 177.42 49.99 2191 1282 6.37 3.89 264 193 151 126 104 1.00
(0.50,3) | hu | 110.36 33.06 17.23 11.39 6.62 4.46 3.15 226 1.68 1.33 1.05 1.00
bs | 176.18 49.39 2145 1247 621 3.83 262 193 151 126 1.05 1.00
(1.0,3) | hu | 13748 38.07 17.23 10.39 564 3.85 290 226 180 146 1.11 1.0l
bs | 18232 5145 21.36 11.90 578 3.63 2.55 193 154 1.29 1.05 1.00

(025,4) | hu | 99.13 4125 2523 17.72 10.17 6.11 3.66 2.29 160 1.26 1.04 1.00
bs | 147.63 42.98 20.67 12.77 6.58 4.03 2.72 198 154 128 1.05 1.00
(0.50,4) | hu |113.37 36.62 20.25 13.71 7.88 5.02 3.27 220 159 1.26 1.04 1.00
bs | 149.77 43.15 2049 1259 6.49 3.99 2.70 197 154 128 105 1.00
(1.0,4) hu | 167.84 4485 19.63 11.69 6.17 4.00 2.80 2.03 155 126 1.04 1.00
bs | 168.86 47.09 20.53 11.98 6.03 3.77 261 194 153 1.28 1.05 1.00

(0.25,5) | hu | 7820 32.60 20.23 14.57 9.10 6.22 428 290 1.99 147 108 1.01
bs | 100.32 34.44 19.09 1269 6.97 4.39 3.00 219 1.70 139 1.08 1.01
(0.50,5) | hu | 90.77 30.11 16.82 11.54 698 4.85 351 255 188 144 1.08 101
bs | 108.80 33.76 17.68 11.53 8.34 6.38 5.06 3.42 247 1.89 105 1.01
(L05) | hu | 12855 35.86 16.86 10.47 5.83 399 295 226 1.76 141 108 1.01
be | 139.75 88.97 .17.82 10.79 572 8.74 2.70- 206 185 1,87  1.08 . 1.01

(0.25,6) | hu | 7457 3122 1949 14.18 9.19 6.77 525 4.09 3.10 2.29 133 1.05
bs | 78.74 3209 1946 1365 8.08 539 3.84 286 223 179 127 105
(0.50,6) | hu | 8248 28.81 16.58 11.59 7.26 530 4.13 3.30 261 2.05 132 1.05
bs | 86.27 2949 16.63 11.38 6.77 4.65 3.44 266 2.13 175 127 1.05
(1L0,6) | hu | 12207 3442 16.34 10.21 577 405 3.14 254 209 1.74 127 1.05
bs |123.75 34.89 16.53 10.28 570 3.90 294 234 193 1.63 122 1.04
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Appendix

Table 5 Optimal parameters of AEWMA, B = 132.89

Huber function Bisquare function
(pl,pz) A k fll :\ E 711
(0.25,3) | 0.90408 2.26725 0.57188 0.90669 6.88720 0.85870
(0.50,3) | 0.99839 2.60778 0.51449 0.99505 10.64849 1.64918
(1.0,3) |0.99839 2.60778 0.53814 0.92247 9.78052 0.66211
(0.25,4) | 0.95261 2.65061 0.44766 0.99644 13.26998 1.40053
(0.50,4) | 0.93667 2.61220 0.46649 0.95737 11.13294 0.68415
(1.0,4) |0.83317 2.47293 0.51198 0.96615 11.33841 0.71588
(0.25,5) | 0.97261 3.29517 0.34979 0.99124 25.39122 0.45733
(0.50,5) | 0.96263 3.26627 0.37651 0.99124 16.09627 0.74723
(1.0,5) |0.86264 3.14466 0.46738 0.97658 9.54701 0.97998
(0.25,6) | 0.97771 4.24204 0.32458 0.98169 25.02540 0.29567
(0.50,6) | 0.93568 4.11819 0.41300 0.93223 6.59281 0.70846
(1.0,6) | 0.82739 3.47754 0.47612 0.97658 9.54700 0.68368
Table 6 AEWMA’s ARLs
shift
(B,p2) [wf | 000 025 050 0.75 1.00 150 2.00 2.50 3.00 3.50 4.00 500 6.00
(025,3) | hu [132.89 72.18 28.50 14.82 947 b5.11 322 218 160 1.28 112 1.0l 1.00
bs | 132.90 83.87 36.45 17.67 10.26 4.92 298 204 154 1.26 1.11 1.01 1.00
(0.50,3) | hu |132.89 91.86 51.28 30.74 19.25 8.16 3.99 2.32 1.60 1.26 1.10 1.01 1.00
bs |132.89 62.24 2652 1497 981 518 3.17 216 1.62 1.31 1.14 1.02 1.00
(1.0,3) | hu | 13293 7355 29.39 14.38 863 4.46 289 208 1.60 1.30 1.14 1.02 1.00
bs | 133.77 63.17 24.76 13.07 837 455 295 2.11 162 1.32 115 1.02 1.00
(0.25,4) | hu | 133.07 5140 21.88 13.06 9.11 541 3.56 245 1.76 1.36 116 1.02 1.00
bs | 132.89 56.98 25.11 14.71 9.85 531 328 225 168 1.35 1.16 1.02 1.00
(0.50,4) | hu |132.93 53.06 21.83 1270 874 516 343 239 1.74 136 1.16 1.02 1.00
bs | 132.89 5745 23.12 12.85 851 472 3.06 2.17 165 1.34 1.16 1.02 1.00
(1.04) | hu [132.89 63.65 24.54 12.70 8.09 450 3.01 2.19 1.67 1.34 116 1.02 1.00
bs | 13329 57.12 23.23 13.04 867 480 3.09 2.18 165 1.34 1.16 1.02 1.00
(0.25,5) | hu | 132.89 4429 20.13 1273 927 594 424 3.13 231 174 137 1.06 101
bs | 132.89 4730 21.91 13.65 9.62 564 372 264 199 1.58 131 1.06 1.01
(0.50,5) | hu | 132.89 44.72 19.74 1228 887 565 4.04 3.00 225 1.71 136 1.06 1.0l
bs | 132.89 51.94 23.10 13.85 9.48 530 3.37 234 176 1.41 120 1.03 1.00
(1.0,5) | hu [ 13290 53.61 20.71 11.37 7.61 453 321 245 193 156 131 1.06 1.01
bs | 13446 65.04 26.54 1442 931 494 3.08 212 1.60 1.30 1.14 1.02 1.00
(0.25,6) | hu | 133.01 43.63 20.16 1291 950 6.26 4.70 3.74 3.05 249 201 130 1.05
bs |132.89 4563 2055 12.74 9.04 546 3.71 2.70 2.07 1.66 1.38 1.09 1.01
(0.50,6) | hu |132.89 46.02 19.19 11.51 8.17 520 3.85 3.07 252 208 172 1.25 1.04
bs | 132.89 87.90 39.68 19.23 11.03 5.16 3.06 2.06 154 1.26 1.11 1.01 1.00
(1.06) | hu |132.89 56.26 21.50 11.48 7.52 4.39 3.12 243 198 166 142 1.11 1.01
bs | 13446 65.04 26.54 1442 931 494 308 212 160 1.30 1.14 1.02 1.00
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Figure 1: Comparisons of the ¢(-) functions of Shewhart, EWMA and AEWMA schemes
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Figure 2: ARLs of the AEWo(_h55“) y EWy 5 and EWj; schemes
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Figure 3: ARLs of the AEW%,

CUSUM, 5 and CUSU My schemes
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Figure 4: ARLs of the AEW" CSEW M A5 and CSEW M As schemes
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Figure 5: ARLs of the AEW"Y AEW{ and C,a3 schemes
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Figure 6: Worst-case ARLs of the WCAEW™) WCEW, s and WCEWj schemes
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Figure 7: Worst-case ARLs of the WCAEW") CUSUM,; and CUSU Mj schemes

(=]
e -
g -
— Optimal AEWMA for py=0.5 e p,=5
- -- Optimal CUSUM for p=0.5
...... Optimal CUSUM for p=5
o _
o
)
[oa
<
o
n —
N et
T T 15 T T T T
0 1 2 3 4 o 6

Shift

22



Figure 8: Worst-case ARLs of the WCAEW%, WCCSEW, s and WCCSEW, schemes
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